JP4883799B2 - Ground material particle size measurement system and program - Google Patents
Ground material particle size measurement system and program Download PDFInfo
- Publication number
- JP4883799B2 JP4883799B2 JP2007198780A JP2007198780A JP4883799B2 JP 4883799 B2 JP4883799 B2 JP 4883799B2 JP 2007198780 A JP2007198780 A JP 2007198780A JP 2007198780 A JP2007198780 A JP 2007198780A JP 4883799 B2 JP4883799 B2 JP 4883799B2
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- sample
- diameter
- granular material
- accumulation curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims description 314
- 239000000463 material Substances 0.000 title claims description 103
- 238000005259 measurement Methods 0.000 title claims description 26
- 238000009825 accumulation Methods 0.000 claims description 164
- 239000008187 granular material Substances 0.000 claims description 152
- 238000001514 detection method Methods 0.000 claims description 35
- 230000005484 gravity Effects 0.000 claims description 16
- 238000010191 image analysis Methods 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 description 25
- 238000003384 imaging method Methods 0.000 description 14
- 238000007873 sieving Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 7
- 238000010276 construction Methods 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- LFEUVBZXUFMACD-UHFFFAOYSA-H lead(2+);trioxido(oxo)-$l^{5}-arsane Chemical compound [Pb+2].[Pb+2].[Pb+2].[O-][As]([O-])([O-])=O.[O-][As]([O-])([O-])=O LFEUVBZXUFMACD-UHFFFAOYSA-H 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 6
- 239000011362 coarse particle Substances 0.000 description 5
- 239000004575 stone Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000005315 distribution function Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000003908 quality control method Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000004927 clay Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011496 digital image analysis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
本発明は地盤材料の粒度計測システム及びプログラムに関し、とくに地盤材料の粒径加積曲線を作成するシステム及びプログラムに関する。 The present invention relates to a particle size measurement system and program for ground material, and more particularly to a system and program for creating a particle size accumulation curve for ground material.
地山等で採取した土質材料、原石を破砕機で砕いた岩砕材料その他の地盤材料を用いてダム・堤防・路体・路盤・路床・コンクリート・舗装・植栽基盤等の土木構造物を構築する場合に、構造物の品質確保等を目的として地盤材料の粒度を管理することが求められる。一般に地盤材料は、粒径0.075mm以下の細粒分(シルト・粘土等)と、粒径0.075mmから75mmまでの粗粒分(砂、礫等)と、粒径75mm以上の石分との混在物である(非特許文献1参照)。地盤材料の粒度は、混在している細粒分、粗粒分、石分(以下、これらをまとめて粒状材ということがある)の粒径の分布状態を表すパラメタであり、通常は粒径加積曲線、すなわち横軸(対数軸)に各粒状材の粒径dを表し且つ縦軸(線形軸)に各粒状材以下の径の粒状材の通過質量百分率P(d)(=粒径dの粒状材より小径の粒状材の総質量/粒状材全体の総質量×100)を表した片対数グラフによって管理される(図13参照)。 Civil engineering structures such as dams, embankments, road bodies, roadbeds, subgrades, concrete, pavements, planting bases, etc. using soil materials collected from natural ground, etc. It is required to control the grain size of the ground material for the purpose of ensuring the quality of the structure. In general, the ground material is composed of fine particles (silt, clay, etc.) with a particle size of 0.075 mm or less, coarse particles (sand, gravel, etc.) with a particle size of 0.075 mm to 75 mm, and stones with a particle size of 75 mm or more. It is a mixture (see Non-Patent Document 1). The particle size of the ground material is a parameter that indicates the distribution of the particle size of the mixed fine particles, coarse particles, and stones (hereinafter, these may be collectively referred to as granular materials). The accumulation curve, that is, the horizontal axis (logarithmic axis) represents the particle diameter d of each granular material, and the vertical axis (linear axis) represents the passing mass percentage P (d) of the granular material having a diameter equal to or smaller than each granular material (= particle diameter). It is managed by a semi-logarithmic graph representing the total mass of the granular material having a smaller diameter than the granular material of d / total mass of the entire granular material × 100) (see FIG. 13).
例えば最大粒径300mm以上の石材を含む地盤材料の粒度を管理する場合は、(1)先ず地盤材料試料の全質量mを測定し、(2)粒径300mm以上の粒状材を抽出してその全質量m(300)を測定し、(3)残留した試料を125mm及び75mm篩により順次篩分けして各篩の残留質量m(125)、m(75)を測定し、(4)75mm篩通過分の含水比wを測定してその通過分の質量ms(=(m−m(300)−m(125)−m(75))/(1+w/100))を算出したのち、(5)各粒径d(=300mm、125mm、75mm)の通過質量百分率P(d)を(1)式により算出し、(6)算出した通過質量百分率P(d)を片対数グラフにプロットして粒径加積曲線を作成する(非特許文献1(JGS0132-2000)参照)。ただし、(1)式におけるΣm(d)は粒径dより大きい粒状材の質量の総和を表す。
P(d)=(1−Σm(d)/(Σm(75)+ms))×100 …………………(1)
For example, when managing the particle size of a ground material containing stone with a maximum particle size of 300 mm or more, (1) first measure the total mass m of the ground material sample, and (2) extract the granular material with a particle size of 300 mm or more Measure the total mass m (300), and (3) measure the residual mass m (125) and m (75) of each sieve by sequentially sieving the remaining sample with 125 mm and 75 mm sieves, and (4) 75 mm sieve After measuring the water content ratio w of the passage and calculating the mass ms (= (m−m (300) −m (125) −m (75)) / (1 + w / 100)) of the passage, (5 ) Calculate the passing mass percentage P (d) of each particle size d (= 300 mm, 125 mm, 75 mm) by the equation (1), and (6) plot the calculated passing mass percentage P (d) on a semi-logarithmic graph. A particle size accumulation curve is created (see Non-Patent Document 1 (JGS0132-2000)). However, Σm (d) in the equation (1) represents the total mass of the granular material larger than the particle size d.
P (d) = (1−Σm (d) / (Σm (75) + ms)) × 100 (1)
また、粒径75mm以下の粗粒分・細粒分からなる地盤材料の粒度を管理する場合は、(1)先ず粒径75mm以下の地盤材料試料を2mm篩により篩分けし、(2)2mm篩残留分に対して75mm、53mm、37.5mm、26.5mm、19mm、9.5mm、及び4.75mm篩分けにより各篩の残留質量m(d)を測定して通過質量百分率P(d)を算出し、(3)2mm篩通過分に対して沈降分析により0.075mm(75μm)以下の細粒分の通過質量百分率P(0.075)を算出し、(4)更に2mm篩通過及び75μm篩残留分に対して850μm、425μm、250μm、106μm、及び75μm篩分けにより各篩の残留質量m(d)を測定して通過質量百分率P(d)を算出し、(5)算出した各通過質量百分率P(d)を片対数グラフにプロットして粒径加積曲線を作成する(非特許文献1(JISA1204-2000)参照)。 In addition, when controlling the particle size of the ground material consisting of coarse and fine particles with a particle size of 75 mm or less, (1) First, a ground material sample with a particle size of 75 mm or less is sieved with a 2 mm sieve, and (2) a 2 mm sieve. Measure the residual mass m (d) of each sieve by sieving 75mm, 53mm, 37.5mm, 26.5mm, 19mm, 9.5mm, and 4.75mm with respect to the residual, and calculate the passing mass percentage P (d). (3) Calculate the passing mass percentage P (0.075) of fine particles of 0.075mm (75μm) or less by sedimentation analysis with respect to the 2mm sieve passage, and (4) against the 2mm sieve passage and 75μm sieve residue. 850 μm, 425 μm, 250 μm, 106 μm, and 75 μm sieving to measure the residual mass m (d) of each sieve to calculate the passing mass percentage P (d), and (5) each calculated passing mass percentage P (d) Is plotted on a semilogarithmic graph to create a particle size accumulation curve (see Non-Patent Document 1 (JISA1204-2000)).
例えばロックフィルダムのロック材等として用いる地盤材料は、最大粒径が1.0m(1000mm)を超える巨石から粒径0.075mm以下のシルト・粘土等まで、粒径分布幅の広い様々な粒状材を含む場合がある。従来このような粒径分布幅の広い地盤材料の粒度を管理する場合は、上述した粒径75mm以上の石分の(JGS0132による)粒径加積曲線と粒径75mm以下の粗粒分・細粒分の(JISA1204による)粒径加積曲線とを別々に作成し、両者を合成して組み合わせることにより地盤材料の全体の粒径加積曲線を作成している(非特許文献1参照)。図13は、二地点でそれぞれ3種類ずつ採取した地盤材料について、JGS0132による石分の粒径加積曲線とJISA1204による粗粒分・細粒分の粒径加積曲線とを合成した粒径加積曲線の一例を示す。なお、地盤材料の各粒径毎の粒子の比重が同一とみなせる場合は、粒径加積曲線の縦軸は各粒状材より小径の体積割合(=各粒状材より小径の粒状材の総体積/粒状材全体の総体積)を表したものと考えることができる。 For example, the ground materials used as rock materials for rockfill dams include various granular materials with a wide particle size distribution range from megaliths with a maximum particle size exceeding 1.0 m (1000 mm) to silt and clay with a particle size of 0.075 mm or less. There is a case. Conventionally, when controlling the particle size of a ground material with such a wide particle size distribution range, the above-mentioned stone particle accumulation curve (according to JGS0132) with a particle size of 75 mm or more and coarse and fine particles with a particle size of 75 mm or less are used. A particle size accumulation curve (according to JISA1204) of the grain fraction is prepared separately, and the two are synthesized and combined to create the entire particle size accumulation curve of the ground material (see Non-Patent Document 1). Fig. 13 shows the increase in particle size obtained by combining the particle size accumulation curve by JGS0132 and the coarse particle size and fine particle size accumulation curve by JISA1204 for three types of ground materials collected at two points. An example of a product curve is shown. If the specific gravity of each particle size of the ground material can be regarded as the same, the vertical axis of the particle size accumulation curve is the volume ratio of smaller diameter than each granular material (= total volume of granular material smaller diameter than each granular material) / Total volume of the whole granular material).
しかし、上述した粒径加積曲線の作成方法は、粒径加積曲線を得るまでに多大な労力と時間を要する問題点がある。例えば、ロックフィルダム等で管理対象となる粒径分布幅の広い地盤材料の粒径加積曲線を非特許文献1の方法で作成するには、1回当たり100〜1500kgもの大量の地盤材料を何度も篩分けする作業が必要である。このように手間のかかる作業を頻繁に繰り返すことは工事の進捗上難しい場合が多く、実際の土木構造物の建設工事においては地盤材料の粒度管理を必要最小限の頻度でしか行なえないのが現実である。土木構造物の品質管理の精度向上を図るためには地盤材料の粒度管理を頻繁に行なうことが望ましく、そのために地盤材料の粒径加積曲線を短時間で簡単に作成できる技術が求められている。 However, the method for creating the particle size accumulation curve described above has a problem that it takes a lot of labor and time to obtain the particle size accumulation curve. For example, in order to create a particle size accumulation curve of a ground material with a wide particle size distribution range to be managed by a rockfill dam etc. by the method of Non-Patent Document 1, what is a large amount of ground material of 100 to 1500 kg per time? It is necessary to screen the degree. It is often difficult to repeat such labor-intensive work frequently due to the progress of the construction, and in actual construction work of civil engineering structures, it is actually possible to control the granularity of the ground material only with the necessary minimum frequency. It is. In order to improve the accuracy of quality control of civil engineering structures, it is desirable to frequently control the grain size of the ground material. To that end, a technology that can easily create the grain size accumulation curve of the ground material is required. Yes.
これに対し、コンピュータによる画像解析技術等を用いて地盤材料の粒度分布を求める方法が提案されている(特許文献1及び2参照)。例えば特許文献1は、岩砕材料の全体又は一部の画像を二値化処理することで材料中の各粒状材の輪郭を特定し、その輪郭と同一面積の等価径で各粒状材を単純立体(球又は立方体)にモデル化し、その単純立体モデルの体積に岩砕材料(原石)の比重を乗じて質量を算出して粒度分布曲線を作成する方法を提案している。また特許文献2は、石炭等の地盤材料の原画像をぼかし処理したぼかし画像の二値化処理により材料中の大径粒状材の輪郭を特定し、原画像とぼかし画像との差分画像の二値化処理により材料中の小径粒状材の輪郭を特定し、それらの輪郭の面積等価半径の単純立体モデルの体積と材料(石炭)の比重とから各粒状材の質量を算出して粒度分布を測定する方法を提案している。特許文献1及び2の方法によれば、地盤材料の粒径加積曲線の作成作業の効率化、簡単化が期待できる。 On the other hand, a method for obtaining the particle size distribution of the ground material using a computer image analysis technique or the like has been proposed (see Patent Documents 1 and 2). For example, Patent Document 1 specifies the outline of each granular material in the material by binarizing the whole or a part of the image of the crushed material, and simply simplifies each granular material with an equivalent diameter of the same area as the outline. A method is proposed in which a particle size distribution curve is created by modeling a solid (sphere or cube) and calculating the mass by multiplying the volume of the simple solid model by the specific gravity of the crushed material (raw stone). Further, Patent Document 2 specifies the outline of a large-diameter granular material in a material by binarizing a blurred image obtained by blurring an original image of a ground material such as coal, and obtains a difference image between the original image and the blurred image. The contour of the small-diameter granular material in the material is specified by the valuation process, and the particle size distribution is calculated by calculating the mass of each granular material from the volume of the simple solid model of the area equivalent radius of the contour and the specific gravity of the material (coal). A method to measure is proposed. According to the methods of Patent Documents 1 and 2, it is possible to expect efficiency and simplification of creation work of the particle size accumulation curve of the ground material.
ただし、特許文献1は例えば粒径分布幅10〜0.075mm(最大粒径が最小粒径の約130倍程度)の地盤材料を対象としたものであり、特許文献2は例えば粒径分布幅10〜1.5mm(最大粒径が最小粒径の約6.7倍程度)の地盤材料を対象としたものであり、何れの方法も土木構造物で管理対象となる粒径分布幅の広い地盤材料に適用することは難しい。すなわち、ロックフィルダム等で管理対象となる地盤材料は最大粒径(1000mm)が最小粒径(0.075mm)の約1万倍以上にも達するものであり、例えば最大粒径の輪郭を網羅した画像から最小粒子の輪郭を特定することは困難であり、同じ画像から最大粒径の輪郭と最小粒子の輪郭とを同時に特定することができない。特殊な撮像装置で撮影した高解像度画像等を用いれば広い粒径分布幅に対応させることも不可能ではないと思われるが、煩雑な処理に時間がかかり、システムも複雑になるので現場等に適用できないおそれがある。土木構造物に用いる粒径分布幅の広い地盤材料の粒径加積曲線をコンピュータで簡単に作成する技術の開発が望まれている。 However, Patent Document 1 is intended for a ground material having a particle size distribution width of 10 to 0.075 mm (the maximum particle diameter is about 130 times the minimum particle diameter), and Patent Document 2 is, for example, a particle diameter distribution width of 10 It is intended for ground materials with up to 1.5mm (maximum particle size is about 6.7 times the minimum particle size). Both methods are applied to ground materials with a wide particle size distribution range to be managed in civil engineering structures. Difficult to do. In other words, the ground material to be managed in rockfill dams, etc., has a maximum particle size (1000 mm) that reaches about 10,000 times the minimum particle size (0.075 mm). Therefore, it is difficult to specify the contour of the minimum particle from the same image, and the contour of the maximum particle size and the contour of the minimum particle cannot be specified simultaneously from the same image. It seems that it is not impossible to deal with a wide particle size distribution width by using a high-resolution image taken with a special imaging device, but it takes time for complicated processing and the system becomes complicated, so it can be used in the field. May not be applicable. Development of a technique for easily creating a particle size accumulation curve of a ground material having a wide particle size distribution range used in civil engineering structures by a computer is desired.
また、粒径加積曲線を作成するためには全体に対する各粒状材の質量又は体積の割合を求める必要があるのに対し、特許文献1及び2は、撮影した範囲の画像から輪郭が検出された各粒状材の粒度分布を求めるのみであり、輪郭が検出された各粒状材の全体に対する割合を求める方法を開示しない問題点がある。各粒状材の全体に対する質量又は体積の割合は、撮影した範囲の画像全体に対する各粒状材の面積の割合と整合するとは限らない。また、画像処理で輪郭が検出できる最小粒径には限界があり、特許文献1及び2の方法では輪郭が検出できない最小粒径の割合を考慮して粒径加積曲線を作成することができない問題点もある。 In addition, in order to create a particle size accumulation curve, it is necessary to determine the ratio of the mass or volume of each granular material to the whole, whereas in Patent Documents 1 and 2, the contour is detected from an image of a captured range. However, there is a problem that only the particle size distribution of each granular material is obtained, and a method for obtaining the ratio of each granular material whose contour is detected is not disclosed. The ratio of the mass or volume to the whole of each granular material does not necessarily match the ratio of the area of each granular material to the entire image in the captured range. In addition, there is a limit to the minimum particle size that can be detected by image processing, and the particle size accumulation curve cannot be created in consideration of the ratio of the minimum particle size that cannot be detected by the methods of Patent Documents 1 and 2. There are also problems.
そこで本発明の目的は、粒径分布幅の広い地盤材料の粒径加積曲線を短時間で簡単に作成できるシステム及びプログラムを提供することにある。 Therefore, an object of the present invention is to provide a system and a program that can easily create a particle size accumulation curve of a ground material having a wide particle size distribution width in a short time.
本発明者は、地盤材料の粒径加積曲線が適当な確率密度関数又は確率分布関数で近似できることに注目した。従来から地盤材料の粒径加積曲線(粒度分布)を、正規分布関数、対数正規分布関数、Talbot(Gates-Gaudin-Schuhmann)関数、Gaudin-Meloy関数、Rosin-Rammler関数等で近似できることが知られている(非特許文献2参照)。何れの近似式に適合するかは地盤材料の種類、起源等に応じて異なるが、例えば同じ採取場で採取された地盤材料や同じ破砕装置で破砕された地盤材料は同じ関数で近似できることが多い。他方、上述した画像解析技術等によれば、粒径分布幅の広い地盤材料全ての輪郭を検出して粒径加積曲線を作成することは困難であるが、輪郭が検出できる範囲の粒状材について粒径加積曲線の一部分を作成することは可能である。粒径加積曲線の近似式が特定できれば、輪郭が検出できる部分の粒径加積曲線から輪郭が検出できない他の部分の粒径加積曲線を推定できる可能性がある。また、粒径加積曲線の近似式が特定できなくとも、輪郭が検出できない範囲の粒径加積曲線を予め複数求めておけば、輪郭が検出できる範囲の粒径加積曲線から他の範囲の粒径加積曲線を推定できる可能性がある。本発明は、この推定方法の研究開発の結果、完成に至ったものである。 The present inventor has noted that the particle size accumulation curve of the ground material can be approximated by an appropriate probability density function or probability distribution function. Conventionally, it is known that the particle size accumulation curve (particle size distribution) of ground materials can be approximated by normal distribution function, log normal distribution function, Talbot (Gates-Gaudin-Schuhmann) function, Gaudin-Meloy function, Rosin-Rammler function, etc. (See Non-Patent Document 2). Which approximation formula is suitable depends on the type and origin of the ground material, but for example, ground material collected at the same sampling site or ground material crushed by the same crushing device can often be approximated with the same function. . On the other hand, according to the above-described image analysis technology and the like, it is difficult to detect the contour of all ground materials having a wide particle size distribution width and create a particle size accumulation curve, but the granular material in a range in which the contour can be detected It is possible to create a portion of the particle size accumulation curve for. If an approximate expression of the particle size accumulation curve can be specified, there is a possibility that the particle size accumulation curve of the other portion where the contour cannot be detected can be estimated from the particle size accumulation curve of the portion where the contour can be detected. In addition, even if the approximate expression of the particle size accumulation curve cannot be specified, if a plurality of particle size accumulation curves in a range where the contour cannot be detected are obtained in advance, another range from the particle size accumulation curve in which the contour can be detected is obtained. It is possible to estimate the particle size accumulation curve. The present invention has been completed as a result of research and development of this estimation method.
図1のブロック図を参照するに、本発明による地盤材料の粒度計測システムは、所定場所31で採取され又は所定装置32で破砕された地盤材料の粒度を計測するシステムにおいて、地盤材料の複数標本B1、B2、B3、……中の所定粒径D以下の小径粒状材Gsの粒径加積曲線P1(d)、P2(d)、P3(d)、……(d≦D)をそれぞれ記憶する記憶手段11付きコンピュータ10、地盤材料の計測対象試料Aの全体積Vを測定する測定装置5、及び試料A中の所定粒径D以上の大径粒状材GLの輪郭(図8及び図10参照)を検出する検出装置6を備え、コンピュータ10に、輪郭の検出値から大径粒状材GLの各々の体積vを算出して粒径加積曲線P(d)(d≧D)を作成する作成手段17、大径粒状材GLの各々の体積vの合計Σvと試料Aの全体積Vの測定値とから試料A中の小径粒状材Gsの総体積割合(V−Σv)を算出し且つその総体積割合(V−Σv)に応じた粒径加積曲線P(d)(d≦D)を記憶手段11の複数標本Bの粒径加積曲線P1(d)、P2(d)、P3(d)、……から選択又は推定する推定手段18、及び作成手段17で作成した粒径加積曲線P(d)(d≧D)と推定手段18で選択又は推定した粒径加積曲線P(d)(d≦D)とを合成する合成手段19(図11参照)を設けてなるものである。 Referring to the block diagram of FIG. 1, a ground material particle size measuring system according to the present invention is a system for measuring the particle size of ground material collected at a predetermined location 31 or crushed by a predetermined device 32. B1, B2, B3,..., (D ≦ D), respectively, are the particle size accumulation curves P1 (d), P2 (d), P3 (d),. The computer 10 with the storage means 11 for storing, the measuring device 5 for measuring the total volume V of the measurement target sample A of the ground material, and the outline of the large-diameter granular material GL having a predetermined particle diameter D or more in the sample A (FIGS. 8 and 10), and the computer 10 calculates the volume v of each large-diameter granular material GL from the detected value of the contour and calculates the particle size accumulation curve P (d) (d ≧ D). The preparation means 17 to be prepared, the total Σv of each volume v of the large-diameter granular material GL and the measured value of the total volume V of the sample A are tested. The total volume ratio (V−Σv) of the small-diameter granular material Gs in the material A is calculated, and the particle size accumulation curve P (d) (d ≦ D) corresponding to the total volume ratio (V−Σv) is stored in the storage means Particle size accumulation curve P created by the estimation means 18 and the creation means 17 selected or estimated from the particle size accumulation curves P1 (d), P2 (d), P3 (d),. (D) A synthesizing means 19 (see FIG. 11) for synthesizing (d ≧ D) and the particle size accumulation curve P (d) (d ≦ D) selected or estimated by the estimating means 18 is provided. .
好ましくは、検出装置6に、試料Aを撒きだした表面全体又は一部の画像(図8参照)から所定粒径D以上の大径粒状材GLの輪郭を検出する画像解析手段16を含め、所定粒径Dを画像解析手段16で輪郭が検出できる粒状材の最小粒径Dminとする。また、コンピュータ10の記憶手段11に地盤材料の標本Bの比重ρを記憶し、測定装置5により地盤材料の試料Aの全体積Vに代えて全質量Mを測定し、コンピュータ10の作成手段17又は推定手段18により試料Aの全質量Mと比重ρとから試料Aの全体積Vを算出してもよい。 Preferably, the detection device 6 includes image analysis means 16 for detecting the contour of the large-diameter granular material GL having a predetermined particle diameter D or more from the entire surface or a part of the surface of the sample A (see FIG. 8). The predetermined particle diameter D is defined as the minimum particle diameter Dmin of the granular material whose contour can be detected by the image analysis means 16. Further, the specific gravity ρ of the sample B of the ground material is stored in the storage means 11 of the computer 10, and the total mass M is measured by the measuring device 5 instead of the total volume V of the sample A of the ground material. Alternatively, the total volume V of the sample A may be calculated from the total mass M of the sample A and the specific gravity ρ by the estimating means 18.
更に好ましくは、所定粒径D以下の小径粒状材Gsの粒径加積曲線P(d)(d≦D)を小径粒状材Gsの粒径dの所定粒径Dに対する粒径比(=d/D)の所定指数関数P{(d/D)n}で近似し(図2のステップS102参照)、コンピュータ10の記憶手段11に各標本B中の小径粒状材Gsの総体積割合と所定指数関数Pの指数nとの関係式R(図7参照)を記憶し、コンピュータ10の推定手段18により試料A中の小径粒状材Gsの総体積割合(V−Σv)に応じた所定指数関数Pの指数nを関係式Rから選択又は推定する。 More preferably, the particle diameter accumulation curve P (d) (d ≦ D) of the small-diameter granular material Gs having a predetermined particle diameter D or less is represented by the ratio of the particle diameter d of the small-diameter granular material Gs to the predetermined particle diameter D (= d / D) is approximated by a predetermined exponential function P {(d / D) n } (see step S102 in FIG. 2), and the total volume ratio of the small-diameter granular material Gs in each specimen B is stored in the storage means 11 of the computer 10 A relational expression R (see FIG. 7) between the exponential function P and the exponent n is stored, and a predetermined exponential function corresponding to the total volume ratio (V−Σv) of the small-diameter granular material Gs in the sample A by the estimating means 18 of the computer 10. The index n of P is selected or estimated from the relational expression R.
また、図1のブロック図及び図2の流れ図を参照するに、本発明による地盤材料の粒度計測プログラムは、所定場所31で採取され又は所定装置32で破砕された地盤材料の粒度を計測するためコンピュータ10を、地盤材料の複数標本B1、B2、B3、……中の所定粒径D以下の小径粒状材Gsの粒径加積曲線P1(d)、P2(d)、P3(d)、……(d≦D)をそれぞれ記憶する記憶手段11、地盤材料の計測対象試料Aの全体積Vの測定値とその試料A中の所定粒径D以上の大径粒状材GLの輪郭の検出値とを入力する入力手段12、輪郭の検出値から大径粒状材GLの各々の体積vを算出して粒径加積曲線P(d)(d≧D)を作成する作成手段17、大径粒状材GLの各々の体積vの合計Σvと試料Aの全体積Vの測定値とから試料A中の小径粒状材Gsの総体積割合(V−Σv)を算出し且つその総体積割合(V−Σv)に応じた粒径加積曲線P(d)(d≦D)を記憶手段11の複数標本Bの粒径加積曲線P1(d)、P2(d)、P3(d)、……から選択又は推定する推定手段18、及び作成手段17で作成した粒径加積曲線P(d)(d≧D)と推定手段18で選択又は推定した粒径加積曲線P(d)(d≦D)とを合成する合成手段19(図11参照)として機能させるものである。 Further, referring to the block diagram of FIG. 1 and the flowchart of FIG. 2, the ground material particle size measurement program according to the present invention is used to measure the particle size of ground material collected at a predetermined location 31 or crushed by a predetermined device 32. The computer 10 is connected to a plurality of ground material samples B1, B2, B3,..., A particle diameter accumulation curve P1 (d), P2 (d), P3 (d) of a small-diameter granular material Gs having a predetermined particle diameter D or less. ...... Storage means 11 for storing (d ≦ D), detection of the measured value of the total volume V of the ground material measurement target sample A and the contour of the large-diameter granular material GL having a predetermined particle diameter D or more in the sample A An input means 12 for inputting a value, a creation means 17 for calculating the volume v of each large-diameter granular material GL from the detected value of the contour and creating a particle size accumulation curve P (d) (d ≧ D), From the total Σv of each volume v of the diameter granular material GL and the measured value of the total volume V of the sample A, the total volume ratio of the small diameter granular material Gs in the sample A (V− v) is calculated and the particle size accumulation curve P (d) (d ≦ D) corresponding to the total volume ratio (V−Σv) is calculated as the particle size accumulation curve P1 (d) of the plurality of samples B in the storage means 11. , P2 (d), P3 (d),... Selected or estimated from the estimation means 18, and the particle size accumulation curve P (d) (d ≧ D) created by the creation means 17 and the estimation means 18 It is made to function as the synthesis | combination means 19 (refer FIG. 11) which synthesize | combines the estimated particle diameter accumulation curve P (d) (d <= D).
本発明による地盤材料の粒度計測システム及びプログラムは、予め地盤材料の複数標本B1、B2、B3、……から所定粒径D以下の小径粒状材Gsの粒径加積曲線P1(d)、P2(d)、P3(d)、……(d≦D)を求めてコンピュータ10の記憶手段11に記憶しておき、地盤材料の計測対象試料Aの全体積Vの測定値とその試料A中の所定粒径D以上の大径粒状材GLの輪郭の検出値とをコンピュータ10に入力し、コンピュータ10の作成手段17により各大径粒状材GLの輪郭の検出値から各々の体積vを算出して粒径加積曲線P(d)(d≧D)を作成し、コンピュータ10の推定手段18により各大径粒状材GLの体積vの合計Σvと試料Aの全体積Vとから試料A中の小径粒状材Gsの総体積割合(V−Σv)を算出し且つその総体積割合(V−Σv)に応じた粒径加積曲線P(d)(d≦D)を記憶手段11の複数標本Bの粒径加積曲線P1(d)、P2(d)、P3(d)、……から選択又は推定し、コンピュータ10の合成手段19により作成手段17で作成した粒径加積曲線P(d)(d≧D)と推定手段18で選択又は推定した粒径加積曲線P(d)(d≦D)とを合成することにより試料Aの粒径加積曲線P(d)を作成するので、次の顕著な効果を奏する。 The particle size measuring system and program for the ground material according to the present invention are preliminarily obtained from a plurality of ground material samples B1, B2, B3,..., A particle diameter accumulation curve P1 (d), P2 of a small diameter granular material Gs having a predetermined particle diameter D or less. (D), P3 (d),... (D ≦ D) are obtained and stored in the storage means 11 of the computer 10, and the measured value of the total volume V of the ground material measurement target sample A and its sample A The detected value of the outline of the large-diameter granular material GL having a predetermined particle diameter D or more is input to the computer 10, and the volume v is calculated from the detected value of the outline of each large-diameter granular material GL by the creation means 17 of the computer 10. Then, a particle size accumulation curve P (d) (d ≧ D) is created, and the estimation means 18 of the computer 10 calculates the sample A from the total volume Σv of each large-diameter granular material GL and the total volume V of the sample A. The total volume ratio (V-Σv) of the small-diameter granular material Gs is calculated, and the particle size accumulation curve corresponding to the total volume ratio (V-Σv) (D) (d ≦ D) is selected or estimated from the particle size accumulation curves P1 (d), P2 (d), P3 (d),... 19 synthesizes the particle size accumulation curve P (d) (d ≧ D) created by the creation means 17 and the particle size accumulation curve P (d) (d ≦ D) selected or estimated by the estimation means 18. Thus, the particle size accumulation curve P (d) of the sample A is created, and the following remarkable effects are produced.
(イ)輪郭が検出できる大径粒状材GLの粒径加積曲線P(d)(d≧D)から輪郭が検出できない小径粒状材Gsの粒径加積曲線P(d)(d≦D)を推定し、両者を合成して試料Aの粒径加積曲線P(d)とするので、1m以上の大粒径から0.075mm以下の小粒径までをも含むような粒径分布幅の広い地盤材料の粒径加積曲線P(d)を大径粒状材GLの輪郭の検出値のみから作成することができる。
(ロ)大径粒状材GLの輪郭は例えば撒きだした試料Aの表面全体又はその一部の画像又はレーザー走査信号等から比較的簡単に検出できるので、従来の篩分け及び沈降分析による従来の試験方法に比し、粒径分布幅の広い地盤材料の粒径加積曲線P(d)の作成に要する労力、時間を大幅に削減できる。
(ハ)粒径加積曲線P(d)を簡易に且つ迅速に作成できることから、地盤材料の粒度管理の頻度を大幅に向上することができ、地盤材料を用いて構築される土木構造物建設工事の品質管理の精度向上に貢献できる。
(ニ)試料Aの全体積又は全質量の自動測定システムや大径粒状材GLの輪郭の自動検出システム等と組み合わせることにより、地盤材料の粒径加積曲線P(d)の作成作業の更なる容易化を図ることができ、作成作業の自動化を図ることも期待できる。
(A) Particle size accumulation curve P (d) (d ≦ D) of small-diameter granular material Gs whose contour cannot be detected from the particle size accumulation curve P (d) (d ≧ D) of large-diameter granular material GL whose contour can be detected ) And combining the two to obtain the particle size accumulation curve P (d) of sample A, so that the particle size distribution range includes a large particle size of 1 m or more to a small particle size of 0.075 mm or less. The particle diameter accumulation curve P (d) of a wide ground material can be created only from the detected value of the outline of the large-diameter granular material GL.
(B) The outline of the large-diameter granular material GL can be detected relatively easily from, for example, an image of the entire surface of the sample A or a part of the sample A or a laser scanning signal. Compared with the test method, the labor and time required to prepare the particle size accumulation curve P (d) of the ground material having a wide particle size distribution range can be greatly reduced.
(C) Since the particle size accumulation curve P (d) can be created easily and quickly, the frequency of particle size management of the ground material can be greatly improved, and civil engineering construction constructed using the ground material Contributes to improving the accuracy of construction quality control.
(D) Updating the particle material accumulation curve P (d) of the ground material by combining with an automatic measurement system for the total volume or mass of the sample A, an automatic detection system for the contour of the large-diameter granular material GL, etc. This can be facilitated, and the creation work can be automated.
図1は、本発明の粒度計測システムのブロック図の一例を示す。図示例のシステムは、地盤材料の計測対象試料Aの体積を測定する測定装置5と、その試料A中の所定粒径D以上の大径粒状材GLの輪郭を検出する検出装置6と、測定装置5の体積測定値及び検出装置6の輪郭検出値を入力して試料Aの粒径加積曲線P(d)を作成するコンピュータ10とを有する。例えば所定採取場(地山や層)31で採取された地盤材料、又は所定破砕機32で破砕された地盤材料を用いて土木構造物を構築する場合に、工事現場にトラック等の搬送器3で搬送される地盤材料の全体又は一部を試料Aとし、その試料Aの粒径加積曲線P(d)をコンピュータ10によって搬送単位毎に作成する。搬送器3で搬送する地盤材料が均質とみなせる場合は、搬送器3上の一部の地盤材料を試料Aとすれば足りる。図中の白三角矢印は試料Aの流れを示し、試料Aの体積測定装置5と輪郭検出装置6とは直列に配置されている。また図示例のシステムは、同じ採取場31から採取した(又は破砕機32で破砕した)地盤材料の標本B1、B2、B3、……を入力し、篩分け及び沈降分析等の従来方法によって標本B1、B2、B3、……の粒径加積曲線P1、P2、P3、……を作成する粒度試験装置8を有している。粒度試験装置8は工事現場に設置する必要はなく、例えば実験室の粒度試験装置8で標本B1、B2、B3、……を測定すればよい。なお図中の黒三角矢印は、体積測定装置5、輪郭検出装置6、粒度試験装置8からコンピュータ10に入力されるデータの流れ、及びコンピュータ10内でのデータの流れを示す。 FIG. 1 shows an example of a block diagram of a particle size measurement system of the present invention. The system of the illustrated example includes a measuring device 5 that measures the volume of the measurement target sample A of the ground material, a detecting device 6 that detects the contour of the large-diameter granular material GL having a predetermined particle diameter D or more in the sample A, and a measurement. A computer 10 for generating a particle size accumulation curve P (d) of the sample A by inputting the volume measurement value of the device 5 and the contour detection value of the detection device 6; For example, when a civil engineering structure is constructed using ground material collected at a predetermined collection site (ground mountain or layer) 31 or ground material crushed by a predetermined crusher 32, a transporter 3 such as a truck is provided at the construction site. The whole or part of the ground material transported in step (a) is used as a sample A, and a particle size accumulation curve P (d) of the sample A is created by the computer 10 for each transport unit. When the ground material transported by the transporter 3 can be regarded as homogeneous, it is sufficient that a part of the ground material on the transporter 3 is the sample A. White triangle arrows in the figure indicate the flow of the sample A, and the volume measuring device 5 and the contour detecting device 6 of the sample A are arranged in series. In addition, the system shown in the figure inputs the ground material samples B1, B2, B3,... Collected from the same collection site 31 (or crushed by the crusher 32), and the samples are collected by conventional methods such as sieving and sedimentation analysis. It has a particle size test device 8 for creating particle size accumulation curves P1, P2, P3,... B1, B2, B3,. The particle size test apparatus 8 does not need to be installed at the construction site. For example, the specimens B1, B2, B3,... In addition, the black triangular arrow in a figure shows the flow of the data input into the computer 10 from the volume measuring apparatus 5, the outline detection apparatus 6, and the particle size test apparatus 8, and the flow of data in the computer 10. FIG.
図示例のコンピュータ10は、キーボード・マウス等の入力装置13と、ディスプレイ・プリンタ等の出力装置15と、一次記憶装置又は二次記憶装置等の記憶手段11とを有している。記憶手段11には、検出装置6で輪郭が検出できる最小粒径Dmin(所定粒径D)、標本B1、B2、B3、……の粒径加積曲線P1、P2、P3、……等の粒径加積曲線P(d)の作成に必要なデータを記憶する。また内蔵プログラムとして、入力手段12及び出力手段14と、粒度試験装置8による標本B1、B2、B3、……の測定値から粒径加積曲線P1、P2、P3、……を作図する作図手段21と、検出装置6による輪郭検出値から試料A中の大径粒状材GLの粒径加積曲線P(d)(d≧D)を作成する作成手段17と、その大径粒状材GLの粒径加積曲線Pと標本B1、B2、B3、……の粒径加積曲線P1、P2、P3、……とから試料A中の小径粒状材Gsの粒径加積曲線P(d)(d≦D)を推定する推定手段18と、その大径粒状材GLの粒径加積曲線P(d)(d≧D)と小径粒状材Gsの粒径加積曲線P(d)(d≦D)とを合成して試料Aの粒径加積曲線P(d)を作成する合成手段19とを有している。出力手段14は、合成手段19で合成された試料Aの粒径加積曲線P(d)を出力装置15に出力するプログラムである。 The computer 10 in the illustrated example has an input device 13 such as a keyboard / mouse, an output device 15 such as a display / printer, and a storage means 11 such as a primary storage device or a secondary storage device. The storage means 11 includes a minimum particle diameter Dmin (predetermined particle diameter D) whose contour can be detected by the detection device 6, particle diameter accumulation curves P1, P2, P3,... Of the specimens B1, B2, B3,. Data necessary for creating the particle size accumulation curve P (d) is stored. As built-in programs, input means 12 and output means 14 and drawing means for drawing particle size accumulation curves P1, P2, P3,... From the measured values of samples B1, B2, B3,. 21 and a creation means 17 for creating a particle diameter accumulation curve P (d) (d ≧ D) of the large-diameter granular material GL in the sample A from the contour detection value by the detection device 6, and the large-diameter granular material GL From the particle size accumulation curve P and the particle size accumulation curves P1, P2, P3,... Of the specimens B1, B2, B3,..., The particle size accumulation curve P (d) of the small diameter granular material Gs in the sample A The estimation means 18 for estimating (d ≦ D), the particle size accumulation curve P (d) (d ≧ D) of the large-diameter granular material GL, and the particle size accumulation curve P (d) of the small-diameter granular material Gs ( d ≦ D) and a synthesis means 19 for creating a particle size accumulation curve P (d) of the sample A. The output means 14 is a program for outputting the particle size accumulation curve P (d) of the sample A synthesized by the synthesis means 19 to the output device 15.
図示例の測定装置5は、例えば図4に示すような撮像機52R、52L等を含むステレオ式撮像装置50とコンピュータ10の内蔵プログラムである体積測定手段58とで構成され、撮像装置50の画像を入力手段12経由で体積測定手段58に入力して地盤材料の試料Aの体積を測定する。また図示例の検出装置6は、例えば撮像機等を含む画像撮像装置7とコンピュータ10の内蔵プログラムである画像解析手段16とで構成され、画像撮像装置7の画像を入力手段12経由で画像解析手段16に入力して試料A中の所定粒径D以上の大径粒状材GLの輪郭を検出する。ただし、測定装置5及び検出装置6の構成は図示例に限定されるものではなく、測定装置5及び検出装置6はコンピュータ10から独立したシステムとすることが可能であり、体積測定手段58及び画像解析手段16は本発明のプログラムに必須の構成ではない。 The measuring apparatus 5 in the illustrated example includes a stereo imaging apparatus 50 including, for example, the imaging machines 52R and 52L as shown in FIG. 4 and volume measuring means 58 that is a built-in program of the computer 10, and an image of the imaging apparatus 50 is shown. Is input to the volume measuring means 58 via the input means 12 to measure the volume of the sample A of the ground material. The detection device 6 in the illustrated example includes an image imaging device 7 including, for example, an imaging device, and an image analysis unit 16 that is a built-in program of the computer 10, and analyzes an image of the image imaging device 7 via the input unit 12. Input to the means 16 to detect the contour of the large-diameter granular material GL having a predetermined particle diameter D or more in the sample A. However, the configurations of the measurement device 5 and the detection device 6 are not limited to the illustrated examples, and the measurement device 5 and the detection device 6 can be a system independent of the computer 10, and the volume measurement means 58 and the image are included. The analysis means 16 is not an essential component for the program of the present invention.
図2は、図1のシステムを用いて地盤材料の粒度を計測する方法の流れ図を示す。以下、図2の流れ図を参照して図1のシステムを説明する。ステップS101〜S102は、コンピュータ10で試料Aの粒径加積曲線P(d)を作成するための初期処理を示す。先ずステップS101において、地盤材料の標本Bを検出装置6に入力し、検出装置6で輪郭が検出できる粒状材の最小粒径Dminを試行的に検出する。例えば、図示例のように検出装置6に画像解析手段16を含めた場合は、標本Bの撮像装置7による画像から画像解析手段16により輪郭が検出できる粒状材の最小粒径Dminを検出し、検出した最小粒径Dminを記憶手段11に所定粒径Dとして記憶する。またステップS101において、複数(好ましくは3以上)の標本B1、B2、B3、……を粒度試験装置8に入力し、各標本B1、B2、B3、……について、試行的に検出した所定粒径D以下の小径粒状材Gsの粒径加積曲線P1、P2、P3、……を作成して記憶手段11に記憶する。この粒径加積曲線Piは、それぞれ検出装置6では輪郭が検出できない標本Bi中の粒状材の粒径加積曲線に相当する。 FIG. 2 shows a flowchart of a method for measuring the grain size of the ground material using the system of FIG. The system of FIG. 1 will be described below with reference to the flowchart of FIG. Steps S101 to S102 show initial processing for creating the particle size accumulation curve P (d) of the sample A by the computer 10. First, in step S101, the ground material specimen B is input to the detection device 6, and the minimum particle size Dmin of the granular material whose contour can be detected by the detection device 6 is detected on a trial basis. For example, when the image analysis means 16 is included in the detection device 6 as in the illustrated example, the minimum particle diameter Dmin of the granular material whose contour can be detected by the image analysis means 16 is detected from the image obtained by the imaging device 7 of the sample B, The detected minimum particle diameter Dmin is stored in the storage means 11 as the predetermined particle diameter D. In step S101, a plurality of (preferably 3 or more) specimens B1, B2, B3,... Are input to the particle size test apparatus 8, and predetermined grains detected on a trial basis for each specimen B1, B2, B3,. A particle diameter accumulation curve P1, P2, P3,... Of a small-diameter granular material Gs having a diameter D or less is created and stored in the storage means 11. The particle size accumulation curve Pi corresponds to the particle size accumulation curve of the granular material in the sample Bi whose contour cannot be detected by the detection device 6.
例えば検出装置6で輪郭が検出できる最小粒径Dmin(所定粒径D)が75mm以下であるときは、粒度試験装置8を上述したJISA1204による篩分け装置及び沈降分析装置とすることができる。図6は、そのような粒度試験装置8で測定した複数標本B1、B2、B3、……の粒度測定値と試行的に検出した所定粒径Dとから、作図手段21で作図された小径粒状材Gsの粒径加積曲線(検出装置6で輪郭が検出できない範囲の粒径加積曲線)P1(d)、P2(d)、P3(d)、……(d≦D)を示す。各標本Biの粒径加積曲線Piは、それぞれ後述する試料Aから作成される所定粒径D以上の大径粒状材GLの粒径加積曲線(検出装置6で輪郭が検出できる範囲の粒径加積曲線)P(d)(d≧D)と同じ関数で近似できるはずであるが、所定粒径Dにおける通過質量百分率Pi(d=D)、すなわち各標本Biの全質量(又は全体積)に対する小径粒状材Gsの総質量割合(又は総体積割合)Pminが標本Bi毎に異なる。ステップS101では、各標本Biの小径粒状材Gsの総質量割合(又は総体積割合)Pminを検出して記憶手段11に記憶しておくことができる。 For example, when the minimum particle size Dmin (predetermined particle size D) whose contour can be detected by the detection device 6 is 75 mm or less, the particle size test device 8 can be a sieving device and a sedimentation analyzer according to the above-mentioned JISA1204. FIG. 6 shows the small-diameter particles plotted by the plotting means 21 from the measured particle size values of a plurality of samples B1, B2, B3,... Measured by such a particle size test apparatus 8 and the predetermined particle size D detected on a trial basis. The particle size accumulation curve of the material Gs (particle size accumulation curve in a range where the contour cannot be detected by the detection device 6) P1 (d), P2 (d), P3 (d),... (D ≦ D) is shown. The particle size accumulation curve Pi of each sample Bi is a particle size accumulation curve of a large-diameter granular material GL having a predetermined particle size D or more prepared from a sample A described later (particles in a range in which a contour can be detected by the detection device 6). The diameter accumulation curve) P (d) (d ≧ D) should be approximated by the same function, but the passing mass percentage Pi (d = D) at the predetermined particle diameter D, that is, the total mass (or total) of each specimen Bi The total mass ratio (or total volume ratio) Pmin of the small-diameter granular material Gs with respect to (product) differs for each sample Bi. In step S101, the total mass ratio (or total volume ratio) Pmin of the small-diameter granular material Gs of each specimen Bi can be detected and stored in the storage means 11.
本発明者は、検出装置6で輪郭が検出できる範囲の粒径加積曲線から、輪郭が検出できない範囲の粒径加積曲線を推定するためには、両者の境界値を一致させる必要があることに着目した。両者の粒径の境界は所定粒径Dで一致するから、両者の所定粒径Dにおける通過質量百分率P(d=D)(すなわち、小径粒状材Gsの総質量割合(又は総体積割合)Pmin)を一致させれば推定が可能となる。試料Aから作成される大径粒状材GLの粒径加積曲線(輪郭が検出できる範囲の粒径加積曲線)P(d)の境界値は試料A毎に異なるが、予め複数標本B1、B2、B3、……から所定粒径Dにおける通過質量百分率Pi(d=D)の異なる小径粒状材Gsの粒径加積曲線(輪郭が検出できない範囲の粒径加積曲線)P1、P2、P3、……を作成しておけば、その複数の粒径加積曲線P1、P2、P3、……の中から境界値の一致するものを選択し、または複数の粒径加積曲線P1、P2、P3、……を按分又は平均して境界値の一致する小径粒状材Gsの粒径加積曲線(輪郭が検出できない範囲の粒径加積曲線)を推定することができる。 In order to estimate a particle size accumulation curve in a range in which no contour can be detected from a particle size accumulation curve in a range in which a contour can be detected by the detection device 6, the inventor needs to match the boundary values between the two. Focused on that. Since the boundary between the two particle diameters coincides with the predetermined particle diameter D, the passing mass percentage P (d = D) in the predetermined particle diameter D (that is, the total mass ratio (or total volume ratio) Pmin of the small-diameter granular material Gs) ) Can be estimated. The boundary value of the particle size accumulation curve (particle size accumulation curve in a range where the contour can be detected) P (d) of the large-diameter granular material GL created from the sample A differs for each sample A, but a plurality of samples B1, From B2, B3,..., The particle size accumulation curves (particle size accumulation curves in a range where no contour can be detected) P1, P2, of small-diameter granular materials Gs having different passing mass percentages Pi (d = D) at a predetermined particle size D If P3,... Are created, the particle size accumulation curve P1, P2, P3,... Is selected from the plurality of particle size accumulation curves P1,. By dividing or averaging P2, P3,..., It is possible to estimate a particle size accumulation curve (particle size accumulation curve in a range where no contour can be detected) of the small-diameter granular material Gs having the same boundary value.
好ましくは、図2のステップS102において、各標本B1、B2、B3、……の小径粒状材Gsの粒径加積曲線P1、P2、P3、……を、小径粒状材Gsの所定粒径Dに対する粒径比(=d/D)の所定指数関数P{(d/D)n}で近似する。そのような指数関数Pの一例はステップS102に示されたTalbot関数、Gaudin-Meloy関数、又はRosin-Rammler関数であり、複数の粒径加積曲線P1、P2、P3、……の何れにも適合する関数をそれらから選択する。所定指数関数P{(d/D)n}で近似することにより、その指数関数P{(d/D)n}の指数nが小径粒状材Gsの総質量割合(又は総体積割合)Pminに拠らず一定であれば、試料Aから作成される大径粒状材GLの粒径加積曲線(輪郭が検出できる範囲の粒径加積曲線)P(d)の境界値(最小粒径Dminと小径粒状材Gsの総体積割合Pmin)をその指定関数P{(d/D)n}へ代入することにより、試料Aの小径粒状材Gsの粒径加積曲線(輪郭が検出できない範囲の粒径加積曲線)を推定することができる。 Preferably, in step S102 of FIG. 2, the particle size accumulation curves P1, P2, P3,... Of the small diameter granular material Gs of each sample B1, B2, B3,. Is approximated by a predetermined exponential function P {(d / D) n } of the particle size ratio (= d / D). An example of such an exponential function P is the Talbot function, Gaudin-Meloy function, or Rosin-Rammler function shown in step S102, and any of the plurality of particle size accumulation curves P1, P2, P3,. Select a matching function from them. By approximating with a predetermined exponential function P {(d / D) n }, the exponent n of the exponential function P {(d / D) n } becomes the total mass ratio (or total volume ratio) Pmin of the small-diameter granular material Gs. If not constant, the boundary value (minimum particle size Dmin) of the particle size accumulation curve (particle size accumulation curve in a range in which the contour can be detected) of the large-diameter granular material GL prepared from the sample A And the total volume ratio Pmin) of the small-diameter granular material Gs) to the specified function P {(d / D) n }, the particle size accumulation curve of the small-diameter granular material Gs of the sample A (in the range where the contour cannot be detected) Particle size accumulation curve) can be estimated.
更に好ましくは、各標本Bにおける小径粒状材Gsの総質量割合(又は総体積割合)Pminと所定指数関数Pの指数nとの関係式Rを検知し、検知した関係式Rを記憶手段11に記憶する。本発明者は、小径粒状材Gsの粒径加積曲線P1、P2、P3、……を所定指数関数P{(d/D)n}で近似した場合に、近似指数関数P{(d/D)n}の指数nが小径粒状材Gsの総質量割合(又は総体積割合)Pminに応じて変化する場合があることを実験的に見出した。図1及び図6の関係式検知手段22は、各標本B1、B2、B3、……の小径粒状材Gsの総質量割合(又は総体積割合)Pminと、近似指定関数P{(d/D)n}に最小粒径Dmin及び小径粒状材Gsの総質量割合(又は総体積割合)Pminを代入したときの指数nとを平面上にプロットすることにより、その両者Pmin、nの関係式Rを検知するコンピュータ10の内蔵プログラムを示す。 More preferably, the relational expression R between the total mass ratio (or total volume ratio) Pmin of the small-diameter granular material Gs in each specimen B and the index n of the predetermined exponential function P is detected, and the detected relational expression R is stored in the storage means 11. Remember. When the present inventor approximates the particle size accumulation curves P1, P2, P3,... Of the small-diameter granular material Gs with a predetermined exponential function P {(d / D) n }, the approximate exponential function P {(d / D) It was experimentally found that the index n of n } may vary depending on the total mass ratio (or total volume ratio) Pmin of the small-diameter granular material Gs. The relational expression detection means 22 in FIGS. 1 and 6 includes the total mass ratio (or total volume ratio) Pmin of the small-diameter granular material Gs of each sample B1, B2, B3,... And the approximate designation function P {(d / D ) By plotting on the plane the index n when substituting the minimum particle diameter Dmin and the total mass ratio (or total volume ratio) Pmin of the small-diameter granular material Gs into n }, the relational expression R of both Pmin and n An internal program of the computer 10 for detecting
図7は、近似指定関数P{(d/D)n}をTalbot関数とした場合の関係式Rの一例を示す。同図は、小径粒状材Gsの総質量割合(又は総体積割合)PminとTalbot関数の指数nとの間に線形の関係式R(n=−0.0516×Pmin+0.4624)が成立することを示している。同図のように近似指数関数P{(d/D)n}の指数nが小径粒状材Gsの総質量割合(又は総体積割合)Pminに依存して変化する場合は、試料Aから作成される大径粒状材GLの粒径加積曲線(輪郭が検出できる範囲の粒径加積曲線)P(d)の境界値(最小粒径Dminと小径粒状材Gsの総体積割合Pmin)をその近似指定関数P{(d/D)n}へ代入すると共に、その境界値(小径粒状材Gsの総体積割合Pmin)を関係式Rへ代入して近似指数関数P{(d/D)n}の指数nを定めることにより、試料Aの小径粒状材Gsの粒径加積曲線(輪郭が検出できない範囲の粒径加積曲線)を推定することができる。 FIG. 7 shows an example of the relational expression R when the approximate designation function P {(d / D) n } is a Talbot function. This figure shows that a linear relational expression R (n = −0.0516 × Pmin + 0.4624) holds between the total mass ratio (or total volume ratio) Pmin of the small-diameter granular material Gs and the index n of the Talbot function. ing. When the index n of the approximate exponential function P {(d / D) n } changes depending on the total mass ratio (or total volume ratio) Pmin of the small-diameter granular material Gs as shown in FIG. The boundary value (minimum particle diameter Dmin and total volume ratio Pmin of the small diameter granular material Gs) of the particle diameter accumulation curve of the large diameter granular material GL (particle diameter accumulation curve in a range where the contour can be detected) P (d) Substituting into the approximate designation function P {(d / D) n } and substituting its boundary value (total volume ratio Pmin of the small-diameter granular material Gs) into the relational expression R, approximate exponential function P {(d / D) n }, The particle size accumulation curve of the small-diameter granular material Gs of the sample A (particle size accumulation curve in a range in which no contour can be detected) can be estimated.
なお、図7の例では小径粒状材Gsの総質量割合(又は総体積割合)Pminと近似指定関数P{(d/D)n}の指数nとの関係式Rを線形(一次関数)としているが、関係式RをPminの指数関数、対数関数、べき関数、双曲線関数とすることも可能である。また、総質量割合(又は総体積割合)Pminに応じて指数nが変化しているにも拘らず適切な関係式Rが検知できない場合は、各近似指数関数P{(d/D)n}の指数nの平均値を用いて、試料Aの大径粒状材GLの粒径加積曲線(輪郭が検出できる範囲の粒径加積曲線)P(d)から試料Aの小径粒状材Gsの粒径加積曲線(輪郭が検出できない範囲の粒径加積曲線)を推定してもよい。 In the example of FIG. 7, the relational expression R between the total mass ratio (or total volume ratio) Pmin of the small-diameter granular material Gs and the index n of the approximate designation function P {(d / D) n } is linear (primary function). However, the relational expression R can be an exponential function, logarithmic function, power function, or hyperbolic function of Pmin. When an appropriate relational expression R cannot be detected even though the index n changes according to the total mass ratio (or total volume ratio) Pmin, each approximate index function P {(d / D) n } Using the average value of the index n of the sample A, the particle size accumulation curve of the large-diameter granular material GL of the sample A (particle size accumulation curve in a range where the contour can be detected) P (d) You may estimate a particle size accumulation curve (particle size accumulation curve of the range which cannot detect an outline).
図2のステップS103〜S108は、コンピュータ10で試料Aの粒径加積曲線P(d)を作成する処理を示す。先ずステップS103において、試料Aの全体積Vを測定装置5により測定し、その測定値Vをコンピュータ10に入力する。測定装置5の一例は、例えば特許文献3及び4に開示されたステレオ写真測量技術を用いた体積測定装置である(図4参照)。図4の測定装置5は、三次元形状が既知の上端開放搬送器3に積載された試料Aを下向きステレオ式撮像装置50で撮像し、そのステレオ画像を体積測定手段58の座標算出手段55に入力して搬送器3の上端縁3a及び積載面3bの三次元座標と試料Aの表面の三次元座標とを計測し、試料Aの表面の三次元座標と搬送器3の形状の三次元座標とから体積測定手段58の体積算出手段57により試料Aの全体積(容積)Vを算出する。ステレオ式撮像装置50は、例えばCCDカメラ装置である一対のステレオ式撮像機52R、52Lと、格子状に組み合わせた可視スリット光の群(メッシュ光)を投光する投光器51とを有する。座標算出手段55は、三次元画像計測法の一例であるステレオ画像法に基づき、撮像機52R、52Lによる一対の二次元画像から三次元座標を算出するコンピュータ10の内蔵プログラムである。 Steps S103 to S108 in FIG. 2 show processing for creating the particle size accumulation curve P (d) of the sample A by the computer 10. First, in step S103, the total volume V of the sample A is measured by the measuring device 5, and the measured value V is input to the computer 10. An example of the measuring device 5 is a volume measuring device using a stereo photogrammetry technique disclosed in Patent Documents 3 and 4, for example (see FIG. 4). The measuring device 5 in FIG. 4 images the sample A loaded on the open-top transfer device 3 whose three-dimensional shape is known with the downward stereo imaging device 50, and the stereo image is transferred to the coordinate calculating unit 55 of the volume measuring unit 58. Input and measure the three-dimensional coordinates of the upper edge 3a and the loading surface 3b of the transporter 3 and the three-dimensional coordinates of the surface of the sample A, and the three-dimensional coordinates of the surface of the sample A and the three-dimensional coordinates of the shape of the transporter 3 Then, the volume calculation means 57 of the volume measurement means 58 calculates the total volume (volume) V of the sample A. The stereo imaging device 50 includes a pair of stereo imaging devices 52R and 52L, which are CCD camera devices, for example, and a projector 51 that projects a group of visible slit light (mesh light) combined in a lattice shape. The coordinate calculation means 55 is a built-in program of the computer 10 that calculates three-dimensional coordinates from a pair of two-dimensional images by the image pickup devices 52R and 52L based on the stereo image method which is an example of a three-dimensional image measurement method.
図4に示すような測量装置5を用いれば、ステップS103においてトラック等の搬送器3に搭載した試料Aの全体積Vを自動的に測定することが可能である。ただし、本発明で使用可能な測量装置5は図示例に限定されず、例えば図5に示すようなコンピュータ10に接続されたレーザースキャン装置59を測量装置5とすることも可能である。図5の実施例では、既知断面形状の移動式搬送器(ベルトコンベア等)3に試料Aを載置して所定速度Δtで移動させ、その搬送器3の所定断面をレーザースキャン装置59で走査して搬送器3の上端縁3a及び積載面3bの形状と試料Aの表面形状とを計測し、その形状(レーザー走査信号)から試料Aの断面積Sを求め、その断面積Sと搬送器3の移動速度Δtとから試料Aの全体積Vを測定する(同図(B)参照)。また、測定装置5により地盤材料の試料Aの全体積Vに代えて全質量Mを測定し、コンピュータ10の記憶手段11に地盤材料の比重(絶乾比重及び/又は表乾比重)ρを記憶しておき、コンピュータ10の内蔵プログラム17又は18において試料Aの全質量Mと比重ρと含水比wとから試料Aの全体積Vを算出してもよい。地盤材料の比重ρは、たとえば初期処理において1回計測して記憶手段11に記憶しておけば(図1参照)、その後は確認を目的に計測するだけで十分である。更に、所定採取場31の掘削孔の体積を水置換法又は砂置換法で測定して採取した試料Aの全体積Vを求めることも可能である。 If the surveying instrument 5 as shown in FIG. 4 is used, it is possible to automatically measure the total volume V of the sample A mounted on the transporter 3 such as a truck in step S103. However, the surveying device 5 usable in the present invention is not limited to the illustrated example, and for example, a laser scanning device 59 connected to the computer 10 as shown in FIG. In the embodiment shown in FIG. 5, the sample A is placed on a movable transfer device (belt conveyor or the like) 3 having a known cross-sectional shape and moved at a predetermined speed Δt, and a predetermined cross section of the transfer device 3 is scanned by a laser scanning device 59. Then, the shape of the upper edge 3a and the loading surface 3b of the transport device 3 and the surface shape of the sample A are measured, and the cross-sectional area S of the sample A is obtained from the shape (laser scanning signal). 3 and the total volume V of the sample A is measured from the moving speed Δt of 3 (see FIG. 5B). The measuring device 5 measures the total mass M instead of the total volume V of the ground material sample A, and stores the specific gravity (absolute dry gravity and / or surface dry specific gravity) ρ in the storage means 11 of the computer 10. In addition, the total volume V of the sample A may be calculated from the total mass M of the sample A, the specific gravity ρ, and the water content ratio w in the built-in program 17 or 18 of the computer 10. For example, if the specific gravity ρ of the ground material is measured once in the initial process and stored in the storage means 11 (see FIG. 1), it is sufficient to measure for the purpose of confirmation thereafter. Furthermore, it is also possible to obtain the total volume V of the sample A collected by measuring the volume of the excavation hole of the predetermined sampling site 31 by the water replacement method or the sand replacement method.
次いでステップS104において、試料A中の所定粒径D以上の大径粒状材GLの輪郭を検出装置6で検出し、その輪郭の検出値をコンピュータ10に入力する。検出装置6の一例は、体積計測後の試料Aを薄く撒きだした表面全体又は一部の平面画像(図8(A)参照)を撮像する撮像装置7と、その平面画像から最小粒径Dmin以上の大径粒状材GLの輪郭(図8(B)参照)を検出する画像解析手段16とを含む(図1参照)。図示例では、地表に敷設したシート上に撒きだした試料Aの表面画像を用いているが、例えばベルトコンベア等の移動式搬送器(図5参照)上に薄く載置した試料Aの表面画像を用いることも可能である。最小粒径Dmin以上の大径粒状材GLの全ての輪郭を検出するため、試料Aは最小粒径Dmin以下の厚さに撒きだし又は載置することが望ましい。図示例のような検出装置6を用いれば、ステップS104において試料A中の大径粒状材GLの輪郭を自動的に検出することが可能である。ただし、本発明で用いる検出装置6は画像解析手段16を含むものに限定されず、例えば図5のようなレーザースキャン装置59を検出装置6として用いることができ、レーザースキャン装置59による試料Aの表面形状(レーザー走査信号)から最小粒径Dmin以上の大径粒状材GLの輪郭を検出してもよい。 Next, in step S104, the outline of the large-diameter granular material GL having a predetermined particle diameter D or more in the sample A is detected by the detection device 6, and the detected value of the outline is input to the computer 10. An example of the detection device 6 includes an imaging device 7 that captures an entire surface or a partial planar image (see FIG. 8A) obtained by thinly squeezing the sample A after volume measurement, and the minimum particle diameter Dmin from the planar image. The image analysis means 16 which detects the outline (refer FIG. 8 (B)) of the above large diameter granular material GL is included (refer FIG. 1). In the illustrated example, the surface image of the sample A sprinkled on a sheet laid on the ground surface is used. For example, the surface image of the sample A thinly placed on a mobile transporter (see FIG. 5) such as a belt conveyor. It is also possible to use. In order to detect all the contours of the large-diameter granular material GL having the minimum particle diameter Dmin or more, it is desirable that the sample A is squeezed out or placed to a thickness of the minimum particle diameter Dmin or less. If the detection device 6 as shown in the example is used, it is possible to automatically detect the outline of the large-diameter granular material GL in the sample A in step S104. However, the detection device 6 used in the present invention is not limited to the one including the image analysis means 16, and for example, a laser scanning device 59 as shown in FIG. 5 can be used as the detection device 6. The contour of the large-diameter granular material GL having the minimum particle diameter Dmin or more may be detected from the surface shape (laser scanning signal).
ステップS105において、検出装置6で検出された試料A中の大径粒状材GLの輪郭をコンピュータ10の作成手段17に入力して各大径粒状材GLの体積vを算出し、各大径粒状材GLの体積vの算出値と試料Aの全体積Vの測定値とから大径粒状材GLの粒径加積曲線(検出装置6で輪郭が検出できる範囲の粒径加積曲線)P(d)(d≧D)を作成する。粒径加積曲線P(d)(d≧D)を作成する作成手段17は、例えば画像解析手段16と一体的なプログラムとすることができる。図3は、そのような一体的なプログラムによる粒径加積曲線P(d)(d≧D)の作成方法の流れ図を示す。 In step S105, the outline of the large-diameter granular material GL in the sample A detected by the detection device 6 is input to the creating means 17 of the computer 10, and the volume v of each large-diameter granular material GL is calculated. From the calculated value of the volume v of the material GL and the measured value of the total volume V of the sample A, the particle size accumulation curve of the large diameter granular material GL (particle size accumulation curve in a range in which the contour can be detected by the detection device 6) P ( d) Create (d ≧ D). The creation means 17 for creating the particle size accumulation curve P (d) (d ≧ D) can be a program integrated with the image analysis means 16, for example. FIG. 3 shows a flowchart of a method for creating a particle size accumulation curve P (d) (d ≧ D) by such an integrated program.
図3の流れ図では、ステップS201において試料Aの表面全体又は一部の画像(図8(A))を入力し、ステップS202においてその画像を例えば二値化処理することで最小粒径Dmin以上の大径粒状材GLの輪郭を検出する(図8(B)参照)。ステップS203において検出した大径粒状材GLの輪郭内部の画素数から各輪郭内部の面積を算出し、ステップS204において輪郭内部の面積から面積等価径d(図10(A))参照)又は長径b・短径a(同図(B)参照)を求める。ステップS205において、大径粒状材GLが球体とみなせる場合は面積等価径dから体積vを算出し(同図(A))参照)、大径粒状材GLが楕円体とみなせる場合は長径b・短径aから体積vを算出する(同図(B)参照)。更に楕円体とみなせる場合は、標本Bから求めた扁平率hに基づき大径粒状材GLの体積vを調節してもよい(同図(C)参照)。このような扁平率hは、ステップS101の初期処理において標本Bから検出して記憶手段11に記憶しておくことができる。なお、大径粒状材GLを楕円体とみなした場合は、その短径aが粒度分布における粒径に相当する。ステップ203〜204は、図1の画像解析手段16又は作成手段17の何れで行なってもよい。 In the flowchart of FIG. 3, an image of the entire surface or a part of the sample A (FIG. 8A) is input in step S201, and the image is binarized in step S202, for example, so that the minimum particle size Dmin or more is obtained. The outline of the large-diameter granular material GL is detected (see FIG. 8B). The area inside each contour is calculated from the number of pixels inside the contour of the large-diameter granular material GL detected in step S203. In step S204, the area equivalent diameter d (see FIG. 10A) or the major axis b is calculated from the area inside the contour.・ Determine the minor axis a (see FIG. 5B). In step S205, when the large-diameter granular material GL can be regarded as a sphere, the volume v is calculated from the area equivalent diameter d (see FIG. 5A)), and when the large-diameter granular material GL can be regarded as an ellipsoid, the long diameter b · The volume v is calculated from the minor axis a (see FIG. 5B). Further, when it can be regarded as an ellipsoid, the volume v of the large-diameter granular material GL may be adjusted based on the flatness h obtained from the specimen B (see FIG. 10C). Such a flatness h can be detected from the sample B in the initial process of step S101 and stored in the storage means 11. When the large-diameter granular material GL is regarded as an ellipsoid, the short diameter a corresponds to the particle diameter in the particle size distribution. Steps 203 to 204 may be performed by either the image analysis means 16 or the creation means 17 in FIG.
図3のステップS206〜S207において、大径粒状材GLの体積vを粒径d(又は短径a)の降順に並べると共に試料Aの全体積Vの測定値を入力し、試料Aの全体積Vに対する各大径粒状材GLの割合pを算出し、更に粒径d(又は短径a)の最大粒径から降順に各大径粒状材GLの割合pを100%から減算することにより、大径粒状材GLの粒径加積曲線P(d)(d≧D)を作成する。図9は、図3の流れ図に沿って作成した大径粒状材GLの粒径加積曲線P(d)の一例を示す。なお、図9の粒径加積曲線の縦軸は体積割合(=各粒状材より小径の粒状材の総体積/粒状材全体の総体積)を表しているが、試料Aの各粒状材の比重は同一とみなす、もしくは粒径毎に既知の比重で換算することで質量割合と考えることもできる。 In steps S206 to S207 in FIG. 3, the volume v of the large-diameter granular material GL is arranged in descending order of the particle diameter d (or short axis a) and the measured value of the total volume V of the sample A is input. By calculating the ratio p of each large-diameter granular material GL to V, and further subtracting the ratio p of each large-diameter granular material GL from 100% in descending order from the maximum particle diameter of the particle diameter d (or short diameter a), A particle size accumulation curve P (d) (d ≧ D) of the large-diameter granular material GL is created. FIG. 9 shows an example of the particle size accumulation curve P (d) of the large-diameter granular material GL created along the flowchart of FIG. The vertical axis of the particle size accumulation curve of FIG. 9 represents the volume ratio (= total volume of granular material having a smaller diameter than each granular material / total volume of the entire granular material). The specific gravity can be regarded as the same, or can be considered as a mass ratio by conversion with a known specific gravity for each particle size.
再び図2に戻り、ステップS106においてコンピュータ10の推定手段18により、上述した作成手段17で算出された各大径粒状材GLの体積vの合計Σvと、試料Aの全体積Vの測定値とから、試料A中の小径粒状材Gsの総体積割合(V−Σv)=Pminを算出する。上述したように、この小径粒状材Gsの総体積割合(V−Σv)=Pminは、ステップS105で作成された大径粒状材GLの粒径加積曲線(輪郭が検出できる範囲の粒径加積曲線)P(d)(d≧D)の境界値に相当する。従って、記憶手段11に記憶された複数標本B1、B2、B3、……の粒径加積曲線P1、P2、P3、……から、この総体積割合(V−Σv)=Pminに応じた粒径加積曲線Piを選択又は推定し、輪郭が検出できない範囲の粒径加積曲線とすることができる。或いは、粒径加積曲線P1、P2、P3、……を所定指数関数P{(d/D)n}で近似した場合は、その近似指定関数P{(d/D)n}に総体積割合(V−Σv)=Pminを代入すると共に、関係式Rに総体積割合(V−Σv)=Pminを代入して近似指数関数P{(d/D)n}の指数nを定めることにより、輪郭が検出できない範囲の粒径加積曲線(小径粒状材Gsの粒径加積曲線)を推定することができる。 Returning to FIG. 2 again, in step S106, the estimation means 18 of the computer 10 calculates the total Σv of the volumes v of the large-diameter granular materials GL calculated by the preparation means 17 described above and the measured value of the total volume V of the sample A. From the above, the total volume ratio (V−Σv) = Pmin of the small-diameter granular material Gs in the sample A is calculated. As described above, the total volume ratio (V−Σv) = Pmin of the small-diameter granular material Gs is the particle size accumulation curve of the large-diameter granular material GL created in step S105 (the particle size addition in a range where the contour can be detected). Product curve) corresponds to the boundary value of P (d) (d ≧ D). Accordingly, from the particle size accumulation curves P1, P2, P3,... Of the plurality of specimens B1, B2, B3,... Stored in the storage means 11, the particles corresponding to this total volume ratio (V-Σv) = Pmin The diameter accumulation curve Pi can be selected or estimated to obtain a particle diameter accumulation curve in a range where no contour can be detected. Alternatively, particle size accumulation curve P1, P2, P3, when approximated by ...... a predetermined exponential function P {(d / D) n } is the total volume in the approximate specified function P {(d / D) n } By substituting the ratio (V−Σv) = Pmin and substituting the total volume ratio (V−Σv) = Pmin into the relational expression R to determine the index n of the approximate exponential function P {(d / D) n } Thus, it is possible to estimate a particle size accumulation curve (a particle size accumulation curve of the small-diameter granular material Gs) in a range in which no contour can be detected.
ステップS107においてコンピュータ10の合成手段19により、ステップS105で作成した粒径加積曲線P(d)(d≧D)と、ステップS106で選択又は推定された粒径加積曲線P(d)(d≦D)とを合成し、両者が組み合わされた試料Aの粒径加積曲線P(d)を作成する。図11は、合成手段19で作成された試料Aの粒径加積曲線P(d)の一例を示す。ステップS108は、ステップS107で作成された試料Aの粒径加積曲線P(d)に基づいて地盤材料の均等係数、曲率係数、透水性等の品質を試験又は確認する処理を示す。ステップS109において他の試料Aの粒度を計測する必要があるか否かを判断し、必要とする場合はステップS103へ戻り、上述したステップS103〜S108を繰り返すことにより他の試料Aの粒径加積曲線P(d)を作成する。各標本B1、B2、B3、……の粒径加積曲線(輪郭が検出できない範囲の粒径加積曲線)P1、P2、P3、……や関係式R等については、採取場31又は破砕機32に変更がなければ同じものを使用できるので、ステップS101〜S102を繰り返す必要はない。 In step S107, the composition means 19 of the computer 10 uses the particle size accumulation curve P (d) (d ≧ D) created in step S105 and the particle size accumulation curve P (d) (selected or estimated in step S106). d ≦ D) and a particle diameter accumulation curve P (d) of sample A in which both are combined is created. FIG. 11 shows an example of the particle size accumulation curve P (d) of the sample A created by the synthesis means 19. Step S108 indicates a process of testing or confirming the quality of the ground material such as the uniformity coefficient, the curvature coefficient, and the water permeability based on the particle diameter accumulation curve P (d) of the sample A created in Step S107. In step S109, it is determined whether it is necessary to measure the particle size of another sample A. If necessary, the process returns to step S103, and the above steps S103 to S108 are repeated to increase the particle size of the other sample A. A product curve P (d) is created. For each sample B1, B2, B3, ... Particle size accumulation curve (particle size accumulation curve in a range where no contour can be detected) P1, P2, P3, ... and relational expression R, etc., sampling site 31 or crushing If there is no change in the machine 32, the same one can be used, so there is no need to repeat steps S101 to S102.
図12は、上述した図2の流れ図に沿って作成した試料Aの粒径加積曲線P(d)と、従来の篩分け及び沈降分析で作成した試料Aの粒径加積曲線(図13参照)とを比較した結果を示したものである。図示例では、検出装置6で輪郭が検出できる最小粒径Dmin(53mm)以上の大径粒状材GLの粒径加積曲線を図3の流れ図により作成し、輪郭が検出できない最小粒径Dmin(53mm)以下の小径粒状材Gsの粒径加積曲線をTalbot関数(図2のステップS102参照)で近似し、大径粒状材GLの粒径加積曲線の境界値(最小粒径Dminと小径粒状材Gsの総体積割合Pmin)と関係式R(図7参照)から定まる指数nとをTalbot関数へ代入することにより小径粒状材Gsの粒径加積曲線を推定した。同図から分かるように、本発明による粒径加積曲線P(d)は従来の篩分け及び沈降分析による粒径加積曲線とほぼ重ね合わせることができ、本発明により従来の篩分け及び沈降分析とほぼ同じ精度で粒径分布幅の広い地盤材料の粒径加積曲線を作成できることが確認できる。また本発明によれば、そのように粒径分布幅の広い地盤材料の粒径加積曲線を大径粒状材GLの輪郭の検出値のみから作成することができ、従来の篩分け及び沈降分析による方法に比して粒径加積曲線の作成に要する労力、時間を大幅に削減できる。従って、地盤材料の粒度管理の頻度を大幅に向上することができ、地盤材料を用いて構築される土木構造物の品質管理の精度向上に貢献することが期待できる。 FIG. 12 shows the particle size accumulation curve P (d) of sample A prepared along the flow chart of FIG. 2 described above, and the particle size accumulation curve of sample A prepared by conventional sieving and sedimentation analysis (FIG. 13). The results are shown in comparison with (Ref.). In the illustrated example, a particle diameter accumulation curve of a large-diameter granular material GL having a minimum particle diameter Dmin (53 mm) or more that can be detected by the detection device 6 is created using the flowchart of FIG. 53mm) Approximate the particle size accumulation curve of the small-diameter granular material Gs with the Talbot function (see step S102 in FIG. 2), and the boundary value (minimum particle size Dmin and small diameter) of the particle size accumulation curve of the large-diameter granular material GL The particle size accumulation curve of the small-diameter granular material Gs was estimated by substituting the index n determined from the relational expression R (see FIG. 7) into the Talbot function. As can be seen from the figure, the particle size accumulation curve P (d) according to the present invention can be almost overlapped with the particle size accumulation curve according to the conventional sieving and sedimentation analysis. It can be confirmed that a particle size accumulation curve of a ground material having a wide particle size distribution range can be created with almost the same accuracy as the analysis. Further, according to the present invention, the particle size accumulation curve of the ground material having such a wide particle size distribution range can be created only from the detected value of the outline of the large-diameter granular material GL, and the conventional sieving and sedimentation analysis Compared with the method according to, the labor and time required for preparing the particle size accumulation curve can be greatly reduced. Therefore, it is possible to greatly improve the frequency of the grain size management of the ground material, and to contribute to the improvement of the quality control of the civil engineering structure constructed using the ground material.
こうして本発明の目的である「粒径分布幅の広い地盤材料の粒径加積曲線を短時間で簡単に作成できるシステム及びプログラム」の提供を達成できる。 Thus, it is possible to achieve the “system and program capable of easily creating a particle size accumulation curve of a ground material having a wide particle size distribution width” in a short time, which is an object of the present invention.
3…搬送器 3a…搬送器上端縁
3b…搬送器積載面 5…測定装置
6…検出装置 7…画像撮像装置
8…粒度試験装置 10…コンピュータ
11…記憶手段 12…入力手段
13…入力装置 14…出力手段
15…出力装置 16…画像解析手段
17…(粒径加積曲線)作成手段 18…推定手段
19…合成手段 21…(粒径加積曲線)作図手段
22…関係式検知手段
31…採取場 32…破砕装置
50…ステレオ式撮像装置 51…投光器
52R、52L…撮像機 53…メッシュ光制御回路
54…映像入力ボード 55…座標算出手段
56…座標割付手段 57…体積(容積)算出手段
58…体積測定手段 59…レーザースキャン装置
A…地盤材料の粒度計測対象試料
B…地盤材料の標本(サンプル)
D…最小粒径(所定粒径) d…粒径
GL…大径粒状材 Gs…小径粒状材
M、m…質量 P…加積通過率、加積通過曲線
R…関係式 V、v…体積
3 ... Conveyer 3a ... Upper edge of conveyer
3b ... Conveyor loading surface 5 ... Measuring device 6 ... Detection device 7 ... Imaging device 8 ... Particle size test device 10 ... Computer
11 ... Storage means 12 ... Input means
13 ... Input device 14 ... Output means
15 ... Output device 16 ... Image analysis means
17 ... (particle size accumulation curve) creation means 18 ... estimation means
19… Synthesis means 21… (Particle size accumulation curve) Drawing means
22: Relational expression detection means
31 ... Collection site 32 ... Crushing equipment
50 ... Stereo imaging device 51 ... Projector
52R, 52L ... Imager 53 ... Mesh light control circuit
54 ... Video input board 55 ... Coordinate calculation means
56 ... Coordinate assignment means 57 ... Volume (volume) calculation means
58 ... Volume measuring means 59 ... Laser scanning device A ... Ground material particle size measurement target sample B ... Ground material specimen (sample)
D: Minimum particle size (predetermined particle size) d ... Particle size
GL ... Large-diameter granular material Gs ... Small-diameter granular material M, m ... mass P ... Additional passage rate, cumulative passage curve R ... Relationship formula V, v ... Volume
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007198780A JP4883799B2 (en) | 2007-07-31 | 2007-07-31 | Ground material particle size measurement system and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007198780A JP4883799B2 (en) | 2007-07-31 | 2007-07-31 | Ground material particle size measurement system and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009036533A JP2009036533A (en) | 2009-02-19 |
JP4883799B2 true JP4883799B2 (en) | 2012-02-22 |
Family
ID=40438594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007198780A Active JP4883799B2 (en) | 2007-07-31 | 2007-07-31 | Ground material particle size measurement system and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4883799B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5582806B2 (en) * | 2010-02-06 | 2014-09-03 | 鹿島建設株式会社 | Granule size measurement system and program |
JP5658613B2 (en) * | 2011-05-16 | 2015-01-28 | 鹿島建設株式会社 | Method and system for dividing particle size of granular material |
JP5896465B2 (en) * | 2012-06-12 | 2016-03-30 | 鹿島建設株式会社 | Method and system for measuring particle size distribution of granular material |
JP6062217B2 (en) * | 2012-11-11 | 2017-01-18 | 鹿島建設株式会社 | Particle size measuring method, system and program for accumulated granular material |
JP6319791B2 (en) * | 2014-03-19 | 2018-05-09 | 鹿島建設株式会社 | Method and system for measuring particle size of ground material |
JP6156852B2 (en) * | 2015-11-01 | 2017-07-05 | 鹿島建設株式会社 | Method and system for measuring particle size distribution of granular material |
JP6672823B2 (en) * | 2016-01-19 | 2020-03-25 | 株式会社大林組 | Ground material particle size monitoring method and three-dimensional image processing equipment |
JP6725916B2 (en) * | 2016-04-14 | 2020-07-22 | 株式会社大林組 | Cement-based mixed material manufacturing system and cement-based mixed material manufacturing method |
JP6696290B2 (en) * | 2016-04-28 | 2020-05-20 | 株式会社大林組 | Quality control method of rock zone in rock fill dam |
KR102410066B1 (en) * | 2017-03-30 | 2022-06-16 | 제이에프이 스틸 가부시키가이샤 | Material particle size distribution measuring device, particle size distribution measuring method and porosity measuring device |
CN110823311B (en) * | 2019-11-26 | 2022-07-19 | 湖南农业大学 | Method for rapidly estimating volume of rape pod |
JP7349385B2 (en) * | 2020-02-20 | 2023-09-22 | 東亜建設工業株式会社 | Method for estimating the optimal water content ratio of sediment |
CN111898083B (en) * | 2020-08-07 | 2024-03-22 | 河北师范大学 | Model for describing particle size distribution of dry agglomerates |
KR102618878B1 (en) * | 2021-05-11 | 2023-12-27 | 주식회사 한화 | Rock fragmentation analysis device and operation method of the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3411112B2 (en) * | 1994-11-04 | 2003-05-26 | シスメックス株式会社 | Particle image analyzer |
JP2001074641A (en) * | 1999-06-30 | 2001-03-23 | Nikkiso Co Ltd | Grain size distribution-measuring device |
JP3302991B2 (en) * | 1999-11-16 | 2002-07-15 | 独立行政法人 航空宇宙技術研究所 | Particle size distribution measuring device |
JP2001337028A (en) * | 2000-05-30 | 2001-12-07 | Nikkiso Co Ltd | Method and apparatus for measuring particle size distribution |
JP2003083868A (en) * | 2001-09-11 | 2003-03-19 | Nkk Corp | Measuring method of particle size distribution |
-
2007
- 2007-07-31 JP JP2007198780A patent/JP4883799B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009036533A (en) | 2009-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4883799B2 (en) | Ground material particle size measurement system and program | |
JP5896465B2 (en) | Method and system for measuring particle size distribution of granular material | |
JP5582806B2 (en) | Granule size measurement system and program | |
Fang et al. | A quick and low-cost smartphone photogrammetry method for obtaining 3D particle size and shape | |
US9273951B2 (en) | Optical method and apparatus for determining a characteristic such as volume and density of an excavated void in a construction material | |
JP6062217B2 (en) | Particle size measuring method, system and program for accumulated granular material | |
Puppala et al. | Volumetric shrinkage strain measurements in expansive soils using digital imaging technology | |
JP5658613B2 (en) | Method and system for dividing particle size of granular material | |
Alshibli et al. | Advances in computed tomography for geomaterials: GeoX 2010 | |
Seitz et al. | From picture to porosity of river bed material using Structure-from-Motion with Multi-View-Stereo | |
JP5234649B2 (en) | Granular quality control system and program for granular materials | |
Zhuo et al. | 3D characterization of desiccation cracking in clayey soils using a structured light scanner | |
Engin et al. | Size distribution analysis of aggregates using LiDAR scan data and an alternate algorithm | |
Hryciw et al. | Innovations in optical geocharacterization | |
JP6696290B2 (en) | Quality control method of rock zone in rock fill dam | |
Turner et al. | Evaluation, and management of unstable rock slopes by 3-D laser scanning | |
Wesolowski | Application of computed tomography for visualizing three-dimensional fabric and microstructure of Fraser River Delta silt | |
Castillo et al. | Image-based gradation and aggregate characterisation: case of cement-stabilised quarry fines | |
JP6319791B2 (en) | Method and system for measuring particle size of ground material | |
Arrieta | Novel Approach for Particle Size Distribution Analysis. Applied Case to Rockfills and Waste Dumps Using Unmanned Aerial Vehicle (UAV) | |
Brzeziński et al. | Soil compaction monitoring via photogrammetric settlement measurement–Feasibility study | |
Arrieta et al. | Particle size distribution (PSD) estimation using unmanned aerial vehicle (UAV) photogrammetry for rockfill shear strength characterization | |
JP6156852B2 (en) | Method and system for measuring particle size distribution of granular material | |
Oleszko et al. | Application of image processing and different types of imaging devices for three-dimensional imaging of coal grains | |
Beckett et al. | A novel image-capturing technique for the experimental study of soil deformations during compaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100606 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111205 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111205 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141216 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4883799 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |