JP2005034365A - Deodorizing adsorbent - Google Patents

Deodorizing adsorbent Download PDF

Info

Publication number
JP2005034365A
JP2005034365A JP2003274181A JP2003274181A JP2005034365A JP 2005034365 A JP2005034365 A JP 2005034365A JP 2003274181 A JP2003274181 A JP 2003274181A JP 2003274181 A JP2003274181 A JP 2003274181A JP 2005034365 A JP2005034365 A JP 2005034365A
Authority
JP
Japan
Prior art keywords
activated carbon
pulverized
solid acid
weight
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003274181A
Other languages
Japanese (ja)
Inventor
Koichiro Muramatsu
浩一郎 村松
Akio Furuta
昭男 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aioi Hakko KK
Original Assignee
Aioi Hakko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aioi Hakko KK filed Critical Aioi Hakko KK
Priority to JP2003274181A priority Critical patent/JP2005034365A/en
Publication of JP2005034365A publication Critical patent/JP2005034365A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deodorizing adsorbent which adsorbs various odor-causing molecules of a nitride compound such as ammonia, surfur compounds such as mercaptan, short chain fatty acid such as acetic acid, aldehydes such as formaldehyde, and hydrocarbons such as organic solvent which a human body feels uncomfortable odor in general, and which is inexpensive and simple to handle. <P>SOLUTION: 20 to 90 pts.wt. milled active carbon obtained by milling active carbon to have maximum particle size of ≤100 μm and 10 to 80 pts.wt. milled solid acid obtained by milling solid acid consisting of at least one kind of activated clay, acid clay and synthetic silica alumina to have the maximum particle size of ≤100 μm are mixed, and a proper binder is added to the mixture to mold. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、悪臭の原因となる物質を吸着により除去して消臭を行う消臭吸着材に関する。   The present invention relates to a deodorizing adsorbent that removes a substance causing bad odor by adsorption and performs deodorization.

家屋の高気密高断熱化に伴い、屋内空気の換気は、従来の住宅より行われにくくなり、各種臭気の原因となる物質が屋内にこもりがちとなることがある。このような環境中において、長期間の介護を続ける場合や、ペット等を飼育する場合等の生活環境下で発生する様々な臭気(生活臭)が、居住者のストレスになるとして問題視されてきた。さらには、住宅用建材に用いられるホルムアルデヒド等の各種溶剤が、シックハウス症の原因物質として知られるようになり、屋内空気における臭気及び化学物質の低減が強く求められるようになってきた。   As houses become highly airtight and highly insulated, ventilation of indoor air becomes harder than conventional houses, and substances that cause various odors tend to be trapped indoors. In such an environment, various odors (living odors) generated in the living environment such as when continuing long-term care or when raising pets have been regarded as a problem as resident stress. It was. In addition, various solvents such as formaldehyde used in residential building materials have become known as causative substances for sick house disease, and reduction of odors and chemical substances in indoor air has been strongly demanded.

一般に人体が不快な臭気と感じる主な原因物質として、アンモニア等の窒素化合物、メルカプタン等の硫黄化合物、酢酸等の低級脂肪酸、ホルムアルデヒド等のアルデヒド類、他に有機溶剤等の炭化水素が挙げられる。   In general, the main causative substances that the human body feels as an unpleasant odor include nitrogen compounds such as ammonia, sulfur compounds such as mercaptans, lower fatty acids such as acetic acid, aldehydes such as formaldehyde, and hydrocarbons such as organic solvents.

通常、臭気の除去には、屋内空気の換気が最も効果的である。しかしながら、換気毎に室内の冷気、暖気が失われるため、冷暖房効率を下げることとなる。また、屋内空気を常時循環、排気しながら、外気を吸入するためには、専用のダクト、ファン等の設置が必要となり、家屋の工事に費用を要する。さらに、集合住宅の場合、工事そのものが不可能とされることが多い。   Usually, indoor air ventilation is most effective in removing odors. However, since the cool air and warm air in the room are lost at every ventilation, the cooling / heating efficiency is lowered. In addition, in order to inhale outside air while always circulating and exhausting indoor air, it is necessary to install a dedicated duct, a fan, etc., and the construction of the house is expensive. Furthermore, in the case of collective housing, construction itself is often impossible.

そこで、臭気を屋内空気中より低減する目的から、炭の吸着性に着目された吸着材が以前から用いられてきた。特に活性炭においては、木材、椰子殻等を賦活することにより、その表面に細孔が形成され、該細孔に臭気の分子が吸着される性質が知られる。このようにして得た活性炭が、例えば脱臭を目的とするクッション体(特許文献1参照)に利用されている。また、ペット等の屎尿を吸収し、同時にアンモニア臭の除去の目的からゼオライト等の鉱物が利用されてきた(特許文献2参照)。   Therefore, for the purpose of reducing the odor from indoor air, adsorbents that have focused on charcoal adsorption have been used for some time. In particular, activated carbon is known to have a property in which pores are formed on its surface by activating wood, coconut shell, etc., and odor molecules are adsorbed in the pores. The activated carbon thus obtained is used, for example, in a cushion body for deodorization (see Patent Document 1). Also, minerals such as zeolite have been used for the purpose of absorbing human waste from pets and the like and simultaneously removing ammonia odor (see Patent Document 2).

しかしながら、従前の消臭目的の吸着材にあっては、活性炭、ゼオライト等の消臭成分はそれぞれ単独で使用されていた。さらに、活性炭は疎水性分子に対しては極めて高い吸着能を示す一方、親水性分子(極性分子)に対する吸着能は高いとは言い難い。また、ゼオライト類は、水分の吸収が強力すぎるため、塩基性化合物の吸着能が著しく阻害される点が指摘されている。このように、吸着材を各々単独で使用する場合、吸着の対象とする分子が限られ、広汎な種類の臭気の分子を処理することが困難であった。
特開平8−173513号公報 特開昭63−185323号公報
However, in conventional adsorbents for deodorizing purposes, deodorizing components such as activated carbon and zeolite have been used alone. Furthermore, while activated carbon exhibits extremely high adsorption capacity for hydrophobic molecules, it is difficult to say that the adsorption capacity for hydrophilic molecules (polar molecules) is high. In addition, it has been pointed out that zeolites have extremely strong absorption of moisture, so that the ability to adsorb basic compounds is significantly inhibited. Thus, when each adsorbent is used alone, the molecules to be adsorbed are limited, and it has been difficult to treat a wide variety of odor molecules.
JP-A-8-173513 JP-A 63-185323

本発明は前記の点に鑑みなされたものであり、安価かつ簡便に取り扱うことができ、広汎な種類の臭気の分子を処理する消臭吸着材を提供するものである。   The present invention has been made in view of the above points, and provides a deodorant adsorbent that can be handled inexpensively and easily and that treats a wide variety of odor molecules.

すなわち、請求項1の発明は、活性炭を最大粒径100μm以下に粉砕した粉砕活性炭と、活性白土、酸性白土、合成シリカアルミナのうち、いずれか1種類以上とする固体酸を最大粒径100μm以下に粉砕した粉砕固体酸と、を混合し、成型したことを特徴とする消臭吸着材に係る。   That is, in the invention of claim 1, the activated carbon is pulverized activated carbon pulverized to a maximum particle size of 100 μm or less, and the solid acid containing at least one of activated clay, acidic clay, and synthetic silica alumina is the particle size of 100 μm or less. The deodorized adsorbent is characterized by mixing and molding a pulverized solid acid.

請求項2の発明は、前記粉砕固体酸10〜80重量部に対し、前記粉砕活性炭20〜90重量部が混合される請求項1に記載の消臭吸着材に係る。   The invention according to claim 2 relates to the deodorizing adsorbent according to claim 1, wherein 20 to 90 parts by weight of the pulverized activated carbon is mixed with 10 to 80 parts by weight of the pulverized solid acid.

本発明に係る消臭吸着材によると、活性炭を最大粒径100μm以下に粉砕した粉砕活性炭と、活性白土、酸性白土、合成シリカアルミナのうち、いずれか1種類以上とする固体酸を最大粒径100μm以下に粉砕した粉砕固体酸と、を混合し、成型したため、窒素化合物、硫黄化合物、低級脂肪酸、アルデヒド類、炭化水素等の広汎な種類の臭気原因分子を吸着することが可能である。   According to the deodorizing adsorbent according to the present invention, the maximum particle size of a solid acid which is one or more of pulverized activated carbon obtained by pulverizing activated carbon to a maximum particle size of 100 μm or less, activated clay, acid clay, and synthetic silica alumina. Since pulverized solid acid pulverized to 100 μm or less is mixed and molded, it is possible to adsorb a wide variety of odor-causing molecules such as nitrogen compounds, sulfur compounds, lower fatty acids, aldehydes, and hydrocarbons.

とりわけ、粉砕固体酸10〜80重量部に対して粉砕活性炭20〜90重量部が混合されるため、互いの吸着特性を生かしながら広汎な種類の臭気原因分子の吸着対応することができる。   In particular, 20 to 90 parts by weight of the pulverized activated carbon is mixed with 10 to 80 parts by weight of the pulverized solid acid, so that adsorption of a wide variety of odor-causing molecules can be performed while taking advantage of the mutual adsorption characteristics.

また、従前のゼオライトの場合と異なり、特に高湿度下の使用に際しても有効な消臭吸着材を得ることができた。そのため、湿度が高い時期においても家屋にこもりがちな生活臭等の吸着処理に安価かつ簡便に対応することができる。   In addition, unlike the conventional zeolite, an effective deodorant adsorbent was obtained particularly when used under high humidity. For this reason, it is possible to easily and inexpensively cope with an adsorption process for living odors and the like that tend to be confined to the house even during periods of high humidity.

以下添付の図面に従って本発明を詳細に説明する。図1は本発明の一実施例の製造工程を表す概略図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic view showing the manufacturing process of one embodiment of the present invention.

請求項1に規定する本発明の消臭吸着材について、図1の概略図をもとに説明する。まず、活性炭が最大粒径100μm以下に粉砕され、粉砕活性炭が得られる。次に、固体酸の中から活性白土、酸性白土、合成シリカアルミナのうち、いずれか1種類以上が選択され、前記活性炭と同様に最大粒径100μm以下に粉砕され、粉砕固体酸が得られる。続いて、前記粉砕活性炭と前記粉砕固体酸は、後述する配合比に基づきそれぞれ計量されて十分に混合される。前記混合後、適宜量のバインダーが添加され、所定形状に成型され、さらに乾燥が行われて消臭吸着材となる。   The deodorizing adsorbent of the present invention defined in claim 1 will be described based on the schematic diagram of FIG. First, activated carbon is pulverized to a maximum particle size of 100 μm or less to obtain pulverized activated carbon. Next, one or more of activated solid clay, acidic clay, and synthetic silica alumina are selected from the solid acids and pulverized to a maximum particle size of 100 μm or less in the same manner as the activated carbon to obtain a pulverized solid acid. Subsequently, the pulverized activated carbon and the pulverized solid acid are weighed and mixed sufficiently based on the blending ratio described later. After the mixing, an appropriate amount of binder is added, molded into a predetermined shape, and further dried to form a deodorant adsorbent.

一般に消臭吸着材には、間伐材、廃竹等を無酸素あるいは低酸素雰囲気下で焼成することにより得られた木炭、竹炭等が、植物由来の炭化物として、そのまま臭気の分子の吸着に用いられている。しかしながら、これらの植物由来の炭化物では、炭化後に炭酸カリウム、水酸化カルシウム等の形態で含有微量金属分が残存している。そのため、不用意に木炭、竹炭等を前記固体酸と組み合わせようとすると、前記の残存微量金属分が、固体酸との湿式混合時あるいは高湿度下において塩基性に作用して前記固体酸の酸性度を低くし、その性能低下をもたらす。ゆえに、木炭、竹炭等を利用する場合には、炭酸カリウム、水酸化カルシウム等の含有微量金属分を除去するために水洗しておくことが必須である。   In general, charcoal and bamboo charcoal obtained by firing thinned wood, waste bamboo, etc. in an oxygen-free or low-oxygen atmosphere are used as plant-derived carbides for adsorption of odorous molecules. It has been. However, these plant-derived carbides contain trace metal content in the form of potassium carbonate, calcium hydroxide, etc. after carbonization. For this reason, if the charcoal, bamboo charcoal, etc. are inadvertently combined with the solid acid, the residual trace metal content acts basicly at the time of wet mixing with the solid acid or under high humidity, and the acidity of the solid acid. The degree is lowered and its performance is reduced. Therefore, when using charcoal, bamboo charcoal, etc., it is essential to wash with water in order to remove trace metal components such as potassium carbonate and calcium hydroxide.

以上の点を勘案すると、既に炭酸カリウム、水酸化カルシウム等の含有微量金属分が除去されている活性炭を本発明の消臭吸着材の構成材とすることが好適である。通常、活性炭は、間伐材、廃材等の木材、椰子殻等の植物原料を焼成後、酸賦活、アルカリ賦活、水蒸気賦活等の各種賦活により細孔を発達させたものである。賦活処理に際して前記含有微量金属分が除去されるため、活性炭にあっては炭素以外に残存する成分(含有微量金属分)が抑制される。なお、植物原料に加え、石油ピッチ、フェノール樹脂等の公知の石油樹脂を焼成、賦活することにより、さらに炭素以外の残存する成分を低減させた活性炭を得ることも可能である。   Taking the above points into consideration, it is preferable to use activated carbon from which trace metal components such as potassium carbonate and calcium hydroxide have already been removed as the constituent material of the deodorizing adsorbent of the present invention. In general, activated carbon is obtained by developing pores by various activations such as acid activation, alkali activation, and steam activation after firing wood materials such as thinned wood, waste wood, and plant materials such as coconut shells. Since the contained trace metal component is removed during the activation treatment, the remaining components (contained trace metal component) other than carbon are suppressed in the activated carbon. In addition, it is also possible to obtain activated carbon in which the remaining components other than carbon are further reduced by firing and activating known petroleum resins such as petroleum pitch and phenolic resin in addition to plant raw materials.

なお、前記活性炭の物性として、比表面積は500〜1000m2/g、細孔容積は0.2〜0.6mL/g、細孔直径は0.5〜2nmであることが、吸着を考慮する上から望ましく、これらを満たすものが選択される。 In addition, as the physical properties of the activated carbon, it is considered that the specific surface area is 500 to 1000 m 2 / g, the pore volume is 0.2 to 0.6 mL / g, and the pore diameter is 0.5 to 2 nm. Desirable materials satisfying these conditions are selected from above.

もう1つの構成材として、請求項1に規定するように活性白土、酸性白土、合成シリカアルミナが選択される。前出の3種類の物質は、シリカ成分(SiO2)とアルミナ成分(Al23)が種々の割合で混じり合う非晶性固体または非晶質固体(アモルファス固体)として知られ、固体酸の1つに含められる。本発明における固体酸の作用は、固体酸自身の酸性に起因した極性臭気分子の吸着のほか、活性炭との相互作用により活性炭の吸着性能を向上させる効果があると考えられる。 As another constituent material, activated clay, acidic clay, and synthetic silica alumina are selected as defined in claim 1. The above three types of materials are known as amorphous solids or amorphous solids (amorphous solids) in which silica component (SiO 2 ) and alumina component (Al 2 O 3 ) are mixed in various proportions. It is included in one of The action of the solid acid in the present invention is considered to have the effect of improving the adsorption performance of the activated carbon by the interaction with the activated carbon in addition to the adsorption of the polar odor molecule caused by the acidity of the solid acid itself.

一般に固体酸には、前記合成シリカアルミナ等のほか、H型のゼオライトが含められるが、水分の吸収が強すぎるため、上記の背景技術、及び後述の実施例から明らかなように、本発明の消臭吸着材を構成するに当たり不適当である。   In general, the solid acid includes H-type zeolite in addition to the synthetic silica alumina and the like. However, since the water absorption is too strong, as is clear from the background art and the examples described later, It is unsuitable for constituting a deodorant adsorbent.

前記活性白土、酸性白土、合成シリカアルミナとして請求項1に掲示した固体酸の比表面積は、概ね活性白土が100〜200m2/g、酸性白土が100m2/g、合成シリカアルミナが300〜600m2/g付近となっている。前記活性白土、酸性白土、合成シリカアルミナは、それぞれが単独で活性炭と組み合わせることも可能である。さらには、例えば、活性白土と合成シリカアルミナの2種類の固体酸に活性炭を組み合わせることも可能である。 The activated clay, acid clay, the specific surface area of a solid acid which is posted in claim 1 as synthetic silica alumina, generally activated clay 100 to 200 m 2 / g, the acid clay is 100 m 2 / g, synthetic silica alumina 300~600m It is around 2 / g. Each of the activated clay, the acid clay, and the synthetic silica alumina can be used alone or in combination with activated carbon. Furthermore, for example, activated carbon can be combined with two types of solid acids, activated clay and synthetic silica alumina.

前記活性炭及び前記固体酸は、それぞれ、振動ミル、ポットミル等の公知の粉砕装置により最大粒径が100μm以下になるまで乾式粉砕され、粉砕活性炭及び粉砕固体酸となる。前記活性炭及び前記固体酸は、100μm以下に粉砕されることにより、互いの粒子同士は均一に混合が進む利点がある。最大粒径の下限は、使用目的に応じて適宜設定される。なお、ボールミル等により湿式粉砕とする場合、粉砕活性炭及び粉砕固体酸が含水し、両者の混合比に誤差が生じる可能性が大きく、作業性の低下をもたらすため、好ましくない。   The activated carbon and the solid acid are each dry pulverized by a known pulverizing apparatus such as a vibration mill and a pot mill until the maximum particle size becomes 100 μm or less, thereby becoming a pulverized activated carbon and a pulverized solid acid. The activated carbon and the solid acid are pulverized to 100 μm or less, whereby there is an advantage that the particles are uniformly mixed. The lower limit of the maximum particle size is appropriately set according to the purpose of use. When wet pulverization is performed by a ball mill or the like, the pulverized activated carbon and the pulverized solid acid contain water, and there is a high possibility that an error occurs in the mixing ratio between the two, resulting in a decrease in workability.

最大粒径100μm以下に粉砕された前記粉砕活性炭及び前記粉砕固体酸は、請求項2に規定するとおり、粉砕固体酸10〜80重量部に対し、粉砕活性炭20〜90重量部の範囲において所定割合ずつ配合され、公知の鉱石用攪拌機により均一に攪拌混合される。後述の実施例から明らかなように、粉砕固体酸と粉砕活性炭との配合比を80重量部に対して20重量部以下とすると疎水性分子の吸着能が低下する。また、全体に占める粉砕固体酸の比率を10重量部以下とすると親水性分子の吸着能が低下する。これらを勘案した結果、請求項2に規定する配合比とすることが望ましい。   As defined in claim 2, the pulverized activated carbon and the pulverized solid acid pulverized to a maximum particle size of 100 μm or less have a predetermined ratio in the range of 20 to 90 parts by weight of pulverized activated carbon to 10 to 80 parts by weight of pulverized solid acid. They are blended one by one and mixed uniformly with a known ore stirrer. As will be apparent from the examples described later, when the blending ratio of the pulverized solid acid and the pulverized activated carbon is 20 parts by weight or less with respect to 80 parts by weight, the adsorptive capacity of hydrophobic molecules decreases. On the other hand, when the ratio of the pulverized solid acid to the whole is 10 parts by weight or less, the adsorption ability of the hydrophilic molecules is lowered. As a result of taking these into consideration, it is desirable that the blending ratio specified in claim 2 be adopted.

当該粉砕活性炭及び粉砕固体酸の混合物は、公知の成型機、造粒機を用いることにより、プレス成型、押出し成型、打錠成型、転動造粒等が行われ、板状、棒状、ハニカム状、粒状等と各種形状に成型される。当該成型時には、粉砕活性炭及び粉砕固体酸の成型性を良好にするため、カルボキシメチルセルロース、ポリエチレングリコール、ポリビニルアルコール等の水溶性有機高分子がバインダーとして適宜必要量添加される。   The mixture of the pulverized activated carbon and the pulverized solid acid is subjected to press molding, extrusion molding, tableting molding, rolling granulation, and the like by using a known molding machine and granulator, and has a plate shape, a rod shape, and a honeycomb shape. Molded into various shapes such as granular. At the time of molding, a necessary amount of a water-soluble organic polymer such as carboxymethylcellulose, polyethylene glycol, polyvinyl alcohol or the like is appropriately added as a binder in order to improve the moldability of the pulverized activated carbon and the pulverized solid acid.

前述のとおり各種形状に成型された成型物は、電気式又はガス式等の公知の乾燥機において80〜100℃、5〜10時間、乾燥される。成型時に粉砕活性炭及び粉砕固体酸の細孔等に浸入した水分を除去し、臭気の除去能を向上させるためにも、乾燥を行うことが望ましい。   As described above, the molded product molded into various shapes is dried at 80 to 100 ° C. for 5 to 10 hours in a known dryer such as an electric type or a gas type. It is desirable to perform drying in order to remove moisture that has entered the pulverized activated carbon and the pores of the pulverized solid acid at the time of molding and to improve the odor removing ability.

このようにして得られた消臭吸着材は、例えば、住宅の床下、壁の内部、天井裏等に散布するほか、畳、壁紙、パーテーション等の内部に封入することも可能である。さらには、自動車、船舶、航空機等の内装材に利用して車内等の臭気の除去に役立てることができる。このほか、ペット用のマット、家畜等の飼育施設等への利用も検討される。   The deodorant adsorbent thus obtained can be, for example, sprayed under the floor of a house, inside a wall, behind a ceiling, etc., and can also be enclosed inside a tatami mat, wallpaper, partition, or the like. Further, it can be used for interior materials such as automobiles, ships, aircrafts, etc., and can be used to remove odors in the interior of the vehicle. In addition, the use of mats for pets, breeding facilities for livestock, etc. is also considered.

<消臭吸着材の試作>
本発明の消臭吸着材を試作するにあたり、活性炭は二村化学工業株式会社製:太閤活性炭の粒状活性炭(椰子殻由来の活性炭)を用いた。活性白土は水沢化学株式会社製:ガレオンアース、酸性白土は水沢化学株式会社製:ミズカエース、合成シリカアルミナは触媒化成工業株式会社製:シリカアルミナを用いた。前出の原料において、活性炭については、予め75μmのJIS規格200メッシュの篩により分級し、75μm以下の粒径のみ使用した。前記活性白土、酸性白土、合成シリカアルミナについては、ポットミルにより粉砕後、活性炭と同様に75μmの規格の篩により分級し、75μm以下の粒径のみ使用した。
<Prototype of deodorant adsorbent>
In prototyping the deodorant adsorbent of the present invention, the activated carbon used was a granular activated carbon (activated carbon derived from coconut shell) made by Nimura Chemical Co., Ltd .: Dazai activated carbon. The activated clay was made by Mizusawa Chemical Co., Ltd .: Galeon Earth, the acidic clay was made by Mizusawa Chemical Co., Ltd .: Mizuka Ace, and the synthetic silica alumina was made by Catalyst Kasei Kogyo Co., Ltd .: silica alumina. In the above-mentioned raw materials, the activated carbon was classified in advance by a 75 μm JIS standard 200 mesh sieve, and only a particle size of 75 μm or less was used. The activated clay, acid clay, and synthetic silica alumina were pulverized by a pot mill and classified by a 75 μm standard sieve in the same manner as activated carbon, and only a particle size of 75 μm or less was used.

粉砕及び分級により得られた各原料(粉砕活性炭及び粉砕固体酸)について、下記の表1,2,3に示したようにそれぞれ単独、あるいは所定の重量比に基づいて計量後に攪拌機により均一に混合した。これらを混合後、合計重量に対して5%程度カルボキシメチルセルロース水溶液(2重量%)をバインダーとして添加し、造粒機を用いて粒径5mmの粒状体に転動造粒(成型)した。このようにして得られた造粒物に対して、乾燥機を用い100℃下、5時間かけて乾燥し、本発明の消臭吸着材を試作した。なお、乾燥後、吸湿を防ぐため、当該消臭吸着材をデシケータ内に保存した。   Each raw material (crushed activated carbon and pulverized solid acid) obtained by pulverization and classification is individually mixed as shown in the following Tables 1, 2 and 3, or uniformly mixed by a stirrer after weighing based on a predetermined weight ratio. did. After mixing these, about 5% carboxymethylcellulose aqueous solution (2% by weight) was added as a binder to the total weight, and tumbling granulation (molding) into granules having a particle diameter of 5 mm using a granulator. The granulated product thus obtained was dried at 100 ° C. for 5 hours using a dryer, and a deodorant adsorbent of the present invention was prototyped. In addition, in order to prevent moisture absorption after drying, the deodorizing adsorbent was stored in a desiccator.

<消臭吸着効果の評価>
消臭吸着効果の評価は、臭気原因となる分子を封入した密閉容器内に前記試作した消臭吸着材を投入し、一定時間経過後において消臭吸着材の当初重量からの変化の割合を比較するものである。
<Evaluation of deodorant adsorption effect>
To evaluate the deodorant adsorption effect, put the prototype deodorant adsorbent into a sealed container filled with odor-causing molecules and compare the rate of change from the initial weight of the deodorant adsorbent after a certain period of time. To do.

密閉容器として、内容量5Lのガラス製デシケータを使用した。臭気原因となる分子には、アンモニア、ホルムアルデヒド(一部アセトアルデヒド)、硫化メチル、エタノール、トルエンを指標物質として選択した。これら臭気原因の分子について、アンモニア水(試薬特級)、ホルマリン(試薬特級)、アセトアルデヒド(試薬特級)、酢酸(試薬特級)、硫化メチル(試薬特級)、エタノール(試薬特級)、トルエン(試薬特級)のそれぞれを逐一所定量計量後、デシケータに配置した。前記デシケータ内に上記試作した各消臭吸着材を添加して当該デシケータ内に充満する臭気原因分子を吸着させた。   As a sealed container, a glass desiccator having an internal volume of 5 L was used. As molecules causing odor, ammonia, formaldehyde (partly acetaldehyde), methyl sulfide, ethanol, and toluene were selected as indicator substances. About these odor-causing molecules, ammonia water (reagent special grade), formalin (reagent special grade), acetaldehyde (reagent special grade), acetic acid (reagent special grade), methyl sulfide (reagent special grade), ethanol (reagent special grade), toluene (reagent special grade) Each of these was weighed one by one and placed in a desiccator. Each of the prototype deodorant adsorbents was added to the desiccator to adsorb odor-causing molecules filling the desiccator.

上記所定量ずつ計量した臭気原因の分子と試作した各消臭吸着材とを封入したデシケータを20℃、48時間静置した。その後に速やかに各消臭吸着材の重量を計量し、当初重量からの変化率(%)、すなわち〔変化率(%)=(吸着後重量−当初重量)/当初重量×100〕を算出した。   The desiccator in which the odor-causing molecules weighed in predetermined amounts and each prototype deodorant adsorbent were sealed was allowed to stand at 20 ° C. for 48 hours. Thereafter, the weight of each deodorant adsorbent was quickly weighed, and the change rate (%) from the initial weight, that is, [change rate (%) = (weight after adsorption−initial weight) / initial weight × 100] was calculated. .

<実施例1:炭素系材料における比較>
実施例1において、前出の活性炭:試料1−1による臭気原因分子の吸着能と竹炭:試料1−2、備長炭:試料1−3、木炭:試料1−4による同吸着能とを比較した。なお、竹炭、備長炭、木炭については、ポットミルにより粉砕後、活性炭と同様に75μmの規格の篩により分級し、75μm以下の粒径のみ使用し、これらを同様に造粒した。
<Example 1: Comparison of carbon-based materials>
In Example 1, the above-mentioned activated carbon: the adsorption capacity of the odor-causing molecule by sample 1-1 and bamboo charcoal: sample 1-2, Bincho charcoal: sample 1-3, charcoal: the same adsorption capacity by sample 1-4 did. Bamboo charcoal, Bincho charcoal, and charcoal were pulverized by a pot mill and classified by a 75 μm standard sieve in the same manner as activated carbon, and only a particle size of 75 μm or less was used, and these were granulated in the same manner.

前記の6種類の臭気原因分子(アンモニア水50mL、ホルマリン50mL、酢酸30mL、硫化メチル10mL、エタノール30mL、トルエン30mL)を添加後、活性炭(試料1−1)、竹炭(試料1−2)、備長炭(試料1−3)、木炭(試料1−4)をそれぞれ、1gずつ正確に分取し、前記デシケータ内に封入して20℃、48時間静置した。この当初重量からの変化率(%)の結果は表1である。なお、炭素系材料の評価に際し、アンモニア水は10%に希釈して用いた。   After adding the above 6 kinds of odor-causing molecules (ammonia water 50 mL, formalin 50 mL, acetic acid 30 mL, methyl sulfide 10 mL, ethanol 30 mL, toluene 30 mL), activated carbon (sample 1-1), bamboo charcoal (sample 1-2), Bincho Each 1 g of charcoal (sample 1-3) and charcoal (sample 1-4) was accurately collected, sealed in the desiccator, and allowed to stand at 20 ° C. for 48 hours. Table 1 shows the result of the rate of change (%) from the initial weight. In evaluating the carbon-based material, ammonia water was diluted to 10% and used.

Figure 2005034365
Figure 2005034365

表1に示されるとおり、概ね活性炭(試料1−1)の吸着能が良好であることがわかる。このことは、活性炭の比表面積は約1000m2/gに対して、木炭等の比表面積は300〜400m2/gであることから容易に推察されるものである。また、炭素系材料の特徴として酢酸、トルエンの6種類中では高沸点であり分子量の大きい化合物に対しては高い吸着能を示す。一方、アンモニア、ホルムアルデヒド(ホルマリン)の6種類中では低沸点であり分子量の小さい化合物に対する吸着能は低い。すなわち、炭素系素材にあっては、賦活化されるほど表面ではグラファイト類似構造が発達し、疎水性が高まるものと考えられる。 As shown in Table 1, it can be seen that the adsorption ability of the activated carbon (sample 1-1) is generally good. This is easily inferred from the fact that the specific surface area of activated carbon is about 1000 m 2 / g and the specific surface area of charcoal is 300 to 400 m 2 / g. In addition, as a feature of the carbon-based material, among 6 types of acetic acid and toluene, a high boiling point and high adsorbing ability is exhibited for a compound having a large molecular weight. On the other hand, among 6 types of ammonia and formaldehyde (formalin), the adsorption ability for a compound having a low boiling point and a small molecular weight is low. That is, in the carbon-based material, it is considered that a graphite-like structure develops on the surface and becomes more hydrophobic as it is activated.

<実施例2:固体酸系材料等における比較>
実施例2において、固体酸に前出の合成シリカアルミナを選択し、合成シリカアルミナ50重量部に対して活性炭50重量部を配合し、上記と同様の手順に基づき得た消臭吸着材:試料2−1と、比較のために及びマグネシア(和光純薬工業株式会社製:試薬特級)50重量部に対して活性炭50重量部を配合し、同様に得た消臭吸着材:試料2−2を試作した。これに前記活性炭単独より得た消臭吸着材:試料1−1を加えた3種類で比較した。当該比較において、臭気原因分子としてはアンモニア、酢酸、アセトアルデヒド、硫化メチルを用い、上記と同様の手順に基づき、アンモニア水50mL、酢酸30mL、アセトアルデヒド30mL、硫化メチル10mLを添加し、20℃、48時間静置後の各試料の当初重量(いずれの試料も1g)からの変化率(%)を算出した。この結果は表2である。なお、固体酸系材料の比較に際し、アンモニア水は含量30%を用いた。
<Example 2: Comparison in solid acid materials>
In Example 2, the above-described synthetic silica alumina was selected as the solid acid, 50 parts by weight of activated carbon was blended with 50 parts by weight of synthetic silica alumina, and the deodorant adsorbent obtained by the same procedure as above: sample For comparison with 2-1 and 50 parts by weight of magnesia (manufactured by Wako Pure Chemical Industries, Ltd .: reagent grade), 50 parts by weight of activated carbon was blended, and similarly obtained deodorant adsorbent: Sample 2-2 Prototyped. Deodorized adsorbents obtained from the activated carbon alone: Sample 1-1 was added to this and compared. In this comparison, ammonia, acetic acid, acetaldehyde, and methyl sulfide were used as odor-causing molecules, and 50 mL of aqueous ammonia, 30 mL of acetic acid, 30 mL of acetaldehyde, and 10 mL of methyl sulfide were added based on the same procedure as above, and 20 ° C., 48 hours. The rate of change (%) from the initial weight of each sample after standing (all samples were 1 g) was calculated. The results are in Table 2. In the comparison of the solid acid materials, the content of ammonia water was 30%.

Figure 2005034365
Figure 2005034365

表2に示されるとおり、マグネシアを含む消臭吸着材(試料2−2)は、酢酸、アセトアルデヒドに対して高い吸着能を発揮する。しかしながら、アンモニアに対する吸着能を著しく下げた。マグネシア等にみられる鉱物は固体塩基として知られ、塩基性に作用すると考えられるためである。全体的に勘案すると、合成シリカアルミナを含む消臭吸着材(試料2−1)は、概ね4種類の臭気原因分子の吸着において良好と言える。   As shown in Table 2, the deodorant adsorbent (sample 2-2) containing magnesia exhibits high adsorption ability for acetic acid and acetaldehyde. However, the adsorption capacity for ammonia was significantly reduced. This is because minerals found in magnesia and the like are known as solid bases and are considered to act basicly. Considering the whole, it can be said that the deodorant adsorbent (sample 2-1) containing synthetic silica alumina is good in adsorption of four kinds of odor-causing molecules.

<実施例3:炭素系材料・固体酸系材料における配合比等の比較>
炭素系材料及び固体酸系材料を単独もしくは適宜配合比率を変化させて消臭吸着材を試作し吸着能を比較した。また、粉砕時における粒径の差についても評価した。
<Example 3: Comparison of compounding ratio in carbon-based material / solid acid-based material>
A carbon-based material and a solid acid-based material were used alone or by changing the blending ratio as appropriate, and a deodorant adsorbent was made as a trial and the adsorption capacity was compared. Also, the difference in particle size during pulverization was evaluated.

実施例3において、前記活性炭単独より得た消臭吸着材:試料1−1、前記活性白土単独より得た消臭吸着材:試料3−1、活性白土50重量部に対して活性炭50重量部を配合した消臭吸着材:試料3−2、前記合成シリカアルミナ単独より得た消臭吸着材:試料3−3、合成シリカアルミナ50重量部に対して活性炭50重量部を配合しした消臭吸着材:試料2−1、合成シリカアルミナ10重量部に対して活性炭90重量部を配合した消臭吸着材:試料3−4、合成シリカアルミナ20重量部に対して活性炭80重量部を配合した消臭吸着材:試料3−5、H−Y型ゼオライト(触媒化成工業株式会社製:HYゼオライト)単独より得た消臭吸着材:試料3−6、前記H−Y型ゼオライト50重量部に対して活性炭50重量部を配合した消臭吸着材:試料3−7を試作した。列記全ての消臭吸着材について、粉砕時の粒径を75μm以下に調整したものを使用した。加えて、粉砕時の粒径を共に0.1〜0.5mmに調整した合成シリカアルミナ50重量部と活性炭(二村化学工業株式会社製:太閤活性炭)50重量部を配合した消臭吸着材:試料3−8も試作した。   In Example 3, deodorized adsorbent obtained from the activated carbon alone: Sample 1-1, deodorized adsorbent obtained from the activated clay alone: Sample 3-1, 50 parts by weight of activated carbon with respect to 50 parts by weight of activated clay. Deodorant adsorbent containing: sample 3-2, deodorized adsorbent obtained from the synthetic silica alumina alone: sample 3-3, deodorant containing 50 parts by weight of activated carbon to 50 parts by weight of synthetic silica alumina Adsorbent: Sample 2-1, deodorized adsorbent containing 90 parts by weight of activated carbon with respect to 10 parts by weight of synthetic silica alumina: 80 parts by weight of activated carbon with respect to sample 3-4, 20 parts by weight of synthetic silica alumina Deodorant adsorbent: Sample 3-5, HY zeolite (manufactured by Catalyst Kasei Kogyo Co., Ltd .: HY zeolite) alone Deodorized adsorbent: Sample 3-6, 50 parts by weight of the HY zeolite In contrast, 50 parts by weight of activated carbon is blended. Deodorant adsorbent: a prototype of the sample 3-7. For all the deodorizing adsorbents listed, those having a particle size adjusted to 75 μm or less during pulverization were used. In addition, a deodorant adsorbent containing 50 parts by weight of synthetic silica alumina whose particle diameter at the time of pulverization was adjusted to 0.1 to 0.5 mm and 50 parts by weight of activated carbon (manufactured by Nimura Chemical Co., Ltd .: Taiho activated carbon): Sample 3-8 was also prototyped.

当該比較において、臭気原因分子としてはアンモニア、ホルムアルデヒドを用い、上記と同様の手順に基づき、アンモニア水50mL、ホルマリン30mL添加し、20℃、48時間静置後の各試料の当初重量(いずれの試料も1g)からの変化率(%)を算出した。この結果は表3である。なお、アンモニア水は含量30%を用いた。   In this comparison, ammonia and formaldehyde were used as odor-causing molecules, and 50 mL of ammonia water and 30 mL of formalin were added based on the same procedure as above, and the initial weight of each sample after standing at 20 ° C. for 48 hours (any sample) Also, the change rate (%) from 1 g) was calculated. The results are in Table 3. In addition, 30% of ammonia water was used.

Figure 2005034365
Figure 2005034365

表3に示されるとおり、前記H−Y型ゼオライトを用いた消臭吸着材(試料3−6)では、全くアンモニア吸着能が示されなかった。一般にゼオライトには高い吸湿性が知られる。特に、本実施例のように密閉容器内にアンモニア水を封入すると容器内の湿度は上昇し、この水分がゼオライトの吸収されアンモニア吸着を阻害したものであると考えられる。むろん試料3−7のように活性炭と組み合わせても改善はなかった。このように考えると、住宅内等において使用する消臭吸着材にゼオライトを用いることは不向きであると言える。   As shown in Table 3, the deodorizing adsorbent (sample 3-6) using the HY zeolite showed no ammonia adsorption ability. In general, zeolite has a high hygroscopicity. In particular, when ammonia water is sealed in a sealed container as in this embodiment, the humidity in the container rises, and it is considered that this moisture is absorbed by zeolite and inhibits ammonia adsorption. Of course, there was no improvement even when combined with activated carbon as in Sample 3-7. In this way, it can be said that it is unsuitable to use zeolite as a deodorant adsorbent used in a house or the like.

活性白土(試料3−1)、合成シリカアルミナ(試料3−3)は、単独で用いたとしても吸着能は確認できるが、活性炭と組み合わせることによりさらに吸着能が増す。配合比を変化させた場合(試料2−1,試料3−4,試料3−5)、臭気原因分子毎の吸着の釣り合いが悪化するため、いずれかを極端に増減させることは好ましくない。粉砕時の粒径を調整した消臭吸着材(試料3−8)は、造粒物全体としての表面積が減少して吸着能が低下したものであると考えられる。   The activated clay (sample 3-1) and synthetic silica alumina (sample 3-3) can confirm the adsorption ability even when used alone, but the adsorption ability is further increased by combining with activated carbon. When the blending ratio is changed (Sample 2-1, Sample 3-4, Sample 3-5), since the balance of adsorption for each odor-causing molecule is deteriorated, it is not preferable to increase or decrease one of them extremely. It is considered that the deodorant adsorbent (Sample 3-8) whose particle size at the time of pulverization is adjusted is one in which the surface area of the whole granulated product is reduced and the adsorbing ability is lowered.

本発明の一実施例の製造工程を表す概略図である。It is the schematic showing the manufacturing process of one Example of this invention.

Claims (2)

活性炭を最大粒径100μm以下に粉砕した粉砕活性炭と、
活性白土、酸性白土、合成シリカアルミナのうち、いずれか1種類以上とする固体酸を最大粒径100μm以下に粉砕した粉砕固体酸と、
を混合し、成型したことを特徴とする消臭吸着材。
Pulverized activated carbon obtained by pulverizing activated carbon to a maximum particle size of 100 μm or less;
A pulverized solid acid obtained by pulverizing a solid acid having at least one of activated clay, acid clay, and synthetic silica alumina to a maximum particle size of 100 μm or less;
A deodorant adsorbent characterized by mixing and molding.
前記粉砕固体酸10〜80重量部に対し、前記粉砕活性炭20〜90重量部が混合される請求項1に記載の消臭吸着材。   The deodorizing adsorbent according to claim 1, wherein 20 to 90 parts by weight of the pulverized activated carbon is mixed with 10 to 80 parts by weight of the pulverized solid acid.
JP2003274181A 2003-07-14 2003-07-14 Deodorizing adsorbent Pending JP2005034365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274181A JP2005034365A (en) 2003-07-14 2003-07-14 Deodorizing adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274181A JP2005034365A (en) 2003-07-14 2003-07-14 Deodorizing adsorbent

Publications (1)

Publication Number Publication Date
JP2005034365A true JP2005034365A (en) 2005-02-10

Family

ID=34211209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274181A Pending JP2005034365A (en) 2003-07-14 2003-07-14 Deodorizing adsorbent

Country Status (1)

Country Link
JP (1) JP2005034365A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094606A (en) * 2011-11-07 2013-05-20 Sepio Japan Co Ltd Formaldehyde scavenger
JP2013212154A (en) * 2012-03-30 2013-10-17 Goto:Kk Package body for absorbing and solidifying urine
US10945945B2 (en) 2016-12-22 2021-03-16 Conopco, Inc. Stabilization of cosmetic compositions comprising fish oils and hydroxylated fatty acids and/or its derivatives
CN114887600A (en) * 2022-05-18 2022-08-12 安徽鑫汇碳业有限公司 Improved biological deodorization, deodorization and dehumidification spherical granular active carbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094606A (en) * 2011-11-07 2013-05-20 Sepio Japan Co Ltd Formaldehyde scavenger
JP2013212154A (en) * 2012-03-30 2013-10-17 Goto:Kk Package body for absorbing and solidifying urine
US10945945B2 (en) 2016-12-22 2021-03-16 Conopco, Inc. Stabilization of cosmetic compositions comprising fish oils and hydroxylated fatty acids and/or its derivatives
CN114887600A (en) * 2022-05-18 2022-08-12 安徽鑫汇碳业有限公司 Improved biological deodorization, deodorization and dehumidification spherical granular active carbon

Similar Documents

Publication Publication Date Title
US7942113B2 (en) Animal litter composition
CA2431141C (en) Animal litter composition containing silica gel and methods therefor
JP2000515384A (en) Absorbent containing activated carbon
MX2013004688A (en) Malodor control compositions.
JP2005034365A (en) Deodorizing adsorbent
RU2273129C1 (en) Toilet filler for cats and method for manufacturing the same
JP5118864B2 (en) Humidity conditioning and gas adsorbing material and manufacturing method thereof
JP3375927B2 (en) Humidity control deodorant material using siliceous shale
KR101797889B1 (en) Composition for injection molding with dual functionality of antibacterial and dehumidification containing biomass and floor mats produced therefrom
CN1775295A (en) Refrigerator deodorant of natural organics
JP2766632B2 (en) Small animal toilet sand
KR100969639B1 (en) Adsorbent for the removal of odor in an apparatus for heating and drying food waste and method for removing malodors by using the same
JP2006272047A (en) Aldehyde gas adsorbent and its production method
JP4774752B2 (en) Humidity control molded body and manufacturing method thereof
JP3106112B2 (en) Manufacturing method of drying and deodorizing agent.
JPH08257106A (en) Deodorizing composition
JP2011212539A (en) Deodorizing system and method of using deodorizing system
JP3945369B2 (en) Deodorant
KR101450264B1 (en) Method for Manufacturing Adsorbent using Water Purifying Sludge and Adsorbent Manufactured by This
JP3154924U (en) Animal toilet grain
JP2000263012A (en) Porous powder, its manufacture and use thereof
JP2010162335A (en) Deodorant and filter
JP2011254853A (en) Deodorant and deodorization filter
JP2004136189A (en) Method for producing porous particulate molding, porous particulate molding, and its use
JP2011167688A (en) Humidity controlling and gas adsorbing material, and method for manufacturing the same