JP2011254853A - Deodorant and deodorization filter - Google Patents

Deodorant and deodorization filter Download PDF

Info

Publication number
JP2011254853A
JP2011254853A JP2010129233A JP2010129233A JP2011254853A JP 2011254853 A JP2011254853 A JP 2011254853A JP 2010129233 A JP2010129233 A JP 2010129233A JP 2010129233 A JP2010129233 A JP 2010129233A JP 2011254853 A JP2011254853 A JP 2011254853A
Authority
JP
Japan
Prior art keywords
activated carbon
organic substance
exchange resin
ion exchange
activity coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010129233A
Other languages
Japanese (ja)
Inventor
Hiroya Nakamura
浩也 中村
Akio Tsuboi
明男 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2010129233A priority Critical patent/JP2011254853A/en
Publication of JP2011254853A publication Critical patent/JP2011254853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deodorant and a deodorization filter that efficiently adsorb odor components for deodorization and reemit less of the adsorbed odor components with increasing temperature.SOLUTION: The deodorant includes activated carbon coated in an ion exchange resin, and the deodorization filter uses it. The activated carbon is impregnated with an organic substance, and the organic substance has a boiling point of not less than 150°C and a melting point of not more than 100°C and the infinite dilution activity coefficient of methyl isobutyl ketone to the organic substance is not more than 10.

Description

本発明は、臭気成分を効率的に吸着して脱臭することができ、一旦吸着した臭気成分の温度上昇等による再放出の問題の少ない脱臭剤およびそれを用いた脱臭フィルターに関する。   The present invention relates to a deodorant capable of efficiently adsorbing and deodorizing odor components, and having less problem of re-release due to a temperature rise of the odor components once adsorbed, and a deodorization filter using the same.

従来、脱臭剤として、活性炭とイオン交換樹脂を併用するものとしていくつかのものが知られている。
例えば、特許文献1には、上流側に物理吸着能を有する活性炭を配置し、下流側に物理吸着能を有する活性炭を基材としその表面に酸性あるいは塩基性のガス状イオン性不純物を中和しうる物質を添着させたものを配置し、ガス状有機不純物とガス状イオン性不純物の両方を除去可能であることが報告されている。しかしこのような積層構造をとることによりフィルター部分での圧力損失が大きく排気ブロアーへの負荷が大きく電力消費量が大きくなるとともに、フィルターの通気線速が早い場合に上流側に吸着したイオン性不純物が脱離した際に下流側で効率よく吸着除去されずにスルーしてしまう危険性が高いという問題があった。
Conventionally, several types of deodorizers that use activated carbon and ion exchange resins in combination are known.
For example, in Patent Document 1, activated carbon having physical adsorption ability is arranged on the upstream side, and activated carbon having physical adsorption ability is used as a base material on the downstream side, and acidic or basic gaseous ionic impurities are neutralized on the surface thereof. It has been reported that it is possible to remove both gaseous organic impurities and gaseous ionic impurities by placing a material to which a possible substance is attached. However, by adopting such a laminated structure, the pressure loss in the filter part is large, the load on the exhaust blower is large, the power consumption is large, and the ionic impurities adsorbed on the upstream side when the airflow speed of the filter is fast When desorbed, there is a problem that there is a high risk that it will not be absorbed and removed efficiently downstream.

また、特許文献2には、エアフィルタ用濾材において、吸着性繊維にイオン交換繊維、活性炭素繊維から選ばれる少なくとも一種を、吸着剤粒子にイオン交換樹脂粒子、活性炭粒子等から選ばれる少なくとも一種を用い、上記吸着性繊維を含む不織布シートで上記吸着剤粒子をサンドして止着されているものを報告している。しかし、活性炭粒子とイオン交換繊維の組み合わせであると、通気線速が早い場合、活性炭粒子に吸着されていたイオン性ガス成分が脱離した際に活性炭粒子がイオン交換繊維で完全に被覆されていないためにイオン交換繊維で効率よく吸着除去されずにスルーしてしまう危険性があった。またイオン交換樹脂粒子と活性炭繊維の組み合わせであると、活性炭素繊維に吸着していたイオン性ガス成分が脱離してしまうという問題があった。   Further, in Patent Document 2, in the filter medium for air filter, at least one selected from ion exchange fibers and activated carbon fibers is used as the adsorbent fiber, and at least one selected from ion exchange resin particles, activated carbon particles and the like as the adsorbent particles. It is reported that a non-woven sheet containing the adsorptive fibers is fixed by sanding the adsorbent particles. However, in the case of a combination of activated carbon particles and ion exchange fibers, when the ventilation line speed is high, the activated carbon particles are completely covered with the ion exchange fibers when the ionic gas components adsorbed on the activated carbon particles are desorbed. Therefore, there is a risk that the ion exchange fiber may pass through without being efficiently adsorbed and removed. Further, when the combination of ion exchange resin particles and activated carbon fiber is used, there is a problem that the ionic gas component adsorbed on the activated carbon fiber is desorbed.

また、特許文献3には、シート状複合体として、シート状複合体内に活性炭粒子とイオン交換繊維を混在させているものを報告している。しかし、通気線速が早い場合に活性炭粒子に吸着されていたイオン性ガス成分がイオン交換繊維で効率よく吸着除去されずにスルーしてしまう危険性があった。
また、従来、脱臭剤として、極性臭気成分を吸着しやすい有機物質などを活性炭に添着したものが知られている。
Patent Document 3 reports a sheet-like composite in which activated carbon particles and ion exchange fibers are mixed in the sheet-like composite. However, there is a risk that the ionic gas component adsorbed on the activated carbon particles may pass through without being efficiently adsorbed and removed by the ion exchange fiber when the airflow speed is high.
Conventionally, as a deodorizing agent, an organic substance that easily adsorbs a polar odor component is attached to activated carbon.

即ち、活性炭は、炭化水素等の非極性臭気成分を優先的に吸着することができるが、低分子量の極性臭気成分である硫化水素、アンモニア、アルデヒドなどに対する吸着力が弱いため、これらの極性臭気ガスを吸着しやすいアルカリ物質を活性炭表面に添着させたアルカリ添着活性炭や、各種極性ガス吸着性物質を活性炭に添着させたものが知られている。   In other words, activated carbon can preferentially adsorb non-polar odor components such as hydrocarbons, but it has weak adsorption power for low molecular weight polar odor components such as hydrogen sulfide, ammonia, and aldehydes. Known are alkali-added activated carbon in which an alkaline substance that easily adsorbs gas is attached to the surface of the activated carbon, and those in which various polar gas adsorbing substances are attached to the activated carbon.

例えば、特許文献4には、硫酸アンモニウム、ポリアリルアミン塩酸塩、EDTA・2Na、トリエタノールアミン、ピリジン等を活性炭に添着することにより、ホルムアルデヒドの除去率の向上が認められることが報告されている。しかし、この様にホルムアルデヒド等の極性ガス吸着性物質を活性炭に添着したものは、化学結合によって極性臭気物質を保持しているため、吸着した極性臭気物質を温度の上昇により再放出する問題はないものの、非極性臭気物質を再放出するという問題があった。   For example, Patent Document 4 reports that an improvement in the removal rate of formaldehyde is recognized by adding ammonium sulfate, polyallylamine hydrochloride, EDTA.2Na, triethanolamine, pyridine or the like to activated carbon. However, since the polar odorous substance impregnated with activated carbon with a polar gas adsorbing substance such as formaldehyde as described above retains the polar odorous substance by a chemical bond, there is no problem of re-releasing the adsorbed polar odorous substance due to an increase in temperature. However, there was a problem of re-releasing non-polar odor substances.

また、特許文献5では、活性炭への添着物質としてo−、m−又はp−アミノ安息香酸、p−アミノサリチル酸及びその塩類等が用いられているが、これらは室温で固体状の化合物であり、活性炭表面で結晶を形成するため、活性炭表面での吸着成分の被覆率が低下することにより、臭気物質を保持する能力が一般的に低いと考えられる。   In Patent Document 5, o-, m- or p-aminobenzoic acid, p-aminosalicylic acid and salts thereof, and the like are used as substances attached to activated carbon. These are solid compounds at room temperature. In order to form crystals on the activated carbon surface, it is considered that the ability to retain odorous substances is generally low due to a decrease in the coverage of adsorbed components on the activated carbon surface.

特許第2980124号公報Japanese Patent No. 2980124 特開2002−292216号公報JP 2002-292216 A 特開2008−508092号公報JP 2008-508092 A 特開平9−313828号公報JP-A-9-313828 特開平2−115020号公報Japanese Patent Laid-Open No. 2-115020

本発明は上記従来の問題点を解決し、臭気成分を効率的に吸着して脱臭し、しかも、吸着したこれらの臭気成分の温度上昇による再放出の少ない脱臭剤を提供することを目的とする。   An object of the present invention is to solve the above-mentioned conventional problems, and to provide a deodorizing agent that efficiently adsorbs and deodorizes odor components, and further reduces the re-release due to the temperature rise of these adsorbed odor components. .

本発明者らは上記課題を解決すべく鋭意検討した結果、活性炭をイオン交換樹脂で被覆することで臭気成分を吸着して脱臭することができ、また、一旦吸着した臭気成分の温度上昇等による再放出の問題の少ないことを見出した。さらに活性炭に添着する有機物質として、所定の特性を有するものを用いることにより、温度上昇に伴う極性臭気成分及び非極性臭気成分の再放出、特に非極性臭気成分である2−メチルフランの再放出が防止されることを見出した。   As a result of intensive studies to solve the above problems, the present inventors can adsorb and deodorize odor components by coating activated carbon with an ion exchange resin, and also due to a rise in temperature of the odor components once adsorbed We found that there are few problems of re-release. Furthermore, by using an organic substance attached to the activated carbon having predetermined characteristics, re-release of polar odor components and non-polar odor components accompanying rise in temperature, in particular, re-release of 2-methylfuran, which is a non-polar odor component Has been found to be prevented.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。
[1]活性炭をイオン交換樹脂で被覆してなる脱臭剤。
[2]該活性炭に有機物質を添着してなり、該有機物質が、沸点が150℃以上で、融点が100℃以下であり、かつ該有機物質に対するメチルイソブチルケトンの無限希釈活量係数が10以下であることを特徴とする[1]に記載の脱臭剤。
[3]該有機物質に対するメチルイソブチルケトンの無限希釈量活量係数が3以下であることを特徴とする[2]に記載の脱臭剤。
[4]該有機物質に対する2−メチルフランの無限希釈活量係数が5以下であることを特徴とする[2]又は[3]に記載の脱臭剤。
[5]該有機物質に対するアセトアルデヒドの無限希釈活量係数が5以下であることを特徴とする[2]乃至[4]のいずれかに記載の脱臭剤。
[6]該有機物質に対する酢酸の無限希釈活量係数が10以下であることを特徴とする[2]乃至[5]のいずれかに記載の脱臭剤。
[7]該イオン交換樹脂が、塩基性アニオン交換樹脂であることを特徴とする[1]乃至[6]のいずれかに記載の脱臭剤。
[8][1]乃至[7]のいずれかに記載の脱臭剤を用いた脱臭フィルター。
The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
[1] A deodorant obtained by coating activated carbon with an ion exchange resin.
[2] An organic substance is impregnated on the activated carbon, the organic substance has a boiling point of 150 ° C. or higher, a melting point of 100 ° C. or lower, and an infinite dilution activity coefficient of methyl isobutyl ketone relative to the organic substance of 10 The deodorizer according to [1], which is the following.
[3] The deodorizer according to [2], wherein the activity coefficient of infinite dilution amount of methyl isobutyl ketone with respect to the organic substance is 3 or less.
[4] The deodorizer according to [2] or [3], wherein an infinite dilution activity coefficient of 2-methylfuran with respect to the organic substance is 5 or less.
[5] The deodorizer according to any one of [2] to [4], wherein an infinite dilution activity coefficient of acetaldehyde with respect to the organic substance is 5 or less.
[6] The deodorizer according to any one of [2] to [5], wherein an infinite dilution activity coefficient of acetic acid with respect to the organic substance is 10 or less.
[7] The deodorizer according to any one of [1] to [6], wherein the ion exchange resin is a basic anion exchange resin.
[8] A deodorizing filter using the deodorizing agent according to any one of [1] to [7].

本発明の脱臭剤は、活性炭をイオン交換樹脂で被覆することにより、臭気成分を吸着して脱臭することができ、また、一旦吸着した臭気成分の温度上昇等による再放出の問題が少ない。さらに活性炭に特定の有機物質を添着することにより、極性臭気成分及び非極性臭気成分を共に効率的に吸着して脱臭することができ、また、一旦吸着した臭気成分の温度上昇等による再放出の問題が少ない。   The deodorizer of the present invention can adsorb and deodorize odor components by coating activated carbon with an ion exchange resin, and there are few problems of re-release due to a temperature rise of the once adsorbed odor components. Furthermore, by attaching a specific organic substance to the activated carbon, both polar odor components and non-polar odor components can be efficiently adsorbed and deodorized. There are few problems.

以下に、本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施の形態の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定されない。
本発明の脱臭剤は、活性炭をイオン交換樹脂で被覆してなる。活性炭をイオン交換樹脂で被覆することにより、臭気ガス成分を化学的に吸着することでき、臭気成分の吸着材粒子からの再放出を抑制することができる。
Embodiments of the present invention will be described in detail below. However, the description of the constituent elements described below is an example (representative example) of the embodiments of the present invention, and the present invention does not exceed the gist thereof. , Not specified in these contents.
The deodorizer of the present invention is obtained by coating activated carbon with an ion exchange resin. By coating the activated carbon with an ion exchange resin, the odor gas component can be chemically adsorbed and re-release of the odor component from the adsorbent particles can be suppressed.

[活性炭]
本発明で用いる活性炭としては、特に制限はなく、石炭系物質(泥炭、亜炭、かつ炭、瀝青炭等)を原料とするもの、木炭系物質(ヤシ殻、木材、おが屑)を原料とするもの、その他石油ピッチ、合成樹脂、各種有機灰等を原料とするものなどをいずれも用いることができるが、臭気成分の吸着量を確保するべく、比表面積の大きいものが好ましく、特に、比表面積が1000m/g以上のものが吸着量が大きく好ましい。
[Activated carbon]
The activated carbon used in the present invention is not particularly limited, and those using coal-based materials (peat, lignite, and charcoal, bituminous coal, etc.) as raw materials, those using charcoal-based materials (coconut shells, wood, sawdust) as raw materials, Other materials such as petroleum pitch, synthetic resin, and various organic ash can be used, but those having a large specific surface area are preferred in order to secure the adsorbed amount of odor components, and in particular, the specific surface area is 1000 m. Those of 2 / g or more are preferable because of their large adsorption amount.

特に、ヤシ殻を原料として熱処理したヤシ殻活性炭は、細孔直径2nm以下のミクロ孔が多く、分子サイズの小さい臭気成分の吸着にも好適である。
また、活性炭の形状としても特に限定されるものではなく、粒状、粉状、繊維状のもの等を用いることができる。
活性炭は、原料や比表面積等の物性、形状等の異なるものを2種以上用いても良い。
In particular, coconut shell activated carbon heat-treated from coconut shell as a raw material has many micropores having a pore diameter of 2 nm or less, and is also suitable for adsorption of odor components having a small molecular size.
Moreover, it does not specifically limit as a shape of activated carbon, A granular, powdery, fibrous thing etc. can be used.
Two or more kinds of activated carbons having different physical properties such as raw materials and specific surface areas, shapes, and the like may be used.

[イオン交換樹脂]
本発明で用いるイオン交換樹脂としては、特に制限はなく、塩基性ガスを有効に化学吸着できる強酸性カチオン交換樹脂ないし弱酸性カチオン交換樹脂や、酸性ガスを有効に化学吸着できる強塩基性アニオン交換樹脂ないし弱塩基性アニオン交換樹脂のほか、両性のイオン交換樹脂等を用いることができる。
[Ion exchange resin]
The ion exchange resin used in the present invention is not particularly limited, and a strong acid cation exchange resin or a weak acid cation exchange resin capable of effectively chemisorbing a basic gas, or a strong basic anion exchange capable of chemisorbing an acid gas effectively. In addition to resins or weakly basic anion exchange resins, amphoteric ion exchange resins and the like can be used.

イオン交換樹脂の母体は、通常はスチレンとジビニルベンゼンの共重合体であり、その母体構造によって、透明でほぼ均質なゲル形と、物理的に大きな孔径をもったマクロポーラス形とに大別され、母体構造と各種交換基とを組み合わせることで多種のものがあるが、本発明では、いずれのイオン交換樹脂でも使用することができる。例えば交換基にスルホン酸基を用いた強酸性カチオン交換樹脂、交換基にカルボキシル基あるいはフェノール水酸基を用いた弱酸性カチオン交換樹脂、交換基に第四アンモニウム塩基を用いた強塩基性アニオン交換樹脂、交換基に第一、第二、第三アミンを用いた弱塩基性アニオン交換樹脂が挙げられる。
酢酸、アルデヒド等の酸性臭気成分を吸着させるには、塩基性アニオン交換樹脂を使用することが好ましく、例えば、三菱化学(株)製 ダイヤイオン WA20が使用できる。
The base of the ion exchange resin is usually a copolymer of styrene and divinylbenzene, and is roughly classified into a transparent and almost homogeneous gel form and a macroporous form having a physically large pore size, depending on the base structure. There are various types by combining the base structure and various exchange groups, and any ion exchange resin can be used in the present invention. For example, a strongly acidic cation exchange resin using a sulfonic acid group as an exchange group, a weak acid cation exchange resin using a carboxyl group or a phenol hydroxyl group as an exchange group, a strongly basic anion exchange resin using a quaternary ammonium base as an exchange group, Examples include weakly basic anion exchange resins using primary, secondary, and tertiary amines as exchange groups.
In order to adsorb acidic odor components such as acetic acid and aldehyde, a basic anion exchange resin is preferably used. For example, Diaion WA20 manufactured by Mitsubishi Chemical Corporation can be used.

[有機物質]
本発明の脱臭剤は、前記活性炭に有機物質を添着してなり、該有機物質が、沸点が150℃以上で、融点が100℃以下であり、かつ該有機物質に対するメチルイソブチルケトンの無限希釈活量係数が10以下であることが好ましい。活性炭に前記有機物質を添着させることにより、臭気物質の捕集効果が高くなる。
[Organic substances]
The deodorizer of the present invention comprises an organic substance impregnated on the activated carbon, the organic substance has a boiling point of 150 ° C. or higher and a melting point of 100 ° C. or lower, and an infinite dilution activity of methyl isobutyl ketone with respect to the organic substance. The quantity coefficient is preferably 10 or less. By adding the organic substance to activated carbon, the effect of collecting odorous substances is enhanced.

<沸点>
活性炭に添着される有機物質の沸点は、通常150℃以上、好ましくは170℃以上である。有機物質の沸点が低すぎると、活性炭に添着した有機物質が揮発することにより、有機物質が活性炭表面より脱離してしまい、吸着性能が低下する傾向があり、また脱離し
た有機物質そのものが臭気成分となる場合がある。有機物質の沸点の上限は特に限定されるわけではないが、通常300℃以下である。
<Boiling point>
The boiling point of the organic substance attached to the activated carbon is usually 150 ° C. or higher, preferably 170 ° C. or higher. If the boiling point of the organic substance is too low, the organic substance adhering to the activated carbon volatilizes and the organic substance is detached from the activated carbon surface, which tends to reduce the adsorption performance. May be an ingredient. The upper limit of the boiling point of the organic substance is not particularly limited, but is usually 300 ° C. or lower.

<融点>
活性炭に添着される有機物質の融点は、通常100℃以下、好ましくは50℃以下、より好ましくは30℃以下である。有機物質の融点が高すぎると活性炭表面で結晶を形成するため、活性炭表面での吸着被覆率が低下することにより、臭気成分の捕集効果が低下する傾向がある。特に、有機物質は脱臭剤の使用温度雰囲気で液相状態であること、即ち、融点が使用温度条件以下であることが好ましいと考えられる。有機物質が結晶化することなく液状であることにより、活性炭表面に対する被覆率が大きくなり、臭気成分の捕集効果がより高くなる。有機物質の融点の下限は特に限定されるわけではないが通常−80℃以上である。
<Melting point>
The melting point of the organic substance attached to the activated carbon is usually 100 ° C. or lower, preferably 50 ° C. or lower, more preferably 30 ° C. or lower. If the melting point of the organic substance is too high, crystals are formed on the activated carbon surface, and the adsorption coverage on the activated carbon surface tends to decrease, thereby reducing the effect of collecting odor components. In particular, it is considered that the organic substance is preferably in a liquid phase state at the use temperature atmosphere of the deodorizer, that is, the melting point is preferably not more than the use temperature condition. When the organic substance is in a liquid state without crystallizing, the coverage on the activated carbon surface is increased, and the effect of collecting odor components is further increased. Although the minimum of melting | fusing point of an organic substance is not necessarily limited, Usually, it is -80 degreeC or more.

<無限希釈活量係数>
活性炭に添着される有機物質は、各種の臭気成分に対して親和性が高いことが望まれる。この親和性を表現する指標としては、無限希釈活量係数が用いられる。
多成分気液平衡においては、下記(式1)に示される関係式が成り立つ。
=P×γ×x (式1)
上記(式1)において、
:成分nの気相での分圧(Pa)
:成分nが単独で存在するときの蒸気圧(Pa)
γ:成分nの活量係数(−)
:成分nの液相でのモル分率(−)
を示す。
<Infinite dilution activity coefficient>
The organic substance attached to the activated carbon is desired to have high affinity for various odor components. An infinite dilution activity coefficient is used as an index expressing this affinity.
In multi-component gas-liquid equilibrium, the relational expression shown below (Formula 1) holds.
pn = Pn * [gamma] n * xn (Formula 1)
In the above (Formula 1),
p n : partial pressure of component n in the gas phase (Pa)
P n : Vapor pressure (Pa) when component n is present alone
γ n : Activity coefficient of component n (−)
x n : mole fraction of component n in the liquid phase (−)
Indicates.

ここで、気相中の臭気ガス成分が液相の添着成分(有機物質)に吸着されて捕集される場合、活量係数がより小さい値であるほど、液相のモル分率xが高くなり、捕集されやすいことになり、すなわち「親和性が高い」と言える。(式1)において、臭気ガス成分の濃度が非常に低い場合は、上記活量係数γとして、無限希釈活量係数が適用される。従って、無限希釈活量係数により、親和性を評価することができる。 Here, when the odor gas component in the gas phase is adsorbed and collected by the adsorbing component (organic substance) in the liquid phase, the smaller the activity coefficient is, the smaller the molar fraction x n of the liquid phase is. It becomes high and it is easy to be collected, that is, it can be said that “high affinity”. In (Formula 1), when the concentration of the odor gas component is very low, an infinite dilution activity coefficient is applied as the activity coefficient γ n . Therefore, affinity can be evaluated by an infinite dilution activity coefficient.

本発明において、活性炭に添着される有機物質としては、その有機物質に対するメチルイソブチルケトンの無限希釈活量係数が通常10以下、好ましくは3以下であり、2−メチルフランの無限希釈活量係数が好ましくは5以下、より好ましくは3以下であり、アセトアルデヒドの無限希釈活量係数が好ましくは5以下、より好ましくは3以下であり、さらに酢酸の無限希釈活量係数が好ましくは10以下、より好ましくは6以下である。   In the present invention, as an organic substance attached to activated carbon, the infinite dilution activity coefficient of methyl isobutyl ketone relative to the organic substance is usually 10 or less, preferably 3 or less, and the infinite dilution activity coefficient of 2-methylfuran is Preferably, it is 5 or less, more preferably 3 or less, the infinite dilution activity coefficient of acetaldehyde is preferably 5 or less, more preferably 3 or less, and the infinite dilution activity coefficient of acetic acid is preferably 10 or less, more preferably Is 6 or less.

無限希釈活量係数が小さいほど、各臭気成分に対する親和性が高く、吸着脱臭効率に優れ、また再放出防止効果にも優れる。即ち、有機物質に対するメチルイソブチルケトンの無限希釈活量係数が小さいほどメチルイソブチルケトンの吸着脱臭効率に優れ、有機物質に対する2−メチルフランの無限希釈活量係数が小さいほど2−メチルフランの吸着脱臭効率に優れ、有機物質に対するアセトアルデヒドの無限希釈活量係数が小さいほどアセトアルデヒドの吸着脱臭効率に優れ、有機物質に対する酢酸の無限希釈活量係数が小さいほど酢酸の吸着脱臭効率に優れる。   The smaller the infinite dilution activity coefficient, the higher the affinity for each odor component, the better the adsorption deodorization efficiency, and the better the re-release prevention effect. That is, the smaller the infinite dilution activity coefficient of methyl isobutyl ketone with respect to an organic substance, the better the adsorption deodorization efficiency of methyl isobutyl ketone, and the smaller the infinite dilution activity coefficient of 2-methyl furan with respect to an organic substance, the better the adsorption deodorization of 2-methyl furan. The lower the infinite dilution activity coefficient of acetaldehyde with respect to the organic substance, the better the efficiency of adsorption and deodorization of acetaldehyde. The smaller the infinite dilution activity coefficient of acetic acid with respect to the organic substance, the better the adsorption and deodorization efficiency of acetic acid.

なお、有機物質の無限希釈活量係数は、A・クラムトら(A.Klamt et al.)、「ジャーナル・オブ・フィジカル・ケミストリー」(JournalofPhysical Chemistry)、(米国)、アメリカ化学会、1995年、第99巻、p.2224、およびA・クラムトら(A.Klamt et al.)「フルード・フェーズ・イクイリブリア」(Fluid Phase Equilibria)、(蘭)
、エルゼビア、2000年、第172巻、p.43に記載の方法で算出される。
In addition, the infinite dilution activity coefficient of the organic substance is described by A. Klamt et al., “Journal of Physical Chemistry” (Journal of Physical Chemistry), (USA), American Chemical Society, 1995, Vol. 99, p. 2224, and A. Klamt et al. "Fluid Phase Equilibria" (Orchid).
Elsevier, 2000, 172, p. It is calculated by the method described in 43.

<具体例>
上記の特性を満たす有機物質の例としては、例えば、非極性基と極性基とを併せ持つ化合物が挙げられ、具体的には、ジメチルスルホキシドやジフェニルスルホキシド等のアルキル基又はアリル基で置換されたスルホキシド化合物、コハク酸ジエチル、フタル酸ジエチルなどのエステル化合物、1,2−プロパンジオールなどの脂肪族アルコール類、トリメチルシラノール、トリエチルシラノール等のシラノール基含有化合物などが挙げられる。また、上述したような極性臭気化合物(アセトアルデヒド、メチルイソブチルケトン、酢酸)及び非極性臭気化合物(2−メチルフラン)双方との親和性が高い有機物質、すなわち当該有機物質に対する極性臭気化合物及び非極性臭気化合物双方の無限希釈活量係数が小さい、アセトフェノンなどが挙げられる。
<Specific example>
Examples of the organic substance satisfying the above characteristics include, for example, a compound having both a nonpolar group and a polar group, and specifically, a sulfoxide substituted with an alkyl group or an allyl group such as dimethyl sulfoxide and diphenyl sulfoxide. Compounds, ester compounds such as diethyl succinate and diethyl phthalate, aliphatic alcohols such as 1,2-propanediol, and silanol group-containing compounds such as trimethylsilanol and triethylsilanol. Further, organic substances having high affinity with both the polar odor compound (acetaldehyde, methyl isobutyl ketone, acetic acid) and the non-polar odor compound (2-methyl furan) as described above, that is, the polar odor compound and non-polarity for the organic substance. Examples include acetophenone, which has a small infinite dilution activity coefficient for both odorous compounds.

表1に、本発明に好適な有機物質に対する各臭気化合物の無限希釈活量係数の計算値を沸点及び融点と共に示す。   Table 1 shows the calculated values of the infinite dilution activity coefficient of each odorous compound for the organic substances suitable for the present invention, together with the boiling point and melting point.

Figure 2011254853
Figure 2011254853

これらの有機物質は1種を単独で用いても良く、2種以上を併用しても良い。
<活性炭へのイオン交換樹脂の被覆量>
活性炭へのイオン交換樹脂の被覆量としては特に限定されるわけではないが、活性炭の重量に対するイオン交換樹脂の被覆量が1〜30重量%、特に5〜20重量%となるように被覆することが好ましい。イオン交換樹脂の被覆量が多すぎると臭気成分の活性炭表面への拡散が阻害され脱臭性能が低下する傾向がある。また少なすぎると活性炭からの温度上昇時のイオン性臭気ガス成分の放出が効率よく抑制されない傾向がある。
These organic substances may be used alone or in combination of two or more.
<Coating amount of ion exchange resin on activated carbon>
The coating amount of the ion exchange resin on the activated carbon is not particularly limited, but the coating amount of the ion exchange resin with respect to the weight of the activated carbon is 1 to 30% by weight, particularly 5 to 20% by weight. Is preferred. If the coating amount of the ion exchange resin is too large, diffusion of odor components to the activated carbon surface tends to be inhibited, and the deodorization performance tends to be lowered. Moreover, when too small, there exists a tendency for discharge | release of the ionic odor gas component at the time of the temperature rise from activated carbon not being suppressed efficiently.

<有機物質の添着量>
活性炭への有機物質の添着量としては特に限定されるわけではないが、活性炭の重量に対する有機物質の添着量が0.01〜5重量%、特に0.1〜2重量%となるように添着することが好ましい。有機物質の添着量が多すぎると、活性炭表面の被覆率が過剰となり比表面積が低下するため脱臭性能が低下する場合がある。また、少なすぎると有機物質による臭気成分との親和性が十分に発揮されず、温度上昇時の再放出量が増加する場合がある。
<Amount of organic substance attached>
The amount of organic substance attached to the activated carbon is not particularly limited, but the organic substance is attached to the activated carbon in an amount of 0.01 to 5% by weight, particularly 0.1 to 2% by weight. It is preferable to do. If the amount of the organic substance added is too large, the coverage on the activated carbon surface becomes excessive and the specific surface area is reduced, so that the deodorizing performance may be lowered. On the other hand, if the amount is too small, the affinity with the odor component due to the organic substance may not be sufficiently exerted, and the amount of re-release when the temperature rises may increase.

[製造方法]
本発明の脱臭剤は、活性炭をイオン交換樹脂で被覆して得られる。活性炭に有機物質を添着させる場合には、活性炭に有機物質を添着させた後に、有機物質を添着させた活性炭をイオン交換樹脂で被覆する。
<活性炭に有機物質を添着する方法>
活性炭に有機物質を添着する方法について説明する。
[Production method]
The deodorizer of the present invention is obtained by coating activated carbon with an ion exchange resin. When an organic substance is attached to activated carbon, the organic substance is attached to the activated carbon, and then the activated carbon to which the organic substance is attached is coated with an ion exchange resin.
<Method of attaching organic substances to activated carbon>
A method for attaching an organic substance to activated carbon will be described.

有機物質の活性炭への添着方法としては特に限定されないが、大きく分けて固相添着法と液相添着法がありいずれも用いることができる。
固相添着法は、添着すべき有機物質をその有機物質が可溶な溶媒に溶解させ、活性炭の含液率に見合った量だけ有機物質の溶解液を含浸させた後、溶媒だけを真空乾燥等により除去することにより添着する方法である。添着される有機物質の量は溶解液中の有機物質の濃度により調整することができる。また、使用する溶媒としては特に限定されるわけではないが、水、エタノ−ル等、取扱いが簡便で乾燥工程で容易に除去できる低沸点の溶媒が適当である。
There are no particular limitations on the method of attaching the organic substance to the activated carbon, but there are broadly divided into the solid phase attachment method and the liquid phase attachment method, and any of them can be used.
In the solid phase addition method, the organic substance to be attached is dissolved in a solvent in which the organic substance is soluble, impregnated with an organic substance solution in an amount corresponding to the liquid content of the activated carbon, and then the solvent alone is vacuum dried. It is the method of attaching by removing by etc. The amount of the organic substance to be attached can be adjusted by the concentration of the organic substance in the solution. Further, the solvent to be used is not particularly limited, but a solvent having a low boiling point such as water, ethanol and the like which is easy to handle and can be easily removed by a drying process is suitable.

液相添着法は、添着すべき有機物質をその有機物質が可溶な溶媒に溶解させた後、その溶解液中に活性炭を投入し、一定時間溶解液を攪拌混合した後、混合液を固液分離し、最後に真空乾燥等で残留する溶媒を除去する方法である。この際、操作を簡便にするために、乾燥前の固液分離工程を省略することもできる。添着される有機物質の量は溶解液中の有機物質の濃度により調整することができる。また、使用する溶媒としては特に限定されるわけではないが、水、エタノ−ル等、取扱いが簡便で乾燥工程で容易に除去できる低沸点の溶媒が適当である。   In the liquid phase addition method, an organic substance to be attached is dissolved in a solvent in which the organic substance is soluble, activated carbon is added to the solution, and the solution is stirred and mixed for a certain period of time. This is a method of separating the liquid and finally removing the remaining solvent by vacuum drying or the like. At this time, in order to simplify the operation, the solid-liquid separation step before drying can be omitted. The amount of the organic substance to be attached can be adjusted by the concentration of the organic substance in the solution. Further, the solvent to be used is not particularly limited, but a solvent having a low boiling point such as water, ethanol and the like which is easy to handle and can be easily removed by a drying process is suitable.

<活性炭をイオン交換樹脂で被覆する方法>
活性炭、又は有機物質を添着した活性炭を、イオン交換樹脂で被覆する方法としては、特に限定されないが、一般的にはイオン交換樹脂を水等の分散媒中に分散させてスラリー状にし、該スラリーを乾式高速剪断混合機によって活性炭表面に付着させた後、乾燥させて分散媒を除去する方法あるいは、該スラリーを流動層造粒機等の造粒機によって活性炭表面に付着させた後、乾燥させて分散媒を除去する方法等が適用される。これらの方法により活性炭表面にほぼ均一にイオン交換樹脂粒子が被覆された状態となる。活性炭表面に被覆されるイオン交換樹脂層の厚みは、通常は1〜20μm、好ましくは5〜10μmである。
<Method of coating activated carbon with ion exchange resin>
The method of coating activated carbon or activated carbon impregnated with an organic substance with an ion exchange resin is not particularly limited. Generally, the ion exchange resin is dispersed in a dispersion medium such as water to form a slurry, and the slurry Is attached to the activated carbon surface with a dry high-speed shear mixer and then dried to remove the dispersion medium, or the slurry is attached to the activated carbon surface with a granulator such as a fluidized bed granulator and then dried. A method of removing the dispersion medium is applied. By these methods, the surface of the activated carbon is almost uniformly coated with the ion exchange resin particles. The thickness of the ion exchange resin layer coated on the activated carbon surface is usually 1 to 20 μm, preferably 5 to 10 μm.

[用途・形態]
本発明の脱臭剤は、多種多様の脱臭対象に適用することができ、例えば、プラスチック工場、印刷工場、塗装工場等の溶剤が発生する工場、ごみ焼却場、下水処理場等で用いられる業務用各種脱臭処理設備や、生活環境における煙草の煙、人体、し尿、冷蔵庫内、自動車の排ガスなどから発生する悪臭を除去するための、屋内や屋外、自動車内に設置される空気清浄用機器、エアーコンディショナー、ファンヒ−タ、消臭器等に用いることができる。
[Use / Form]
The deodorizing agent of the present invention can be applied to a wide variety of deodorizing objects. For example, industrial use used in factories that generate solvents such as plastic factories, printing factories, painting factories, waste incinerators, sewage treatment plants, etc. Various deodorization treatment equipment, air cleaning equipment installed indoors and outdoors, and in automobiles, air to remove odors from cigarette smoke, human bodies, human waste, refrigerators, automobile exhaust gas, etc. in the living environment It can be used in conditioners, fan heaters, deodorizers and the like.

また本発明の脱臭剤の使用形態としては、粉ないし粒子状、繊維状で使用することもできるが、脱臭剤をフィルター状に加工して使用することもできる。
脱臭剤をフィルターとして加工して使用する場合、その形態は特に限定されるわけではないが、不織布のような通気性の良好なシート材料の間に脱臭剤を挟んだり、あるいはシート材料に剤を保持させたりしてフィルター状に加工して使用することができる。
Moreover, as a usage form of the deodorizing agent of the present invention, it can be used in the form of powder, particles or fibers, but the deodorizing agent can be processed into a filter and used.
When the deodorant is processed and used as a filter, the form is not particularly limited, but the deodorant is sandwiched between sheet materials having good air permeability such as nonwoven fabric, or the agent is added to the sheet material. It can be used after being processed into a filter shape.

以下、実施例により本発明をより具体的に説明するが、本発明はその要旨を超えない限
り、以下の実施例に何ら限定されるものではない。」
[実施例1]
300ミクロン〜425ミクロンの粒状活性炭(三菱化学カルゴン(株)製活性炭「ABEKR1」、比表面積1146m/g)を、0.04重量%のコハク酸ジエチルのエタノール溶液中で12時間振とうさせた後、40℃にて真空乾燥にて溶媒除去し、さらに110℃にて真空乾燥することで、活性炭に対して0.1重量%の添着量でコハク酸ジエチルを担持させた脱臭剤Aを得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention more specifically, this invention is not limited to a following example at all unless the summary is exceeded. "
[Example 1]
Granular activated carbon of 300 to 425 microns (activated carbon “ABEKR1” manufactured by Mitsubishi Chemical Calgon Co., Ltd., specific surface area of 1146 m 2 / g) was shaken in an ethanol solution of 0.04 wt% diethyl succinate for 12 hours. Thereafter, the solvent was removed by vacuum drying at 40 ° C., and further vacuum drying at 110 ° C. to obtain a deodorizer A carrying diethyl succinate in an amount of 0.1% by weight to the activated carbon. It was.

次に、塩基性アニオン交換樹脂(三菱化学(株)ダイヤイオン WA20)を4倍重量の水で分散させた後、マイクロスMIC−0((株)奈良機械製作所)にて回転数1000rpmで5min粉砕処理後、2000rpmで55min粉砕処理を施し、さらに水で希釈し12.5重量%の塩基性アニオン交換樹脂の水分散液を調製した。
次に、コハク酸ジエチルを担持させた活性炭に、上述の塩基性アニオン交換樹脂の水分散液を加え軽く振り混ぜた後、乾式高速剪断混合機にて活性炭表面にイオン交換樹脂を被覆させる処理を施し、最後に50℃にて真空乾燥処理を施し、脱臭剤Bを得た。なお、SEM観察により活性炭表面に約10ミクロンの厚みでイオン交換樹脂粒子がほぼ均一にコーティングされていることが確認された。
Next, after a basic anion exchange resin (Mitsubishi Chemical Corporation Diaion WA20) was dispersed with 4 times the weight of water, Micros MIC-0 (Nara Machinery Co., Ltd.) was used for 5 minutes at 1000 rpm. After the pulverization treatment, the pulverization treatment was performed at 2000 rpm for 55 minutes, and further diluted with water to prepare an aqueous dispersion of a basic anion exchange resin of 12.5% by weight.
Next, after adding the above-mentioned aqueous dispersion of the basic anion exchange resin to the activated carbon carrying diethyl succinate and shaking it lightly, the surface of the activated carbon is coated with the ion exchange resin with a dry high-speed shear mixer. Finally, vacuum drying treatment was performed at 50 ° C. to obtain a deodorizer B. It was confirmed by SEM observation that the surface of the activated carbon was almost uniformly coated with ion exchange resin particles with a thickness of about 10 microns.

<2−メチルフラン吸脱着評価>
上記、脱臭剤A、脱臭剤Bおよび ヤシ殻活性炭(SIGMA−ALDRICH製activated carbon,Darco,12-20mesh,granular 破砕品300-425μ)を日本ベル製磁気浮遊天秤
装置(定圧流通型吸着測定装置)にて以下要領にて吸脱着測定を実施した。
試料量0.1gを天秤装置のサンプルバスケットにのせ、装置系内を室温から70℃まで真空条件下で昇温処理後、一旦空気にて常圧まで復圧しさらに空気流量100cc/min流通条件下で30℃まで降温させた。つぎに2−メチルフラン70ppm、流量100cc/min流通条件下で2時間流通させ、吸着サンプルに一定量の2−メチルフランが吸着される処理を施した。最後に空気流量100cc/min流通条件下で40℃まで昇温させ、吸着していた2−メチルフランが脱着される処理を1時間40分施した。上記操作における重量の経時変化を磁気浮遊天秤装置にて測定し、次式であらわされる値を2−メチルフラン脱着率とした。
(40℃ 空気流通下での2−メチルフラン脱着量)/(30℃ 2−メチルフラン流通下での2−メチルフラン吸着量)
<2-methylfuran adsorption / desorption evaluation>
Deodorant A, deodorant B and coconut shell activated carbon (activated carbon, Darco, 12-20mesh, granular crushed product 300-425μ made by SIGMA-ALDRICH), Nippon Bell magnetic floating balance device (constant pressure flow type adsorption measurement device) The adsorption / desorption measurement was performed as follows.
A sample amount of 0.1 g is placed in a sample basket of a balance device, the temperature inside the system is raised from room temperature to 70 ° C. under vacuum conditions, and then once restored to normal pressure with air, and further, an air flow rate of 100 cc / min. The temperature was lowered to 30 ° C. Next, it was made to distribute | circulate for 2 hours on 2-methylfuran 70ppm and the flow rate of 100 cc / min distribution conditions, and the process which a fixed amount of 2-methylfuran was adsorb | sucked to the adsorption | suction sample was performed. Finally, the temperature was raised to 40 ° C. under an air flow rate of 100 cc / min, and a treatment for desorbing adsorbed 2-methylfuran was performed for 1 hour and 40 minutes. The change with time of the weight in the above operation was measured with a magnetic suspension balance apparatus, and the value represented by the following formula was defined as the 2-methylfuran desorption rate.
(Desorption amount of 2-methylfuran under 40 ° C air flow) / (Adsorption amount of 2-methylfuran under 30 ° C 2-methylfuran flow)

<酢酸吸脱着評価>
2−メチルフランの代わりに酢酸を用いる以外は2−メチルフラン吸脱着評価と同様の操作にて評価を実施し、次式であらわされる値を酢酸脱着率とした。
(40℃ 空気流通下での酢酸脱着量)/(30℃ 酢酸流通下での酢酸吸着量)
表2に、実施例1における2−メチルフラン脱着率、酢酸脱着率を示す。表2においてこの値が小さい程再放出量が少ないことを示す。
<Acetic acid adsorption / desorption evaluation>
Evaluation was carried out in the same manner as 2-methylfuran adsorption / desorption evaluation except that acetic acid was used instead of 2-methylfuran, and the value represented by the following formula was defined as the acetic acid desorption rate.
(Acetic acid desorption amount under 40 ° C air flow) / (Acetic acid adsorption amount under 30 ° C acetic acid flow)
Table 2 shows the 2-methylfuran desorption rate and the acetic acid desorption rate in Example 1. Table 2 shows that the smaller the value, the smaller the re-release amount.

Figure 2011254853
Figure 2011254853

表2より、コハク酸ジエチルを活性炭表面に添着させた脱臭剤Aのほうがヤシ殻活性炭に比較して、非極性臭気成分である2−メチルフランの温度上昇に伴う再放出が低減されている。さらに、脱臭剤Aに塩基性アニオン交換樹脂を被覆した脱臭剤Bのほうが脱臭剤Aに比較して酸性臭気成分である酢酸の温度上昇に伴う再放出が低減されており、本発明の脱臭剤が非極性臭気成分および酸性臭気成分の両方において再放出防止性能に優れることが分かる。   From Table 2, the deodorizer A in which diethyl succinate is impregnated on the activated carbon surface is reduced in re-release due to the temperature rise of 2-methylfuran, which is a non-polar odor component, compared to the coconut shell activated carbon. Furthermore, the deodorizer B in which the deodorizer A is coated with a basic anion exchange resin has a reduced re-release due to a rise in the temperature of acetic acid, which is an acidic odor component, compared to the deodorizer A, and the deodorizer of the present invention. It is understood that the re-release prevention performance is excellent in both the non-polar odor component and the acidic odor component.

Claims (8)

活性炭をイオン交換樹脂で被覆してなる脱臭剤。   A deodorant obtained by coating activated carbon with an ion exchange resin. 該活性炭に有機物質を添着してなり、該有機物質が、沸点が150℃以上で、融点が100℃以下であり、かつ該有機物質に対するメチルイソブチルケトンの無限希釈活量係数が10以下であることを特徴とする請求項1に記載の脱臭剤。   An organic substance is added to the activated carbon, the organic substance has a boiling point of 150 ° C. or higher, a melting point of 100 ° C. or lower, and an infinite dilution activity coefficient of methyl isobutyl ketone relative to the organic substance of 10 or lower. The deodorizing agent according to claim 1. 該有機物質に対するメチルイソブチルケトンの無限希釈量活量係数が3以下であることを特徴とする請求項2に記載の脱臭剤。   The deodorizer according to claim 2, wherein the activity coefficient of infinite dilution amount of methyl isobutyl ketone with respect to the organic substance is 3 or less. 該有機物質に対する2−メチルフランの無限希釈活量係数が5以下であることを特徴とする請求項2又は3に記載の脱臭剤。   The deodorizer according to claim 2 or 3, wherein an infinite dilution activity coefficient of 2-methylfuran with respect to the organic substance is 5 or less. 該有機物質に対するアセトアルデヒドの無限希釈活量係数が5以下であることを特徴とする請求項2乃至4のいずれか1項に記載の脱臭剤。   The deodorizer according to any one of claims 2 to 4, wherein an infinite dilution activity coefficient of acetaldehyde with respect to the organic substance is 5 or less. 該有機物質に対する酢酸の無限希釈活量係数が10以下であることを特徴とする請求項2乃至5のいずれか1項に記載の脱臭剤。   The deodorizer according to any one of claims 2 to 5, wherein an infinite dilution activity coefficient of acetic acid with respect to the organic substance is 10 or less. 該イオン交換樹脂が、塩基性アニオン交換樹脂であることを特徴とする請求項1乃至6のいずれか1項に記載の脱臭剤。   The deodorizer according to any one of claims 1 to 6, wherein the ion exchange resin is a basic anion exchange resin. 請求項1乃至7のいずれか1項に記載の脱臭剤を用いた脱臭フィルター。
The deodorizing filter using the deodorizing agent of any one of Claims 1 thru | or 7.
JP2010129233A 2010-06-04 2010-06-04 Deodorant and deodorization filter Pending JP2011254853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010129233A JP2011254853A (en) 2010-06-04 2010-06-04 Deodorant and deodorization filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129233A JP2011254853A (en) 2010-06-04 2010-06-04 Deodorant and deodorization filter

Publications (1)

Publication Number Publication Date
JP2011254853A true JP2011254853A (en) 2011-12-22

Family

ID=45471745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129233A Pending JP2011254853A (en) 2010-06-04 2010-06-04 Deodorant and deodorization filter

Country Status (1)

Country Link
JP (1) JP2011254853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278419A (en) * 2013-05-17 2013-09-04 陕西师范大学 Constant pressure device for measuring thermodynamic property of solution system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278419A (en) * 2013-05-17 2013-09-04 陕西师范大学 Constant pressure device for measuring thermodynamic property of solution system

Similar Documents

Publication Publication Date Title
US20090211453A1 (en) Filtration Media for the Removal of Basic Molecular Contaminants for Use in a Clean Environment
JP5428857B2 (en) Deodorizing fiber structure and air filter
JP6988477B2 (en) Filter media for air purification
JP6070850B2 (en) Gas adsorbent, gas adsorbing sheet and air filter
JP2014176821A (en) Adsorbent
JP6552783B2 (en) Siloxane removing agent and siloxane removing filter using the same
JPWO2019151283A1 (en) Manufacturing method of gas adsorbent, deodorant fiber sheet and gas adsorbent
JP2009178670A (en) Filter medium of air filter and air filter for air cleaning device
JP2010253409A (en) Gas adsorbent, filter medium using the same and air filter
WO2021193137A1 (en) Filter medium
JP2011254853A (en) Deodorant and deodorization filter
JP2008132089A (en) Filter for deodorizing odor of tobacco and its manufacturing method
JP6910955B2 (en) Composite gas adsorbent, adsorption filter using it, and method for manufacturing composite gas adsorbent
JP2017176936A (en) Chemical filter
Brochocka et al. Effective removal of odors from air with polymer nonwoven structures doped by porous materials to use in respiratory protective devices
JP2013150647A (en) Low desorption deodorant and deodorizing filter using the same
JP2010022952A (en) Agent and sheet for removing aldehyde
JP2010162335A (en) Deodorant and filter
JP2950683B2 (en) Air purifier and air purifier
JP2009028718A (en) Air filter medium, air filter, and air purification device
WO2002007790A1 (en) Deodorant material and method for preparation thereof
JP2010125401A (en) Aldehyde removing material
KR20210050934A (en) Deodorization Filter and Deodorizer Including The Same
JP2014195569A (en) Aldehyde remover and aldehyde removal filter
JP2014064970A (en) Aldehyde remover and filter using the same