JP2005034041A - Method for producing methane gas and fermentation product by combined use of anaerobic bacterium methane gas fermentation and aerobic bacterium fermentation and apparatus therefor - Google Patents

Method for producing methane gas and fermentation product by combined use of anaerobic bacterium methane gas fermentation and aerobic bacterium fermentation and apparatus therefor Download PDF

Info

Publication number
JP2005034041A
JP2005034041A JP2003274107A JP2003274107A JP2005034041A JP 2005034041 A JP2005034041 A JP 2005034041A JP 2003274107 A JP2003274107 A JP 2003274107A JP 2003274107 A JP2003274107 A JP 2003274107A JP 2005034041 A JP2005034041 A JP 2005034041A
Authority
JP
Japan
Prior art keywords
fermentation
methane gas
aerobic
anaerobic
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003274107A
Other languages
Japanese (ja)
Inventor
Keisuke Kasahara
敬介 笠原
Shinjiro Kanazawa
晋二郎 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003274107A priority Critical patent/JP2005034041A/en
Publication of JP2005034041A publication Critical patent/JP2005034041A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fertilizers (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing methane gas and a fermentation product, using an anaerobic bacterium methane gas fermentation apparatus and an aerobic bacterium fermentation apparatus, and performing the effective utilization of biological heat and the deodorizing treatment of a waste fluid to stably and safely produce the methane gas and the fermentation product at low costs, and to provide an apparatus for producing the methane gas and the fermentation product. <P>SOLUTION: This method for producing the methane gas and the fermentation product, using an anaerobic bacterium methane gas fermentation apparatus [A] and an aerobic bacterium fermentation apparatus [B] using an aerobic high temperature bacterium having the optimal activity temperature of ≥80°C or its bacterium mixture or their culture product, is characterized by heating the exhaust heat with the effective means of a heat pump 20 to use the heat for heating ventilation air or a methane gas raw material, thus promoting the fermentation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、嫌気性菌メタンガス発酵装置と好気性菌発酵装置とを併用してメタンガスと発酵生成物とを効果的に作業する製造方法と装置に関する。本発明において、「嫌気性菌発酵」とは、一般にはメタンガス発酵といわれている嫌気性発酵法のことをいい、「嫌気性菌発酵装置」とは、メタンガスを発生させる嫌気性発酵装置のことをいう。また、「好気性菌発酵」とは、有機物原料に好気性菌を加えて通気発酵させ発酵生成物を得ることをいい、「好気性菌発酵装置」とは、その発酵生成物を得るための発酵装置のことをいう。   The present invention relates to a manufacturing method and apparatus for effectively working methane gas and fermentation products by using an anaerobic bacterium fermentation apparatus and an aerobic bacterium fermentation apparatus in combination. In the present invention, "anaerobic fermentation" refers to an anaerobic fermentation method generally referred to as methane gas fermentation, and "anaerobic fermentation apparatus" refers to an anaerobic fermentation apparatus that generates methane gas. Say. The term “aerobic bacteria fermentation” refers to obtaining a fermentation product by adding aerobic bacteria to an organic raw material and subjecting to aeration fermentation, and “aerobic bacteria fermentation apparatus” refers to obtaining the fermentation product. It refers to a fermentation device.

従来から施行されている有機性廃棄物(下水汚泥、都市ゴミ、産業廃棄物、農業廃棄物、家畜糞尿などの畜産廃棄物など)の処理方法は、焼却処理、埋設(埋め立て)処理、嫌気性菌発酵(メタンガス発酵)、好気性菌発酵(せいぜい55℃以下の発酵温度でコンポスト化する方法)に限られている。なお、有機性廃棄物の海洋投棄は禁止されている。しかし、現状の有機性廃棄物の処理法は、エネルギー消費、処理コスト、臭気などの環境問題、重金属やダイオキシンなどの汚染対策、焼却灰の処理など多くの問題が解決されておらず、いずれの処理方法も決定的な解決手段とは言いがたい。   Conventional methods of treating organic waste (sewage sludge, municipal waste, industrial waste, agricultural waste, livestock waste such as livestock manure) are incinerated, buried (landfilled), anaerobic It is limited to bacterial fermentation (methane gas fermentation) and aerobic bacterial fermentation (a method of composting at a fermentation temperature of 55 ° C. or lower). Organic disposal of organic waste is prohibited. However, current organic waste treatment methods have not solved many problems such as energy consumption, treatment costs, environmental problems such as odor, pollution measures such as heavy metals and dioxins, and treatment of incineration ash. The processing method is also not a definitive solution.

有機性廃棄物の処理法として、焼却処理法は、排煙や燃費、設備費、焼却灰の廃棄など多くの問題がある。焼却処理法は、廃熱利用の点で省エネルギー化にいささか役立ってはいるが、多額の設備投資をした経緯から、経費や損得を越えた手段として環境行政管理上やむを得ず使用されている面がある。   As an organic waste treatment method, the incineration treatment method has many problems such as smoke emission, fuel consumption, equipment costs, and disposal of incineration ash. Although the incineration treatment method has helped to save energy in terms of waste heat utilization, it has been unavoidably used in environmental administration management as a means to overcome costs and profits and losses due to the large amount of capital investment. .

従って、下水汚泥や家畜の糞尿など大量に発生する有機性廃棄物の処理には、従来から用いられている嫌気性菌発酵装置や好気性菌発酵装置の方が有用である。現在、これら発酵装置は、地域性、環境事情、原料の多寡などによって、どちらかの装置が選択されて単独で設置され稼働しているケースが多い。然し乍ら、これら発酵装置は、夫々以下に述べる多くの難点を有している。   Therefore, conventionally used anaerobic bacteria fermentation apparatus and aerobic bacteria fermentation apparatus are more useful for the treatment of organic waste generated in large quantities such as sewage sludge and livestock manure. Currently, in many cases, these fermentation apparatuses are selected and installed alone depending on regional characteristics, environmental circumstances, and the amount of raw materials. However, these fermentation apparatuses have many difficulties described below.

嫌気性菌発酵装置は、有機性廃棄物の減容処理と合せてメタンガスの発生を目的としている。然し乍ら、殆どの嫌気性菌発酵装置は、設備投資額と運転収益との採算がとれていない状態にある。これは、メタンガスの発生効率が悪いことに起因する。即ち、原料である有機性廃棄物をメタンガス発生温度(37℃前後)まで昇温させるのに多くのエネルギーを消費するからである。また、せっかく発生したメタンガスを、原料の昇温のためや原料を分解温度(37℃前後)に保つために消費している。従って、現在の嫌気性菌発酵装置は、安定したガス発生装置とは言いがたい。特に冬期には、原料である有機性廃棄物(汚泥や糞尿など)の品温が外気と同温度に低下しているので、その加熱のため補助燃料の消費を必要とする。更に、最大の難点は、原料である有機性廃棄物(炭水化物)を嫌気性下において変化させメタンガスを発生させているが、メタンガス発生後の炭水化物残滓である廃液の処置である。廃液は、臭気があり、液状であるため、運搬や廃棄するにも、またコンポスト化するにも栄養分もなく支障を来している。また、嫌気性菌発酵装置は、嫌気性菌を活動させるため、完全気密性の構造でなければならず、設備費用が高額となり、上記のとおり、採算が合わないことも大きな問題である。   The anaerobic bacterium fermentation apparatus is aimed at generating methane gas together with the volume reduction processing of organic waste. However, most anaerobic bacteria fermentation apparatuses are in a state where the capital investment and operating profit are not profitable. This is due to the poor generation efficiency of methane gas. That is, a large amount of energy is consumed to raise the temperature of the organic waste as a raw material to the methane gas generation temperature (around 37 ° C.). In addition, the generated methane gas is consumed to raise the temperature of the raw material and to keep the raw material at the decomposition temperature (around 37 ° C.). Therefore, it is hard to say that the current anaerobic bacteria fermentation apparatus is a stable gas generator. Especially in winter, the temperature of the organic waste (sludge, manure, etc.), which is a raw material, is lowered to the same temperature as the outside air, so that it is necessary to consume auxiliary fuel for heating. Furthermore, the biggest difficulty is the treatment of the waste liquid, which is a residue of carbohydrates after the generation of methane gas, although the organic waste (carbohydrate) as a raw material is changed under anaerobic conditions to generate methane gas. Since the waste liquid has an odor and is in a liquid state, it has a problem with no nutrients for transportation, disposal, and composting. In addition, the anaerobic bacteria fermentation apparatus must have a completely airtight structure in order to activate the anaerobic bacteria, and the equipment cost is high, and as described above, it is also a big problem that it is not profitable.

一方、好気性菌発酵装置は、通常、発酵槽(又は発酵ヤード)と通気装置からなる。好気性菌発酵法では、好気性菌を添加した有機性廃棄物を発酵槽に仕込んで通気装置により有機性廃棄物に空気を吹き込み、開放的な状態下において自然発酵させているため、発酵温度55℃前後の従来法では、一次発酵と二次発酵を経過しなければならず、発酵生成物(例えば、堆肥などのコンポスト)が完熟に至るまでに長期間(通常は完熟まで100日間程度)の日数を要している。また、この間に10回以上の発酵槽内の切り返し(撹拌)作業を必要とするので、省力化がむずかしい。更に、上記のとおり発酵温度が低いので、臭気を除去できない上、完熟コンポスト化には外部からの熱を発酵生成物に加えて乾燥させる必要がある。即ち、強制乾燥をせずに、自然発酵温度による発酵だけでは完全熟成の発酵生成物を得ることは困難である。また、全ての好気性菌発酵において、初期(発酵立ち上がり時)の温度上昇に長時間を要するが、季節によって原料の品温が低いときは、特に長時間を要している。更に、仕込んだ原料の含水率が高いと、好気性菌の適正な繁殖を防げることになる。また、好気性菌発酵に必要な空気を外気温のまま吹き込むと、せっかくの発酵上昇温度を防げることになる。また、原料は空気に触れている方がよいので、発酵槽は屋根だけの上壁開放槽を用いることが多く、外気と素通しであるため、冬期にはせっかくの発酵蒸気が天井で凝縮し、水滴となって落下し、大切なエネルギーを損失する傾向がある。   On the other hand, an aerobic bacterium fermentation apparatus usually consists of a fermenter (or fermentation yard) and an aeration apparatus. In the aerobic bacteria fermentation method, organic waste added with aerobic bacteria is charged into the fermenter, air is blown into the organic waste by a ventilator, and it is fermented naturally under open conditions. In the conventional method at around 55 ° C., primary fermentation and secondary fermentation must pass, and the fermentation product (for example, compost such as compost) has a long time until it is fully matured (usually about 100 days until it is fully matured). Takes days. Further, during this time, it is necessary to cut back (stir) 10 times or more in the fermenter, so that labor saving is difficult. Furthermore, since the fermentation temperature is low as described above, it is not possible to remove odor, and it is necessary to add heat from the outside to the fermentation product and dry it for complete ripe composting. That is, it is difficult to obtain a fermented product that is completely aged only by fermentation at the natural fermentation temperature without forced drying. Moreover, in all aerobic bacteria fermentation, it takes a long time to increase the initial temperature (at the start of fermentation), but it takes a long time especially when the raw material temperature is low depending on the season. Furthermore, if the water content of the raw materials charged is high, proper breeding of aerobic bacteria can be prevented. Moreover, if the air required for aerobic bacteria fermentation is blown in with the outside air temperature, it is possible to prevent the fermentation temperature from increasing. In addition, since it is better that the raw material is in contact with the air, the fermenter often uses an open top tank only for the roof, and since it is transparent to the outside air, the fermented steam condenses on the ceiling in the winter, They tend to fall as water droplets and lose valuable energy.

このように、嫌気性菌発酵装置はメタンガス発生の効率が悪く、好気性菌発酵装置は発酵に長期間を要するなど、両発酵装置とも夫々多くの問題がある。そして、両発酵装置とも省エネルギー化が全く考慮されていない。前記の従来の技術の内容を有する公知技術として下記特許文献1、特許文献2及び特許文献3がある。
特開2001−342088号公報(前頁) 特開2002−020188号公報(前頁) 特開2002−126780号公報(前頁)
Thus, both anaerobic bacteria fermentation apparatuses have many problems, such as the efficiency of methane gas generation is poor, and the aerobic bacteria fermentation apparatus requires a long time for fermentation. And neither fermenter considers energy saving at all. The following Patent Document 1, Patent Document 2, and Patent Document 3 are known techniques having the contents of the above-described conventional technique.
JP 2001-342088 A (previous page) Japanese Patent Laid-Open No. 2002-020188 (previous page) JP 2002-126780 A (previous page)

特開2001−342088号公報の「バイオガス生産方法およびバイオガス生産装置」は堆肥を熟成すると共に発生する熱を利用して液肥用発酵槽内の液肥を加温してメタンガスの発生を促進するものである。また、特開2002−20188号公報の「バイオガス生産方法およびバイオガス生産装置」は、堆肥からの発生熱とヒータや熱風吹き込み等の外部加熱装置からの熱を利用して液肥用発酵槽内の液肥を加温してメタンガス等の発生を促進するものである。また、特開2002−126780号公報の「下水処理方法、下水処理システム、余剰汚泥バイオ処理方法及びその処理システム」は、下水処理施設の沈殿池から引き抜かれる活性汚液の一部を返送汚泥として沈殿池の前段に返送し、残りの余剰汚泥を濃縮して消化槽に送り込み、メタンと生成菌等の嫌気性菌により分解処理して濃縮汚泥を消化汚泥とし、その処理過程でメタンガスを発生させ、かつこのメタンガスの燃料エネルギーで加温しながら高温好気性反応槽に送り込んで瀑気し、続いて高温好気性細菌により分解処理して、その半分解物を沈殿池の前段に返送して活性汚液を分解処置するものである。   Japanese Patent Laid-Open No. 2001-342088 “Biogas Production Method and Biogas Production Device” accelerates the generation of methane gas by aging compost and heating the liquid fertilizer in the fertilizer for liquid fertilizer using heat generated Is. In addition, “Biogas production method and biogas production apparatus” disclosed in Japanese Patent Application Laid-Open No. 2002-20188 uses a heat generated from compost and heat from an external heating device such as a heater or hot air blower in the fertilizer for liquid fertilizer. The liquid fertilizer is heated to promote the generation of methane gas and the like. In addition, “Sewage treatment method, sewage treatment system, surplus sludge biotreatment method and treatment system thereof” disclosed in Japanese Patent Application Laid-Open No. 2002-126780 uses part of the activated sludge withdrawn from the settling basin of the sewage treatment facility as return sludge. It is returned to the previous stage of the sedimentation basin, the remaining surplus sludge is concentrated and sent to the digestion tank, and it is decomposed by anaerobic bacteria such as methane and produced bacteria to make the concentrated sludge into digested sludge, and methane gas is generated during the treatment process. And while heating with the fuel energy of this methane gas, it is sent to a high temperature aerobic reaction tank and aerated, then decomposed by high temperature aerobic bacteria, the semi-decomposed product is returned to the previous stage of the sedimentation basin and activated Decomposes sewage.

本発明は、以上の事情に鑑みて発明されたものであり、解決しようとする問題点は、嫌気性菌発酵と好気性菌発酵とを併用することによって、両発酵の有する欠点を除去し、長所を活かした発酵方法を提供する。また、その発酵を用いてメタンガスと発酵生成物を効率よく得る装置方法と装置を提供することを目的とする。   The present invention has been invented in view of the above circumstances, the problem to be solved is to eliminate the disadvantages of both fermentation by using anaerobic and aerobic fermentation together, Providing fermentation methods that take advantage of their strengths. Moreover, it aims at providing the apparatus method and apparatus which obtain methane gas and a fermentation product efficiently using the fermentation.

本発明は、以上の目的を達成するために、請求項1の発明は、メタン生成菌による嫌気性菌メタンガス発酵装置と好気性菌発酵装置との2つを併用し、嫌気性菌メタンガス発酵時のメタンガス発酵熱及び/又は好気性菌発酵の発酵過程で発生する排出熱、蒸気及び熟成後排熱の全部又は何れか選択した熱を前記嫌気性菌メタンガス発酵に用いる有機物原料及び/又は前記好気性菌発酵時に用いる送風機用空気を加熱する熱として用いることを特徴とする。   In order to achieve the above object, the present invention of claim 1 uses both an anaerobic methane gas fermentation apparatus and an aerobic bacterium fermentation apparatus using a methanogenic bacterium to perform anaerobic methane gas fermentation. Methane gas fermentation heat and / or aerobic bacteria fermentation heat generated in the fermentation process, steam, and heat after maturation, or any selected heat from the organic material raw material used for the anaerobic bacteria methane gas fermentation and / or the preference It is characterized in that it is used as heat for heating the air for a blower used at the time of aerobic bacteria fermentation.

また、請求項2の発明は、メタン生成菌による嫌気性菌メタンガス発酵装置と好気性菌発酵装置との2つを併用し、嫌気性菌メタンガス発酵時のメタンガス発酵熱及び/又は好気性菌発酵の発酵過程で発生する排出熱、蒸気及び熟成後排熱の全部又は何れか選択した熱を前記嫌気性菌メタンガス発酵に用いる有機物原料及び/又は前記好気性菌発酵時に用いる送風機用空気を加熱する熱として用いると共に前記好気性菌発生の発酵と生成物の一部を前記嫌気性菌メタンガス発酵の発酵原料に混入し、嫌気性菌発酵温度の上昇促進を計ることを特徴とする。   Further, the invention of claim 2 uses both an anaerobic methane gas fermentation apparatus and an aerobic bacterium fermentation apparatus using methanogens, and methane gas fermentation heat and / or aerobic bacteria fermentation during anaerobic methane fermentation. Exhaust heat generated during the fermentation process, steam, exhaust heat after maturation, or any selected heat is used to heat the organic raw materials used for the anaerobic methane gas fermentation and / or the blower air used during the aerobic bacterium fermentation While using as a heat | fever, mixing the fermentation of said aerobic microbe generation and a part of product into the fermentation raw material of the said anaerobic microbe methane gas fermentation is aimed at, and the rise promotion of anaerobic microbe fermentation temperature is measured.

また、請求項3の発明は、超高温好気の好気性菌発酵に用いる有機物原料に、至適活動温度が少なくとも80℃以上である高度高熱細菌や高熱細菌や好気性高温菌又はその混合菌体もしくはこれらの培養物を添加して発酵を行うことを特徴とする。   Further, the invention of claim 3 is directed to an organic raw material used for fermentation of ultra-high temperature aerobic aerobic bacteria, such as an advanced hyperthermia bacterium, a hyperthermia bacterium, an aerobic thermobacteria or a mixed bacterium having an optimum activity temperature of at least 80 ° C. It is characterized by performing fermentation by adding a body or a culture thereof.

また、請求項4の発明は、メタン生成菌による嫌気性菌メタンガス発酵のメタンガスと発酵時に発生する熱及び/又は超高温好気の好気性菌発酵時に発生する蒸気熱と熟成時に発生する熱の全部又は何れか選択した熱を熱源とするヒートポンプを介して、嫌気性菌メタンガス発酵に用いる有機物原料及び/又は超高温好気の好気性高温菌発酵に用いる送風機用空気を加熱することを特徴とする。   Further, the invention of claim 4 relates to methane gas of anaerobic bacteria methane gas fermentation by methanogen and heat generated during fermentation and / or steam heat generated during aerobic bacteria fermentation of ultra-high temperature aerobic and heat generated during aging. Heating the organic material raw material used for the anaerobic methane gas fermentation and / or the air for the blower used for the aerobic thermophilic fermentation of ultra-high temperature aerobicity through a heat pump using all or any selected heat as a heat source To do.

また、請求項5の発明は、前記嫌気性菌メタンガス発酵時に生ずる廃液を前記好気性菌発酵の原料に混入するか、又は前記廃液を殺菌可能な温度及び時間で加熱して液肥として排するかの双方又はいずれかを行うことを特徴とする。   Further, according to the invention of claim 5, whether the waste liquid generated at the time of the anaerobic methane gas fermentation is mixed in the raw material of the aerobic bacteria fermentation, or the waste liquid is heated at a sterilizable temperature and time and discharged as liquid fertilizer. It is characterized by performing both or any of the above.

また、請求項6の発明は、前記好気性菌発酵生成物(培地又は種菌)の一部を前記嫌気性菌メタンガス発酵の原料に混入し嫌気性菌発酵温度の上昇促進を計ることを特徴とする。   Further, the invention of claim 6 is characterized in that a part of the aerobic bacteria fermentation product (medium or inoculum) is mixed in the raw material of the anaerobic bacteria methane gas fermentation to promote an increase in anaerobic bacteria fermentation temperature. To do.

また、請求項7の発明は、前記請求項1乃至6のメタンガスや発酵生成物の製造に使用される装置であって、該装置はメタン生成菌による嫌気性菌メタンガス発酵装置と好気性菌発酵装置との2つを併用したものからなり、両装置の発生熱や廃液を相互に利用し合ってメタンガスや発酵生成物を作ることを特徴とする。   The invention of claim 7 is an apparatus used for producing the methane gas and fermentation product of claims 1 to 6, wherein the apparatus is an anaerobic methane gas fermentation apparatus and an aerobic fermentation using methanogens. It consists of what used two with an apparatus, and is characterized by making methane gas and a fermentation product by mutually utilizing the heat and waste liquid of both apparatuses.

また、請求項8の発明は、前記製造装置には、発酵時に生ずる熱を熱源とするヒートポンプが設けられることを特徴とする。   The invention according to claim 8 is characterized in that the manufacturing apparatus is provided with a heat pump using heat generated during fermentation as a heat source.

また、請求項9の発明は、前記ヒートポンプが内蔵型のものからなり、その吸熱部にガス加熱器が設けられることを特徴とする。   The invention of claim 9 is characterized in that the heat pump is of a built-in type, and a gas heater is provided in the heat absorption part.

以上のように本発明によれば、従来、メタンガス発酵装置も好気性菌発酵装置も夫々が単独に稼動されて欠点は解消されず、夫々の長所は生かされずに欠点となっており、廃棄物(有機)を有効な製品が生み出されなかったが、本発明により互いの長所、欠点を補完しエネルギの利用効率を挙げることができた。下水へどろ,蓄産糞尿,有機廃棄物,生ごみ等々を高温発酵による臭気を解消し、完全熟成生成物やメタンガスを安定した製品に同時に連続的に生産ができた。また、両設備が併設したことにより、互いに熱の相互補完が容易にでき、費用がかからず経済的設備となる土から育まれたものは土に還る循環系ができることになった。安い製品が生産され、同時に製品ができることとなった。最も処置に困ったメタン廃液が臭気もなく搬送の手間も省け好気性生成物の製品となった。有機廃棄物のし尿,へどろ,蓄産糞尿等が焼却の処理に頼らずに有用なメタンガスと有機完熱生成物の製品に変え販売商品にすることができた。また、好気性超高温菌発酵においては、セルローズの発酵分解はしない。一方、嫌気性菌発酵装置でのメタン発酵はセルローズを良く分解する。嫌気性菌にとってはセルローズを炭化水素に分解し、メタンガスを作る。むしろむろ嫌気性菌にとって原料に好気性菌発酵の生成物を混入すればセルローズは菌の貴重な原料であって分解する。一方、嫌気性菌発酵装置より排出する廃液はセルローズは分解になるので、好気性菌発酵の原料に混入することは分解しない好気性菌発酵側にとって熟成度の良いコンポスト化となる。本発明は好気性嫌気性から発生する発酵熱を相互に補完し合うことに依って発酵促進と省エネルギを計るものであり、更に両者から発生する好気性菌発酵生成物を嫌気性菌発酵原料に混入し、嫌気性菌発酵のメタン菌発項迄の温度を好気性菌発酵によって発酵温度上昇を促進し、嫌気性菌発酵装置より生じた廃液は好気性菌発酵側原料に供給して相互に補完を行うようにしたものである。即ち、2つの装置を近接し、排熱の相互補完と夫々の排出物をも相互補完し合い効率を高め完熟型循環系としたことにある。   As described above, according to the present invention, conventionally, both the methane gas fermentation apparatus and the aerobic bacteria fermentation apparatus are operated independently, and the disadvantages are not solved, and the respective advantages are not utilized and the wastes are generated. Although an effective product of (organic) was not produced, the present invention complemented each other's advantages and disadvantages, and was able to increase the efficiency of energy use. Smelters, stored manure, organic waste, food waste, etc. were removed from the odor caused by high-temperature fermentation, and fully aged products and methane gas could be produced continuously and stably. In addition, the addition of both facilities makes it possible to easily complement each other's heat, and it is possible to create a circulatory system that returns to the soil that has been born from soil, which is an inexpensive and economical facility. A cheap product was produced and a product was made at the same time. The most troublesome methane waste liquid has become an aerobic product product with no odor and labor saving. Organic waste manure, sludge, stored manure, etc. could be converted into products of useful methane gas and organic complete products without relying on incineration. Cellulose is not fermentatively decomposed in aerobic ultrahigh-temperature bacterial fermentation. On the other hand, methane fermentation in an anaerobic bacteria fermentation apparatus decomposes cellulose well. For anaerobic bacteria, cellulose is broken down into hydrocarbons to produce methane gas. Rather, for anaerobic bacteria, cellulose is a valuable raw material for bacteria and decomposes if the aerobic fermentation product is mixed into the raw material. On the other hand, since the waste liquid discharged from the anaerobic bacterium fermentation apparatus is decomposed into cellulose, mixing with the raw material of the aerobic bacterium fermentation results in composting with a good maturity for the aerobic bacterium fermentation side that does not decompose. The present invention measures fermentation acceleration and energy saving by mutually complementing the heat of fermentation generated from aerobic and anaerobic, and further the aerobic bacterial fermentation product generated from both The temperature up to the start of anaerobic methane in the anaerobic bacterium is promoted by anaerobic microbial fermentation, and the waste liquid generated from the anaerobic bacterium fermentation equipment is supplied to the aerobic bacterium fermentation side raw material. It is intended to complement the. In other words, the two devices are close to each other, and mutual complementation of exhaust heat and each exhaustion are also mutually complemented to increase the efficiency and form a fully matured circulation system.

以下、本発明の嫌気性菌メタンガス発酵装置と好気性菌発酵装置とを併用して成るメタンガスと発酵生成物の製造方法その装置の実施の形態を図面を参照して詳述する。図1において「A」はメタンガスを生産する嫌気性菌メタンガス発酵装置を示し、「B」は好気性発酵生成物を生産する好気性菌発酵装置を示す。なお、「A」及び「B」については下記に説明する装置の形態や製造方法におけるフローの内容について限定するものでなく、同一の技術的範疇のものが含まれることは当然である。嫌気性菌メタンガス発酵装置(「A」)は、メタンガス発酵槽7と次に隣接する好気発酵加熱槽40とメタン発酵原料導入管28からのメタン発酵原料を加熱するメタンガス発酵原料加熱器17等とからなる。なお、メタンガス発酵槽7内にはメタン発酵原料(メタン菌)8が収納されその下方のメタン発酵廃液溜12には弁13や廃液ポンプ14を介設するメタンガス発酵廃液配送管6が連結される。また、メタンガス発酵槽7の上部のメタンガス導出口39には槽内で発生したメタンガスを排出するための管が連結され、該管にはメタンガス熱回収器(吸熱器)18が連結される。メタンガス発酵原料加熱器17には凝縮器25、メタンガス熱部26及びメタンガスバナ27等が設けられ、メタンガス熱回収器18にはメタンガス熱部26及び蒸発器24が設けられている。また、好気発酵加熱槽40にはメタンガス発酵原料をメタンガス発酵槽7に導入するためのメタンガス発酵原料導入口10が設けられている。また、メタンガス発酵槽7の上部より好気性種菌導入管4が連結されている。   Hereinafter, an embodiment of a method for producing a methane gas and a fermentation product using the anaerobic methane fermentation apparatus and the aerobic fermentation apparatus of the present invention will be described in detail with reference to the drawings. In FIG. 1, “A” indicates an anaerobic methane fermentation apparatus that produces methane gas, and “B” indicates an aerobic fermentation apparatus that produces an aerobic fermentation product. It should be noted that “A” and “B” are not limited to the form of the apparatus described below and the contents of the flow in the manufacturing method, and naturally include those in the same technical category. The anaerobic bacteria methane gas fermentation apparatus (“A”) includes a methane gas fermentation raw material heater 17 that heats the methane fermentation raw material from the methane gas fermentation tank 7, the next aerobic fermentation heating tank 40, and the methane fermentation raw material introduction pipe 28. It consists of. A methane fermentation raw material (methane bacterium) 8 is accommodated in the methane gas fermentation tank 7, and a methane gas fermentation waste liquid delivery pipe 6 provided with a valve 13 and a waste liquid pump 14 is connected to the methane fermentation waste liquid reservoir 12 below the methane fermentation fermentation liquid 7. . In addition, a pipe for discharging methane gas generated in the tank is connected to the methane gas outlet 39 at the upper part of the methane gas fermentation tank 7, and a methane gas heat recovery device (heat absorber) 18 is connected to the pipe. The methane gas fermentation raw material heater 17 is provided with a condenser 25, a methane gas heat part 26, a methane gas burner 27, and the like, and the methane gas heat recovery unit 18 is provided with a methane gas heat part 26 and an evaporator 24. The aerobic fermentation heating tank 40 is provided with a methane gas fermentation raw material inlet 10 for introducing the methane gas fermentation raw material into the methane gas fermentation tank 7. An aerobic inoculum introduction tube 4 is connected from the upper part of the methane gas fermentation tank 7.

一方、好気性菌発酵装置(「B」)は、嫌気性菌メタンガス発酵装置(「A」)と併設され、好気性菌発酵ヤード1と、好気性発酵側熱回収器(吸熱器)15と、送風機19を有する送風吐出側熱交換器チャンバ(加熱器筐体)16等とからなり、好気性菌発酵装置(「B」)と嫌気性菌メタンガス発酵装置(「A」)との間にはヒートポンプ20が介設される。好気性菌発酵ヤード1は1−a,1−b,1−c,1−d,1−e,1−f,1−g,1−h,1−i,1−j・・・等の多数個の好気性菌発酵槽を有し、これ等の槽内には好気性発酵原料導入管3により好気性発酵生成物2が導入されると共にメタンガス発酵廃液配送管6からの廃液が導入され、かつ好気性種菌導入管4から種種菌が導入される。なお、好気性種菌導入管4は完熟好気性発酵生成物ふるい装置31に連結される。また、好気性菌発酵ヤード1の下方には送風吐出側熱交換器チャンバ16に連結する送風管30及び空気送風支管5が設けられ、送風主管30は空気吹出孔29により夫々の好気性菌発酵槽1−a・・・等に連通される。なお、送風吐出側熱交換器16は凝縮器25、メタンガス熱部26及びメタンガスバーナ27を有するものからなり、好気性発酵側熱回収器15は蒸発器24、メタンガス熱部26及びメタンガスバーナ27を有するものからなる。   On the other hand, the aerobic bacteria fermentation apparatus (“B”) is provided side by side with the anaerobic bacteria methane gas fermentation apparatus (“A”), an aerobic bacteria fermentation yard 1, an aerobic fermentation side heat recovery device (endothermic device) 15, , A blower discharge side heat exchanger chamber (heater housing) 16 having a blower 19 and the like, between the aerobic bacteria fermentation apparatus ("B") and the anaerobic bacteria methane gas fermentation apparatus ("A") Is provided with a heat pump 20. The aerobic bacteria fermentation yard 1 is 1-a, 1-b, 1-c, 1-d, 1-e, 1-f, 1-g, 1-h, 1-i, 1-j, etc. The aerobic fermentation product 2 is introduced into these tanks by the aerobic fermentation raw material introduction pipe 3 and the waste liquid from the methane gas fermentation waste liquid delivery pipe 6 is introduced into these tanks. The inoculum is introduced from the aerobic inoculum introduction tube 4. The aerobic inoculum introduction tube 4 is connected to a fully-ripe aerobic fermentation product sieving device 31. Further, below the aerobic bacteria fermentation yard 1, there are provided a blower pipe 30 and an air blower branch pipe 5 connected to the blower discharge side heat exchanger chamber 16, and the blower main pipe 30 is provided with each aerobic fungus fermentation by the air blowout holes 29. It communicates with the tank 1-a. The blower discharge side heat exchanger 16 includes a condenser 25, a methane gas heat unit 26 and a methane gas burner 27, and the aerobic fermentation side heat recovery unit 15 includes an evaporator 24, a methane gas heat unit 26 and a methane gas burner 27. It consists of what you have.

最終の好気性菌発酵1−jには好気性発酵生成物(培地)を搬送する搬送設備21が配置される。メタンガス熱回収器18のメタンガス熱部26にはメタンガス導出管22が連結され、メタンガス導出管22の中間部にはメタンガス導出管22a,22b,22cが分岐して連結される。また、メタンガス導出管22は好気性発酵側熱回収器15のメタンガス熱部26にも連結される。また、好気性発酵側熱回収器15のメタンガス熱部26はメタンガス導入管22bと連結する。また、メタンガス導出管22aは送風吐出側熱交換器チャンバ16のメタンガス熱部26に連結する。また、メタンガス導出管22cはメタンガス発酵原料加熱器17のメタンガス熱部26に連結される。   In the final aerobic bacteria fermentation 1-j, a transport facility 21 for transporting the aerobic fermentation product (medium) is arranged. A methane gas lead-out pipe 22 is connected to the methane gas heat pipe 26 of the methane gas heat recovery unit 18, and methane gas lead-out pipes 22 a, 22 b, and 22 c are branched and connected to an intermediate part of the methane gas lead-out pipe 22. The methane gas outlet pipe 22 is also connected to the methane gas heat section 26 of the aerobic fermentation side heat recovery device 15. Moreover, the methane gas heat | fever part 26 of the aerobic fermentation side heat recovery device 15 is connected with the methane gas introduction pipe 22b. Further, the methane gas outlet pipe 22 a is connected to the methane gas heat section 26 of the blower discharge side heat exchanger chamber 16. The methane gas outlet tube 22 c is connected to the methane gas heat section 26 of the methane gas fermentation raw material heater 17.

ヒートポンプ20はその入口側に好気性発酵側熱回収器15の蒸発器24及びメタンガス熱回収器18の蒸発器24に連結するヒートポンプ吸入器33が連結され、出口側のヒートポンプ吐出管32は送風吐出側熱交換器チャンバ16の凝縮器25とメタンガス発酵原料加熱器17の凝縮器25に連結される。また、メタンガス発酵原料加熱器17の凝縮器25には高圧液管34が連結され、この高圧液管34は膨脹弁23を介しメタンガス熱回収器18の蒸発器24に連結される。また、高圧液管34は好気性発酵側熱回収器15の蒸発器24に膨脹弁23を介して連結され、更に、送風吐出側熱交換器チャンバ16の凝縮器25にも連結されている。なお、図1において符号11は好気性発酵蒸気、符号35は排気口、符号36は空気吸入口、符号37は空気吐出口、符号38は埋設熱交換パイプである。この埋設熱交換パイプ内には熱交換器が設けられ、これ等は図1に示す熱交換器47にパイプ45,46により連結される。なお、熱交換器47には蒸発器24及び膨脹弁23が設けられている。   The heat pump 20 is connected to the evaporator 24 of the aerobic fermentation side heat recovery device 15 and the heat pump suction device 33 connected to the evaporator 24 of the methane gas heat recovery device 18 on the inlet side, and the heat pump discharge pipe 32 on the outlet side discharges air. The condenser 25 of the side heat exchanger chamber 16 and the condenser 25 of the methane gas fermentation raw material heater 17 are connected. Further, a high pressure liquid pipe 34 is connected to the condenser 25 of the methane gas fermentation raw material heater 17, and this high pressure liquid pipe 34 is connected to the evaporator 24 of the methane gas heat recovery unit 18 through the expansion valve 23. Further, the high-pressure liquid pipe 34 is connected to the evaporator 24 of the aerobic fermentation side heat recovery unit 15 via the expansion valve 23, and is further connected to the condenser 25 of the blower discharge side heat exchanger chamber 16. In FIG. 1, reference numeral 11 is an aerobic fermentation steam, reference numeral 35 is an exhaust port, reference numeral 36 is an air inlet, reference numeral 37 is an air outlet, and reference numeral 38 is an embedded heat exchange pipe. A heat exchanger is provided in the buried heat exchange pipe, and these are connected to the heat exchanger 47 shown in FIG. The heat exchanger 47 is provided with an evaporator 24 and an expansion valve 23.

次に、以上の構造の本発明の装置によるメタンガスと発酵生成物の製造方法について説明する。「A」の嫌気性菌メタンガス発酵装置においてはメタンガス発酵槽7内にメタン発酵原料導入管28から原料が供給される。この原料は途中でメタンガス発酵原料加熱器17と好気発酵加熱槽40により加熱されてメタンガス発酵原料導入口10からメタンガス発酵槽7内に導入される。なお、メタンガス発酵原料加熱器17では後に詳しく説明するが「B」の好気性菌発酵装置よりの発酵熱による好気性発酵蒸気11や好気性発酵生成物の熟成後の排熱を熱源とするヒートポンプ20の凝縮熱を凝縮器25を介して加熱すると共にメタンガス加熱部26のメタンガスの発生顕熱により加熱され、更に冬期等の寒冷時においてはメタンガスバナ27により補熱して原料を十分に加熱するようにしている。即ち、従来のように外部の重油加熱等の化石燃料によりメタン発酵原料(メタン菌)8を発酵温度まで加熱することによる高エネルギ消費のコストアップの問題点を排熱を用いたヒートポンプによる加熱を用い省エネルギ化を図るようにしている点に大きな特徴があり、低コスト化が可能になる。   Next, a method for producing methane gas and a fermentation product by the apparatus of the present invention having the above structure will be described. In the anaerobic methane gas fermentation apparatus “A”, the raw material is supplied from the methane fermentation raw material introduction pipe 28 into the methane gas fermentation tank 7. This raw material is heated by the methane gas fermentation raw material heater 17 and the aerobic fermentation heating tank 40 and introduced into the methane gas fermentation tank 7 from the methane gas fermentation raw material inlet 10. The methane gas fermentation raw material heater 17 will be described in detail later, but a heat pump that uses exhaust heat after aging of the aerobic fermentation steam 11 and the aerobic fermentation product by the heat of fermentation from the aerobic bacteria fermentation apparatus "B" as a heat source. The heat of condensation 20 is heated through the condenser 25 and is heated by the sensible heat of the methane gas generated by the methane gas heating unit 26. Further, in cold weather such as winter, the heat is supplemented by the methane gas burner 27 to sufficiently heat the raw material. I have to. That is, the problem of the cost increase of high energy consumption by heating the methane fermentation raw material (methane bacterium) 8 to the fermentation temperature by fossil fuel such as external heavy oil heating as in the prior art is performed by heating with a heat pump using exhaust heat. There is a great feature in that it is intended to save energy and the cost can be reduced.

一方、メタンガス発酵槽7における原料のメタンガス化によって残滓の廃液がメタン発酵廃液溜12に溜り、従来よりこの処置に最大の悩みがあった。本発明ではこの廃液を二方弁13を開放し廃液ポンプ14を作動し、メタンガス発酵廃液配送管6により好気性発酵原料導入管3からのし尿等のパンケーキ等と混入させて夫々の好気性菌発酵槽1a・・・等に仕込みし、種菌と共に混合堆積させる。この混合堆積物は好気性菌発酵槽1a・・・等の底部の空気吹出孔29からの酵素の供給により発酵して好気性菌発酵蒸気11を発生させる。即ち、廃液は直接的に好気性発酵の原料となり好気性発酵生成物2の製品(培地,コンポスト)となる。   On the other hand, due to the methane gasification of the raw material in the methane gas fermenter 7, the waste liquid from the residue has accumulated in the methane fermentation waste liquid reservoir 12, and there has been the greatest trouble with this treatment. In the present invention, the waste liquid is opened with the two-way valve 13 and the waste liquid pump 14 is operated, and the methane gas fermentation waste liquid delivery pipe 6 is mixed with pancakes such as human waste from the aerobic fermentation raw material introduction pipe 3. It is charged into the fungus fermenter 1a, etc., and mixed and deposited together with the inoculum. This mixed deposit is fermented by supplying an enzyme from the air blowing hole 29 at the bottom of the aerobic bacteria fermenter 1a, etc. to generate aerobic bacteria fermentation steam 11. That is, the waste liquid directly becomes a raw material for aerobic fermentation and becomes a product (medium, compost) of the aerobic fermentation product 2.

前記のように廃液は好気性菌発酵装置の好気性菌発酵槽1a等に導入されて再使用されるため廃液が外部に送出されることがなく、特別の殺菌手段が必要でない。しかしながら、廃液を再使用しない場合もある。図1に示すように、メタンガス発酵槽7の下方には二方弁13が設けられ、廃液は前記のように廃液ポンプ14側に送られる場合と加熱器41側に送られる場合に分かれる。加熱器41は凝縮器25を有し、凝縮器25は管43を介してメタンガス発酵原料加熱器17の凝縮器25に連結されると共に管44を介し高圧液管34に連結される。廃液は加熱器41により、例えば、70℃で1時間位加熱されると殺菌されて無害の液肥42となり培地となる。   As described above, since the waste liquid is introduced into the aerobic bacteria fermentation tank 1a of the aerobic bacteria fermentation apparatus and reused, the waste liquid is not sent to the outside and no special sterilizing means is required. However, there are cases where the waste liquid is not reused. As shown in FIG. 1, a two-way valve 13 is provided below the methane gas fermenter 7, and the waste liquid is divided into a case where it is sent to the waste liquid pump 14 side and a case where it is sent to the heater 41 side as described above. The heater 41 has a condenser 25, and the condenser 25 is connected to the condenser 25 of the methane gas fermentation raw material heater 17 through a pipe 43 and is connected to the high-pressure liquid pipe 34 through a pipe 44. The waste liquid is sterilized when heated by a heater 41 at, for example, 70 ° C. for about 1 hour, and becomes harmless liquid fertilizer 42 to become a culture medium.

以上のようにメタンガス発酵槽7内にはメタンガス9が貯蓄され、このメタンガス9はメタンガス発酵槽7の頂部のメタンガス導出口39からメタンガス熱回収器18側に送られ、蒸発器24の作動熱となると共にメタンガス導出管22,22a,22b,22cに分液し残りのものは排出される。なお、メタンガス熱回収器18の蒸発器24により熱回収された熱はヒートポンプ吸入管33を介してヒートポンプ20の熱源となる。   As described above, the methane gas 9 is stored in the methane gas fermenter 7, and this methane gas 9 is sent from the methane gas outlet 39 at the top of the methane gas fermenter 7 to the methane gas heat recovery device 18 side, and the operating heat of the evaporator 24 is At the same time, the methane gas outlet pipes 22, 22a, 22b and 22c are separated and the remaining ones are discharged. The heat recovered by the evaporator 24 of the methane gas heat recovery device 18 becomes a heat source of the heat pump 20 via the heat pump suction pipe 33.

次に、「B」の好気性菌発酵装置の系統について説明する。本発明では、好気性菌発酵ヤード1は多数個の好気性菌発酵槽1a・・・等からなるが、1つの好気性菌発酵槽1a等の堆積量は50トン乃至120トン位が適量としている。この堆積物はし尿,蓄産糞尿等のパンケーキの湿度70%前後の原料に種菌導入管(図略)よりの生菌としての20%乃至50%の戻し発酵生成物又はその混合物と「A」の嫌気性菌メタンガス発酵装置からの前記廃液等が混在されたものからなる。この堆積物は底部の空気吹出孔29からの酵素の供給により発酵するが、6月乃至7月毎に好気性菌発酵槽1a等は切り返しが行われ、平均に発酵が進行するようにしている。切り返しは空槽にショベルホッパにより堆積物を移動して行われ、最終的には図1に示すように好気性菌発酵槽1a〜1jが満杯され配送設備21により搬送される。以上により、スムースで平均化された発酵と搬送が行われる。   Next, the system | strain of the aerobic microbe fermentation apparatus of "B" is demonstrated. In the present invention, the aerobic bacteria fermentation yard 1 is composed of a large number of aerobic bacteria fermentation tanks 1a, etc., but the amount of deposits in one aerobic bacteria fermentation tank 1a is about 50 to 120 tons or so. Yes. This sediment is a raw material of about 70% humidity of pancakes such as human waste and stored manure, and 20% to 50% of the back fermentation product as a viable fungus from an inoculum introduction tube (not shown) or a mixture thereof and “A” The waste liquid from the anaerobic methane gas fermentation apparatus is mixed. This deposit is fermented by supplying the enzyme from the air blowing hole 29 at the bottom, but the aerobic bacteria fermenter 1a and the like are turned over every June to July so that the fermentation proceeds on average. . The reversal is performed by moving the deposits to the empty tank with a shovel hopper. Finally, as shown in FIG. 1, the aerobic bacteria fermentation tanks 1 a to 1 j are filled and conveyed by the delivery facility 21. By the above, fermentation and conveyance averaged smoothly are performed.

常温から10日位の立上りに堆積物は80℃前後となり、中央部は90℃位になる。この場合に好気性菌は特に超高温菌の少なくとも80℃以上100℃前後まで発酵する菌が含まれる。特に、特許第306422号として特許されている後記番号FERMP−15085(通称:YM−01),FERMP−15086(YM−02)及びFERMP−15087(YM−03)のパチルス層に層する菌,更に特願平9−52312号の特許出願中のFERMP−15536(YM−04),FERMP15537(YM−05),FERMP−15538(YM−06),FERMP−15539(YM−07),FERMP−15540(YM−08),FERMP−15541(YM−09),FERMP−15542(YM−10)のカルドトリックス層に属する菌が本類発明の酵素性超高温発酵菌である。本高温発酵は特にバイオリアクタ利用のヒートポンプ20の熱源に利用して省エネ効果が計れるものである。   The deposit reaches about 80 ° C. at about 10 days from the normal temperature, and the central portion becomes about 90 ° C. In this case, the aerobic bacteria include bacteria that ferment to at least 80 ° C. or more and around 100 ° C., which are super thermophilic bacteria. In particular, the bacteria that are layered on the Pachirus layer of FERMP-15085 (common name: YM-01), FERMP-15086 (YM-02) and FERMP-15087 (YM-03), which are patented as Patent No. 306422, FERMP-15536 (YM-04), FERMP15537 (YM-05), FERMP-15538 (YM-06), FERMP-15539 (YM-07), FERMP-15540 (patent application of Japanese Patent Application No. 9-52312) YM-08), FERMP-15541 (YM-09), and FERMP-15542 (YM-10) belonging to the cardotrix layer are the enzyme hyperthermophilic fermenters of the present invention. This high-temperature fermentation can be used as a heat source of the heat pump 20 that uses a bioreactor, and can achieve an energy saving effect.

6〜7日の温度上昇変化は90℃前後をピークに熟成が終わると温度は下降し始めるので、この時期をメドに切り返しを行い万遍なく完熱の熟成をめざすと大体6〜7日毎のピーク切り返しを5〜6日行うことで熟成が終了する大体40日で一層の発酵生成物ができ上がる。   The temperature rises and falls on the 6th to 7th days, with the peak at around 90 ° C, and the temperature begins to drop. Therefore, when this time is switched back to med and aiming for complete aging, the temperature changes roughly every 6 to 7 days. By performing peak reversal for 5 to 6 days, a further fermentation product is completed in about 40 days when ripening is completed.

発酵途中は温度上昇のため盛んに70%前後の水分は蒸発し蒸気となって放出される。従来はこのまま大気へ放出されていたが本願はこの蒸気の潜熱と熟成後約90℃より常温までの生成物の発酵顕熱を熱源とするヒートポンプ20を介して好気性発酵側熱回収器15より昇温された凝縮熱をヒートポンプ吐出管32を通じて送風機19の送風吐出側熱交換器16の凝縮器25とメタンガス発酵原料加熱器17の凝縮器25により好気性発酵へ送る空気とメタンガス原料を加熱するものである。ヒートポンプ20の駆動力をエンジン駆動とすれば、更にジャケットの熱とエンジン排気熱も加算するのでヒートポンプ20の効率は上がることになる。空気の加熱によって好気性発酵の初期発酵の立上り時間は短縮され約40日の熟成時間は30〜35日に短縮されることになる。特に、冬期の立上りや切り返し毎の湿度上昇が早くなる。   During the fermentation, about 70% of the water is actively evaporated and discharged as steam due to the temperature rise. Conventionally, it has been released to the atmosphere as it is, but the present application is from the aerobic fermentation side heat recovery unit 15 through the heat pump 20 that uses the latent heat of this steam and the sensible heat of fermentation of the product from about 90 ° C. to room temperature after aging. The air and methane gas raw material which are sent to the aerobic fermentation are heated by the condenser 25 of the blower discharge side heat exchanger 16 of the blower 19 and the condenser 25 of the methane gas fermentation raw material heater 17 through the heat pump discharge pipe 32. Is. If the driving force of the heat pump 20 is driven by the engine, the heat of the jacket and the heat of the engine exhaust are also added, so that the efficiency of the heat pump 20 is increased. The rise time of the initial fermentation of the aerobic fermentation is shortened by heating the air, and the aging time of about 40 days is shortened to 30 to 35 days. In particular, the rise in humidity at the start of winter and every turnover is accelerated.

また、メタンガス発酵の原料をヒートポンプ凝縮熱でこれは好気性高温発酵熱を効率よく与えられるので、外部からの加熱する手段と位べメタン発酵時間も短縮され、省エネルギとなる。   Moreover, since the raw material for methane gas fermentation is heat pump condensation heat, which can efficiently give aerobic high-temperature fermentation heat, the methane fermentation time can be shortened compared with the means for heating from the outside, and energy saving is achieved.

以上のように、「A」と「B」の発酵装置が隣接併用されることによってお互いの排熱がヒートポンプ20を介して有効に働き損失を補うことができた。特に、メタンガスの廃液が有効利用され完熱生成物として再生可能となったことである。各「A」及び「B」の排熱や発生ガス熱や完熱後の生成物の熱は放出されていたものを「A」及び「B」の装置の併列併設したことにより、相互の損失を少なくし、これによってガス,発酵生成物の製品が安定して生産されることになる。   As described above, when the “A” and “B” fermentation apparatuses are adjacently used together, the exhaust heat of each other works effectively via the heat pump 20 to compensate for the loss. In particular, the waste liquid of methane gas is effectively used and can be regenerated as a complete heat product. The loss of heat from each "A" and "B", generated gas heat, and the heat of the product after complete heat was released, and the loss of mutual energy due to the juxtaposition of the "A" and "B" devices. As a result, products of gas and fermentation products are stably produced.

「B」の装置の完熱生成物は、完熱好気性発酵生成物ふるい装置31を経て整粒生成物は、肥料原料や培地として市販される大粒の分別粒は生菌として再び発酵原料仕込み部の好気性菌発酵槽1a等に送られ、種菌として再利用され「B」装置は循環系を形成する。「A」及び「B」は互いに補完し合い連続的に夫々の発生熱の調整ができるため安定した操業ができるものである。   The complete heat product of the device “B” is passed through the complete thermo-aerobic fermentation product sieving device 31. The “B” device forms a circulatory system that is sent to the aerobic bacteria fermenter 1a and the like and reused as an inoculum. Since “A” and “B” complement each other and can continuously adjust the generated heat, stable operation is possible.

次に、図2により好気性超高温発酵の過程の一実施例を説明する。図2において横軸は日を示し縦軸は温度を示す。原料の下水汚泥は、鹿児島市の下水汚泥の石炭脱水ケーキを用いた。これに鹿児島市下水汚泥コンポストの返送汚泥(不揃品:1cm以上の粒径)1:1の量比で約計100トンをタイヤシャベルで混合し、発酵槽プラント(100トン槽:5×10m)に積み込んだ本コンポストの特徴は、籾殻やオガ屑等の副資材を全く使用していないことである。そのため、製品の品質管理が容易で、安定した品質のコンポストが製造されている。発酵槽は、高さ2m,縦10m,横5mの100トン槽で通気用の送風ブロアがあるだけの単純な堆積型である。コンポスト化に用いている超高温細菌は、臭気の分解力が強いので脱臭装置が不要である。下水汚泥コンポストの製造過程における切返同数は5回であり温度は、デジタルコード温度計(6連装)で測定した。品温は5箇所で測定し、その平均を示した。まず、下水汚染物や種菌微生物を混合して発酵槽に移した時点では33.6℃であった。積込7日後の一次発酵時の最高温度は90.7℃に達し、最低温度は82.1℃であった。この時点の平均温度は86.7℃となり気温が17.4℃であったことから気温に較べて69.3℃上昇したことになる。なお、一次発酵終了時の平均温度は86.1℃であった。二次発酵の開始時の温度は68.5℃であり7日後の最高温度は92.6℃達し、最低温度は88.0℃であり、平均温度は90.2℃で気温は19.9℃のための気温に較べて70.3℃上昇したことになる。なお、二次発酵終了時の平均温度は87.4℃であった。三次発酵の開始時の温度は68.2℃であり、6日後の最高温度は89.6℃で最低温度は85.8℃であり、平均温度87.9℃であり、気温20.0℃であり67.9℃上昇したことになる。3次発酵終了時の平均温度は、84.9℃、4次発酵の開始時の温度は、64.0℃であった。最高温度(積込6日後)は87.1℃に達し、最低温度は82.1℃であった。その時点の5連の平均値は84.5℃で気温は23.3℃であった。従って、気温に比べて61.2℃上昇したことになる。4次発酵終了時の平均温度は81.2℃であった。5次発酵の開始時の温度は67.7℃であった。最高温度(積込7日後)は84.5℃に達し、最低温度は80.1℃であった。その時点の5連の平均値は81.9℃で、25.5℃気温があった。従って、気温に比べて56.4℃上昇したことになる。5次修了時の平均温度は76.6℃であった。以上の結果から、コンポストの品質は最高92.6℃(2次切返)にも達し、製造期間45日に渡って、85℃以上の高温を維持していた。ここで得られた発酵温度は、通常の下水汚泥コンポストの温度に比べて、10〜20℃以上も高い脅威的な温度で、かつ45日間を通じて80℃を遥かに越える温度を維持していたことである。このような高温でのコンポスト化技術は、現在のところ皆無である。この高温が都市下水汚泥を40〜45日間の短時間で完熟コンポストにした主因である。なぜなら、温度が10℃上昇すると生物の反応速度が1.5〜1.8倍速くなるからである。   Next, an embodiment of the aerobic ultrahigh temperature fermentation process will be described with reference to FIG. In FIG. 2, the horizontal axis indicates the day and the vertical axis indicates the temperature. The raw material sewage sludge was a dewatered coal sludge from Kagoshima City. A total of 100 tons was mixed with a tire shovel at a ratio of 1: 1 of returned sludge (unmatched product: particle size of 1 cm or more) of Kagoshima City sewage sludge compost, and fermenter plant (100 ton tank: 5 × 10 m). The feature of this compost loaded in) is that it does not use any auxiliary materials such as rice husk and sawdust. Therefore, product quality control is easy and stable quality compost is manufactured. The fermenter is a simple stacking type with a 100-ton tank with a height of 2 m, a height of 10 m, and a width of 5 m, and a ventilation blower for ventilation. The ultra-high temperature bacteria used for composting have a strong odor decomposability, so a deodorizing device is unnecessary. In the manufacturing process of the sewage sludge compost, the number of turnovers was 5 times, and the temperature was measured with a digital code thermometer (6 units). The product temperature was measured at five locations and the average was shown. First, it was 33.6 degreeC at the time of mixing a sewage contaminant and an inoculum microbe, and moving to a fermenter. The maximum temperature during the primary fermentation after 7 days after loading reached 90.7 ° C, and the minimum temperature was 82.1 ° C. The average temperature at this point was 86.7 ° C., and the temperature was 17.4 ° C., which means that it increased by 69.3 ° C. compared to the temperature. The average temperature at the end of the primary fermentation was 86.1 ° C. The temperature at the start of secondary fermentation is 68.5 ° C., the maximum temperature after 7 days reaches 92.6 ° C., the minimum temperature is 88.0 ° C., the average temperature is 90.2 ° C., and the temperature is 19.9 ° C. This is an increase of 70.3 ° C compared to the temperature for ℃. The average temperature at the end of the secondary fermentation was 87.4 ° C. The temperature at the start of the tertiary fermentation is 68.2 ° C, the maximum temperature after 6 days is 89.6 ° C, the minimum temperature is 85.8 ° C, the average temperature is 87.9 ° C, and the temperature is 20.0 ° C. It was 67.9 ° C. The average temperature at the end of the third fermentation was 84.9 ° C, and the temperature at the start of the fourth fermentation was 64.0 ° C. The maximum temperature (6 days after loading) reached 87.1 ° C, and the minimum temperature was 82.1 ° C. At that time, the average value of 5 series was 84.5 ° C and the temperature was 23.3 ° C. Therefore, it is 61.2 ° C. higher than the temperature. The average temperature at the end of the fourth fermentation was 81.2 ° C. The temperature at the start of the fifth fermentation was 67.7 ° C. The maximum temperature (7 days after loading) reached 84.5 ° C, and the minimum temperature was 80.1 ° C. At that time, the average value of 5 series was 81.9 ° C., and the temperature was 25.5 ° C. Therefore, it is 56.4 ° C. higher than the temperature. The average temperature at the completion of the fifth round was 76.6 ° C. From the above results, the compost quality reached a maximum of 92.6 ° C. (secondary turnover), and maintained a high temperature of 85 ° C. or higher over the manufacturing period of 45 days. The fermentation temperature obtained here was a threatening temperature higher than 10-20 ° C compared to the temperature of normal sewage sludge compost, and maintained a temperature far exceeding 80 ° C over 45 days. It is. At present, there is no composting technology at such a high temperature. This high temperature is the main cause of making urban sewage sludge into fully ripe compost in a short time of 40-45 days. This is because when the temperature rises by 10 ° C., the reaction rate of the organism increases by 1.5 to 1.8 times.

以上の説明により明確のように、本発明は有機性廃棄物を比較的簡便な装置及び方法により無害的に処理できるものであり、有機物廃棄物処理を必要とするすべての所に適用される。これにより、省エネ化処理コストの低減化,公害防止,環境保全等に大きく貢献することができる。   As is clear from the above explanation, the present invention can treat organic waste harmlessly by a relatively simple apparatus and method, and is applied to all places where organic waste treatment is required. As a result, energy saving processing costs can be reduced, pollution prevention, environmental conservation, etc. can be greatly contributed.

本発明のメタンガスと発酵生成物を製造する装置の全体構造を示す構成図とその方法を説明するためのフローを示す説明図である。It is explanatory drawing which shows the block diagram which shows the whole structure of the apparatus which manufactures the methane gas and fermentation product of this invention, and the flow for demonstrating the method. 好気性超高温菌発酵の発酵過程の温度と日数と切り返しの関係を示す模式的線図である。It is a schematic diagram which shows the relationship of the temperature of fermentation process of aerobic super thermophilic fermentation, the number of days, and turnover.

符号の説明Explanation of symbols

「A」 嫌気性菌メタンガス発酵装置
「B」 好気性菌発酵装置
1a〜1j 好気性菌発酵槽
2 好気性発酵生成物
2′ 好気性菌発酵原料仕込混合物
3 好気性発酵原料導入管
4 好気性種菌導入管
5 空気送風支管
6 メタンガス発酵廃液配送管
7 メタンガス発酵槽
8 メタンガス発酵原料(メタン菌)
9 メタンガス
10 メタンガス発酵原料導入口
11 好気性発酵蒸気
12 メタン発酵廃液溜
13 二方弁
14 廃液ポンプ
15 好気性発酵側熱回収器(吸熱器)
16 送風吐出側熱交換器チャバ(加熱器筐体)
17 メタンガス発酵原料加熱器
18 メタンガス熱回収器(吸熱器)
19 送風機
20 ヒートポンプ(圧縮機)
21 好気性発酵生成物(培地)の搬送設備
22 メタンガス導出管
23 膨脹弁
24 蒸発器
25 凝縮器
26 メタンガス熱
27 メタンガスバーナ
28 メタン発酵原料導入管
29 空気吹出孔
30 送風主管
31 完熱好気性発酵生成物ふるい装置
32 ヒートポンプ吐出管(高圧)
33 ヒートポンプ吸入管(低圧)
34 高圧液管
35 排気口
36 空気吸入口
37 空気吐出口
38 埋設熱交換パイプ
39 メタンガス導出口
40 好気発酵加熱槽
41 加熱器
42 液肥
43 管
44 管
45 管
46 管
47 熱交換器
“A” Anaerobic Methane Gas Fermenter “B” Aerobic Fermenter 1a-1j Aerobic Fermenter 2 Aerobic Fermentation Product 2 ′ Aerobic Fermentation Raw Material Feed Mix 3 Aerobic Fermentation Raw Material Introducing Tube 4 Aerobic Inoculum introduction pipe 5 Air blower branch pipe 6 Methane gas fermentation waste liquid delivery pipe 7 Methane gas fermentation tank 8 Methane gas fermentation raw material (methane bacteria)
9 Methane gas 10 Methane gas fermentation raw material inlet 11 Aerobic fermentation steam 12 Methane fermentation waste liquid reservoir 13 Two-way valve 14 Waste liquid pump 15 Aerobic fermentation side heat recovery device (heat absorber)
16 Blower discharge side heat exchanger chaba (heater housing)
17 Methane gas fermentation raw material heater 18 Methane gas heat recovery device (heat absorber)
19 Blower 20 Heat pump (compressor)
21 Aerobic fermentation product (medium) transport equipment 22 Methane gas outlet pipe 23 Expansion valve 24 Evaporator 25 Condenser 26 Methane gas heat 27 Methane gas burner 28 Methane fermentation raw material introduction pipe 29 Air outlet 30 Blow main pipe 31 Completely heated aerobic fermentation Product sieve device 32 Heat pump discharge pipe (high pressure)
33 Heat pump suction pipe (low pressure)
34 High-pressure liquid pipe 35 Exhaust port 36 Air inlet port 37 Air outlet port 38 Buried heat exchange pipe 39 Methane gas outlet port 40 Aerobic fermentation heating tank 41 Heater 42 Liquid fertilizer 43 Tube 44 Tube 45 Tube 46 Tube 47 Heat exchanger

Claims (9)

メタン生成菌による嫌気性菌メタンガス発酵装置と好気性菌発酵装置との2つを併用し、嫌気性菌メタンガス発酵時のメタンガス発酵熱及び/又は好気性菌発酵の発酵過程で発生する排出熱、蒸気及び熟成後排熱の全部又は何れか選択した熱を前記嫌気性菌メタンガス発酵に用いる有機物原料及び/又は前記好気性菌発酵時に用いる送風機用空気を加熱する熱として用いることを特徴とする嫌気性菌メタンガス発酵装置と好気性菌発酵装置とを併用して成るメタンガスと発酵生成物の製造方法。   Combined use of an anaerobic methane gas fermentation device and an aerobic bacterium fermentation device with methanogens, and heat generated during the fermentation process of anaerobic microbial fermentation and / or exhaust heat generated during fermentation of anaerobic bacteria, Anaerobic, characterized in that all or any selected heat of steam and exhaust heat after aging is used as heat for heating organic raw materials used for the anaerobic methane gas fermentation and / or blower air used during the aerobic bacterium fermentation A method for producing methane gas and a fermentation product, which is a combination of a fermentative methane gas fermentation apparatus and an aerobic bacterium fermentation apparatus. メタン生成菌による嫌気性菌メタンガス発酵装置と好気性菌発酵装置との2つを併用し、嫌気性菌メタンガス発酵時のメタンガス発酵熱及び/又は好気性菌発酵の発酵過程で発生する排出熱、蒸気及び熟成後排熱の全部又は何れか選択した熱を前記嫌気性菌メタンガス発酵に用いる有機物原料及び/又は前記好気性菌発酵時に用いる送風機用空気を加熱する熱として用いると共に前記好気性菌発生の発酵と生成物の一部を前記嫌気性菌メタンガス発酵の発酵原料に混入し、嫌気性発酵温度の上昇促進を計ることを特徴とする嫌気性菌メタンガス発酵装置と好気性菌発酵装置とを併用して成るメタンガスと発酵生成物の製造方法。   Combined use of an anaerobic methane gas fermentation device and an aerobic bacterium fermentation device with methanogens, and heat generated during the fermentation process of anaerobic microbial fermentation and / or exhaust heat generated during fermentation of anaerobic bacteria, Use of all or any selected heat of steam and exhaust heat after aging as heat for heating the organic material raw material used for the anaerobic bacteria methane gas fermentation and / or the air for the blower used during the aerobic bacteria fermentation and generation of the aerobic bacteria An anaerobic methane gas fermentation apparatus and an aerobic bacteria fermentation apparatus characterized in that a part of the fermentation and product of the anaerobic methane gas fermentation are mixed in the fermentation raw material of the anaerobic bacterium and the increase in the anaerobic fermentation temperature is measured. A method for producing methane gas and fermentation products, which is used in combination. 超高温好気の好気性菌発酵に用いる有機物原料に、至適活動温度が少なくとも80℃以上である高度高熱細菌や高熱細菌や好気性高温菌又はその混合菌体もしくはこれらの培養物を添加して発酵を行うことを特徴とする嫌気性菌メタンガス発酵装置と好気性菌発酵装置とを併用して成るメタンガスと発酵生成物の製造方法。   To the organic raw material used for the fermentation of ultra-high temperature aerobic bacteria, the highly active thermobacteria, the thermophilic bacteria, the aerobic thermophilic bacteria, their mixed cells or their cultures whose optimum activity temperature is at least 80 ° C or higher are added. A method for producing methane gas and a fermentation product, comprising a combination of an anaerobic methane fermentation apparatus and an aerobic bacterium fermentation apparatus, characterized in that fermentation is carried out. メタン生成菌による嫌気性菌メタンガス発酵のメタンガスと発酵時に発生する熱及び/又は超高温好気の好気性菌発酵時に発生する蒸気熱と熟成時に発生する熱の全部又は何れか選択した熱を熱源とするヒートポンプを介して、嫌気性菌メタンガス発酵に用いる有機物原料及び/又は超高温好気の好気性高温菌発酵に用いる送風機用空気を加熱することを特徴とする嫌気性菌メタンガス発酵装置と好気性菌発酵装置とを併用して成るメタンガスと発酵生成物の製造方法。   Anaerobic bacteria produced by methanogens Methane gas in methane gas fermentation and heat generated during fermentation and / or steam heat generated during aerobic bacteria fermentation of ultra-high temperature aerobic and heat generated during maturation or any selected heat An anaerobic methane gas fermentation apparatus characterized by heating an organic material raw material used for anaerobic methane gas fermentation and / or a blower air used for an aerobic high temperature aerobic fermentation using an aerobic bacterium through a heat pump A method for producing methane gas and fermentation products, which is used in combination with an aerobic fermentation apparatus. 嫌気性菌メタンガス発酵時に生ずる廃液を好気性菌発酵の原料に混入するか、又は前記廃液を殺菌可能な温度及び時間で加熱して液肥として排出するかの双方又はいずれかを行うことを特徴とする請求項1乃至4に記載の嫌気性菌メタンガス発酵装置と好気性菌発酵装置とを併用して成るメタンガスと発酵生成物の製造方法。   The waste liquid produced during anaerobic methane gas fermentation is mixed with the raw material of the aerobic bacteria fermentation, or the waste liquid is heated at a temperature and time that can be sterilized and discharged as liquid fertilizer, or either. The manufacturing method of the methane gas and fermentation product which use the anaerobic bacterium methane gas fermentation apparatus and aerobic bacterium fermentation apparatus of Claim 1 thru | or 4 to use together. 前記好気性菌発酵生成物(培地又は種菌)の一部を前記嫌気性菌メタンガス発酵の原料に混入し嫌気性菌発酵温度の上昇促進を計ることを特徴とする請求項1乃至5に記載の嫌気性菌メタンガス発酵装置と好気性菌発酵装置とを併用して成るメタンガスと発酵生成物の製造方法。   6. A part of the aerobic bacteria fermentation product (medium or inoculum) is mixed in the raw material of the anaerobic bacteria methane gas fermentation to increase the anaerobic bacteria fermentation temperature. A method for producing methane gas and a fermentation product, comprising an anaerobic bacterium fermentation apparatus and an aerobic bacterium fermentation apparatus. 前記請求項1乃至6のメタンガスと発酵生成物の製造に使用される装置であって、該装置は、メタン生成菌による嫌気性菌メタンガス発酵装置と好気性菌発酵装置との2つを併用したものからなり、両装置の発生熱や廃液を相互に利用し合ってメタンガスや発酵生成物を作ることを特徴とするメタンガスと発酵生成物の製造装置。   An apparatus used for producing a methane gas and a fermentation product according to any one of claims 1 to 6, wherein the apparatus uses two of an anaerobic methane gas fermentation apparatus and an aerobic bacteria fermentation apparatus using methanogens. An apparatus for producing methane gas and fermentation products, characterized in that the methane gas and fermentation products are produced by mutually using the heat and waste liquid generated by both devices. 前記製造装置には、発酵時に生ずる熱を熱源とするヒートポンプが設けられることを特徴とする請求項7に記載のメタンガスと発酵生成物の製造装置。   The said manufacturing apparatus is provided with the heat pump which uses the heat which arises at the time of fermentation as a heat source, The manufacturing apparatus of the methane gas and fermentation product of Claim 7 characterized by the above-mentioned. 前記ヒートポンプが内蔵型のものからなり、その吸熱部にガス加熱器が設けられることを特徴とする請求項8に記載のメタンガスと発酵生成物の製造装置。   9. The apparatus for producing methane gas and fermentation product according to claim 8, wherein the heat pump is of a built-in type, and a gas heater is provided in the heat absorption part.
JP2003274107A 2003-07-14 2003-07-14 Method for producing methane gas and fermentation product by combined use of anaerobic bacterium methane gas fermentation and aerobic bacterium fermentation and apparatus therefor Pending JP2005034041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274107A JP2005034041A (en) 2003-07-14 2003-07-14 Method for producing methane gas and fermentation product by combined use of anaerobic bacterium methane gas fermentation and aerobic bacterium fermentation and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274107A JP2005034041A (en) 2003-07-14 2003-07-14 Method for producing methane gas and fermentation product by combined use of anaerobic bacterium methane gas fermentation and aerobic bacterium fermentation and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2005034041A true JP2005034041A (en) 2005-02-10

Family

ID=34211155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274107A Pending JP2005034041A (en) 2003-07-14 2003-07-14 Method for producing methane gas and fermentation product by combined use of anaerobic bacterium methane gas fermentation and aerobic bacterium fermentation and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2005034041A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914727B1 (en) * 2007-04-18 2009-08-31 신길현 Heat Pump Plant biomass Regeneration device
CN102517200A (en) * 2011-11-21 2012-06-27 云南昆船第二机械有限公司 Organic waste dry anaerobic high-temperature fermentation system and fermentation process
KR101410722B1 (en) 2013-02-18 2014-06-24 서울과학기술대학교 산학협력단 Anaerobic fermentation system and method for heating energy use aerobic fermentation heat
CN104183183A (en) * 2014-07-24 2014-12-03 郑州轻工业学院 Sludge aerobic-fermentation experiment simulated system with automatic control
CN107400630A (en) * 2017-09-04 2017-11-28 太原理工大学 A kind of biogas anaerobic fermentation pond UTILIZATION OF VESIDUAL HEAT IN and temperature-increasing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169827A (en) * 1997-12-09 1999-06-29 Shin Meiwa Ind Co Ltd Garbage disposal and device therefor
JPH11292669A (en) * 1998-04-03 1999-10-26 Sanyuu:Kk Production of aerobically fermented fertilizer and production apparatus therefor
JP2001112365A (en) * 1999-10-19 2001-04-24 Sanyuu:Kk Floor litter for animal stall
JP2002126780A (en) * 2000-10-26 2002-05-08 Tsurumi Soda Co Ltd Sewage treatment method, sewage treatment system, and method and system for biological treatment of excess sludge
JP2002293681A (en) * 2001-03-30 2002-10-09 Shinjiro Kanazawa Method of producing bark-like compost

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169827A (en) * 1997-12-09 1999-06-29 Shin Meiwa Ind Co Ltd Garbage disposal and device therefor
JPH11292669A (en) * 1998-04-03 1999-10-26 Sanyuu:Kk Production of aerobically fermented fertilizer and production apparatus therefor
JP2001112365A (en) * 1999-10-19 2001-04-24 Sanyuu:Kk Floor litter for animal stall
JP2002126780A (en) * 2000-10-26 2002-05-08 Tsurumi Soda Co Ltd Sewage treatment method, sewage treatment system, and method and system for biological treatment of excess sludge
JP2002293681A (en) * 2001-03-30 2002-10-09 Shinjiro Kanazawa Method of producing bark-like compost

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914727B1 (en) * 2007-04-18 2009-08-31 신길현 Heat Pump Plant biomass Regeneration device
CN102517200A (en) * 2011-11-21 2012-06-27 云南昆船第二机械有限公司 Organic waste dry anaerobic high-temperature fermentation system and fermentation process
KR101410722B1 (en) 2013-02-18 2014-06-24 서울과학기술대학교 산학협력단 Anaerobic fermentation system and method for heating energy use aerobic fermentation heat
CN104183183A (en) * 2014-07-24 2014-12-03 郑州轻工业学院 Sludge aerobic-fermentation experiment simulated system with automatic control
CN107400630A (en) * 2017-09-04 2017-11-28 太原理工大学 A kind of biogas anaerobic fermentation pond UTILIZATION OF VESIDUAL HEAT IN and temperature-increasing system

Similar Documents

Publication Publication Date Title
CN101874104B (en) Process for the treatment of wastes combining a phase of treatment by methanization and a phase of thermophilic aerobic treatment
US20090209025A1 (en) High solid thermophilic anaerobic digester
US20130065290A1 (en) Combined dry and wet dual phase anaerobic process for biogas production
CN105948832B (en) A kind of small-sized kitchen garbage installation for fermenting
CN111333440B (en) Vehicle-mounted organic garbage rapid decomposition and fertilization system and method
CN104646390A (en) High-efficiency low-energy-consumption kitchen garbage comprehensive treatment method
CN101143758A (en) Sludge resource treatment complete equipment for urban sewage treatment plant
CN102321673B (en) Method for producing biogas by solid organic waste
CN106431517A (en) Kitchen waste treatment device for coupling aerobic composting with anaerobic fermentation
CN207391295U (en) The aerobic low nitrogen Composting device strengthened based on oxygen-enriched and free radical
CN115069739B (en) Kitchen waste bidirectional reinforced multi-source synergistic full-volume recycling treatment system and process
CN107460111A (en) Organic solid castoff processing system and its method of disposal based on subcritical hydrolysis
WO2012115587A1 (en) Method and system for the sanitization of a digestate in the production of biogas
CN111215432A (en) Three-stage integrated treatment system and method for organic biomass garbage
CN110721979A (en) Environment-friendly aerobic degradation system for food waste
CN111196999A (en) Biomass garbage batch type microbial fermentation treatment system and treatment method
JP2005034041A (en) Method for producing methane gas and fermentation product by combined use of anaerobic bacterium methane gas fermentation and aerobic bacterium fermentation and apparatus therefor
JP2003103292A (en) Combined treatment method of wastewater and waste derived from organism
CN204220605U (en) The comprehensive food waste treatment system of high efficiency low power consuming
CN206940900U (en) A kind of novel household garbage enzyme preparation dry type anaerobic digestion device
CN106140776A (en) A kind of organic waste aerobic fermentation method and equipment
CN211972319U (en) Organic garbage integrated anaerobic treatment equipment
CN110104898B (en) Garbage anaerobic and aerobic composting and wastewater purification treatment system
CN204769816U (en) Organic waste aerobic fermentation equipment
CN209065710U (en) Quick processing system is combined in sludge pyrohydrolysis solar low-temperature film anaerobic digestion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622