JP2005032938A - Electric double layer capacitor and battery - Google Patents

Electric double layer capacitor and battery Download PDF

Info

Publication number
JP2005032938A
JP2005032938A JP2003195486A JP2003195486A JP2005032938A JP 2005032938 A JP2005032938 A JP 2005032938A JP 2003195486 A JP2003195486 A JP 2003195486A JP 2003195486 A JP2003195486 A JP 2003195486A JP 2005032938 A JP2005032938 A JP 2005032938A
Authority
JP
Japan
Prior art keywords
current collector
double layer
pair
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003195486A
Other languages
Japanese (ja)
Inventor
Seiji Omura
大村  誠司
Yasuhiro Kishimoto
泰広 岸本
Mamoru Kimoto
衛 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003195486A priority Critical patent/JP2005032938A/en
Publication of JP2005032938A publication Critical patent/JP2005032938A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer capacitor that has a large capacitance and a low internal resistance, and to provide a battery. <P>SOLUTION: In the electric double layer capacitor, a pair of polarizable electrodes 5 and 6 impregnated with an electrolytic solution, a separator 7 interposed between the electrodes 5 and 6 and impregnated with the electrolytic solution, and a pair of current collecting bodies 8 and 10 to which the electrodes 5 and 6 are respectively joined are housed in a resin-made container 1. The polarizable electrodes 5 and 6 are formed in block-like or columnar shapes and at least either one 8 or 10 of the current collecting bodies 8 and 10 is joined to the horizontal surface section and one or more side face sections of the electrode 5 or 6 joined to the body 8 or 10. In addition, the current collecting body 8 or 10 is formed so that the polarizable electrode 5 or 6 joined to the body 8 or 10 may be fitted in the body 8 or 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、水系又は非水系電解質を具える電気二重層コンデンサ及び電池に関する。
【0002】
【従来の技術】
小型のコイン型電気二重層コンデンサは、携帯電話やデジタルカメラ等の電子機器において、主にバックアップ用電源として広く用いられている。周知のように、コイン型電気二重層コンデンサは、一対の分極性電極間にセパレータを介在させて、互いに絶縁されて対向配備された一対の金属缶の間の内部空間に収納したものである。分極性電極及びセパレータには、水系又は非水系の電解液が含浸される(特許文献1参照)。
【0003】
回路基板に装着される各種電子部品はチップ化が進んでいるので、回路基板上では、電気二重層コンデンサに対して長方形状の実装領域が設定される場合が多い。しかし、長方形状の実装領域にコイン型電気二重層コンデンサを配置すると、コイン型電気二重層コンデンサが円盤状の形状を有することから、実装領域の各角部周辺に大きな空き部分が生じる。このため、コイン型電気二重層コンデンサが装着される回路基板では、該電気二重層コンデンサを含む各種電子部品を効率的に配置することが困難であった。また、水系又は非水系電解質を用いたボタン型電池についても同様な問題があった。この問題を解決するために、電気二重層コンデンサ及び電池の容器を絶縁性樹脂、絶縁性セラミックス又はガラス等の絶縁性材料で形成して、容器形状を角形にすることが提案されている(特許文献2参照)。
【0004】
【特許文献1】
特開平8−64484号公報
【特許文献2】
特開2001−216952号公報
【0005】
【発明が解決しようとする課題】
近年、電子機器で使用される小型の電気二重層コンデンサ及び電池は、大容量且つ低内部抵抗であることが一層求められている。従って、絶縁性材料で形成された容器を具える電気二重層コンデンサ及び電池においても、大容量化及び低内部抵抗化を図る必要がある。本発明は、この問題を解決するものであり、大容量且つ低内部抵抗である電気二重層コンデンサ及び電池を提供する。
【0006】
【課題を解決するための手段】
本発明の電気二重層コンデンサは、電解液が含浸した一対の分極性電極と、これら分極性電極間に介在されると共に電解液が含浸したセパレータと、これら分極性電極が夫々接合する一対の集電体とを樹脂製の容器に収納しており、前記一対の分極性電極は、ブロック状又は柱状に形成されており、前記一対の集電体の少なくとも何れか一方の集電体は、これに接合する分極性電極の水平面部及び1つ以上の側面部と接合していることを特徴とする。
【0007】
さらに、本発明の電気二重層コンデンサは、分極性電極の水平面部及び1つ以上の側面部と接合する集電体は、この分極性電極が嵌まるように形成されている。
【0008】
【作用及び効果】
集電体を分極性電極の水平面部及び1つ以上の側面部と接合させることにより、集電体と分極性電極の接触面積が広くなる。これにより、電気二重層コンデンサの容量は増加し、内部抵抗は低くなる。さらに、集電体を分極性電極が嵌まるように形成することにより、分極性電極が集電体に確実に位置決めされて、電気二重層コンデンサの製造が容易になる。集電体と分極性電極が集電体とリード部材を同一の材料で形成可能な場合は、集電体を省略してリード部材を分極性電極の水平面部及び1つ以上の側面部と接合させ、さらには、リード部材を分極性電極が嵌まるように形成してもよい。
【0009】
上記構成において、一方の分極性電極を正活物質、他方の分極性電極を負活物質とすることにより、本発明を電池にも適用できることは容易に理解される。
【0010】
【発明の実施の形態】
図1は、本発明のチップ型電気二重層コンデンサの斜視図であり、図2は、図1に示すA−A線を含む垂直面で該電気二重層コンデンサを破断し、矢視方向に見た断面図である。図3は、図1に示すB−B線を含む垂直面で該電気二重層コンデンサを破断し、矢視方向に見た断面図である。電気二重層コンデンサは、絶縁性材料で形成された矩形の容器(1)を具えている。容器(1)は垂直方向に薄く形成されており、容器(1)の材料には、液晶ポリマー(LCP)、変形ポリアミド若しくはナイロン樹脂等の絶縁性樹脂、ポリプロピレン(PP)等の熱可塑性プラスチック、アルミナ等のセラミックス、又はガラスが用いられる。
【0011】
容器(1)は、矩形の窪みが夫々形成された直方体のブロック状の第1容器半体(2)と第2容器半体(3)からなる2つの構成部材が組み合わされて構成されており、これら容器半体(2)(3)は、超音波溶着やレーザ溶着等を行うことにより、又は接着剤を用いて接合されている。これら容器半体(2)(3)の窪みが合わせられることによって、容器(1)の内部空間が形成されている。容器(1)の内部空間には、電解液が含浸した第1分極性電極(5)、第2分極性電極(6)、セパレータ(7)、第1集電体(8)及び第2集電体(10)が収納されている。さらに、第1リード部材(9)及び第2リード部材(11)の一部も収納されている。
【0012】
板状の第1リード部材(9)は、容器(1)の内側下面上に配置されており、該第1リード部材(9)上に、開口した箱状の第1集電体(8)の底部が接合されている。第1集電体(8)は、第1容器半体(2)の窪みに嵌められている。第1集電体(8)には第1分極性電極(5)が嵌められ、導電性接着剤により接合されている。第1分極性電極(5)の上面は、第1集電体(8)の縁部から若干上方に突出しており、第1分極性電極(5)の上には長方形に形成されたシート状のセパレータ(7)が配置されている。
【0013】
板状の第2リード部材(11)は、容器(1)の内側上面上に配置されており、該第2リード部材(11)の下面に、下向きに開口した箱状の第2集電体(10)の底部が接合されている。第2集電体(10)は、第2容器半体(3)の窪みに嵌められている。第2集電体(10)には第2分極性電極(6)が嵌められ、導電性接着剤により接合されている。第2分極性電極(6)の下面へは、第2集電体(10)の縁部から若干下方に突出しており、第2分極性電極(6)の下には前記セパレータ(7)が配置されている。
【0014】
第1リード部材(9)は、第1容器半体(2)の壁部を貫通して、容器(1)の内部空間から容器(1)の下側に引き出されている。第1リード部材(9)は2度屈曲され、該第1リード部材(9)の先端部(13)は、容器(1)の側面から突出すると共に、容器(1)の外側下面と略同一平面上に配置される。
【0015】
第1容器半体(2)の外側側面に沿って、第2容器半体(3)の一端は下方に延びている。第2リード部材(11)は、第2容器半体(3)のこの延出部分を通って容器(1)の下側に引き出されている。第2リード部材(11)は2度屈曲され、該第2リード部材(11)の先端部(15)は、第1リード部材(9)の先端部(13)と反対向きに容器(1)から突出すると共に、容器(1)の外側下面と略同一平面上に配置される。
【0016】
分極性電極(5)(6)には、活性炭粉末等をブロック状に成形したものが用いられる。これら分極性電極(5)(6)は、垂直方向に薄く形成されており、これらの両水平面部(上面部及び下面部)は、各側面部よりも面積が広い。セパレータ(7)には、ガラス繊維不織布、パルプの抄紙、又はポリ四フッ化エチレン(PTFE)等の絶縁性樹脂で形成されたフィルム等が用いられる。
【0017】
電気二重層コンデンサが非水系電気二重層コンデンサである場合、電解液には、例えば、トリ−エチル−メチル−アンモニウム−テトラ−フルオロ−ボレイド(EtMeNBF)又はテトラ−エチル−アンモニウム−テトラ−フルオロ−ボレイド(EtNBF)等の電解質を、カーボネート、ラクトン又はニトリル等の非プロトン性有機溶媒に溶かしたものが使用される。電気二重層コンデンサが水系電気二重層コンデンサである場合、電解液には、HSO又はKOH等の水溶液が使用される。
【0018】
第1リード部材(9)及び第2リード部材(11)は導電性金属で形成され、例えば、銅、ニッケル又はアルミニウム等の金属やステンレス等の合金で形成される。電気二重層コンデンサが非水系電気二重層コンデンサである場合、第1集電体(8)及び第2集電体(10)は、アルミニウム、チタン、又はステンレス等で形成される。従って、この場合、集電体として好適な材料であるアルミニウムやステンレス等を用いることにより、第1集電体(8)と第1リード部材(9)を一体化して同一の部材とし、第2集電体(10)と第2リード部材(11)を一体化して同一の部材とすることができる。電気二重層コンデンサが水系電気二重層コンデンサである場合、第1集電体(8)及び第2集電体(10)は、導電性ブチルゴム等で形成される。
【0019】
次に、本発明の電気二重層コンデンサの製造方法について説明する。図4は、本実施例の電気二重層コンデンサの分解斜視図である。第1容器半体(2)は、インサートモールド成形によって第1リード部材(9)に形成され、第2容器半体(3)は同様に第2リード部材(11)に形成される。第1容器半体(2)の窪みの底面上に配置された第1リード部材(9)の一部に導電性接着剤を塗布し、第1集電体(8)を第1容器半体(2)の窪みに嵌める。さらに、第1集電体(8)の内側に導電性接着剤を塗布し、該第1集電体(8)内に第1分極性電極(5)を嵌める。第2容器半体(3)、第2集電体(10)及び第2分極性電極(6)も同様に処理される。
【0020】
第1集電体(8)は、第1リード部材(9)上及び第1容器半体(2)の窪みの側面上に(すなわち容器(1)の内側側面上に)、膜状に形成してもよい。インサートモールド成形によって第1容器半体(2)を作製した後、例えば、スパッタリング又は蒸着等により、第1リード部材(9)上と第1容器半体(2)の窪みの側面上に集電体の材料を成膜することにより、膜状の第1集電体(8)を形成してもよい。第2集電体(10)についても同様である。
【0021】
第1分極性電極(5)が上方に向くように第1容器半体(2)を配置し、第1分極性電極(5)に電解液を含浸させる。また、第2分極性電極(6)にも電解液を含浸させる。そして、第1分極性電極(5)上に電解液が含浸したセパレータ(7)を載置した後、第1容器半体(2)上に第2容器半体(3)を載置し、第1容器半体(2)と第2容器半体(3)を超音波容着により接合する。なお、接着剤を用いて、第1容器半体(2)と第2容器半体(3)を接合してもよい。
【0022】
図5(a)は、第1集電体(8)及び第1リード部材(9)が組み合わされた状態を示す斜視図である。第1集電体(8)の外側底面は、第1リード部材(9)の水平部分に接合されている。第1分極性電極(5)の下面部は、第1集電体(8)の内側底面に導電性接着剤で接合されており、第1分極性電極(5)の周囲の側面部は、第1集電体(8)の4つの内側側面と夫々導電性接着剤で接合されている。第2分極性電極(6)及び第2集電体(10)も同様に構成されている。このようにして、第1分極性電極(5)と第1集電体(8)の接合面積を増加させることにより、第1集電体(8)の集電効果が高められて、電気二重層コンデンサの容量の増加が図られている。また、電気二重層コンデンサの内部抵抗の低下も図られている。本実施例の電気二重層コンデンサではさらに、第2分極性電極(6)及び第2集電体(10)の接合面積も増加させることにより、さらなる容量の増加と内部抵抗の低下が図られている。
【0023】
図5(b)に、第1集電体(8)及び第1リード部材(9)の第2実施形態を示す。第1集電体(8)は、第1分極性電極(5)の下面部が接合される水平部分(8a)と、長手方向に沿った第1分極性電極(5)の両側面部が夫々接合される2つの垂直部分(8b)(8c)とを具えている。第1集電体(8)は、第1分極性電極(5)の他の2つの側面部とは接合されない。第1リード部材(9)には、該第1集電体(8)の垂直部分(8b)(8c)と夫々接合される2つの垂直部分(9a)(9b)が形成されており、第1リード部材(9)は、第1集電体(8)を覆うように形成されている。第1集電体(8)は、メッキ処理、スパッタリングや溶融した樹脂を塗布する等の方法により、第1リード部材(9)に膜状に形成してもよい。第2集電体(10)及び第2リード部材(11)についても、図5(b)と同様に構成してもよい。
【0024】
先に述べたように、非水系電気二重層コンデンサでは、第1集電体(8)及び第1リード部材(9)を一体化できる。つまり、第1リード部材(9)を集電体として好適なアルミニウム等の材料で形成して、第1分極性電極(5)を第1リード部材(10)に直接接合すればよい。この場合、例えば図5(c)に示すように、図5(b)に示した第1リード部材(9)をアルミニウム等で形成し、これに第1分極性電極(5)を直接接合すればよい。第1分極性電極(5)の長手方向に沿った両側面部は、夫々垂直部分(9a)(9b)の内面部と接合される。第1分極性電極(5)の下面部は、第1リード部材(9)の水平部分と接合される。第1リード部材(9)は、適当な形状の板材を屈曲することにより作製される。第2リード部材(11)についても、図5(c)と同様に構成してもよい。
【0025】
図5(a)に示す第1実施形態では、第1集電体(8)は、第1分極性電極(5)の4つの側面部と接合しており、図5(b)に示す第2実施形態では、第1集電体(8)は、第1分極性電極(5)の2つの側面部と接合している。また、図5(c)に示す第3実施形態では、第1リード部材(9)は、第1分極性電極(5)の2つの側面部と接合している。しかしながら、第1集電体(8)又は第1リード部材(9)が、第1分極性電極(5)の水平面部(下面部)に加えて、第1分極性電極(5)の少なくとも一つの側面部と接合していれば、第1集電体(8)又は第1リード部材(9)の集電効果が高められて、電気二重層コンデンサの容量が増加する本発明の効果を得ることは可能である。例えば、図5(b)に示す第2実施形態において、第1集電体(8)の垂直部分(8b)と、第1リード部材(9)の垂直部分(9a)とを削除しても、また、図5(c)に示す第3実施形態において、第1リード部材(9)の垂直部分(9a)を削除しても本発明の効果は得られる。但し、これらの場合、図5(b)又は(c)に示す実施形態と比較して、第1集電体(8)又は第1リード部材(9)の集電効果は夫々低下する。第2集電体(10)及び第2リード部材(11)についても同様である。
【0026】
図6は、本発明の第2実施例のチップ型電気二重層コンデンサの斜視図である。図7は、図6に示すC−C線を含む垂直面で該電気二重層コンデンサを破断し、矢視方向に見た断面図である。図8は、図6に示すD−D線を含む垂直面で該電気二重層コンデンサを破断し、矢視方向に見た断面図である。垂直方向に薄い矩形の容器(1)は、開口が形成された箱状の第1部材(21)と、該開口を塞ぐ板状の第2部材(22)とから構成されている。
【0027】
垂直方向に薄い直方体のブロック状の第1分極性電極(5)及び第2分極性電極(6)は、容器(1)の内部空間内で横に並べられており、これらの間にシート状のセパレータ(7)が垂直に配置されている。第1集電体(8)は、第1分極性電極(5)の下面部と、セパレータ(7)側を除く3つの側面部とをほぼ覆うように、これら側面部と接合されている。板状の第1リード部材(9)は、セパレータ(7)と平行な容器(1)の内側側面に沿って配置されており、容器(1)の下側壁部を貫通して、容器(1)の内部空間から容器(1)の下側に引き出されている。第1リード部材(9)は1度屈曲され、その先端部(13)は、容器(1)の側面から突出すると共に、容器(1)の下面と略同一平面上に配置されている。
【0028】
第2集電体(10)は、第2分極性電極(5)の下面部と、セパレータ(7)側を除く3つの側面部とをほぼ覆うように、これら側面部と接合されている。板状の第2リード部材(11)は、容器(1)の内部空間において第1リード部材(9)と反対側に配置されている。該第2リード部材(11)は、容器(1)の内側側面に沿って配置されており、容器(1)の下壁部を貫通して、容器(1)の下側に引き出されている。第2リード部材(9)は1度屈曲され、その先端部(15)は、容器(1)の側面から第1リード部材(9)の先端部(13)と反対向きに突出すると共に、容器(1)の下面と略同一平面上に配置される。
【0029】
図9(a)は、第2実施例の電気二重層コンデンサにおける第1集電体(8)及び第1リード部材(9)の斜視図である。第1集電体(8)は、第1分極性電極(5)の下面部が接合される水平部分(8d)と、該水平部分(8d)の縁部から垂直に延びると共に、第1分極性電極(5)の3つの側面部が夫々接合される垂直部分(8e−g)とを有している。第1集電体(8)の垂直部分(8f)の外側側面は、第1リード部材(9)の垂直部分に接合される。第2集電体(10)及び第2リード部材(11)も同様に構成されている。
【0030】
図9(b)に、第1集電体(8)及び第1リード部材(9)の第2実施形態を示す。第1集電体(8)の形状は、図9(a)に示したものと同じであるが、第1リード部材(9)は2度屈曲されて、容器(1)の内側下面に沿って配置される水平部分(9d)が形成されている。第1集電体(8)の外側底面は該水平部分(9d)と接合される。第2集電体(10)及び第2リード部材(11)についても同様に構成されてもよい。
【0031】
非水系電気二重層コンデンサでは、第1集電体(8)及び第1リード部材(9)を一体化できる。この場合、第1リード部材(9)をアルミニウム等で形成し、例えば図9(c)に示すように、図9(b)に示した形状に、第1分極性電極(5)の(セパレータ(7)側を除く)3つの側面部と夫々接合される垂直部分(9e−g)を設けてもよい。第1リード部材(9)は、適当な形状の板材を屈曲することにより作製される。第1リード部材(9)の水平部分(9d)は、第1分極性電極(5)の下面と接合される。第2リード部材(11)も同様に構成されてもよい。
【0032】
図9(a)乃至(c)に示す実施形態では、第1集電体(8)又は第1リード部材(9)は、第1分極性電極(5)の3つの側面部と接合している。しかしながら、先述のように、第1集電体(8)又は第1リード部材(9)が、第1分極性電極(5)の下面部に加えて、第1分極性電極(5)の少なくとも一つの側面部と接合していれば、本発明の効果を得ることは可能である。例えば、図9(b)に示す第2実施形態において、第1集電体(8)の垂直部分(8e−g)の1つ又は2つを削除しても、また、図9(c)に示す第3実施形態において、第1リード部材(9)の垂直部分(9e−g)の1つ又は2つを削除しても、本発明の効果は得られる。但し、これらの場合、図9(b)又は(c)に示す実施形態と比較して、第1集電体(8)又は第1リード部材(9)の集電効果は夫々低下する。第2集電体(10)及び第2リード部材(11)についても同様である。
【0033】
本発明において、分極性電極(5)(6)の形状は、直方体のブロック状に限定されることはない。図10(a)及び(b)は、本発明の第3実施例の電気二重層コンデンサの断面図である。本実施例の電気二重層コンデンサは第2実施例と同じ外形を具えており、図10(a)は、図6におけるE−E線を含む水平面で第3実施例の電気二重層コンデンサを破断し、矢視方向に見た断面図であり、図10(b)は、図6におけるF−F線を含む垂直面で該電気二重層コンデンサを破断し、矢視方向に見た断面図である。
【0034】
第1分極性電極(5)及び第2分極性電極(6)は、垂直方向に薄い直角三角柱状に形成されており、これら分極性電極(5)(6)は、直角三角柱の斜面部を対向させて左右に並べて配置されており、セパレータ(7)は、これら斜面部の間に介在されている。第1集電体(8)は、第1分極性電極(5)の下面部と、該下面部に対して直角に交わる両側面部とをほぼ覆っており、これら側面部と接合されている。第1リード部材(9)は、図9(a)と同様に形成されており、第1集電体(8)の外側側面と接合されている。第2集電体(10)及び第2リード部材(11)も同様に構成されている。なお、第1集電体(8)を、第1分極性電極(5)の下面部と、第1分極性電極(5)の第1リード部材(9)側の側面部と接合するように形成してもよく、第2集電体(10)を、第2分極性電極(6)の下面部と、第2分極性電極(6)の第2リード部材(11)側の側面部と接合するように形成してもよい。
【0035】
以上に説明した本発明の実施例では、電気二重層コンデンサの容器(1)の形状は矩形であった。しかしながら、本発明において、容器(1)の形状は特に限定されることはない。例えば、容器(1)の形状は円柱状であってよく、また、それに併せて、分極性電極の形状も半円盤のブロック状に、又は半円柱状に形成されてよい。
【0036】
本発明は、水系又は非水系電解質電池にも適用できる。この場合、説明に用いた図において、例えば、第1分極性電極(5)は正活物質(91)に、第2分極性電極(6)は負活物質(92)に置き換わる。リチウムイオン電池に本発明を適用する場合、正活物質(91)には、コバルト酸リチウム、マンガン酸リチウム又はニッケル酸リチウムの粉末を加圧成形又は焼結したものが使用され、負活物質(92)には、グラファイト系炭素材料又はコークス系炭素材料の粉末を加圧成形又は焼結したものが使用される。電解液には、LiBF又はLiClO等のリチウム塩を溶解させた有機溶媒が使用される。有機溶媒には、プロピレンカーボネート又はガンマブチロラクトン等が使用される。セパレータ(7)には、ポリオフィレン、ポリエチレン又はポリプロピレン等の高分子多孔性フィルムが使用される。第1集電体(8)は、アルミニウム等で形成され、第2集電体(10)は銅等で形成される。ゆえに、第1集電体(8)を第1リード部材(9)と、第2集電体(10)を第2リード部材(11)と一体化してもよい。
【0037】
ニッケル水素電池に本発明を適用する場合、正活物質(91)には、ニッケル酸化物の粉末又はペレットを焼結又は圧縮成形したものが使用され、負活物質(92)には、Mm−Ni−Co−Mn−−Al(Mmは希土類元素の混合物)系の水素吸蔵合金の粉末又はペレットを焼結又は圧縮成形したものが使用される。電解液には、KOH又は高分子ヒドロゲル電解質が使用される。セパレータ(7)には、スルホン化ポリプロピレン等の高分子多孔性フィルムが使用される。第1集電体(8)及び第2集電体(10)には、発泡ニッケルが使用される。
【0038】
上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。
【図面の簡単な説明】
【図1】本発明に係る電気二重層コンデンサ又は電池の斜視図である。
【図2】図1におけるA−A線を含む垂直面で破断した、本発明に係る電気二重層コンデンサ又は電池の断面図である。
【図3】図1におけるB−B線を含む垂直面で破断した、本発明に係る電気二重層コンデンサ又は電池の断面図である。
【図4】本発明に係る電気二重層コンデンサ又は電池の製造工程を示す説明図である。
【図5】本発明に係る電気二重層コンデンサ又は電池の集電体及びリード部材の異なる実施形態を示す斜視図である。
【図6】本発明に係る電気二重層コンデンサ又は電池の第2実施例の斜視図である。
【図7】図6におけるC−C線を含む垂直面で破断した、本発明に係る電気二重層コンデンサ又は電池の第2実施例の断面図である。
【図8】図6におけるD−D線を含む垂直面で破断した、本発明に係る電気二重層コンデンサ又は電池の第2実施例の断面図である。
【図9】本発明に係る電気二重層コンデンサ又は電池の第2実施例における、集電体及びリード部材の異なる実施形態を示す斜視図である。
【図10】(a)図は、図6におけるE−E線を含む水平面で破断した、本発明に係る電気二重層コンデンサ又は電池の第3実施例の断面図である。(b)図は、図6におけるF−F線を含む垂直面で破断した、本発明に係る電気二重層コンデンサ又は電池の第3実施例の断面図である。
【符号の説明】
(1) 容器
(2) 第1容器半体
(3) 第2容器半体
(5) 第1分極性電極
(6) 第2分極性電極
(7) セパレータ
(8) 第1集電体
(9) 第1リード部材
(10) 第2集電体
(11) 第2リード部材
(91) 正活物質
(92) 負活物質
[0001]
[Technical field to which the invention belongs]
The present invention relates to an electric double layer capacitor and a battery comprising an aqueous or non-aqueous electrolyte.
[0002]
[Prior art]
A small coin-type electric double layer capacitor is widely used mainly as a backup power source in electronic devices such as mobile phones and digital cameras. As is well known, a coin-type electric double layer capacitor is housed in an internal space between a pair of metal cans that are insulated from each other with a separator interposed between a pair of polarizable electrodes. The polarizable electrode and the separator are impregnated with an aqueous or non-aqueous electrolyte (see Patent Document 1).
[0003]
Since various electronic components mounted on the circuit board are being chipped, a rectangular mounting region is often set on the circuit board for the electric double layer capacitor. However, when a coin-type electric double layer capacitor is disposed in a rectangular mounting region, the coin-type electric double layer capacitor has a disk shape, and thus a large empty portion is generated around each corner of the mounting region. For this reason, it is difficult to efficiently arrange various electronic components including the electric double layer capacitor on the circuit board on which the coin-type electric double layer capacitor is mounted. In addition, a button type battery using an aqueous or non-aqueous electrolyte has a similar problem. In order to solve this problem, it has been proposed to form the container shape of the electric double layer capacitor and the battery with an insulating material such as insulating resin, insulating ceramics or glass to form a rectangular shape (patent) Reference 2).
[0004]
[Patent Document 1]
JP-A-8-64484 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-216852
[Problems to be solved by the invention]
In recent years, small electric double layer capacitors and batteries used in electronic devices are further required to have a large capacity and a low internal resistance. Therefore, it is necessary to increase the capacity and reduce the internal resistance even in an electric double layer capacitor and a battery including a container formed of an insulating material. The present invention solves this problem and provides an electric double layer capacitor and a battery having a large capacity and a low internal resistance.
[0006]
[Means for Solving the Problems]
The electric double layer capacitor of the present invention includes a pair of polarizable electrodes impregnated with an electrolytic solution, a separator interposed between the polarizable electrodes and impregnated with the electrolytic solution, and a pair of collectors to which the polarizable electrodes are joined. The pair of polarizable electrodes is formed in a block shape or a column shape, and at least one current collector of the pair of current collectors is It is characterized in that it is bonded to the horizontal surface portion and one or more side surface portions of the polarizable electrode to be bonded.
[0007]
Furthermore, in the electric double layer capacitor of the present invention, the current collector joined to the horizontal surface portion and one or more side portions of the polarizable electrode is formed so that the polarizable electrode fits.
[0008]
[Action and effect]
By joining the current collector to the horizontal surface portion and one or more side surfaces of the polarizable electrode, the contact area between the current collector and the polarizable electrode is increased. Thereby, the capacity of the electric double layer capacitor is increased and the internal resistance is lowered. Furthermore, by forming the current collector so that the polarizable electrode is fitted, the polarizable electrode is reliably positioned on the current collector, and the manufacture of the electric double layer capacitor is facilitated. If the current collector and the polarizable electrode can be formed of the same material as the current collector and the lead member, the current collector is omitted and the lead member is joined to the horizontal surface portion and one or more side portions of the polarizable electrode. Furthermore, the lead member may be formed so that the polarizable electrode fits.
[0009]
In the above configuration, it is easily understood that the present invention can be applied to a battery by using one polarizable electrode as a positive active material and the other polarizable electrode as a negative active material.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view of a chip-type electric double layer capacitor of the present invention, and FIG. 2 is a cross-sectional view of the electric double layer capacitor taken along the line AA shown in FIG. FIG. FIG. 3 is a cross-sectional view of the electric double layer capacitor taken along the vertical plane including the line BB shown in FIG. 1 and viewed in the direction of the arrows. The electric double layer capacitor includes a rectangular container (1) made of an insulating material. The container (1) is formed thin in the vertical direction, and the material of the container (1) includes a liquid crystal polymer (LCP), an insulating resin such as deformed polyamide or nylon resin, a thermoplastic plastic such as polypropylene (PP), Ceramics such as alumina, or glass is used.
[0011]
The container (1) is configured by combining two constituent members composed of a rectangular block-shaped first container half (2) and a second container half (3) each having a rectangular depression. These container halves (2) and (3) are joined by performing ultrasonic welding, laser welding, or the like, or using an adhesive. The inner space of the container (1) is formed by combining the recesses of the container halves (2) and (3). In the internal space of the container (1), a first polarizable electrode (5), a second polarizable electrode (6), a separator (7), a first current collector (8) and a second current collector impregnated with an electrolyte solution are provided. The electric body (10) is accommodated. Furthermore, a part of the first lead member (9) and the second lead member (11) is also accommodated.
[0012]
The plate-shaped first lead member (9) is disposed on the inner lower surface of the container (1), and the box-shaped first current collector (8) opened on the first lead member (9). The bottom of the is joined. The first current collector (8) is fitted in the recess of the first container half (2). A first polarizable electrode (5) is fitted to the first current collector (8) and joined by a conductive adhesive. The upper surface of the first polarizable electrode (5) protrudes slightly upward from the edge of the first current collector (8), and a sheet-like shape formed in a rectangle on the first polarizable electrode (5). The separator (7) is arranged.
[0013]
The plate-like second lead member (11) is disposed on the inner upper surface of the container (1), and the box-shaped second current collector opened downward on the lower surface of the second lead member (11). The bottom of (10) is joined. The second current collector (10) is fitted in the recess of the second container half (3). A second polarizable electrode (6) is fitted into the second current collector (10) and joined by a conductive adhesive. The lower surface of the second polarizable electrode (6) projects slightly downward from the edge of the second current collector (10), and the separator (7) is located under the second polarizable electrode (6). Is arranged.
[0014]
The first lead member (9) penetrates the wall of the first container half (2) and is drawn out from the inner space of the container (1) to the lower side of the container (1). The first lead member (9) is bent twice, and the tip (13) of the first lead member (9) protrudes from the side surface of the container (1) and is substantially the same as the outer lower surface of the container (1). Arranged on a plane.
[0015]
One end of the second container half (3) extends downward along the outer side surface of the first container half (2). The second lead member (11) is drawn to the lower side of the container (1) through this extending portion of the second container half (3). The second lead member (11) is bent twice, and the tip (15) of the second lead member (11) is opposite to the tip (13) of the first lead member (9) in the container (1). And is disposed on substantially the same plane as the outer lower surface of the container (1).
[0016]
As the polarizable electrodes (5) and (6), an activated carbon powder or the like formed into a block shape is used. These polarizable electrodes (5) and (6) are thinly formed in the vertical direction, and both horizontal plane portions (upper surface portion and lower surface portion) have a larger area than each side surface portion. For the separator (7), a glass fiber nonwoven fabric, pulp paper, or a film formed of an insulating resin such as polytetrafluoroethylene (PTFE) is used.
[0017]
When the electric double layer capacitor is a non-aqueous electric double layer capacitor, the electrolyte includes, for example, tri-ethyl-methyl-ammonium-tetra-fluoro-boride (Et 3 MeNBF 4 ) or tetra-ethyl-ammonium-tetra- A solution obtained by dissolving an electrolyte such as fluoro-boride (Et 4 NBF 4 ) in an aprotic organic solvent such as carbonate, lactone or nitrile is used. When the electric double layer capacitor is a water-based electric double layer capacitor, an aqueous solution such as H 2 SO 4 or KOH is used as the electrolytic solution.
[0018]
The first lead member (9) and the second lead member (11) are made of a conductive metal, for example, a metal such as copper, nickel or aluminum, or an alloy such as stainless steel. When the electric double layer capacitor is a non-aqueous electric double layer capacitor, the first current collector (8) and the second current collector (10) are formed of aluminum, titanium, stainless steel, or the like. Therefore, in this case, the first current collector (8) and the first lead member (9) are integrated into the same member by using aluminum, stainless steel or the like which is a suitable material for the current collector, and the second member The current collector (10) and the second lead member (11) can be integrated into the same member. When the electric double layer capacitor is a water-based electric double layer capacitor, the first current collector (8) and the second current collector (10) are made of conductive butyl rubber or the like.
[0019]
Next, the manufacturing method of the electric double layer capacitor of the present invention will be described. FIG. 4 is an exploded perspective view of the electric double layer capacitor of the present embodiment. The first container half (2) is formed on the first lead member (9) by insert molding, and the second container half (3) is similarly formed on the second lead member (11). A conductive adhesive is applied to a part of the first lead member (9) disposed on the bottom surface of the recess of the first container half (2), and the first current collector (8) is attached to the first container half. Fit into the recess in (2). Furthermore, a conductive adhesive is applied to the inside of the first current collector (8), and the first polarizable electrode (5) is fitted into the first current collector (8). The second container half (3), the second current collector (10), and the second polarizable electrode (6) are similarly processed.
[0020]
The first current collector (8) is formed in a film shape on the first lead member (9) and on the side surface of the recess of the first container half (2) (that is, on the inner side surface of the container (1)). May be. After the first container half (2) is produced by insert molding, the current is collected on the first lead member (9) and the side surface of the depression of the first container half (2) by, for example, sputtering or vapor deposition. The film-shaped first current collector (8) may be formed by depositing a body material. The same applies to the second current collector (10).
[0021]
The first container half (2) is disposed so that the first polarizable electrode (5) faces upward, and the first polarizable electrode (5) is impregnated with the electrolytic solution. The second polarizable electrode (6) is also impregnated with the electrolyte. And after placing the separator (7) impregnated with the electrolyte on the first polarizable electrode (5), the second container half (3) is placed on the first container half (2), The first container half (2) and the second container half (3) are joined by ultrasonic deposition. In addition, you may join a 1st container half body (2) and a 2nd container half body (3) using an adhesive agent.
[0022]
FIG. 5A is a perspective view showing a state in which the first current collector (8) and the first lead member (9) are combined. The outer bottom surface of the first current collector (8) is joined to the horizontal portion of the first lead member (9). The lower surface portion of the first polarizable electrode (5) is bonded to the inner bottom surface of the first current collector (8) with a conductive adhesive, and the side surface portion around the first polarizable electrode (5) is The first current collector (8) is joined to each of the four inner side surfaces with a conductive adhesive. The second polarizable electrode (6) and the second current collector (10) are similarly configured. In this way, by increasing the junction area between the first polarizable electrode (5) and the first current collector (8), the current collection effect of the first current collector (8) is enhanced, and the electric current is increased. The capacity of the multilayer capacitor is increased. In addition, the internal resistance of the electric double layer capacitor is reduced. In the electric double layer capacitor of the present embodiment, the junction area of the second polarizable electrode (6) and the second current collector (10) is also increased, thereby further increasing the capacity and lowering the internal resistance. Yes.
[0023]
FIG. 5B shows a second embodiment of the first current collector (8) and the first lead member (9). The first current collector (8) has a horizontal portion (8a) to which the lower surface portion of the first polarizable electrode (5) is joined, and both side surface portions of the first polarizable electrode (5) along the longitudinal direction. It comprises two vertical parts (8b) (8c) to be joined. The first current collector (8) is not joined to the other two side surfaces of the first polarizable electrode (5). The first lead member (9) is formed with two vertical portions (9a) and (9b) respectively joined to the vertical portions (8b) and (8c) of the first current collector (8). The one lead member (9) is formed so as to cover the first current collector (8). The first current collector (8) may be formed in a film shape on the first lead member (9) by a method such as plating, sputtering, or applying a molten resin. The second current collector (10) and the second lead member (11) may also be configured in the same manner as in FIG.
[0024]
As described above, in the non-aqueous electric double layer capacitor, the first current collector (8) and the first lead member (9) can be integrated. That is, the first lead member (9) may be formed of a material such as aluminum suitable as a current collector, and the first polarizable electrode (5) may be directly joined to the first lead member (10). In this case, for example, as shown in FIG. 5 (c), the first lead member (9) shown in FIG. 5 (b) is formed of aluminum or the like, and the first polarizable electrode (5) is directly joined thereto. That's fine. Both side surfaces along the longitudinal direction of the first polarizable electrode (5) are joined to the inner surfaces of the vertical portions (9a) and (9b), respectively. The lower surface portion of the first polarizable electrode (5) is joined to the horizontal portion of the first lead member (9). The first lead member (9) is produced by bending a plate material having an appropriate shape. The second lead member (11) may also be configured in the same manner as in FIG.
[0025]
In the first embodiment shown in FIG. 5A, the first current collector (8) is joined to the four side surfaces of the first polarizable electrode (5), and the first current collector (8) shown in FIG. In the second embodiment, the first current collector (8) is joined to the two side surfaces of the first polarizable electrode (5). Moreover, in 3rd Embodiment shown in FIG.5 (c), the 1st lead member (9) is joined to the two side parts of the 1st polarizable electrode (5). However, the first current collector (8) or the first lead member (9) is at least one of the first polarizable electrodes (5) in addition to the horizontal surface (lower surface) of the first polarizable electrode (5). If the two side portions are joined, the current collecting effect of the first current collector (8) or the first lead member (9) is enhanced, and the effect of the present invention is obtained in which the capacity of the electric double layer capacitor is increased. It is possible. For example, in the second embodiment shown in FIG. 5B, the vertical portion (8b) of the first current collector (8) and the vertical portion (9a) of the first lead member (9) may be deleted. In the third embodiment shown in FIG. 5C, the effect of the present invention can be obtained even if the vertical portion (9a) of the first lead member (9) is deleted. However, in these cases, the current collection effect of the first current collector (8) or the first lead member (9) is reduced as compared with the embodiment shown in FIG. 5 (b) or (c). The same applies to the second current collector (10) and the second lead member (11).
[0026]
FIG. 6 is a perspective view of a chip type electric double layer capacitor according to a second embodiment of the present invention. FIG. 7 is a cross-sectional view of the electric double layer capacitor taken along the vertical plane including line CC shown in FIG. 6 and viewed in the direction of the arrows. FIG. 8 is a cross-sectional view of the electric double layer capacitor taken along the vertical plane including the line DD shown in FIG. 6 and viewed in the direction of the arrows. The rectangular container (1) that is thin in the vertical direction is composed of a box-shaped first member (21) in which an opening is formed and a plate-shaped second member (22) that closes the opening.
[0027]
The first polarizable electrode (5) and the second polarizable electrode (6) in the form of a rectangular parallelepiped that is thin in the vertical direction are arranged side by side in the internal space of the container (1), and a sheet-like shape is formed between them. The separator (7) is arranged vertically. The first current collector (8) is joined to these side surfaces so as to substantially cover the lower surface of the first polarizable electrode (5) and the three side surfaces excluding the separator (7) side. The plate-like first lead member (9) is disposed along the inner side surface of the container (1) parallel to the separator (7), penetrates the lower side wall of the container (1), and passes through the container (1 ) From the inner space of the container (1). The first lead member (9) is bent once, and its tip (13) protrudes from the side surface of the container (1) and is disposed on substantially the same plane as the lower surface of the container (1).
[0028]
The second current collector (10) is joined to these side surfaces so as to substantially cover the lower surface of the second polarizable electrode (5) and the three side surfaces excluding the separator (7) side. The plate-like second lead member (11) is disposed on the opposite side of the first lead member (9) in the internal space of the container (1). The second lead member (11) is disposed along the inner side surface of the container (1), passes through the lower wall portion of the container (1), and is drawn out to the lower side of the container (1). . The second lead member (9) is bent once and its tip (15) protrudes from the side surface of the container (1) in the opposite direction to the tip (13) of the first lead member (9). It is arranged on substantially the same plane as the lower surface of (1).
[0029]
FIG. 9A is a perspective view of the first current collector (8) and the first lead member (9) in the electric double layer capacitor of the second embodiment. The first current collector (8) includes a horizontal portion (8d) to which the lower surface portion of the first polarizable electrode (5) is joined, and extends vertically from an edge of the horizontal portion (8d). Each of the three side surfaces of the polar electrode (5) has a vertical portion (8e-g) to be joined. The outer side surface of the vertical portion (8f) of the first current collector (8) is joined to the vertical portion of the first lead member (9). The second current collector (10) and the second lead member (11) are similarly configured.
[0030]
FIG. 9B shows a second embodiment of the first current collector (8) and the first lead member (9). The shape of the first current collector (8) is the same as that shown in FIG. 9A, but the first lead member (9) is bent twice along the inner lower surface of the container (1). A horizontal portion (9d) is formed. The outer bottom surface of the first current collector (8) is joined to the horizontal portion (9d). The second current collector (10) and the second lead member (11) may be similarly configured.
[0031]
In the non-aqueous electric double layer capacitor, the first current collector (8) and the first lead member (9) can be integrated. In this case, the first lead member (9) is formed of aluminum or the like, and, for example, as shown in FIG. 9 (c), the shape of the first polarizable electrode (5) in the shape shown in FIG. You may provide the vertical part (9e-g) respectively joined to three side parts (except the (7) side). The first lead member (9) is produced by bending a plate material having an appropriate shape. The horizontal portion (9d) of the first lead member (9) is joined to the lower surface of the first polarizable electrode (5). The second lead member (11) may be configured similarly.
[0032]
In the embodiment shown in FIGS. 9A to 9C, the first current collector (8) or the first lead member (9) is joined to the three side surfaces of the first polarizable electrode (5). Yes. However, as described above, the first current collector (8) or the first lead member (9) is at least one of the first polarizable electrodes (5) in addition to the lower surface of the first polarizable electrode (5). The effect of the present invention can be obtained if it is bonded to one side surface portion. For example, in the second embodiment shown in FIG. 9 (b), even if one or two of the vertical portions (8eg) of the first current collector (8) are deleted, FIG. 9 (c) In the third embodiment, the effect of the present invention can be obtained even if one or two of the vertical portions (9eg) of the first lead member (9) are deleted. However, in these cases, the current collection effect of the first current collector (8) or the first lead member (9) is reduced as compared with the embodiment shown in FIG. 9 (b) or (c). The same applies to the second current collector (10) and the second lead member (11).
[0033]
In the present invention, the shape of the polarizable electrodes (5) and (6) is not limited to a rectangular parallelepiped block shape. 10A and 10B are cross-sectional views of the electric double layer capacitor of the third embodiment of the present invention. The electric double layer capacitor of the present embodiment has the same outer shape as that of the second embodiment, and FIG. 10A is a rupture of the electric double layer capacitor of the third embodiment on the horizontal plane including the line EE in FIG. 10B is a cross-sectional view seen in the direction of the arrow, and FIG. 10B is a cross-sectional view taken in the direction of the arrow of FIG. is there.
[0034]
The first polarizable electrode (5) and the second polarizable electrode (6) are formed in the shape of a right triangular prism that is thin in the vertical direction. These polarizable electrodes (5) and (6) are formed on the inclined surface of the right triangular prism. The separators (7) are interposed between these slope portions. The first current collector (8) substantially covers the lower surface portion of the first polarizable electrode (5) and both side surface portions perpendicular to the lower surface portion, and is joined to these side surface portions. The first lead member (9) is formed in the same manner as in FIG. 9 (a), and is joined to the outer side surface of the first current collector (8). The second current collector (10) and the second lead member (11) are similarly configured. The first current collector (8) is joined to the lower surface portion of the first polarizable electrode (5) and the side surface portion of the first polarizable electrode (5) on the first lead member (9) side. The second current collector (10) may include a lower surface portion of the second polarizable electrode (6) and a side surface portion of the second polarizable electrode (6) on the second lead member (11) side. You may form so that it may join.
[0035]
In the embodiment of the present invention described above, the shape of the electric double layer capacitor container (1) was rectangular. However, in the present invention, the shape of the container (1) is not particularly limited. For example, the shape of the container (1) may be a columnar shape, and the shape of the polarizable electrode may be formed in a semi-disc block shape or a semi-cylindrical shape.
[0036]
The present invention can also be applied to an aqueous or non-aqueous electrolyte battery. In this case, in the figure used for description, for example, the first polarizable electrode (5) is replaced with a positive active material (91), and the second polarizable electrode (6) is replaced with a negative active material (92). When the present invention is applied to a lithium ion battery, as the positive active material (91), a powder of lithium cobaltate, lithium manganate, or lithium nickelate that has been pressed or sintered is used, and a negative active material ( For 92), a graphite-type carbon material or a coke-type carbon material powder formed by pressure molding or sintering is used. As the electrolytic solution, an organic solvent in which a lithium salt such as LiBF 4 or LiClO 4 is dissolved is used. As the organic solvent, propylene carbonate or gamma butyrolactone is used. For the separator (7), a polymer porous film such as polyolefin, polyethylene or polypropylene is used. The first current collector (8) is made of aluminum or the like, and the second current collector (10) is made of copper or the like. Therefore, the first current collector (8) may be integrated with the first lead member (9), and the second current collector (10) may be integrated with the second lead member (11).
[0037]
When the present invention is applied to a nickel metal hydride battery, the positive active material (91) is a sintered or compression-molded nickel oxide powder or pellet, and the negative active material (92) is Mm- Ni-Co-Mn--Al (Mm is a mixture of rare earth elements) based hydrogen storage alloy powder or pellets sintered or compression-molded are used. For the electrolyte, KOH or a polymer hydrogel electrolyte is used. A polymer porous film such as sulfonated polypropylene is used for the separator (7). Foamed nickel is used for the first current collector (8) and the second current collector (10).
[0038]
The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. Each part configuration of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.
[Brief description of the drawings]
FIG. 1 is a perspective view of an electric double layer capacitor or battery according to the present invention.
2 is a cross-sectional view of the electric double layer capacitor or battery according to the present invention, broken along a vertical plane including the AA line in FIG. 1. FIG.
3 is a cross-sectional view of the electric double layer capacitor or battery according to the present invention, broken along a vertical plane including the line BB in FIG. 1. FIG.
FIG. 4 is an explanatory view showing a manufacturing process of the electric double layer capacitor or battery according to the present invention.
FIG. 5 is a perspective view showing different embodiments of the current collector and lead member of the electric double layer capacitor or battery according to the present invention.
FIG. 6 is a perspective view of a second embodiment of the electric double layer capacitor or battery according to the present invention.
7 is a cross-sectional view of a second embodiment of the electric double layer capacitor or battery according to the present invention, broken along a vertical plane including the line CC in FIG. 6. FIG.
8 is a cross-sectional view of a second embodiment of the electric double layer capacitor or battery according to the present invention, broken along a vertical plane including the line DD in FIG. 6. FIG.
FIG. 9 is a perspective view showing different embodiments of the current collector and the lead member in the second example of the electric double layer capacitor or battery according to the present invention.
10A is a cross-sectional view of a third embodiment of the electric double layer capacitor or battery according to the present invention, taken along the horizontal plane including the line E-E in FIG. 6; FIG. (B) The figure is sectional drawing of the 3rd Example of the electric double layer capacitor or battery which concerns on the vertical plane containing the FF line in FIG. 6, and which concerns on this invention.
[Explanation of symbols]
(1) Container (2) First container half (3) Second container half (5) First polarizable electrode (6) Second polarizable electrode (7) Separator (8) First current collector (9 ) First lead member (10) Second current collector (11) Second lead member (91) Positive active material (92) Negative active material

Claims (10)

電解液が含浸した一対の分極性電極(5)(6)と、これら分極性電極(5)(6)間に介在されると共に電解液が含浸したセパレータ(7)と、これら分極性電極(5)(6)が夫々接合する一対の集電体(8)(10)とを樹脂製の容器(1)に収納している電気二重層コンデンサにおいて、
前記一対の分極性電極(5)(6)は、ブロック状又は柱状に形成されており、
前記一対の集電体(8)(10)の少なくとも何れか一方の集電体(8)(10)は、これに接合する分極性電極(5)(6)の水平面部及び1つ以上の側面部と接合していることを特徴とする電気二重層コンデンサ。
A pair of polarizable electrodes (5) and (6) impregnated with the electrolytic solution, a separator (7) interposed between the polarizable electrodes (5) and (6) and impregnated with the electrolytic solution, and these polarizable electrodes ( 5) In the electric double layer capacitor in which the pair of current collectors (8) and (10) to which (6) is joined are housed in the resin container (1),
The pair of polarizable electrodes (5) and (6) are formed in a block shape or a column shape,
The current collector (8) (10) of at least one of the pair of current collectors (8) (10) includes a horizontal surface portion of the polarizable electrode (5) (6) and one or more current collectors. An electric double layer capacitor characterized by being bonded to a side surface portion.
前記一方の集電体(8)(10)は、これに接合する分極性電極(5)(6)が嵌まるように形成されている請求項1に記載の電気二重層コンデンサ。The electric double layer capacitor according to claim 1, wherein the one current collector (8) (10) is formed so that a polarizable electrode (5) (6) bonded thereto is fitted. 前記一対の集電体(8)(10)と夫々接合する一対のリード部材(9)(11)を具えており、前記一方の集電体(8)(10)と接合するリード部材(9)(11)は、前記一方の集電体(8)(10)を覆っている請求項1又は請求項2に記載の電気二重層コンデンサ。A pair of lead members (9) and (11) joined to the pair of current collectors (8) and (10), respectively, and a lead member (9) joined to the one current collector (8) and (10). 3) The electric double layer capacitor according to claim 1 or 2, wherein (11) covers the one current collector (8) (10). 前記一対の集電体(8)(10)と夫々接合する一対のリード部材(9)(11)を具えており、前記一方の集電体(8)(10)は、これに接合するリード部材(9)(11)上に、又はこれに接合するリード部材(9)(11)上及び前記容器(1)の内側側面上に、膜状に形成されている請求項1又は請求項2に記載の電気二重層コンデンサ。The pair of current collectors (8) and (10) is provided with a pair of lead members (9) and (11), respectively, and the one current collector (8) and (10) are leads connected to the current collectors (8) and (10). The film according to claim 1 or 2, wherein the film is formed on the members (9) and (11) or on the lead members (9) and (11) and the inner side surface of the container (1). The electric double layer capacitor described in 1. 電解液が含浸した一対の分極性電極(5)(6)と、これら分極性電極(5)(6)間に介在されると共に電解液が含浸したセパレータ(7)とを樹脂製の容器(1)に収納し、前記一対の分極性電極(5)(6)が夫々接合する一対のリード部材(9)(11)を具えた電気二重層コンデンサにおいて、
前記一対の分極性電極(5)(6)は、ブロック状又は柱状に形成されており、
前記一対のリード部材(9)(11)の少なくとも何れか一方のリード部材(9)(11)は、これに接合する分極性電極(5)(6)の水平面部及び1つ以上の側面部と接合していることを特徴とする電気二重層コンデンサ。
A pair of polarizable electrodes (5) and (6) impregnated with an electrolytic solution and a separator (7) interposed between the polarizable electrodes (5) and (6) and impregnated with an electrolytic solution (resin container ( 1) In an electric double layer capacitor comprising a pair of lead members (9) and (11) which are housed in 1) and to which the pair of polarizable electrodes (5) and (6) are joined,
The pair of polarizable electrodes (5) and (6) are formed in a block shape or a column shape,
At least one of the pair of lead members (9) and (11) is composed of a horizontal plane portion and one or more side portions of the polarizable electrodes (5) and (6) to be joined thereto. An electric double layer capacitor characterized by being bonded to
前記一方のリード部材(9)(11)は、これに接合する分極性電極(5)(6)が嵌まるように形成されている請求項5に記載の電気二重層コンデンサ。6. The electric double layer capacitor according to claim 5, wherein the one lead member (9) (11) is formed so that a polarizable electrode (5) (6) bonded thereto is fitted. 電解液が含浸した正活物質(91)及び負活物質(92)と、これら活物質(91)(92)間に介在されると共に電解液が含浸したセパレータ(7)と、これら活物質(91)(92)が夫々接合する一対の集電体(8)(10)とを樹脂製の容器(1)に収納した電池において、
前記正活物質(91)及び前記負活物質(92)は、ブロック状又は柱状に形成されており、
前記一対の集電体(8)(10)の少なくとも何れか一方の集電体(8)(10)は、これに接合する前記正活物質(91)又は前記負活物質(92)の水平面部及び1つ以上の側面部と接合していることを特徴とする電池。
The positive active material (91) and negative active material (92) impregnated with the electrolytic solution, the separator (7) interposed between the active materials (91) and (92) and impregnated with the electrolytic solution, and these active materials ( 91) In a battery in which a pair of current collectors (8) and (10) to which 92 and 92 are joined are housed in a resin container (1),
The positive active material (91) and the negative active material (92) are formed in a block shape or a column shape,
At least one current collector (8) (10) of the pair of current collectors (8) (10) is a horizontal surface of the positive active material (91) or the negative active material (92) bonded thereto. A battery characterized by being bonded to a surface portion and one or more side surface portions.
前記一方の集電体(8)(10)は、これに接合する前記正活物質(91)又は前記負活物質(92)が嵌まるように形成されている請求項7に記載の電池。The battery according to claim 7, wherein the one current collector (8) (10) is formed so that the positive active material (91) or the negative active material (92) bonded thereto is fitted therein. 前記一対の集電体(8)(10)と夫々接合する一対のリード部材(9)(11)を具えており、前記一方の集電体(8)(10)と接合するリード部材(9)(11)は、前記一方の集電体(8)(10)を覆っている請求項7又は請求項8に記載の電池。A pair of lead members (9) and (11) joined to the pair of current collectors (8) and (10), respectively, and a lead member (9) joined to the one current collector (8) and (10). The battery according to claim 7 or 8, wherein (11) covers the one current collector (8) (10). 前記一対の集電体(8)(10)と夫々接合する一対のリード部材(9)(11)を具えており、前記一方の集電体(8)(10)は、これに接合するリード部材(9)(11)上に、又はこれに接合するリード部材(9)(11)上及び前記容器(1)の内側側面上に、膜状に形成されている請求項7又は請求項8に記載の電池。The pair of current collectors (8) and (10) is provided with a pair of lead members (9) and (11), respectively, and the one current collector (8) and (10) are leads connected to the current collectors (8) and (10). The film is formed on the member (9) (11) or on the lead member (9) (11) and the inner side surface of the container (1) joined to the member (9) (11). The battery described in 1.
JP2003195486A 2003-07-11 2003-07-11 Electric double layer capacitor and battery Pending JP2005032938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003195486A JP2005032938A (en) 2003-07-11 2003-07-11 Electric double layer capacitor and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003195486A JP2005032938A (en) 2003-07-11 2003-07-11 Electric double layer capacitor and battery

Publications (1)

Publication Number Publication Date
JP2005032938A true JP2005032938A (en) 2005-02-03

Family

ID=34206280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003195486A Pending JP2005032938A (en) 2003-07-11 2003-07-11 Electric double layer capacitor and battery

Country Status (1)

Country Link
JP (1) JP2005032938A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520214A (en) * 2008-03-25 2011-07-14 エイ 123 システムズ,インク. High energy high power electrodes and batteries
JP2012009803A (en) * 2010-06-23 2012-01-12 Samsung Electro-Mechanics Co Ltd Electrochemical capacitor
JP2012104804A (en) * 2010-10-15 2012-05-31 Seiko Instruments Inc Electronic component and electronic device
KR101570673B1 (en) 2015-06-11 2015-11-27 주식회사 씨엘씨팩토리 Container for electric energy storage device and method of manufacturing the same, and electric energy storage device
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
JP2011520214A (en) * 2008-03-25 2011-07-14 エイ 123 システムズ,インク. High energy high power electrodes and batteries
US9299966B2 (en) 2008-03-25 2016-03-29 A123 Systems Llc High energy high power electrodes and batteries
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
JP2012009803A (en) * 2010-06-23 2012-01-12 Samsung Electro-Mechanics Co Ltd Electrochemical capacitor
JP2012104804A (en) * 2010-10-15 2012-05-31 Seiko Instruments Inc Electronic component and electronic device
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
KR101570673B1 (en) 2015-06-11 2015-11-27 주식회사 씨엘씨팩토리 Container for electric energy storage device and method of manufacturing the same, and electric energy storage device

Similar Documents

Publication Publication Date Title
TWI237280B (en) Electrical double layer capacitor and electrolytic battery
US7031140B2 (en) Electric double layer capacitor, electrolytic cell and process for fabricating same
KR100362552B1 (en) Manufacturing method of batteries
KR101067168B1 (en) Chip-type electric double layer capacitor and method for manufacturing the same
JP2008300593A (en) Nonaqueous electrical storage device and its manufacturing method, battery pack
JP2006049289A (en) Case for battery, battery, case for electric double layer capacitor, and electric double layer capacitor
JP2007005717A (en) Electrochemical element
KR100644529B1 (en) Separator sheet and method for manufacturing electric double layer capacitor using the same
JP2005032938A (en) Electric double layer capacitor and battery
US7054138B2 (en) Electric double layer capacitor and electrolyte battery
US8765286B2 (en) Electrochemical device
JP2007012921A (en) Electrochemical element and its manufacturing method
JP2007214391A (en) Capacitor
KR100720994B1 (en) Method for manufacturing of ultra-thin electric double layer capacitor
JP2004356461A (en) Electric double layer chip capacitor and chip electrolyte battery
JP2005166974A (en) Electric double layer capacitor, electrolytic battery, and their manufacturing methods
JP2004356462A (en) Electric double layer chip capacitor and chip electrolyte battery
WO2016067851A1 (en) Electricity storage device and method for manufacturing electricity storage device
JP2007036026A (en) Electric double layer capacitor and electrolyte battery
US20110188169A1 (en) Electric double layer capacitor cell, electric double layer capacitor package having the same, and methods of manufacturing the same
US7079376B2 (en) Electric double layer capacitor, electrolyte battery and method for manufacturing the same
JP2005019790A (en) Electric double layer capacitor and battery
JP6249394B2 (en) Electrochemical cell with lead terminals
JP2005032786A (en) Electric double layer capacitor and method of manufacturing battery
JP2005026536A (en) Electric double layer capacitor and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519