JP2004356461A - Electric double layer chip capacitor and chip electrolyte battery - Google Patents

Electric double layer chip capacitor and chip electrolyte battery Download PDF

Info

Publication number
JP2004356461A
JP2004356461A JP2003153728A JP2003153728A JP2004356461A JP 2004356461 A JP2004356461 A JP 2004356461A JP 2003153728 A JP2003153728 A JP 2003153728A JP 2003153728 A JP2003153728 A JP 2003153728A JP 2004356461 A JP2004356461 A JP 2004356461A
Authority
JP
Japan
Prior art keywords
housing
electrode terminal
chip
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003153728A
Other languages
Japanese (ja)
Inventor
Seiji Omura
大村  誠司
Yasuhiro Kishimoto
泰広 岸本
Mamoru Kimoto
衛 木本
Kikuko Katou
菊子 加藤
Hiroshi Nakajima
中島  宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003153728A priority Critical patent/JP2004356461A/en
Priority to EP04735134A priority patent/EP1630834A1/en
Priority to PCT/JP2004/007680 priority patent/WO2004107373A1/en
Priority to CNA2004800006731A priority patent/CN1698148A/en
Priority to US10/558,484 priority patent/US7248460B2/en
Priority to TW093115248A priority patent/TWI237280B/en
Publication of JP2004356461A publication Critical patent/JP2004356461A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer chip capacitor and a chip electrolyte battery which can be made into square shape as well as disc shape while preventing leakage of electrolyte or external intrusion of moisture. <P>SOLUTION: A positive electrode 42, a separator 44 and a negative electrode 46 are laid in layer and the positive electrode 42 and the negative electrode 46 are connected, respectively, with one end of a positive electrode terminal 20 and a negative electrode terminal 22 to produce a cell 40 which is contained in a housing 50 along with electrolyte and the other ends of the terminals 20 and 22 are extended outward through the wall 52 of the housing 50. In such an electric double layer chip capacitor, the housing 50 is formed of an insulating material and the positive electrode terminal 20 and/or the negative electrode terminal 22 has a bend 26 in the wall 52 of the housing 50. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水系又は非水系電解質を具えるチップ型の電気二重層コンデンサ及び電解質電池に関するものである。
【0002】
【従来の技術】
コイン型電気二重層コンデンサは、大容量で、過充電や過放電のときにも寿命に影響のないコンデンサとして、携帯電話やデジタルカメラ等の電子機器のバックアップ用電源として広く用いられている。コイン型電気二重層コンデンサは、正極、セパレータ、負極を積層したセルを、絶縁された正極缶と負極缶との間に収容し、ガスケットを介して封止したものである。セルには、水系又は非水系の電解液が含浸されている(例えば、特許文献1参照)。
【0003】
回路基板に実装される電子部品には、実装領域として回路基板に矩形領域を設定することが一般的である。しかしながら、コイン型電気二重層コンデンサは円盤形状であるから、コンデンサを取り囲む矩形領域には、他の部品を配置できないデッドスペースが生じ、回路基板の小型化を阻害する。
【0004】
コイン型電気二重層コンデンサを角型形状とすると、上記デッドスペースを小さくでき、実装領域を有効に活用できる。しかしながら、電極缶を角型形状にすると、ガスケットでの封口が困難になる問題があった。
【0005】
【特許文献1】
特開平8−64484号公報
【0006】
【発明が解決しようとする課題】
そこで、金属缶ではなく、絶縁性の樹脂やセラミックス等から、電気二重層コンデンサの容器を形成することが考えられる。
この場合、セルに接続されたリード部材や集電体が、セルを囲む容器から引き出されることとなる。しかしながら、リード部材や集電体と容器との密着性が高くないために、容器内部の電解液が、これらの間から漏れ出たり、外部の水分が容器内部に侵入する虞れがある。
特に非水系の電解液を用いた場合、水分の侵入により電気分解が発生して性能が低下してしまう。
上記同様の問題は、コイン型電気二重層コンデンサと同様な構造のコイン型水系又は非水系電解質電池を角型化する場合にも生ずる。
【0007】
本発明の目的は、電解液の漏れや外部からの水分の侵入がなく、円盤状だけでなく角型形状とすることもできるチップ型電気二重層コンデンサ及びチップ型電解質電池を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明のチップ型電気二重層コンデンサは、
正極、セパレータ及び負極を積層し、正極と負極に夫々正極端子及び負極端子の一端を夫々接続してなるセルが、電解液と共にハウジングに収容され、端子の他端はハウジングの壁を貫通して外部に延びるチップ型電気二重層コンデンサにおいて、
ハウジングは、絶縁性材料により形成され、
正極端子及び/又は負極端子は、ハウジングの壁内で折り曲げられた折曲部を有している。
【0009】
折曲部を有する電極端子には、ハウジングの壁を貫通する部分に、粗面化処理が施されていることが望ましい。
【0010】
【作用及び効果】
本発明のチップ型電気二重層コンデンサは、正極端子及び/又は負極端子をハウジングの壁内で折り曲げることにより、電極端子がハウジングの内側から外側まで至る経路を長くでき、また、経路を複雑化できる。その結果、電解液の漏れや水分の侵入が阻止される。
また、電極端子が、ハウジングを構成する絶縁性材料と接触する位置に、粗面化処理を施した粗面部を形成しすると、粗面部は、絶縁性材料との密着性を高め、さらに絶縁性材料との接触面積を大きくできるから、電解液の漏れや水分の侵入を阻止することができる。
【0011】
【発明の実施の形態】
<チップ型非水系電気二重層コンデンサ>
図1(a)及び図1(b)は、本発明のチップ型電気二重層コンデンサ(10)の斜視図である。チップ型電気二重層コンデンサ(10)は、絶縁性材料で形成された直方体状のハウジング(50)を有する。絶縁性材料として、液晶ポリマー(LCP)、変形ポリアミド、ナイロン樹脂等の絶縁性樹脂や、ポリエチレンテレフタレート(PBT)、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)等の絶縁性の熱可塑性プラスチック、セラミックス、ガラス等を例示できる。
【0012】
ハウジング(50)は、第1半体(54)と第2半体(56)とを組み合わせて構成される。ハウジング(50)の内部には、後記するセル(40)が電解液とともに収容される。ハウジング(50)から、セル(40)の正極(42)及び負極(44)に電気的に接続される電極端子(20)(20a)が、ハウジング(50)の壁(52)を貫通して、外部に引き出されている。また、図1(a)は、正極端子(20)が引き出されている状態を示しており、図1(b)は、負極端子(20a)がハウジング(50)から引き出された状態を示している。
【0013】
正極端子(20)は、正極(42)(後述する)と電気的に接続され、ハウジング(50)の空間に配置される水平部分が正集電体となることから、非水系電気二重層コンデンサの場合、アルミニウム等の板材を加工して作成される。
また、負極端子(20a)は、負極(46)(後述する)と電気的に接続され、ハウジング(50)の空間に配置される水平部分が負集電体となることから、非水系電気二重層コンデンサの場合、ステンレス鋼等の板材を加工して作成される。
【0014】
図2は、図1(a)における線A−Aに沿う断面図である。第1半体(54)及び第2半体(56)は、共に中央に直方体状の凹みが形成され、互いに凹みの位置を合わせることにより、ハウジング(50)内にセル(40)を収容する空間が形成される。なお、この空間は、一方の半体を板状として形成してもよい。
セル(40)は、第1半体(54)を下側としたときに、第1半体(54)側から正極端子(20)、正極(42)、セパレータ(44)、負極(46)及び負極端子(20a)の順に積層され、負極端子(20a)の上側に第2半体(56)が被せられており、空間の内部には電解液が注入されている。
【0015】
正極(42)及び負極(46)には、活性炭粉末又は活性炭繊維をシート状又はブロック状に成形したものや、フラーレンやカーボンナノチューブ等のカーボンナノマテリアルを用いることもできる。また、正極(42)には、活性炭/炭素コンポジットを用いることもできる。
セパレータ(44)は、ガラス繊維不織布、パルプの抄紙、ポリ四フッ化エチレン(PTFE)等の絶縁性樹脂で形成されたフィルム等が用いられる。
電解液は、トリ−エチル−メチル−アンモニウム−テトラ−フルオロ−ボレイド(EtMeNBF)やテトラ−エチル−アンモニウム−テトラ−フルオロ−ボレイド(EtNBF)等の電解質を非プロトン性有機溶媒に溶かした電解液が使用される。非プロトン性有機溶媒として、カーボネート、ラクトン、ニトリル、アミド、ニトロアルカン、スルホン、スルホキシド、ホスフェード、ジニトリル、又は、エーテルニトリルのような二官能性溶媒が使用される。これらの具体例として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ガンマブチロラクトン(GBL)、スルホラン(SFL)又はアセトニトリル(AN)を例示できる。さらに、1−メチル−3−メチル−イミダゾリウム等のイオン性液体を用いてもよい。
【0016】
正極端子(20)及び負極端子(20a)の各電極端子は、図2、図3に示すように、セル(40)の正極(42)及び負極(44)に導電性結着材(図示せず)を用いて電気的に接続される電極接触部(24)と、該電極接触部(24)から延出し、ハウジング(50)の壁(52)を貫通する部分(25)、及び、ハウジング(50)から外部に延出し、ハウジング(50)の外周に沿って折り曲げられ、回路基板にロウ付けされるリード部(28)とから構成される。
【0017】
電極端子(20)(20a)は、図2及び図3に示すように、ハウジング(50)の壁(52)内で折り曲げられた折曲部(26)を有している。電極端子(20)(20a)を略90°に複数回折り曲げることが望ましいが、電極端子(20)(20a)を、ハウジング(50)の内部空間から、壁(52)を通って外部に引き出し可能であれば、折曲げ回数は限定されない。また、折曲げ角度も90°に限定されず、円弧状に屈曲させてもよい。
電極端子(20)(20a)をハウジング(50)の壁(52)内で折り曲げることにより、ハウジング(50)の内部空間と外部とを結ぶ電極端子(20)(20a)の経路が直線状でなく複雑化し、また、経路を長くすることができるため、電解液の漏れ及び外部からの水分の侵入が効果的に防止される。
【0018】
なお、電極端子(20)(20a)がハウジング(50)の壁(52)を貫通する部分(25)に、図2及び図3に示すように、粗面化処理を施し、表面粗さを粗くすることにより、ハウジング(50)の絶縁性材料と電極端子(20)(20a)との密着性が高まり、さらに粗面化処理による凹凸により、絶縁性材料との接触面積を大きくでき、さらに、電解液の漏れや水分が侵入する経路を複雑化できるから、上記折曲げ加工と組み合わせることにより、電解液の漏れ及び外部からの水分の侵入を可及的に阻止できる。
粗面化処理された部分の表面粗さは、樹脂、セラミックス、ガラス等のハウジング(50)を形成する絶縁性材料との密着性を高めるために、中心線平均粗さにて0.1μm以上10μm以下とすることが望ましい。粗面化処理は、図3に示すように、ハウジング(50)の壁(52)を貫通する部分(25)のみに施すことが最も望ましいが、電極接触部(24)やリード部(28)にも粗面化処理を施してもよい。粗面化処理は、正極端子(20)及び負極端子(20a)(以下、必要に応じてこれら端子をまとめて「電極端子」という)の両方に施すことが望ましいが、何れか一方のみに施してもよい。
粗面化処理は、例えば、ヤスリで軽くこすったり、エッチング、メッキ、サンドブラストを施すこと等により実施できる。なお、電極端子(20)(20a)は、図3に示すように、幅に比して厚さが非常に薄いので、電極端子(20)(20a)の上下両面に粗面化処理を施せば、側面には粗面化処理を施さなくてもよい。側面に粗面化処理を施してもよいのは勿論である。
【0019】
電極端子(20)(20a)は、上記折曲げ加工及び必要に応じて粗面化処理が施された後、モールド成形により、電極端子(20)(20a)の電極接触部(24)の裏面及び電極接触部(24)の外周が絶縁性材料で取り囲まれるように成形する。電極接触部(24)の表面は、電極(42)(46)との導電性確保のため露出させておく。これにより、セル(40)を収容する空間を具えた半体(54)(56)が得られる。
【0020】
作成された半体(54)(56)の一方(以下の説明では、正極端子(20)を収容した第1半体(54))を、図4に示すように、空間が上側に向くように配置し、電極接触部(24)の表面に導電性接着剤を塗布し、所定寸法に切断した正極(42)、セパレータ(44)を順に積層する。
次に、負極(46)又は第2半体(56)側の電極接触部(24)の表面に導電性接着剤を塗布し、第2半体(56)内に負極(46)を配置する。その後、第2半体(56)を空間が下側を向くようにして被せ、第1半体(54)と第2半体(56)の周縁部を超音波溶着等により接合する。なお、正極(42)、セパレータ(44)及び負極(46)には予め電解液を真空充填により含浸させておくことが望ましい。
その後、ハウジング(50)から突出している電極端子(20)(20a)をハウジング(50)の周面に沿って下向きに曲げて、図1及び図2に示すようなチップ型電気二重層コンデンサ(10)が完成する。
【0021】
得られたチップ型電気二重層コンデンサ(10)は、上記のように、電極端子(20)(20a)がハウジング(50)を貫通する部分(25)に折曲げ加工を施しているから、電解液の漏れや外部から水分が侵入しやすい経路が直線状とはならず、経路が複雑化され、また、直線の場合に比べて経路が長くなるため、電解液の漏れや外部からの水分の侵入が阻止される。また、折曲げ加工を施すことにより、電極端子(20)(20a)のリード部(28)(28)を折り曲げる際にも電極端子(20)(20a)が抜けたり動いたりすることが阻止され、チップ型電気二重層コンデンサ(10)の性能を安定化させ、歩留りの向上を図ることができる。
なお、電極端子(20)(20a)がハウジング(50)を貫通する部分(25)に、折曲げ加工に加えて、粗面化処理を施すと、電極端子(20)(20a)とハウジング(50)の絶縁性材料との密着性を高めることができ、また、粗面部(26)の凹凸により絶縁性材料との接触面積を大きくでき、さらに、電解液の漏れや水分が侵入する経路を複雑化できるから、電解液の漏れや外部からの水分の侵入を効果的に阻止できる。
【0022】
なお、上記実施例では、構造の簡略化を図るために正集電体に用いられる材料を用いて正極端子(20)を形成し、負集電体に用いられる材料を用いて負極端子(20a)を形成したが、正極端子(20)と正極(42)、又は、負極端子(20a)と負極(46)との間に夫々集電体を介在させてもよい。この場合、集電体は、各電極端子(20)(20a)にメッキ処理により施してもよいし、板状の集電体を電極端子(20)(20a)と正極(42)又は負極(46)との間に挟むようにしてもよい。
【0023】
<チップ型水系電気二重層コンデンサ>
本発明は、チップ型水系電気二重層コンデンサにも適用できる。
チップ型水系電気二重層コンデンサは、上記チップ型非水系電気二重層コンデンサと下記に示す電解液等の材料が異なるだけで、構造、製造方法は実質的に同じである。
電解液は、HSO、KOH、LiClO等の水溶液が使用される。
集電体は、金属材料ではない導電性ブチルゴムや導電性エラストマーを例示できる。
セパレータは、ポリプロピレンのシート、ポリエチレン多孔膜、ガラス繊維不織布等を例示できる。
【0024】
<チップ型非水系電解質電池>
本発明は、チップ型非水系電解質電池にも適用できる。
チップ型電解質電池は、上記チップ型電気二重層コンデンサと下記に示すように一部の材料が異なるだけで、構造、製造方法は実質的に同じである。
この場合、上記非水系電気二重層コンデンサの正極及び負極は夫々正活物質、負活物質に置き換わる。正活物質としてコバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム等の粉末を加圧成形又は焼結したものが例示でき、負活物質として、グラファイト系炭素材料やコークス系炭素材料の粉末を加圧成形又は焼結したものが例示できる。
また、電解液には、リチウム塩を溶解させた有機溶媒が使用される。リチウム塩として、LiBF、LiClO、LiPF、LiAsF、Li(CFN、LiCSOを例示でき、有機溶媒としてプロピレンカーボネート、ガンマブチロラクトン、又はこれら何れかと鎖状炭酸エステルとの混合液を例示できる。鎖状炭酸エステルとして、ジメチルカーボネート(DMC、DEC)、エチルメチルカーボネート(EMC)を例示できる。
セパレータには、ポリオフィレン、ポリエチレン、ポリプロピレン等の高分子多孔性フィルムが使用される。
正集電体は、アルミニウム等で形成され、負集電体は、銅等で形成される。
なお、正極端子をアルミニウム等で形成し、負極端子を銅等で形成することにより、集電体を省略することもできる。
【0025】
<チップ型水系電解質電池>
本発明は、チップ型水系電解質電池にも適用できる。
この場合、上記非水系電気二重層コンデンサの正極及び負極は夫々正活物質、負活物質に置き換わる。例えばリチウムイオン電池の場合、正活物質としてニッケル酸化物の粉末又はペレットを焼結又は圧縮成形したものが例示でき、負活物質として、Mm−Ni−Co−Mn−Al(Mmは希土類元素の混合物)系の水素吸蔵合金粉末又はペレットを焼結又は圧縮成形したものが例示できる。
また、電解液には、KOH又は高分子ヒドロゲル電解質が使用される。
セパレータには、スルホン化ポリプロピレン等の高分子多孔性フィルムが使用される。
正集電体及び負集電体は、発泡ニッケルが使用される。
電極端子は、銅、アルミニウム、ニッケル等を使用することができる。
【0026】
上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
【0027】
上記実施例では、角型形状のチップ型電気二重層コンデンサ及びチップ型電解質電池について説明したが、ハウジングを円形皿状とし、電極端子の電極接触部を円形とすることによって、円盤状のチップ型電気二重層コンデンサ等を作成できる。また、楕円等、その他形状のものを作成することもできる。
【図面の簡単な説明】
【図1】(a)は、本発明のチップ型電気二重層コンデンサを正極端子が引き出される側から見た斜視図、(b)は、負極端子が引き出される側から見た斜視図である。
【図2】図1(a)の線A−Aに沿う断面図である。
【図3】電極端子の斜視図である。
【図4】チップ型電気二重層コンデンサの組立工程を示す説明図である。
【符号の説明】
(10) チップ型電気二重層コンデンサ
(20) 正極端子
(20a) 負極端子
(26) 折曲部
(40) セル
(42) 正極
(44) セパレータ
(46) 負極
(50) ハウジング
(52) 壁面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a chip type electric double layer capacitor including an aqueous or non-aqueous electrolyte and an electrolyte battery.
[0002]
[Prior art]
A coin-type electric double layer capacitor is widely used as a backup power supply for electronic devices such as a mobile phone and a digital camera as a capacitor having a large capacity and having no influence on its life even when overcharged or overdischarged. The coin-type electric double-layer capacitor is one in which a cell in which a positive electrode, a separator, and a negative electrode are laminated is housed between an insulated positive electrode can and a negative electrode can, and sealed via a gasket. The cell is impregnated with an aqueous or non-aqueous electrolytic solution (for example, see Patent Document 1).
[0003]
In general, a rectangular area is set on an electronic component mounted on a circuit board as a mounting area on the circuit board. However, since the coin-type electric double-layer capacitor has a disk shape, a dead space in which other components cannot be arranged occurs in a rectangular region surrounding the capacitor, which hinders miniaturization of a circuit board.
[0004]
When the coin-type electric double layer capacitor has a square shape, the dead space can be reduced, and the mounting area can be effectively used. However, when the electrode can was formed in a square shape, there was a problem that sealing with a gasket became difficult.
[0005]
[Patent Document 1]
JP-A-8-64484
[Problems to be solved by the invention]
Therefore, it is conceivable to form the container of the electric double layer capacitor from an insulating resin, ceramics, or the like instead of a metal can.
In this case, the lead member and the current collector connected to the cell are drawn out of the container surrounding the cell. However, since the adhesion between the lead member or the current collector and the container is not high, there is a possibility that the electrolyte solution inside the container leaks out from between them, or that external moisture enters the inside of the container.
In particular, when a non-aqueous electrolytic solution is used, electrolysis occurs due to intrusion of moisture, and the performance is reduced.
The same problem as described above also occurs when a coin-type aqueous or non-aqueous electrolyte battery having the same structure as the coin-type electric double-layer capacitor is squared.
[0007]
An object of the present invention is to provide a chip-type electric double-layer capacitor and a chip-type electrolyte battery which can be formed not only in a disk shape but also in a square shape without leakage of electrolyte or intrusion of moisture from the outside. .
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the chip-type electric double-layer capacitor of the present invention,
A cell in which a positive electrode, a separator, and a negative electrode are laminated, and a cell formed by connecting one end of a positive electrode terminal and one end of a negative electrode terminal to the positive electrode and the negative electrode, respectively, is housed in a housing together with an electrolytic solution, and the other end of the terminal penetrates a wall of the housing. In the chip type electric double layer capacitor extending to the outside,
The housing is formed of an insulating material,
The positive electrode terminal and / or the negative electrode terminal have a bent portion in a wall of the housing.
[0009]
It is preferable that the electrode terminal having the bent portion is subjected to a surface roughening treatment at a portion penetrating the wall of the housing.
[0010]
[Action and effect]
In the chip-type electric double layer capacitor of the present invention, by bending the positive electrode terminal and / or the negative electrode terminal in the wall of the housing, the path of the electrode terminal from the inside to the outside of the housing can be lengthened, and the path can be complicated. . As a result, leakage of the electrolyte and intrusion of moisture are prevented.
In addition, if a roughened surface portion is formed at a position where the electrode terminal comes into contact with the insulating material forming the housing, the roughened surface portion enhances the adhesion with the insulating material and further increases the insulating property. Since the contact area with the material can be increased, leakage of the electrolytic solution and intrusion of moisture can be prevented.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
<Chip type non-aqueous electric double layer capacitor>
FIGS. 1A and 1B are perspective views of a chip type electric double layer capacitor (10) of the present invention. The chip type electric double layer capacitor (10) has a rectangular parallelepiped housing (50) formed of an insulating material. Examples of the insulating material include insulating resins such as liquid crystal polymer (LCP), deformed polyamide and nylon resin, insulating thermoplastics such as polyethylene terephthalate (PBT), polypropylene (PP), and polyphenylene sulfide (PPS), ceramics, Glass and the like can be exemplified.
[0012]
The housing (50) is configured by combining a first half (54) and a second half (56). A cell (40) described later is accommodated inside the housing (50) together with the electrolytic solution. From the housing (50), electrode terminals (20) (20a) electrically connected to the positive electrode (42) and the negative electrode (44) of the cell (40) penetrate the wall (52) of the housing (50). Has been pulled out. FIG. 1A shows a state in which the positive electrode terminal (20) is drawn out, and FIG. 1B shows a state in which the negative electrode terminal (20a) is drawn out of the housing (50). I have.
[0013]
The positive electrode terminal (20) is electrically connected to the positive electrode (42) (described later), and the horizontal portion disposed in the space of the housing (50) serves as a positive current collector. In the case of, it is created by processing a plate material such as aluminum.
The negative electrode terminal (20a) is electrically connected to the negative electrode (46) (to be described later), and a horizontal portion disposed in the space of the housing (50) serves as a negative current collector. In the case of a multilayer capacitor, it is made by processing a plate material such as stainless steel.
[0014]
FIG. 2 is a cross-sectional view taken along line AA in FIG. The first half (54) and the second half (56) each have a rectangular parallelepiped recess formed in the center, and the recesses are aligned with each other to accommodate the cell (40) in the housing (50). A space is formed. In this space, one half may be formed in a plate shape.
The cell (40) has a positive electrode terminal (20), a positive electrode (42), a separator (44), and a negative electrode (46) from the first half (54) side when the first half (54) is on the lower side. And the negative electrode terminal (20a) are stacked in this order, the second half (56) is covered on the upper side of the negative electrode terminal (20a), and the electrolyte is injected into the space.
[0015]
For the positive electrode (42) and the negative electrode (46), a material obtained by molding activated carbon powder or activated carbon fiber into a sheet or block shape, or a carbon nanomaterial such as fullerene or carbon nanotube can be used. Activated carbon / carbon composite can also be used for the positive electrode (42).
As the separator (44), a glass fiber nonwoven fabric, pulp papermaking, a film formed of an insulating resin such as polytetrafluoroethylene (PTFE), or the like is used.
The electrolytic solution may be an electrolyte such as tri-ethyl-methyl-ammonium-tetra-fluoro-borate (Et 3 MeNBF 4 ) or tetra-ethyl-ammonium-tetra-fluoro-borate (Et 4 NBF 4 ). An electrolytic solution dissolved in is used. As aprotic organic solvents, use is made of bifunctional solvents such as carbonates, lactones, nitriles, amides, nitroalkanes, sulphones, sulphoxides, phosphates, dinitrile or ether nitriles. Specific examples thereof include propylene carbonate (PC), ethylene carbonate (EC), gamma-butyrolactone (GBL), sulfolane (SFL) and acetonitrile (AN). Further, an ionic liquid such as 1-methyl-3-methyl-imidazolium may be used.
[0016]
As shown in FIGS. 2 and 3, each of the positive electrode terminal (20) and the negative electrode terminal (20a) is connected to a conductive binder (not shown) on the positive electrode (42) and the negative electrode (44) of the cell (40). An electrode contact portion (24) electrically connected to the housing (50), a portion (25) extending from the electrode contact portion (24) and penetrating the wall (52) of the housing (50), and the housing (50), and a lead portion (28) that is bent along the outer periphery of the housing (50) and brazed to the circuit board.
[0017]
As shown in FIGS. 2 and 3, the electrode terminals (20) and (20a) have a bent portion (26) bent in a wall (52) of the housing (50). It is desirable to bend the electrode terminals (20) and (20a) a plurality of times at approximately 90 °, but the electrode terminals (20) and (20a) are drawn out from the internal space of the housing (50) through the wall (52) to the outside. If possible, the number of bends is not limited. Further, the bending angle is not limited to 90 °, and may be bent in an arc shape.
By bending the electrode terminals (20) (20a) in the wall (52) of the housing (50), the path of the electrode terminals (20) (20a) connecting the internal space of the housing (50) and the outside is linear. Therefore, it is possible to prevent the electrolyte solution from leaking and the invasion of moisture from the outside, because the structure can be complicated and the path can be lengthened.
[0018]
As shown in FIG. 2 and FIG. 3, a portion (25) where the electrode terminals (20) and (20 a) penetrate the wall (52) of the housing (50) is subjected to a surface roughening treatment to reduce the surface roughness. By making the surface rough, the adhesion between the insulating material of the housing (50) and the electrode terminals (20) (20a) is increased, and the contact area with the insulating material can be increased by the unevenness due to the roughening treatment. In addition, since the leakage of the electrolyte and the path through which moisture enters can be complicated, the leakage of the electrolyte and the invasion of moisture from the outside can be prevented as much as possible in combination with the bending process.
The surface roughness of the surface-roughened portion is 0.1 μm or more in terms of center line average roughness in order to enhance the adhesion with the insulating material forming the housing (50) such as resin, ceramics, and glass. It is desirable that the thickness be 10 μm or less. As shown in FIG. 3, the surface roughening treatment is most preferably performed only on the portion (25) penetrating the wall (52) of the housing (50). However, the electrode contact portion (24) and the lead portion (28) are preferably used. May be subjected to a roughening treatment. The surface roughening treatment is desirably performed on both the positive electrode terminal (20) and the negative electrode terminal (20a) (hereinafter, these terminals are collectively referred to as “electrode terminals” as necessary), but only one of them is performed. You may.
The surface roughening treatment can be performed by, for example, gently rubbing with a file or performing etching, plating, sandblasting, or the like. As shown in FIG. 3, the electrode terminals (20) and (20a) are very thin compared to the width, so that the upper and lower surfaces of the electrode terminals (20) and (20a) are roughened. In this case, the side surface need not be subjected to the surface roughening treatment. Of course, the side surface may be subjected to a roughening treatment.
[0019]
The electrode terminals (20) and (20a) are subjected to the above-mentioned bending and, if necessary, roughening treatment, and then molded to form a back surface of the electrode contact portion (24) of the electrode terminals (20) and (20a). And, the outer periphery of the electrode contact portion (24) is formed so as to be surrounded by an insulating material. The surface of the electrode contact portion (24) is exposed to ensure conductivity with the electrodes (42) and (46). As a result, a half body (54) (56) having a space for accommodating the cell (40) is obtained.
[0020]
One of the prepared halves (54) (56) (in the following description, the first half (54) accommodating the positive electrode terminal (20)) is positioned so that the space faces upward as shown in FIG. And a conductive adhesive is applied to the surface of the electrode contact portion (24), and the positive electrode (42) and the separator (44) cut to predetermined dimensions are sequentially laminated.
Next, a conductive adhesive is applied to the surface of the negative electrode (46) or the electrode contact portion (24) on the second half (56) side, and the negative electrode (46) is arranged in the second half (56). . Thereafter, the second half (56) is placed so that the space faces downward, and the peripheral portions of the first half (54) and the second half (56) are joined by ultrasonic welding or the like. It is desirable that the positive electrode (42), the separator (44) and the negative electrode (46) are previously impregnated with an electrolytic solution by vacuum filling.
Thereafter, the electrode terminals (20) (20a) protruding from the housing (50) are bent downward along the peripheral surface of the housing (50), so that a chip-type electric double layer capacitor (FIG. 1 and FIG. 2) is formed. 10) is completed.
[0021]
In the obtained chip-type electric double layer capacitor (10), as described above, the electrode terminal (20) (20a) is bent at the portion (25) passing through the housing (50). Routes that are prone to leaking liquid and water intrusion from the outside are not linear, which complicates the route and makes the route longer than in the case of a straight line. Intrusion is prevented. Further, by performing the bending process, the electrode terminals (20) (20a) are prevented from coming off or moving even when the lead portions (28) (28) of the electrode terminals (20) (20a) are bent. In addition, the performance of the chip type electric double layer capacitor (10) can be stabilized, and the yield can be improved.
In addition, when a part (25) through which the electrode terminals (20) and (20a) penetrate the housing (50) is subjected to a surface roughening treatment in addition to bending, the electrode terminals (20) and (20a) and the housing ( 50) The adhesiveness with the insulating material can be increased, the contact area with the insulating material can be increased by the unevenness of the rough surface portion (26), and furthermore, the leakage path of the electrolytic solution and the path through which moisture enters can be improved. Since it can be complicated, it is possible to effectively prevent leakage of the electrolytic solution and intrusion of moisture from the outside.
[0022]
In the above embodiment, in order to simplify the structure, the positive terminal (20) is formed using the material used for the positive current collector, and the negative terminal (20a) is formed using the material used for the negative current collector. ), A current collector may be interposed between the positive electrode terminal (20) and the positive electrode (42) or between the negative electrode terminal (20a) and the negative electrode (46). In this case, the current collector may be applied to each of the electrode terminals (20) and (20a) by plating, or a plate-shaped current collector may be formed with the electrode terminals (20) and (20a) and the positive electrode (42) or the negative electrode ( 46).
[0023]
<Chip type water-based electric double layer capacitor>
The present invention is also applicable to a chip type water-based electric double layer capacitor.
The structure and manufacturing method of the chip-type water-based electric double-layer capacitor are substantially the same as those of the above-mentioned chip-type non-aqueous electric double-layer capacitor except for the materials such as the electrolytic solution described below.
As the electrolytic solution, an aqueous solution such as H 2 SO 4 , KOH, and LiClO 4 is used.
Examples of the current collector include conductive butyl rubber and conductive elastomer that are not metal materials.
Examples of the separator include a polypropylene sheet, a polyethylene porous film, and a glass fiber nonwoven fabric.
[0024]
<Chip type non-aqueous electrolyte battery>
The present invention can be applied to a chip type nonaqueous electrolyte battery.
The structure and manufacturing method of the chip-type electrolyte battery are substantially the same as those of the above-mentioned chip-type electric double-layer capacitor, except that some materials are different as described below.
In this case, the positive and negative electrodes of the non-aqueous electric double layer capacitor are replaced with a positive active material and a negative active material, respectively. Examples of the positive active material include those obtained by press-molding or sintering powders of lithium cobaltate, lithium manganate, lithium nickelate, and the like. As the negative active material, powder of a graphite-based carbon material or a coke-based carbon material is pressed. Molded or sintered ones can be exemplified.
In addition, an organic solvent in which a lithium salt is dissolved is used for the electrolytic solution. Examples of the lithium salt include LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , Li (CF 3 O 2 ) 2 N, and LiC 4 F 9 SO 3. As an organic solvent, propylene carbonate, gamma-butyrolactone, or a chain thereof is used. A mixed solution with a carbonic acid ester can be exemplified. Examples of the chain carbonate include dimethyl carbonate (DMC, DEC) and ethyl methyl carbonate (EMC).
As the separator, a polymer porous film such as polyolefin, polyethylene, or polypropylene is used.
The positive current collector is formed of aluminum or the like, and the negative current collector is formed of copper or the like.
Note that the current collector can be omitted by forming the positive electrode terminal with aluminum or the like and the negative electrode terminal with copper or the like.
[0025]
<Chip type aqueous electrolyte battery>
The present invention can also be applied to a chip-type aqueous electrolyte battery.
In this case, the positive and negative electrodes of the non-aqueous electric double layer capacitor are replaced with a positive active material and a negative active material, respectively. For example, in the case of a lithium ion battery, as a positive active material, a material obtained by sintering or compression molding nickel oxide powder or pellets can be exemplified. As a negative active material, Mm-Ni-Co-Mn-Al (Mm is a rare earth element) Examples thereof include sintering or compression molding of (mixture) -based hydrogen storage alloy powder or pellets.
In addition, KOH or a polymer hydrogel electrolyte is used as the electrolyte.
As the separator, a polymer porous film such as sulfonated polypropylene is used.
Foamed nickel is used for the positive current collector and the negative current collector.
For the electrode terminals, copper, aluminum, nickel, or the like can be used.
[0026]
The description of the above embodiments is intended to explain the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. The configuration of each part of the present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope described in the claims.
[0027]
In the above embodiment, the square-shaped chip-type electric double-layer capacitor and the chip-type electrolyte battery have been described. However, by making the housing into a circular dish shape and making the electrode contact portions of the electrode terminals circular, a disk-shaped chip-type is formed. Electric double layer capacitors can be made. Also, other shapes such as an ellipse can be created.
[Brief description of the drawings]
FIG. 1A is a perspective view of a chip-type electric double layer capacitor of the present invention as viewed from a side from which a positive terminal is drawn out, and FIG. 1B is a perspective view as viewed from a side from which a negative terminal is drawn out.
FIG. 2 is a cross-sectional view taken along line AA of FIG.
FIG. 3 is a perspective view of an electrode terminal.
FIG. 4 is an explanatory view showing an assembling process of the chip-type electric double layer capacitor.
[Explanation of symbols]
(10) Chip type electric double layer capacitor (20) Positive electrode terminal (20a) Negative electrode terminal (26) Bend (40) Cell (42) Positive electrode (44) Separator (46) Negative electrode (50) Housing (52) Wall surface

Claims (4)

正極(42)、セパレータ(44)及び負極(46)を積層し、正極(42)と負極(46)に夫々正極端子(20)及び負極端子(20a)の一端を夫々接続してなるセル(40)が、電解液と共にハウジング(50)に収容され、端子(20)(20a)の他端はハウジング(50)の壁(52)を貫通して外部に延びるチップ型電気二重層コンデンサにおいて、
ハウジング(50)は、絶縁性材料により形成され、
正極端子(20)及び/又は負極端子(20a)は、ハウジング(50)の壁(52)内で折り曲げられた折曲部(26)を有していることを特徴とするチップ型電気二重層コンデンサ。
A positive electrode (42), a separator (44), and a negative electrode (46) are stacked, and a positive electrode (42) and a negative electrode (46) are connected to one end of a positive electrode terminal (20) and one end of a negative electrode terminal (20a), respectively. 40) is housed in the housing (50) together with the electrolytic solution, and the other ends of the terminals (20) and (20a) extend outside through the wall (52) of the housing (50).
The housing (50) is formed of an insulating material,
The chip-type electric double layer, wherein the positive electrode terminal (20) and / or the negative electrode terminal (20a) has a bent portion (26) bent in a wall (52) of a housing (50). Capacitors.
折曲部(26)を有する正極端子(20)及び/又は負極端子(20a)は、ハウジング(50)の壁(52)を貫通する部分に、粗面化処理が施されている請求項1に記載のチップ型電気二重層コンデンサ。The roughening treatment is applied to a portion of the positive electrode terminal (20) and / or the negative electrode terminal (20a) having the bent portion (26) at a portion penetrating the wall (52) of the housing (50). 2. The chip-type electric double-layer capacitor according to 1. 正活物質、セパレータ及び負活物質を積層し、正活物質と負活物質に夫々正極端子及び負極端子の一端を夫々接続してなるセルが、電解液と共にハウジングに収容され、端子の他端はハウジングの壁を貫通して外部に延びるチップ型電解質電池において、
ハウジングは、絶縁性材料により形成され、
正極端子及び/又は負極端子は、ハウジングの壁内で折り曲げられた折曲部を有していることを特徴とするチップ型電解質電池。
A cell formed by laminating a positive active material, a separator and a negative active material, and connecting one end of a positive electrode terminal and one end of a negative electrode terminal to the positive active material and the negative active material, respectively, is housed in a housing together with an electrolytic solution, and the other end of the terminal. Is a chip-type electrolyte battery that extends outside through the wall of the housing,
The housing is formed of an insulating material,
The positive electrode terminal and / or the negative electrode terminal have a bent portion bent in a wall of the housing, wherein the chip-type electrolyte battery is provided.
折曲部を有する正極端子及び/又は負極端子は、ハウジングの壁を貫通する部分に、粗面化処理が施されている請求項3に記載のチップ型電解質電池。4. The chip-type electrolyte battery according to claim 3, wherein the positive electrode terminal and / or the negative electrode terminal having the bent portion are subjected to a surface roughening treatment at a portion penetrating a wall of the housing. 5.
JP2003153728A 2003-05-30 2003-05-30 Electric double layer chip capacitor and chip electrolyte battery Pending JP2004356461A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003153728A JP2004356461A (en) 2003-05-30 2003-05-30 Electric double layer chip capacitor and chip electrolyte battery
EP04735134A EP1630834A1 (en) 2003-05-30 2004-05-27 Electric double layer capacitor and electrolytic cell
PCT/JP2004/007680 WO2004107373A1 (en) 2003-05-30 2004-05-27 Electric double layer capacitor and electrolytic cell
CNA2004800006731A CN1698148A (en) 2003-05-30 2004-05-27 Electric double layer capacitor and electrolytic cell
US10/558,484 US7248460B2 (en) 2003-05-30 2004-05-27 Electric double layer capacitor and electrolytic cell
TW093115248A TWI237280B (en) 2003-05-30 2004-05-28 Electrical double layer capacitor and electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153728A JP2004356461A (en) 2003-05-30 2003-05-30 Electric double layer chip capacitor and chip electrolyte battery

Publications (1)

Publication Number Publication Date
JP2004356461A true JP2004356461A (en) 2004-12-16

Family

ID=34048578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153728A Pending JP2004356461A (en) 2003-05-30 2003-05-30 Electric double layer chip capacitor and chip electrolyte battery

Country Status (2)

Country Link
JP (1) JP2004356461A (en)
CN (1) CN1698148A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158700A (en) * 2003-10-30 2005-06-16 Kyocera Corp Battery case and battery
WO2007086569A1 (en) * 2006-01-30 2007-08-02 Kyocera Corporation Container for electricity accumulator and battery and electric double layer capacitor employing same
US8169773B2 (en) 2010-06-23 2012-05-01 Samsung Electro-Mechanics Co., Ltd. Electrochemical capacitor
KR101222872B1 (en) 2011-08-08 2013-01-25 비나텍주식회사 Super capacitor having case terminal and manufacturing method thereof
KR101240802B1 (en) 2010-04-12 2013-03-11 삼성에스디아이 주식회사 Secondary Battery
JP2013191749A (en) * 2012-03-14 2013-09-26 Kojima Press Industry Co Ltd Capacitor
JP2013239435A (en) * 2012-04-17 2013-11-28 Semiconductor Energy Lab Co Ltd Power storage device and method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110002084A1 (en) 2009-07-06 2011-01-06 Samsung Electro-Mechanics Co., Ltd. Chip-type electric double layer capacitor and method of manufacturing the same
CN101644723B (en) * 2009-08-20 2012-12-05 浙江富来森能源科技有限公司 Unit device for measuring performance of electrode material of double electric layer capacitor in water solution system and measuring method therefor
CN115980148B (en) * 2023-03-22 2023-06-09 深圳一代科技有限公司 Double-electric-layer capacitive thin film sensor and related products, devices and methods

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158700A (en) * 2003-10-30 2005-06-16 Kyocera Corp Battery case and battery
JP4671652B2 (en) * 2003-10-30 2011-04-20 京セラ株式会社 Battery case and battery
WO2007086569A1 (en) * 2006-01-30 2007-08-02 Kyocera Corporation Container for electricity accumulator and battery and electric double layer capacitor employing same
KR101240802B1 (en) 2010-04-12 2013-03-11 삼성에스디아이 주식회사 Secondary Battery
US8169773B2 (en) 2010-06-23 2012-05-01 Samsung Electro-Mechanics Co., Ltd. Electrochemical capacitor
KR101222872B1 (en) 2011-08-08 2013-01-25 비나텍주식회사 Super capacitor having case terminal and manufacturing method thereof
JP2013191749A (en) * 2012-03-14 2013-09-26 Kojima Press Industry Co Ltd Capacitor
JP2013239435A (en) * 2012-04-17 2013-11-28 Semiconductor Energy Lab Co Ltd Power storage device and method of manufacturing the same
US9735443B2 (en) 2012-04-17 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US10665888B2 (en) 2012-04-17 2020-05-26 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same

Also Published As

Publication number Publication date
CN1698148A (en) 2005-11-16

Similar Documents

Publication Publication Date Title
US7248460B2 (en) Electric double layer capacitor and electrolytic cell
US20120177963A1 (en) Jelly-roll of improved structure and secondary battery comprising the same
US7031140B2 (en) Electric double layer capacitor, electrolytic cell and process for fabricating same
JP2006012792A (en) Case for battery, battery, case for electric double layer capacitor, and electric double layer capacitor
JP2004356461A (en) Electric double layer chip capacitor and chip electrolyte battery
US7054138B2 (en) Electric double layer capacitor and electrolyte battery
JP2004356462A (en) Electric double layer chip capacitor and chip electrolyte battery
KR102137846B1 (en) Nonaqueous electrolytic secondary battery
JP2005032938A (en) Electric double layer capacitor and battery
JP2004327887A (en) Capacitor array or battery array
JP6346449B2 (en) Secondary battery
JP2007036026A (en) Electric double layer capacitor and electrolyte battery
US7079376B2 (en) Electric double layer capacitor, electrolyte battery and method for manufacturing the same
JP2005019790A (en) Electric double layer capacitor and battery
KR101067177B1 (en) Chip-type electric double layer capacitor and method for manufacturing the same
JP2008153266A (en) Surface mounting square electric storage cell
KR101297093B1 (en) Wiring substrate and super capacitor of surface mount type using the same
KR101549812B1 (en) Ceramic substrate and super capacitor of surface mount type using the same
JP2005026536A (en) Electric double layer capacitor and battery
JP2008153268A (en) Surface mounting square electric storage cell
JP2005158700A (en) Battery case and battery
KR101306601B1 (en) Super capacitor of surface mount type
JP2005011780A (en) Battery case and battery
KR20170094666A (en) Pouch type secondary battery
JP6249395B2 (en) Electrochemical cell with lead terminals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216