JP2005030981A - Processing method of waste refractory material - Google Patents

Processing method of waste refractory material Download PDF

Info

Publication number
JP2005030981A
JP2005030981A JP2003272258A JP2003272258A JP2005030981A JP 2005030981 A JP2005030981 A JP 2005030981A JP 2003272258 A JP2003272258 A JP 2003272258A JP 2003272258 A JP2003272258 A JP 2003272258A JP 2005030981 A JP2005030981 A JP 2005030981A
Authority
JP
Japan
Prior art keywords
refractory material
waste
glass
laser beam
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003272258A
Other languages
Japanese (ja)
Inventor
Hiromichi Maekawa
弘道 前川
Hirokatsu Iseda
浩克 伊勢田
Katsura Owaki
桂 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003272258A priority Critical patent/JP2005030981A/en
Publication of JP2005030981A publication Critical patent/JP2005030981A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the generation quantity of a high level radioactive waste during dismantling a melting furnace. <P>SOLUTION: A laser beam 24 is emitted toward a specific surface 25 of a waste refractory material 21 so that the incidence position is to be slightly on the waste refractory material 21 side from the boundary between glass 23 and the waste refractory material 21. Then a groove gap 27 is formed by evaporation of the waste refractory material 21 on the front side in the beam progressing direction. A crack 28 extending to the beam progressing direction front side is caused from the gap 27 because of thermal stress due to the incidence of the laser beam 24, and so the glass and its neighboring little amount of refractory material surface layer 29 can be selectively removed as high level radioactive waste. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は廃棄耐火材処理方法に関するものである。   The present invention relates to a method for treating discarded refractory materials.

原子力施設から発生する放射性廃液は、廃液処理設備によってガラス固化処理された後、廃棄物保管施設に保管される。   The radioactive liquid waste generated from the nuclear facility is vitrified by the waste liquid treatment facility and then stored in the waste storage facility.

図2は廃液処理設備を構成するガラス溶融炉の一例を示すもので、このガラス溶融炉は、耐火材(耐火レンガ)により形成され且つ溶融ガラスGの貯留空間1を有する溶融炉本体2を備えている(例えば、特許文献1参照)。   FIG. 2 shows an example of a glass melting furnace constituting a waste liquid treatment facility. This glass melting furnace includes a melting furnace body 2 formed of a refractory material (refractory brick) and having a storage space 1 for molten glass G. (For example, refer to Patent Document 1).

溶融炉本体2の上部には、原料供給管3、廃液供給管4、及び排気管5が貯留空間1に連通するように接続されている。   A raw material supply pipe 3, a waste liquid supply pipe 4, and an exhaust pipe 5 are connected to the upper portion of the melting furnace main body 2 so as to communicate with the storage space 1.

溶融炉本体2には、貯留空間1上下方向中間部で向き合う一対の主電極6と、貯留空間1底部近傍に位置する底部電極7とが設けられている。   The melting furnace main body 2 is provided with a pair of main electrodes 6 facing each other at the intermediate portion in the vertical direction of the storage space 1 and a bottom electrode 7 located near the bottom of the storage space 1.

溶融炉本体2下部には、貯留空間1に連通する流下ノズル8と、該流下ノズル8を取り囲む誘導加熱コイル9と、流下ノズル8に向けて冷却用空気を送出する空気噴射管10とが設けられている。   A lowering nozzle 8 communicating with the storage space 1, an induction heating coil 9 that surrounds the lowering nozzle 8, and an air injection pipe 10 that sends cooling air toward the lowering nozzle 8 are provided at the lower part of the melting furnace body 2. It has been.

また、溶融炉本体2下方には、金属製の固化体容器(キャニスタ)11を載置した搬送台車12が移動可能に配置されている。   Further, below the melting furnace main body 2, a transport carriage 12 on which a metal solid container (canister) 11 is placed is movably disposed.

図2に示すガラス溶融炉では、原料供給管3から貯留空間1へ所定量のガラス原料を送給したうえ、溶融炉本体2に付帯の加熱手段(図示せず)で溶融させ、主電極6相互の間、あるいは主電極6と底部電極7の間に溶融ガラスGを介して通電し、当該溶融ガラスGをジュール熱で固化しないように保温する。   In the glass melting furnace shown in FIG. 2, a predetermined amount of glass raw material is fed from the raw material supply pipe 3 to the storage space 1, and is then melted in the melting furnace main body 2 by an accompanying heating means (not shown). Electricity is passed through the molten glass G between each other or between the main electrode 6 and the bottom electrode 7, and the molten glass G is kept warm so as not to be solidified by Joule heat.

このとき、流下ノズル8内でガラスが固化するため、貯留空間1から外部への溶融ガラスGの流出が抑止される。   At this time, since the glass is solidified in the flow-down nozzle 8, the outflow of the molten glass G from the storage space 1 to the outside is suppressed.

この後、原料供給管3から貯留空間1へ追加のガラス原料を送給すると、当該原料ガラスが溶融ガラスGに溶融し、廃液供給管4から貯留空間1へ廃液を送給すると、該廃液が溶融ガラスGに混ざり合う。   Thereafter, when an additional glass raw material is fed from the raw material supply pipe 3 to the storage space 1, the raw glass melts into the molten glass G, and when the waste liquid is fed from the waste liquid supply pipe 4 to the storage space 1, the waste liquid is Mixed with molten glass G.

廃液のガラス固化処理にあたっては、固化体容器11を搭載した搬送台車12を、流下ノズル8の直下に固化体容器11が位置するように移動させておく。   In the vitrification treatment of the waste liquid, the transport carriage 12 on which the solidified container 11 is mounted is moved so that the solidified container 11 is positioned immediately below the flow nozzle 8.

次いで、誘導加熱コイル9に通電して流下ノズル8を加熱し、該流下ノズル8内のガラスを溶融させることにより、貯留空間1から溶融ガラスGを固化体容器11へ払い出す。   Next, the induction heating coil 9 is energized to heat the flow-down nozzle 8 and melt the glass in the flow-down nozzle 8 to discharge the molten glass G from the storage space 1 to the solidified body container 11.

誘導加熱コイル9に対する通電を中断し、空気噴射管10から流下ノズル8に向けて冷却用空気を送出すると、該流下ノズル8内でガラスが再び固化し、貯留空間1から外部への溶融ガラスGの流出が抑止され、固化体容器11に充填した溶融ガラスGは、自然風冷により固化する。
特開2001−021685号公報
When energization of the induction heating coil 9 is interrupted and cooling air is sent from the air injection tube 10 toward the flow-down nozzle 8, the glass is solidified again in the flow-down nozzle 8, and the molten glass G from the storage space 1 to the outside The molten glass G filled in the solidified container 11 is solidified by natural air cooling.
JP 2001-021685 A

上述したガラス溶融炉は、溶融炉本体2の構成材料に用いている耐火材が高温の溶融ガラスGによって腐食するので、供用可能な期間が5年程度である。   In the glass melting furnace described above, the refractory material used as the constituent material of the melting furnace body 2 is corroded by the high-temperature molten glass G, so that the usable period is about 5 years.

ガラス溶融炉の解体時に発生する廃棄耐火材には、廃液が混ざり合ったガラスが固化した状態で付着しているが、この耐火材は硬いため、ガラスだけを機械的手段などにより剥がして回収することは困難である。   The waste refractory material generated when the glass melting furnace is disassembled adheres in a solidified state to the glass mixed with the waste liquid, but since this refractory material is hard, only the glass is peeled off and recovered by mechanical means. It is difficult.

すなわち現状では、上記廃棄耐火材の全量を高レベル放射性廃棄物として取り扱わなければならない。   That is, at present, the entire amount of the waste refractory material must be handled as high-level radioactive waste.

本発明は上述した実情に鑑みてなしたもので、溶融炉解体時の高レベル放射性廃棄物の発生量を減らすことを目的としている。   The present invention has been made in view of the above-described circumstances, and an object thereof is to reduce the amount of high-level radioactive waste generated when a melting furnace is dismantled.

上記目的を達成するため、請求項1に記載の廃棄耐火材処理方法では、ガラス溶融炉の解体時に発生する廃棄耐火材にレーザビームを照射して、耐火材表面に付着しているガラスと耐火材表層部分を切除する。   In order to achieve the above object, the waste refractory material processing method according to claim 1, wherein the waste refractory material generated at the time of dismantling the glass melting furnace is irradiated with a laser beam, and the glass adhering to the surface of the refractory material and the refractory material. Cut off the surface layer.

請求項2に記載の廃棄耐火材処理方法では、レーザビームとしてYAGレーザを用いる。   In the waste refractory material processing method according to claim 2, a YAG laser is used as the laser beam.

請求項1に記載の廃棄耐火材処理方法においては、レーザビームによって切除したガラス及び少量の耐火材表層部分を、高レベル放射性廃棄物として選択的に取り扱い、多量の廃棄耐火材を低レベル放射性廃棄物として取り扱う。   In the waste refractory material processing method according to claim 1, the glass cut by the laser beam and a small amount of the refractory material surface layer portion are selectively handled as high-level radioactive waste, and a large amount of waste refractory material is disposed at low-level radioactive waste. Treat as a thing.

請求項2に記載の廃棄耐火材処理方法においては、ガラスと耐火材表層部分をYAGレーザビームにより効率よく切除する。   In the waste refractory material processing method according to claim 2, the glass and the refractory material surface layer portion are efficiently excised with a YAG laser beam.

本発明の廃棄耐火材処理方法によれば、下記のような優れた効果を奏し得る。   According to the waste refractory material processing method of the present invention, the following excellent effects can be obtained.

(1)廃棄耐火材に付着しているガラスとその近隣の耐火材表層部分をレーザビームによって切除するので、これらガラス及び少量の耐火材表層部分だけを、高レベル放射性廃棄物として選択的に取り扱える。   (1) Since the glass adhering to the waste refractory material and the surface portion of the refractory material in the vicinity thereof are cut out by the laser beam, only the glass and a small amount of the surface portion of the refractory material can be selectively handled as high-level radioactive waste. .

(2)よって、残りの廃棄耐火材を低レベル放射性廃棄物として取り扱うことができ、溶融炉解体時の高レベル放射性廃棄物の発生量が減少することになる。   (2) Therefore, the remaining waste refractory material can be handled as low-level radioactive waste, and the amount of high-level radioactive waste generated during melting furnace dismantling is reduced.

(3)また、レーザビームとしてYAGレーザを用いることより、ガラス及び耐火材表層部分の切除を効率よく行なうことができる。   (3) Further, by using a YAG laser as the laser beam, it is possible to efficiently remove the glass and the surface portion of the refractory material.

以下、本発明の実施の形態を、図示例とともに説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の廃棄耐火材処理方法の実施の形態の一例を示すもので、21は廃棄耐火材、22は加工ヘッドを表わしている。   FIG. 1 shows an example of an embodiment of a disposal refractory material processing method according to the present invention, in which 21 represents a disposal refractory material, and 22 represents a machining head.

廃棄耐火材21は、溶融炉本体2(図2参照)の構成材料で、ガラス溶融炉の解体に伴って発生したものである。   The discarded refractory material 21 is a constituent material of the melting furnace body 2 (see FIG. 2), and is generated when the glass melting furnace is disassembled.

廃棄耐火材21の一側表面(炉内側面)には、廃液が混ざり合い且つ固化した状態のガラス23が付着している。   On one side surface (side surface of the furnace) of the waste refractory material 21, a glass 23 in a state where the waste liquid is mixed and solidified is attached.

通常、ガラス溶融炉の耐火材の大きさは、およそ300×600×150mmである。   Usually, the size of the refractory material in the glass melting furnace is approximately 300 × 600 × 150 mm.

加工ヘッド22は、連続定格出力が1.5kW以上のYAGレーザ発振装置に接続されており、レーザビーム24を出射するようになっている。   The machining head 22 is connected to a YAG laser oscillation device having a continuous rated output of 1.5 kW or more, and emits a laser beam 24.

廃棄耐火材21の処理にあたっては、ガラス23付着面に交差する廃棄耐火材21の所定面(耐火材の接合面)25に向けてレーザビーム24を出射でき且つビーム入射位置がガラス23と廃棄耐火材21との境界26から20mmぐらい廃棄耐火材21側となるように、加工ヘッド22を配置する。   When the waste refractory material 21 is processed, the laser beam 24 can be emitted toward a predetermined surface 25 (joint surface of the refractory material) of the waste refractory material 21 intersecting the glass 23 adhesion surface, and the beam incident position is the same as that of the glass 23 and the waste refractory material. The processing head 22 is arranged so as to be about 20 mm from the boundary 26 with the material 21 toward the discarded refractory material 21 side.

次いで、加工ヘッド22から廃棄耐火材21に向けてレーザビーム24を出射すると、所定面25のビーム入射位置からビーム進行方向前側へ20〜30mmぐらいの範囲で廃棄耐火材21が蒸散して溝状の間隙27が形成される。   Next, when the laser beam 24 is emitted from the processing head 22 toward the waste refractory material 21, the waste refractory material 21 evaporates in a range of about 20 to 30 mm from the beam incident position on the predetermined surface 25 to the front side in the beam traveling direction. The gap 27 is formed.

これに加えて、レーザビーム24に入射に伴う熱応力で、間隙27からビーム進行方向前側へ延びる50mm程度の亀裂28が生じる。   In addition to this, a crack 28 of about 50 mm extending from the gap 27 to the front side in the beam traveling direction is generated by the thermal stress accompanying the incidence on the laser beam 24.

更に、ビーム入射位置が前記の境界26に沿うように加工ヘッド22を動かす操作と、間隙27深さに応じてレーザビーム24の焦点位置を調整する操作を行なうと、間隙27及び亀裂28の範囲が拡大し、ガラス23とその近隣の耐火材表層部分29が、廃棄耐火材21から効率よく切除される。   Further, when the operation of moving the machining head 22 so that the beam incident position is along the boundary 26 and the operation of adjusting the focal position of the laser beam 24 according to the depth of the gap 27, the range of the gap 27 and the crack 28 are obtained. Is enlarged, and the glass 23 and the refractory material surface layer portion 29 in the vicinity thereof are efficiently cut out from the discarded refractory material 21.

この後、切除したガラス23及び少量の耐火材表層部分29を高レベル放射性廃棄物としてガラス固化処理し、高レベル放射性廃棄物貯蔵施設に保管する。   Thereafter, the cut glass 23 and a small amount of the refractory material surface layer portion 29 are vitrified as high-level radioactive waste and stored in a high-level radioactive waste storage facility.

また、ガラス23及び耐火材表層部分29を取り除いた多量の廃棄耐火材21は、低レベル放射性廃棄物としての処理を行なったうえ、低レベル放射性廃棄物貯蔵施設に保管する。   In addition, a large amount of the discarded refractory material 21 from which the glass 23 and the refractory material surface layer portion 29 are removed is treated as a low-level radioactive waste and then stored in a low-level radioactive waste storage facility.

このように、図1に示す廃棄耐火材処理方法では、レーザビーム24によって切除したガラス23及び少量の耐火材表層部分29だけを高レベル放射性廃棄物として選択的に取り扱えるので、溶融炉解体時の高レベル放射性廃棄物の発生量が減少することになる。   Thus, in the waste refractory material processing method shown in FIG. 1, only the glass 23 cut off by the laser beam 24 and a small amount of the refractory material surface layer portion 29 can be selectively handled as high-level radioactive waste. The amount of high-level radioactive waste generated will be reduced.

なお、本発明の廃棄耐火材処理方法は、上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において変更を加え得ることは勿論である。   It should be noted that the waste refractory material processing method of the present invention is not limited to the above-described embodiment, and it is needless to say that changes can be made without departing from the scope of the present invention.

本発明の廃棄耐火材処理方法の実施の形態の一例を示す概念図である。It is a conceptual diagram which shows an example of embodiment of the disposal refractory material processing method of this invention. ガラス溶融炉の一例を示す概念図である。It is a conceptual diagram which shows an example of a glass melting furnace.

符号の説明Explanation of symbols

21 廃棄耐火材
23 ガラス
24 レーザビーム
29 耐火材表層部分
21 Waste refractory material 23 Glass 24 Laser beam 29 Refractory material surface layer

Claims (2)

ガラス溶融炉の解体時に発生する廃棄耐火材にレーザビームを照射して、耐火材表面に付着しているガラスと耐火材表層部分を切除することを特徴とする廃棄耐火材処理方法。   A waste refractory treatment method characterized by irradiating a waste refractory material generated at the time of dismantling a glass melting furnace with a laser beam to cut off the glass adhering to the surface of the refractory material and the surface portion of the refractory material. レーザビームとしてYAGレーザを用いる請求項1に記載の廃棄耐火材処理方法。   The waste refractory material processing method according to claim 1, wherein a YAG laser is used as the laser beam.
JP2003272258A 2003-07-09 2003-07-09 Processing method of waste refractory material Pending JP2005030981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272258A JP2005030981A (en) 2003-07-09 2003-07-09 Processing method of waste refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272258A JP2005030981A (en) 2003-07-09 2003-07-09 Processing method of waste refractory material

Publications (1)

Publication Number Publication Date
JP2005030981A true JP2005030981A (en) 2005-02-03

Family

ID=34209871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272258A Pending JP2005030981A (en) 2003-07-09 2003-07-09 Processing method of waste refractory material

Country Status (1)

Country Link
JP (1) JP2005030981A (en)

Similar Documents

Publication Publication Date Title
JP5525601B2 (en) Substrate processing method using laser
KR101226998B1 (en) Method for sealing cracks on surface
JPH0798274B2 (en) Method and apparatus for cutting solid material by laser irradiation
JP2005030981A (en) Processing method of waste refractory material
JP6815017B2 (en) Plasma-linked cutting method and its cutting device
JPH0346234B2 (en)
EP1542827B1 (en) Cutting of cementitious materials
KR101765973B1 (en) Arc melting furnace device
JP4228226B2 (en) Glass removal method
KR100729966B1 (en) Glass hole making method using laser
JP2005279686A (en) Laser brazing apparatus, and its method
JP2007071509A (en) Bottom electrode structure for electric melting furnace
JP4457790B2 (en) Work fixing base, work fixing method and machining method
JPS5864306A (en) Chipping device for tapping spout of blast furnace
JP2005082417A (en) Glass melting furnace
JP2007105888A (en) First crack forming method of fragile material
JP3766828B2 (en) Bottom electrode of glass melting furnace
JP4449223B2 (en) Method for destroying calcined body of molten glass liquid surface
JP2007230230A (en) Laser using concrete cutting device
JP2505881B2 (en) Equipment for melting radioactive waste
JP2001080938A (en) Formation of pattern on glassware
JPS61159293A (en) Laser beam machining method
JP2017121660A (en) Laser machining device and laser machining method
JPS62235432A (en) High energy beam melting method
JP2000197983A (en) Laser cutting method and laser cutting device