JP2005029847A - Aluminum alloy for casting having excellent high temperature strength - Google Patents

Aluminum alloy for casting having excellent high temperature strength Download PDF

Info

Publication number
JP2005029847A
JP2005029847A JP2003271148A JP2003271148A JP2005029847A JP 2005029847 A JP2005029847 A JP 2005029847A JP 2003271148 A JP2003271148 A JP 2003271148A JP 2003271148 A JP2003271148 A JP 2003271148A JP 2005029847 A JP2005029847 A JP 2005029847A
Authority
JP
Japan
Prior art keywords
mass
alloy
aluminum alloy
casting
temperature strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003271148A
Other languages
Japanese (ja)
Other versions
JP4065977B2 (en
Inventor
Satoshi Suzuki
聡 鈴木
Hiroshi Horikawa
宏 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2003271148A priority Critical patent/JP4065977B2/en
Publication of JP2005029847A publication Critical patent/JP2005029847A/en
Application granted granted Critical
Publication of JP4065977B2 publication Critical patent/JP4065977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy for casting which has excellent strength particularly at high temperatures. <P>SOLUTION: The aluminum alloy for casting having excellent high temperature strength has a composition comprising, by mass, 4.0 to 7.0% Si and 21 to 31.5% Cu, and the balance Al with inevitable impurities, and in which the Si content and the Cu content satisfy the following expressions (1) to (3): (Si mass%)≤-0.19×(Cu mass%)+11 (1); (Si mass%)≥-0.5×(Cu mass%)+17.5 (2); and (Si mass%)≥6×(Cu mass%)-184 (3). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高温強度に優れたアルミニウム合金に関する。特に、高温で使用される内燃機関のピストンやブレーキディスクロータ等に適したアルミニウム合金及びその製造方法に関する。   The present invention relates to an aluminum alloy having excellent high temperature strength. In particular, the present invention relates to an aluminum alloy suitable for a piston, a brake disk rotor and the like of an internal combustion engine used at a high temperature and a manufacturing method thereof.

従来、高温で使用されるアルミニウム合金材を鋳造で製造する場合には、鋳造性の優れた共晶Al−Si系合金に、CuやNiを添加した合金が使用されてきた。例えば、JIS規格のAC8A(12%Si―1%Mg―1%Cu―1%Ni―Al)合金や、AC8A合金に更にCuを添加した(12%Si―1%Mg―4%Cu―1%Ni―Al)合金が使用されてきた。例えば、本発明出願人等による特許文献1には、Cuを6%添加して高温強度を高めた合金が提案されている。   Conventionally, when an aluminum alloy material used at a high temperature is produced by casting, an alloy obtained by adding Cu or Ni to a eutectic Al-Si alloy having excellent castability has been used. For example, JIS standard AC8A (12% Si-1% Mg-1% Cu-1% Ni-Al) alloy, or AC8A alloy further added with Cu (12% Si-1% Mg-4% Cu-1) % Ni—Al) alloys have been used. For example, Patent Document 1 by the applicant of the present invention proposes an alloy in which 6% Cu is added to increase the high temperature strength.

Al合金の高温強度が低下する主な原因は、α−Al相が軟化することであると考えられる。従来の耐熱性合金は、CuやMgを添加することによりマトリクスの強度を向上させると共に、CuやNiを添加することにより比較的高温強度の高いAl−Cu系晶出物やAl−Ni系晶出物を晶出させ、α−Al相を細かく分断することによって高温強度を高めていた。
しかし、このように高温強度を高めた合金でも、使用温度が200℃を超えたあたりから急激に機械的強度が低下し、250℃では常温の強度の1/2以下、350℃では1/4以下にまで低下してしまうことがあった。
特開平8−104937号公報
It is considered that the main cause of the decrease in the high temperature strength of the Al alloy is that the α-Al phase is softened. Conventional heat-resistant alloys improve the strength of the matrix by adding Cu or Mg, and Al-Cu-based crystals or Al-Ni-based crystals with relatively high high-temperature strength by adding Cu or Ni. The product was crystallized and the high temperature strength was increased by finely dividing the α-Al phase.
However, even in such an alloy with increased high-temperature strength, the mechanical strength sharply decreases when the use temperature exceeds 200 ° C., and is less than 1/2 of the normal temperature strength at 250 ° C., and 1/4 at 350 ° C. It may be reduced to the following.
JP-A-8-104937

近年、省エネルギーの観点からエンジンの更なる高温燃焼が進み、アルミニウム合金に対しても、従来より高い高温環境での強度の向上が要求されるようになってきた。
そこで本発明では、より高温強度に優れた鋳造用アルミニウム合金を提供することを目的とする。
In recent years, further high-temperature combustion of engines has progressed from the viewpoint of energy saving, and aluminum alloys have been required to have improved strength in a higher-temperature environment than before.
Accordingly, an object of the present invention is to provide an aluminum alloy for casting that is superior in high-temperature strength.

本発明者等が鋭意研究を重ねた結果、下記の特有の合金組成を採用することにより、晶出物が極めて微細均一に晶出してα−Al相が細かく分断され、高い高温強度が得られること、そして固液共存領域が狭く、そのため晶出物が殆ど同時に晶出して微細均一に分散することを見出し、本発明をなすに至った。   As a result of intensive studies by the present inventors, by adopting the following specific alloy composition, the crystallized product is crystallized extremely finely and uniformly, and the α-Al phase is finely divided, and high high-temperature strength is obtained. In addition, the solid-liquid coexistence region is narrow, so that the crystallized product was crystallized almost at the same time and dispersed finely and uniformly, and the present invention was made.

従って、本発明のアルミニウム合金は、Si:2.0〜7.0質量%、Cu:21.0〜31.5質量%を含み、残部がAlと不可避的不純物からなり、Si量とCu量とが次の関係式(1)乃至(3)を満たすことを特徴とする。
(Si質量%)≦−0.19×(Cu質量%)+11 (1)
(Si質量%)≧−0.5×(Cu質量%)+17.5 (2)
(Si質量%)≧6×(Cu質量%)−184 (3)
本発明合金は、更に、Ti:0.001〜0.20%、B:0.0005〜0.02%、Zr:0.0005〜0.002%、V:0.0005〜0.02%の内、いずれか1種以上を含ませてもよい。
この合金組成のアルミニウム合金の鋳造材は、そのままでも高い高温強度の価を示すが、鋳造後、150〜240℃で、2〜8時間保持して時効処理すると、より高温強度に優れたアルミニウム合金材を得ることができる。
Therefore, the aluminum alloy of the present invention contains Si: 2.0 to 7.0 mass%, Cu: 21.0 to 31.5 mass%, the balance is made of Al and inevitable impurities, and the Si amount and the Cu amount Satisfies the following relational expressions (1) to (3).
(Si mass%) ≦ −0.19 × (Cu mass%) + 11 (1)
(Si mass%) ≧ −0.5 × (Cu mass%) + 17.5 (2)
(Si mass%) ≧ 6 × (Cu mass%) − 184 (3)
The alloy of the present invention further includes Ti: 0.001 to 0.20%, B: 0.0005 to 0.02%, Zr: 0.0005 to 0.002%, V: 0.0005 to 0.02% Any one or more of them may be included.
An aluminum alloy cast material of this alloy composition shows a high high-temperature strength value as it is, but when cast and maintained at 150 to 240 ° C. for 2 to 8 hours, an aluminum alloy having higher high-temperature strength is obtained. A material can be obtained.

本発明に係るアルミニウム合金は、所定量のSi及びCuを含有し、なおかつSiとCuの量を特定比率にすることにより、特に300℃を超えるような高温環境における強度を格段に向上させるとともに、ミクロポロシティ(鋳造欠陥)の発生を減少させることができる。   The aluminum alloy according to the present invention contains a predetermined amount of Si and Cu, and by making the amount of Si and Cu a specific ratio, the strength in a high temperature environment exceeding 300 ° C. is particularly improved, The occurrence of microporosity (casting defects) can be reduced.

本発明に係るアルミニウム合金の第1の特徴は、2.0〜7.0質量%のSiと、21〜31.5質量%のCuを含むことである。
例えば、5%Siを含むAl合金に27%のCuを添加して鋳造した場合、図1の顕微鏡写真に示すように、晶出物が極めて微細均一に晶出し、α−Al相が細かく分断された組織構造を有している。一方、従来の耐熱性アルミニウム合金である12%Si―1%Mg―1%Cu―1%Ni―Al(AC8A)合金、及びCu量を更に増加した12%Si―1%Mg―4%Cu―1%Ni―Al(以下「AC8A+Cu」と呼称する)合金の組織構造の顕微鏡写真を、各々図2及び3に示す。これらの顕微鏡写真を比較すれば明らかなように、5%Si及び27%Cuを含有する本発明のAl合金の方が、従来のAl合金より晶出物が極めて微細に晶出し、α−Al相が細かく分断されている。その結果として、極めて優れた高温強度が得られることがわかった。
The 1st characteristic of the aluminum alloy which concerns on this invention is that 2.0-7.0 mass% Si and 21-31.5 mass% Cu are included.
For example, when 27% Cu is added to an Al alloy containing 5% Si and cast, as shown in the micrograph of FIG. 1, the crystallized product crystallizes extremely finely and the α-Al phase is finely divided. Has a structured structure. On the other hand, 12% Si-1% Mg-1% Cu-1% Ni-Al (AC8A) alloy, which is a conventional heat-resistant aluminum alloy, and 12% Si-1% Mg-4% Cu in which the amount of Cu is further increased. A micrograph of the microstructure of a 1% Ni—Al (hereinafter referred to as “AC8A + Cu”) alloy is shown in FIGS. 2 and 3, respectively. As is clear from comparison of these micrographs, the Al alloy of the present invention containing 5% Si and 27% Cu crystallizes much finer than the conventional Al alloy, and α-Al The phases are finely divided. As a result, it was found that extremely high temperature strength can be obtained.

また、晶出物を微細均一に晶出させるためには、固液共存領域を狭くし、鋳造時に多くの晶出物を一時に晶出させるのが好ましい。固液共存領域が広いと、最初に晶出した晶出物が粗大化し、その粗大化に元素が使われて他の晶出物が形成できないためである。
前記3種のAl合金、即ち、5%Si−27%Cu−Al合金(本発明)、12%Si―1%Mg―1%Cu―1%Ni―Al(AC8A)合金、及び12%Si―1%Mg―4.3%Cu―1%Ni―Al(AC8A+Cu)合金について熱平衡計算で算出した、液相から各固相が晶出する量を温度に対する分布として示した状態図を、各々図4、5及び6に示す。
Further, in order to crystallize the crystallized product finely and uniformly, it is preferable to narrow the solid-liquid coexistence region and to crystallize a large amount of crystallized product at the time of casting. This is because if the solid-liquid coexistence region is wide, the first crystallized product becomes coarse, and elements are used for the coarsening and other crystallized products cannot be formed.
The three kinds of Al alloys, namely 5% Si-27% Cu-Al alloy (invention), 12% Si-1% Mg-1% Cu-1% Ni-Al (AC8A) alloy, and 12% Si -1% Mg-4.3% Cu-1% Ni-Al (AC8A + Cu) alloy calculated by thermal equilibrium calculation, showing the amount of each solid phase crystallized from the liquid phase as a distribution with respect to temperature, Shown in FIGS.

図4に示す本発明合金の場合、溶湯が冷却されていくと先ず529℃でα−Al相が晶出し、固相(α−Al相)と液相とが共存する固液共存状態となる。そして約528℃になるとAlCuが晶出し、約524℃まで冷却されると固相だけの状態となる。
図5に示すAC8A合金の場合、溶湯が冷却されていくと先ず約573℃で、α−Al相が晶出し、固相(α−Al相)と液相が共存する固液共存状態となる。次に約568℃まで温度が低下するとSiが晶出し、更に温度が低下し、約540℃で、AlNi、MgSiが晶出し、更に温度が約535℃に達すると固相だけの状態になる。
図6に示すAC8A+Cu合金の場合、溶湯が冷却されていくと先ず約572℃でSiが晶出し、固相(Si)と液相が共存する固液共存状態になる。次に約562℃まで温度が低下するとα−Al相が晶出し、更に温度が低下していくとβ−AlFeSi、AlFeNi、AlCuMgSi、AlNiが晶出し、更に温度が約519℃に達すると固相だけの状態となる。
In the case of the alloy of the present invention shown in FIG. 4, when the molten metal is cooled, the α-Al phase is first crystallized at 529 ° C., and a solid-liquid coexistence state in which the solid phase (α-Al phase) and the liquid phase coexist is obtained. . When the temperature reaches about 528 ° C., Al 2 Cu crystallizes, and when cooled to about 524 ° C., only the solid phase is obtained.
In the case of the AC8A alloy shown in FIG. 5, when the molten metal is cooled, the α-Al phase first crystallizes at about 573 ° C., and a solid-liquid coexistence state in which the solid phase (α-Al phase) and the liquid phase coexist is obtained. . Next, when the temperature drops to about 568 ° C., Si crystallizes, and the temperature further decreases. At about 540 ° C., Al 3 Ni and Mg 2 Si crystallize, and when the temperature reaches about 535 ° C., only the solid phase It becomes a state.
In the case of the AC8A + Cu alloy shown in FIG. 6, when the molten metal is cooled, Si crystallizes at about 572 ° C., and a solid-liquid coexistence state in which the solid phase (Si) and the liquid phase coexist is obtained. Next, when the temperature is lowered to about 562 ° C., an α-Al phase is crystallized, and when the temperature is further lowered, β-AlFeSi, Al 9 FeNi, Al 5 Cu 2 Mg 8 Si 6 , and Al 3 Ni are crystallized. When the temperature further reaches about 519 ° C., only the solid phase is obtained.

即ち、これらの図が示すように、従来の高温高強度合金であるAC8A合金、及びCuを更に増やしたAC8A+Cu合金では、それらの固液共存領域が各々535〜573℃及び519〜572℃であるのに対し、本発明の合金では固液共存領域が524〜529℃と非常に狭くなっている。即ち、5%Si及び27%Cuを含有する本発明のAl合金は、固液共存領域が非常に狭く、そのため晶出物が殆ど同時に晶出し、その結果、微細均一に分散したものと考えられる。   That is, as shown in these figures, in the AC8A alloy, which is a conventional high-temperature high-strength alloy, and the AC8A + Cu alloy in which Cu is further increased, their solid-liquid coexistence regions are 535-573 ° C. and 519-572 ° C., respectively. In contrast, in the alloy of the present invention, the solid-liquid coexistence region is very narrow at 524 to 529 ° C. That is, the Al alloy of the present invention containing 5% Si and 27% Cu has a very narrow solid-liquid coexistence region, so that the crystallized product crystallizes almost at the same time, and as a result, it is considered that finely and uniformly dispersed. .

本発明に係るアルミニウム合金の第2の特徴は、Si量とCu量とが所定の関係式を満たすことである。
本発明のアルミニウム合金を構成するSi量及びCuの量を図示したのが図7である。図7における横軸(x軸)はCuの質量%を示し、縦軸(y軸)はSiの質量%を示す。図中に記載した直線は以下の式で表される。
y=−0.19×x+11 (1’)
y=−0.5×x+17.5 (2’)
y=6×x−184 (3’)
The second feature of the aluminum alloy according to the present invention is that the Si content and the Cu content satisfy a predetermined relational expression.
FIG. 7 shows the amounts of Si and Cu constituting the aluminum alloy of the present invention. In FIG. 7, the horizontal axis (x axis) represents the mass% of Cu, and the vertical axis (y axis) represents the mass% of Si. The straight line described in the figure is represented by the following formula.
y = −0.19 × x + 11 (1 ′)
y = −0.5 × x + 17.5 (2 ′)
y = 6 × x−184 (3 ′)

上記式(1’)〜(3’)で表される3本の直線で囲まれた領域、即ち、xy座標で表した場合に、およそA点(21.0、7.0)、B点(31.5、5.0)及びC点(31.0、2.0)を頂点とする三角形で囲まれた領域が、本発明のアルミニウム合金を構成するSi及びCuの質量%の範囲を表している。
即ち、Cu:21〜31質量%のとき、Si質量%の範囲は−0.5Cu+17.5≦Si≦−0.19Cu+11であり、Cu:31〜31.5質量%のときは、6Cu−184≦Si≦−0.19Cu+11である。
A region surrounded by three straight lines represented by the above formulas (1 ′) to (3 ′), that is, when expressed by xy coordinates, approximately point A (21.0, 7.0), point B (31.5, 5.0) ) And a region surrounded by a triangle having the C point (31.0, 2.0) as a vertex represents a mass% range of Si and Cu constituting the aluminum alloy of the present invention.
That is, when Cu is 21 to 31% by mass, the range of Si mass% is −0.5Cu + 17.5 ≦ Si ≦ −0.19Cu + 11, and when Cu is 31 to 31.5% by mass, 6Cu−184 ≦ Si ≦ −0.19Cu + 11.

本発明で特定した範囲(△ABC内の範囲)よりSi量が過剰な領域(図7におけるSi領域)、Cu量が過剰な領域(図7におけるAlCu領域)、及びSi、Cuが不足する領域(図7におけるα−Al領域)では、いずれの領域においてもミクロポロシティが生じることが見出された。 A region where the amount of Si is excessive (Si region in FIG. 7), a region where the amount of Cu is excessive (Al 2 Cu region in FIG. 7), and Si and Cu are insufficient. It was found that microporosity occurs in any region (α-Al region in FIG. 7).

本発明のアルミニウム合金は、重力鋳造のような冷却速度の遅い鋳造方法でも十分な高温強度を得ることができるが、ダイカスト法のように冷却速度の速い鋳造法で鋳造すると、晶出物がより微細均一に分散するので、高温強度の更に優れた鋳造材を得ることができる。   The aluminum alloy of the present invention can obtain sufficient high-temperature strength even by a casting method with a slow cooling rate such as gravity casting, but when cast by a casting method with a fast cooling rate such as a die casting method, the crystallized substance is more Since it is finely and uniformly dispersed, a cast material with further excellent high-temperature strength can be obtained.

以下、本発明のアルミニウム合金を構成する各成分元素の作用を概説する。なお、本明細書における%は質量%を意味するものとする。
・Si:2.0〜7.0%
Siは、機械的強度の他に、鋳造性、耐摩耗性、低熱膨張性、防振性を向上させる作用を呈する。更に本発明合金の場合、Si系晶出物として微細均一に分散し、α−Al相を分断して高温強度を向上させる。この作用は、2.0%以上で顕著となる。逆に、7.0%を超えると液相から初晶Siが晶出成長し、粗大な粒子を形成して、特に疲労強度を低下させる傾向がある。
Hereinafter, the action of each component element constituting the aluminum alloy of the present invention will be outlined. In addition,% in this specification shall mean the mass%.
・ Si: 2.0-7.0%
In addition to mechanical strength, Si exhibits an effect of improving castability, wear resistance, low thermal expansion, and vibration resistance. Furthermore, in the case of the alloy of the present invention, it is finely and uniformly dispersed as a Si-based crystallized product, and the α-Al phase is divided to improve the high temperature strength. This effect becomes significant at 2.0% or more. On the other hand, if it exceeds 7.0%, primary crystal Si crystallizes and grows from the liquid phase, forming coarse particles, and particularly tends to reduce fatigue strength.

・Cu:21.0〜31.5%
Cuは、マトリクスを固溶・析出により強化すると共に、Al−Cu系晶出物として微細均一に分散して高温強度を向上させる。含有量が21.0%未満であると、固液共存領域が広くなって晶出物が十分に微細均一に分散できなくなり、十分な高温強度を得ることが困難である。逆に、31.5%を超えると、液相から初晶AlCuが晶出成長し、粗大な粒子を形成して、特に疲労強度を低下させる傾向がある。
Cu: 21.0-31.5%
Cu strengthens the matrix by solid solution / precipitation, and finely and uniformly disperses it as an Al-Cu-based crystallized product, thereby improving the high-temperature strength. When the content is less than 21.0%, the solid-liquid coexistence region becomes wide and the crystallized product cannot be dispersed sufficiently finely and uniformly, and it is difficult to obtain sufficient high-temperature strength. Conversely, if it exceeds 31.5%, primary Al 2 Cu crystallizes and grows from the liquid phase, forming coarse particles, and particularly tends to reduce fatigue strength.

・Si%≦−0.19×Cu%+11
Si%が−0.19Cu%+11を超えると、初晶Siが晶出成長し、粗大な粒子を形成して強度、特に伸びを著しく低下させ、さらに機械加工性を悪化させる傾向がある。また、鋳造の際、偏析に付随した引けを伴うことがあり、内部品質を低下させる虞れがある。
・Si%≧−0.5×Cu%+17.5
Si%が−0.5Cu%+17.5未満であると、α−Al相が成長して高温強度を低下させ、鋳造の際、成長したα−Al相間に液相が残り、引けが発生したり、ガスポロシティをトラップしたりして内部品質を低下させる傾向がある。
・Si%≧6×Cu%−184
Si%が6Cu%−184未満であると、粗大なAlCuが晶出成長し、強度、特に伸びを低下させる。また鋳造性も悪化する傾向がある。
・ Si% ≦ −0.19 × Cu% + 11
When Si% exceeds −0.19 Cu% + 11, primary crystal Si crystallizes and grows to form coarse particles, and the strength, particularly elongation, is remarkably lowered, and the machinability tends to deteriorate. Further, in casting, there may be a shrinkage accompanying segregation, which may deteriorate internal quality.
・ Si% ≧ −0.5 × Cu% + 17.5
If Si% is less than -0.5 Cu% + 17.5, the α-Al phase grows and lowers the high-temperature strength. During casting, the liquid phase remains between the grown α-Al phases and shrinkage occurs. Or trap gas trapping and tend to degrade internal quality.
・ Si% ≧ 6 × Cu% −184
When Si% is less than 6 Cu% -184, coarse Al 2 Cu crystallizes and decreases strength, particularly elongation. Also, castability tends to deteriorate.

・Ti:0.001〜0.20%、B:0.0005〜0.02%、Zr:0.0005〜0.02%、V:0.0005〜0.02%
これらの元素は、結晶粒を微細化させ鋳造性を向上させる作用がある。しかし、添加量が多すぎると粗大な化合物を形成して伸びが低下する。
Ti: 0.001 to 0.20%, B: 0.0005 to 0.02%, Zr: 0.0005 to 0.02%, V: 0.0005 to 0.02%
These elements have the effect of refining crystal grains and improving castability. However, if the amount added is too large, a coarse compound is formed and the elongation is lowered.

・不可避的不純物
Feは、スクラップ等の原材料から不可避的に混入してくる元素であるが、Feは機械的強度を向上させる作用や、ダイカスト時の金型の焼き付きを防止する作用がある。1.0%を超えると粗大な化合物を形成し、伸びを低下させるので、1.0%以下にすることが好ましく、さらに好ましくは0.3%以下にする。
Mgは、固溶・析出によりマトリクスを強化する元素であるが、本発明の系の合金に添加すると、低融点のAl-Si-Cu-Mg相を発生させ、鋳造欠陥(ミクロポロシティ)の原因となる。従って、含有量は0.3%程度までに抑える必要がある。
Fe及びMg以外の元素、例えば、Mn、P、Ca、Sr、Sb、Na、Zn、Pb、Bi、Sn等のようにアルミニウム合金に通常含有される元素も、合計で0.5%程度まで、好ましくは0.3%程度までは許容される。
-Inevitable impurities Fe is an element that is inevitably mixed from raw materials such as scrap, but Fe has an effect of improving mechanical strength and an effect of preventing die seizure during die casting. If it exceeds 1.0%, a coarse compound is formed and the elongation is lowered. Therefore, it is preferably 1.0% or less, and more preferably 0.3% or less.
Mg is an element that strengthens the matrix by solid solution / precipitation, but when it is added to the alloy of the present invention, a low melting point Al—Si—Cu—Mg phase is generated, causing casting defects (microporosity). It becomes. Therefore, the content needs to be suppressed to about 0.3%.
Elements other than Fe and Mg, for example, elements normally contained in aluminum alloys such as Mn, P, Ca, Sr, Sb, Na, Zn, Pb, Bi, Sn, etc. are also up to about 0.5% in total. Preferably, up to about 0.3% is allowed.

・時効処理:150〜240℃×2〜8時間
時効処理を行うとCu−Al系析出物が析出し、機械的強度が向上する。また、永久成長が抑制されて寸法安定性が向上する。この効果は、150℃以上×2時間以上で顕著となる。逆に、240℃を超えたり、8時間を超えたりして時効処理を行うと、過時効となって機械的強度は低下する。好ましくは、200〜240℃×3〜5時間とする。
Aging treatment: 150 to 240 ° C. × 2 to 8 hours When an aging treatment is performed, Cu—Al-based precipitates are deposited, and mechanical strength is improved. Moreover, permanent growth is suppressed and dimensional stability is improved. This effect becomes remarkable at 150 ° C. or more × 2 hours or more. Conversely, if the aging treatment is performed at over 240 ° C. or over 8 hours, it becomes over-aged and the mechanical strength decreases. Preferably, it is 200-240 degreeC x 3-5 hours.

・焼き入れ:450〜150℃の間を、平均冷却速度100℃/秒以上で冷却
鋳造後に除例した場合、母相中に固溶しているSi及びCuが強度の向上に寄与しない析出物として析出する。そのような析出が起こると、時効処理の際に強度向上に寄与する析出物の量が減少してしまう。よって、強度に寄与しない析出物の析出を防止するために、450〜150℃の間は、平均100℃/秒以上の速度で冷却することが必要である。
-Quenching: Cooling between 450-150 ° C at an average cooling rate of 100 ° C / sec or more. When excluding after casting, precipitates in which Si and Cu dissolved in the matrix do not contribute to strength improvement To be deposited. When such precipitation occurs, the amount of precipitates that contribute to strength improvement during aging treatment is reduced. Therefore, in order to prevent precipitation of precipitates that do not contribute to strength, it is necessary to cool at an average rate of 100 ° C./second or higher between 450 and 150 ° C.

表1に示す組成のアルミニウム合金を、鋳込み温度760℃で、舟形形状(寸法200×30×40mm)に重力金型鋳造し、鋳造材の温度が450℃になった時点で、鋳造材を金型から取り出し、直ちに水焼き入れ(冷却温度300℃/秒)した。冷却後、220℃で4時間加熱保持して時効処理を施した。時効処理後、鋳造材を、JIS規格CT73型引張試験片の形状に切り出し、300℃、400℃で、100時間予熱した後、各温度で引張試験を行った。その結果を表2に示す。
また、各鋳造材を切断し、その断面をカラーチェックして、鋳造下面から20mmまでのポロシティ数を測定した。その結果を表3に示す。
比較例として、JIS規格のAC8A合金等についても同様の実験を行い、それらの結果も表2及び表3に併せて示す。
An aluminum alloy having the composition shown in Table 1 was cast into a boat shape (dimensions 200 × 30 × 40 mm) at a casting temperature of 760 ° C., and when the temperature of the cast material reached 450 ° C., the cast material was The mold was taken out and immediately quenched with water (cooling temperature 300 ° C./second). After cooling, aging treatment was performed by heating and holding at 220 ° C. for 4 hours. After the aging treatment, the cast material was cut into the shape of a JIS standard CT73 type tensile test piece, preheated at 300 ° C. and 400 ° C. for 100 hours, and then subjected to a tensile test at each temperature. The results are shown in Table 2.
Moreover, each cast material was cut | disconnected, the cross section was color-checked, and the porosity number from a casting bottom surface to 20 mm was measured. The results are shown in Table 3.
As a comparative example, a similar experiment was performed on a JIS standard AC8A alloy and the results are also shown in Tables 2 and 3.

Figure 2005029847
Figure 2005029847

Figure 2005029847
Figure 2005029847

Figure 2005029847
Figure 2005029847

表2より、本発明の合金(合金番号1〜11)は、AC8A合金やAC8AのCu量を増やした合金番号17(図3のAC8A+Cu合金に相当)より高温強度が格段に向上していることがわかる。
また、比較例12〜16の合金の中には、Si及びCuの一方又は両方の含有量自体は本発明の範囲(Si:4.0〜7.0質量%、Cu:21〜31.5質量%)に含まれるものもあるが、何れもSi量とCu量が本発明の関係式(1)〜(3)を満たさない例である。その結果、高温強度に関しては本発明合金と同程度のものもあるが、特に、表3に示すようにポロシティが多く、鋳造性に劣ることが明らかになった。
From Table 2, the alloy of the present invention (alloy numbers 1 to 11) has a markedly improved high-temperature strength compared to the alloy number 17 (corresponding to the AC8A + Cu alloy in FIG. 3) in which the amount of Cu in the AC8A alloy or AC8A is increased. I understand.
Further, in the alloys of Comparative Examples 12 to 16, the content of one or both of Si and Cu is within the range of the present invention (Si: 4.0 to 7.0 mass%, Cu: 21 to 31.5). Some are included in (mass%), but both are examples in which the Si amount and the Cu amount do not satisfy the relational expressions (1) to (3) of the present invention. As a result, the high temperature strength is comparable to that of the alloy of the present invention, but in particular, as shown in Table 3, it has been found that the porosity is large and the castability is poor.

表1に示した本発明の合金1、並びに従来の合金17(AC8A+Cu)及びAC8Aについて、150℃、250℃及び350℃における硬さ(HRF)を測定した。結果を下記の表4に示す。

Figure 2005029847
The hardness (HRF) at 150 ° C., 250 ° C. and 350 ° C. was measured for the alloy 1 of the present invention shown in Table 1, and the conventional alloy 17 (AC8A + Cu) and AC8A. The results are shown in Table 4 below.
Figure 2005029847

表4から明らかなように、本発明の合金(合金番号1)は、従来の耐熱性合金AC8A+Cu(合金番号17)及びAC8Aより硬く、特に、従来の合金では高温になるに従って硬さが低下するのに対し、本発明の合金は硬さの変化が殆ど無く、その結果、高温になるほど従来の合金との硬さの差が大きくなる。即ち、本発明の合金は、高温における過酷な条件での使用に十分耐え得ることがわかる。   As is apparent from Table 4, the alloy of the present invention (Alloy No. 1) is harder than the conventional heat resistant alloys AC8A + Cu (Alloy No. 17) and AC8A, and in particular, the hardness of the conventional alloy decreases as the temperature increases. On the other hand, the alloy of the present invention has almost no change in hardness, and as a result, the difference in hardness from the conventional alloy increases as the temperature increases. That is, it can be seen that the alloy of the present invention can sufficiently withstand use under severe conditions at high temperatures.

本発明のAl合金の熱力学的状態図を示す図である。It is a figure which shows the thermodynamic state figure of Al alloy of this invention. 従来の耐熱性Al(AC8A)合金の熱力学的状態図を示す図である。It is a figure which shows the thermodynamic state figure of the conventional heat resistant Al (AC8A) alloy. 従来の耐熱性Al(AC8A+Cu)合金の熱力学的状態図を示す図である。It is a figure which shows the thermodynamic state figure of the conventional heat resistant Al (AC8A + Cu) alloy. 本発明の合金の組織構造を示す顕微鏡写真である。It is a microscope picture which shows the structure of the alloy of this invention. 従来の耐熱性Al(AC8A)合金の組織構造を示す顕微鏡写真である。It is a microscope picture which shows the structure of the conventional heat resistant Al (AC8A) alloy. 従来の耐熱性Al(AC8A+Cu)合金の組織構造を示す顕微鏡写真である。It is a microscope picture which shows the structure | tissue structure of the conventional heat resistant Al (AC8A + Cu) alloy. 本発明に係るAl合金を構成するSi及びCuの質量%の関係を示すグラフである。It is a graph which shows the relationship of the mass% of Si and Cu which comprise Al alloy which concerns on this invention.

Claims (4)

Si:2.0〜7.0質量%、Cu:21.0〜31.5質量%を含み、残部がAlと不可避的不純物からなり、Si量とCu量とが次の関係式(1)乃至(3):
(Si質量%)≦−0.19×(Cu質量%)+11 (1)
(Si質量%)≧−0.5×(Cu質量%)+17.5 (2)
(Si質量%)≧6×(Cu質量%)−184 (3)
を満たす高温強度に優れた鋳造用アルミニウム合金。
Si: 2.0-7.0% by mass, Cu: 21.0-31.5% by mass, the balance is made of Al and inevitable impurities, and the amount of Si and the amount of Cu are expressed by the following relational expression (1) To (3):
(Si mass%) ≦ −0.19 × (Cu mass%) + 11 (1)
(Si mass%) ≧ −0.5 × (Cu mass%) + 17.5 (2)
(Si mass%) ≧ 6 × (Cu mass%) − 184 (3)
An aluminum alloy for casting with excellent high-temperature strength that meets the requirements.
更に、Ti:0.001〜0.20%、B:0.0005〜0.02%、Zr:0.0005〜0.02%、V:0.0005〜0.02%の内、いずれか1種以上を含むことを特徴とする、請求項1に記載の高温強度に優れた鋳造用アルミニウム合金。 Furthermore, any of Ti: 0.001 to 0.20%, B: 0.0005 to 0.02%, Zr: 0.0005 to 0.02%, V: 0.0005 to 0.02% The aluminum alloy for casting excellent in high temperature strength according to claim 1, comprising at least one kind. 請求項1又は2に記載の組成のアルミニウム合金を鋳造後、150〜240℃で、2〜8時間保持して時効処理することを特徴とする、高温強度に優れたアルミニウム合金鋳造材の製造方法。 A method for producing an aluminum alloy cast material excellent in high-temperature strength, wherein the aluminum alloy having the composition according to claim 1 or 2 is cast and then subjected to aging treatment at 150 to 240 ° C for 2 to 8 hours. . 請求項1又は2に記載の組成のアルミニウム合金を鋳造後、450〜150℃間を、平均冷却速度100℃/秒以上で冷却し、その後、150〜240℃で、2〜8時間保持して時効処理することを特徴とする、請求項3に記載の高温強度に優れたアルミニウム合金鋳造材の製造方法。 After casting the aluminum alloy having the composition according to claim 1 or 2, the alloy is cooled at an average cooling rate of 100 ° C./second or more between 450 to 150 ° C., and then held at 150 to 240 ° C. for 2 to 8 hours. The method for producing an aluminum alloy cast material excellent in high-temperature strength according to claim 3, wherein the aging treatment is performed.
JP2003271148A 2003-07-04 2003-07-04 Aluminum alloy for casting with excellent high temperature strength Expired - Fee Related JP4065977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003271148A JP4065977B2 (en) 2003-07-04 2003-07-04 Aluminum alloy for casting with excellent high temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003271148A JP4065977B2 (en) 2003-07-04 2003-07-04 Aluminum alloy for casting with excellent high temperature strength

Publications (2)

Publication Number Publication Date
JP2005029847A true JP2005029847A (en) 2005-02-03
JP4065977B2 JP4065977B2 (en) 2008-03-26

Family

ID=34209112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003271148A Expired - Fee Related JP4065977B2 (en) 2003-07-04 2003-07-04 Aluminum alloy for casting with excellent high temperature strength

Country Status (1)

Country Link
JP (1) JP4065977B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056965A (en) * 2006-08-30 2008-03-13 Kobe Steel Ltd HIGH STRENGTH Al ALLOY AND ITS PRODUCTION METHOD
CN104779718A (en) * 2015-04-13 2015-07-15 湖南天能电机制造有限公司 Super-efficient motor provided with boron aluminum alloy rotor
US20180171441A1 (en) * 2016-12-15 2018-06-21 Hyundai Motor Company Aluminum Alloy for Insert Ring, Aluminum Insert Ring Using the Same, and Piston Manufacturing Method Using the Same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056965A (en) * 2006-08-30 2008-03-13 Kobe Steel Ltd HIGH STRENGTH Al ALLOY AND ITS PRODUCTION METHOD
CN104779718A (en) * 2015-04-13 2015-07-15 湖南天能电机制造有限公司 Super-efficient motor provided with boron aluminum alloy rotor
US20180171441A1 (en) * 2016-12-15 2018-06-21 Hyundai Motor Company Aluminum Alloy for Insert Ring, Aluminum Insert Ring Using the Same, and Piston Manufacturing Method Using the Same
KR20180069269A (en) * 2016-12-15 2018-06-25 현대자동차주식회사 Alluminum alloy for insert ring, alluminum insert ring using the same and piston manufacturing method using the same
CN108220719A (en) * 2016-12-15 2018-06-29 现代自动车株式会社 Aluminium alloy for insertion ring, the aluminium insertion ring using the aluminium alloy and the piston preparation method using the aluminium insertion ring
KR101896806B1 (en) * 2016-12-15 2018-09-07 현대자동차주식회사 Alluminum alloy for insert ring, alluminum insert ring using the same and piston manufacturing method using the same
US10787724B2 (en) * 2016-12-15 2020-09-29 Hyundai Motor Company Aluminum alloy for insert ring, aluminum insert ring using the same, and piston manufacturing method using the same
CN108220719B (en) * 2016-12-15 2021-12-28 现代自动车株式会社 Aluminum alloy for insert ring, aluminum insert ring using the same, and method for manufacturing piston using the same

Also Published As

Publication number Publication date
JP4065977B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP5146767B2 (en) Magnesium alloy for casting and method for producing magnesium alloy casting
US9180515B2 (en) Magnesium alloy and magnesium-alloy cast product
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JP2006291327A (en) Heat-resistant magnesium alloy casting
JP2008266734A (en) Magnesium alloy for casting, and magnesium alloy casting
JP4852082B2 (en) Magnesium alloy
JP5691477B2 (en) Al-Si alloy and method for producing the same
JP2005272868A (en) Casting aluminum alloy with high rigidity/low linear expansion coefficient
JP2004162090A (en) Heat resistant magnesium alloy
JP4341438B2 (en) Aluminum alloy excellent in wear resistance and sliding member using the same alloy
JP4093221B2 (en) Aluminum alloy for casting, aluminum alloy casting and method for producing the same
JP2005187896A (en) Heat resistant magnesium alloy casting
JP2005240129A (en) Heat resistant magnesium alloy casting
JP2004256873A (en) Aluminum alloy for casting having excellent high temperature strength
JP4065977B2 (en) Aluminum alloy for casting with excellent high temperature strength
JPWO2008120497A1 (en) Heat resistant magnesium alloy
JP5590413B2 (en) High thermal conductivity magnesium alloy
JP2007291447A (en) Sliding component made of magnesium alloy
CN110573637B (en) Al-Si-Fe aluminum alloy casting material and method for producing same
JP2005187895A (en) Heat resistant magnesium alloy casting
JP3915739B2 (en) Aluminum alloy for casting with excellent high temperature strength
CN108779521B (en) Aluminum alloy for low-pressure casting
JP2006176873A (en) Magnesium alloy and method for manufacturing magnesium alloy member
JP2005240130A (en) Heat resistant magnesium alloy casting
JP2020509196A (en) High strength magnesium alloy excellent in flame retardancy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4065977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees