JP2005028387A - Immersion nozzle for continuous casting - Google Patents

Immersion nozzle for continuous casting Download PDF

Info

Publication number
JP2005028387A
JP2005028387A JP2003194297A JP2003194297A JP2005028387A JP 2005028387 A JP2005028387 A JP 2005028387A JP 2003194297 A JP2003194297 A JP 2003194297A JP 2003194297 A JP2003194297 A JP 2003194297A JP 2005028387 A JP2005028387 A JP 2005028387A
Authority
JP
Japan
Prior art keywords
immersion nozzle
hole
discharge
continuous casting
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003194297A
Other languages
Japanese (ja)
Inventor
Shigeo Fukumoto
成雄 福元
Seiichi Kitagawa
誠一 北川
Takehiko Fuji
健彦 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003194297A priority Critical patent/JP2005028387A/en
Publication of JP2005028387A publication Critical patent/JP2005028387A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suitably control molten steel flowing speed spouted from a spouting hole by suitably forming the shape of an immersion nozzle and also, to reduce large inclusion in a cast billet by preventing drifting-flow and uniformizing the molten steel flowing. <P>SOLUTION: The immersion nozzle for continuous casting, is provided with a bottom wall 3 at the lower end of the straight tube part of the nozzle and spouting holes 2 upward at the right and the left of the lower part. For the spouting hole, the hole shape from the inside to the outside end is similar and the widening angle θ is formed in the direction from the inside to the outside in the cross sectional surface, wherein the ratio of the width w at the outside end in the spouting hole to the average hole diameter D of the straight tube part, satisfies 1.1≤w/D≤1.6 and the ratio of the length L of the spouting hole to the average hole diameter D of the straight tube part, satisfies 0.3≤L/D≤0.7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋳片、特にスラブ鋳片の連続鋳造において、浸漬ノズルの吐出孔から吐出する溶鋼流を均一化するとともに、吐出流速を適正に制御することにより、鋳片品質の向上を可能とする連続鋳造用浸漬ノズルに関するものである。
【0002】
【従来の技術】
スラブ鋳片(以下、単に鋳片ともいう)の連続鋳造では、取鍋から鋳型に溶鋼を注入するに際し、通常、取鍋から一旦タンディッシュに注湯し、タンディッシュから浸漬ノズルを介して鋳型に注湯することにより、連続的に鋳片が製造される。
【0003】
連続鋳造においては、浸漬ノズル直管部の孔断面積と吐出孔の断面積のバランスの変化などにより、吐出流速が変化し吐出流に偏りが発生する。吐出流速が大き過ぎたり小さ過ぎると、溶鋼中の非金属介在物が凝固シェルに捕捉されて鋳片内の非金属介在物が多くなる。また、吐出流速の過大などにより偏流が発生すると局所的な淀みにより溶鋼中の非金属介在物が凝固シェルに捕捉され、また、湯面のパウダーが溶鋼中に捲き込まれて鋳片内の非金属介在物が多くなり、さらには、凝固不均一により鋳片に縦割れが発生し、製品欠陥の原因となる。
【0004】
そのため、従来連続鋳造においては、浸漬ノズルの直管部と吐出孔の寸法バランスの変化などにより、吐出流速を適正に制御するとともに偏流を防止することに着目して開発がなされてきた。例えば、特許文献1にはノズル直管部の平均孔直径と吐出孔の平均直径との比を1.0以上とするとともに、吐出孔の長さとノズル直管部の平均孔直径と吐出孔の長さとの比を0.8以上とした浸漬ノズルが記載されている。しかしながら、この浸漬ノズルでは溶鋼中の偏流を十分に抑えることができず、パウダー捲き込みが発生するとともに、溶鋼中の非金属介在物が凝固シェルに捕捉されるため、介在物起因の欠陥が発生する場合があることが判明した。
【0005】
また、特許文献2にはノズル直管部の外径xと鋳型の内のりの厚みtの関係が、“40(mm)≦t−x≦120(mm)”を満足するとともに、ノズル直管部の孔断面積と吐出孔総断面積との比を1.0以下とした浸漬ノズルが記載されている。しかしながら、この浸漬ノズルでは最大吐出流速が大き過ぎて、湯面変動に起因するパウダー捲き込みが発生するとともに、ブレークアウトも起こり易くなることが判明した。
【0006】
さらに、特許文献3には浸漬ノズルの吐出孔の縦方向の長さaと横方向の長さbの比が、“0.3≦a/b≦1.0”を満足するとともに、ノズル直管部の孔断面積と吐出孔総断面積との比を1.2〜2.6とした浸漬ノズルが記載されている。この浸漬ノズルでは偏流は発生しないものの、鋳型内の平均的な吐出流速が小さく、溶鋼中の非金属介在物が凝固シェルに捕捉されるため、介在物起因の欠陥が発生することが判明した。
【0007】
【特許文献1】
特開昭54−8117号公報
【特許文献1】
特開平5−154625号公報
【特許文献1】
特開2001−129645号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点に鑑み、吐出流速を適正に制御するとともに、吐出流の偏りを防止することにより、品質欠陥の少ない鋳片の製造を可能とする連続鋳造用浸漬ノズルを提供するものである。
【0009】
【課題を解決するための手段】
本発明は、浸漬ノズルの形状を適正に形成することで、吐出孔から吐出する溶鋼流の速度を適正に制御するとともに、該溶鋼流の偏流を防止して均一化することにより、品質良好な鋳片を製造できることを明らかにしたものであり、その要旨は以下のとおりである。
(1)ノズル直管部の下端に底壁3を有し、下部の左右に上向きの吐出孔(2、2)を有し、該吐出孔は内側端から外側端までの孔形状が相似形であり、且つ横断面において内側から外側に向かう方向で広がりを有し、該吐出孔の外側端の幅wと直管部の平均孔直径Dの比が、1.1≦w/D≦1.6の関係を満足することを特徴とする連続鋳造用浸漬ノズル。
(2)ノズル直管部の下端に底壁3を有し、下部の左右に上向きの吐出孔(2、2)を有し、該吐出孔は内側端から外側端までの孔形状が相似形であり、且つ横断面において内側から外側に向かう方向で広がりを有し、該吐出孔の長さLと直管部の平均孔直径Dの比が、0.3≦L/D≦0.7を満足することを特徴とする連続鋳造用浸漬ノズル。
(3)前記吐出孔の広がり角θが40〜70°であることを特徴とする上記(1)または(2)に記載の連続鋳造用浸漬ノズル。
(4)前記吐出孔は上向きであり、上向き角αが5〜40°であることを特徴とする上記(1)ないし(3)のいずれかに記載の連続鋳造用浸漬ノズル。
【0010】
【発明の実施の形態】
本発明の連続鋳造用浸漬ノズルを図面を用いて詳細に説明する。図1は本発明の連続鋳造用浸漬ノズルの例を示す図であり、図1(a)はノズル軸心に沿う縦断面図、図1(b)は図1のA−A線横断面図である。
【0011】
浸漬ノズル1は直管部4の下端に底壁3を有し、直管部4の下部の左右両側に吐出孔2,2を有している。吐出孔2,2は内側端から外側端までの孔形状が相似形であり、孔形状としては真円形、横長楕円形、正方形、横長矩形などの何れでもよい。吐出孔2,2は、図1のA−A線横断面において内側から外側に向かう方向で広がりを有しており、吐出孔が広がり角を有することにより吐出流速を分散させて減衰させることができる。
【0012】
吐出孔の広がり角度(θ)は40°〜70°の範囲であることが望ましい。この範囲を外れると湯面変動や偏流が発生し、パウダーの捲き込み、非金属介在物の凝固シェルへの捕捉が発生する場合がある。
【0013】
吐出孔2,2の向きは上向きが好ましく上向き角αは5〜40°が好ましい。上向き角αが5°未満であるとシェル洗いによる凝固不均一により鋳片に縦われが発生し、上向き角αが40°を超えると湯面の波立ちによりパウダーの捲き込みが発生する。
【0014】
図2は、図1に示した浸漬ノズルを使用してスラブの連続鋳造を行った場合の吐出孔外側端の幅wと直管部の平均孔直径Dの比w/Dとスラブの非金属介在物個数との関係を示す。なお、吐出孔外側端の幅wは、吐出孔出側端の孔形状が円形の場合は直径であり、横長楕円の場合は長径であり、横長の矩形の場合は長辺の長さである。
【0015】
鋳型断面形状は200mm厚み−幅1000mmのスラブで、SUS304鋼を0.75m/minの鋳造速度で鋳造した場合の結果である。w/Dが1.1未満では吐出流速が大き過ぎて吐出流による攪拌効果が大きくなり過ぎて非金属介在物の凝集粗大化が促進されるため、また、直管部での溶鋼未充満に起因して吐出流に偏流が発生して局所的に流れの淀みができるため、非金属介在物が凝固シェルに捕捉されて鋳片の非金属介在物個数が増大する。一方、w/Dが1.6を超えると吐出流速が小さ過ぎて、溶鋼中の非金属介在物が凝固シェルに捕捉されて非金属介在物個数が増大する。好ましくは1.2≦w/D≦1.5である。
【0016】
また、吐出孔外側端の幅wは吐出孔出口の平均直径dより大きいことが望ましい。これにより、吐出流速の減衰効果が大きくなるとととも、偏流が発生しないので偏流に起因するパウダー捲き込みや凝固不均一により縦割れ等の欠陥が発生し難くなる。吐出孔出口の平均直径dは吐出孔出口の面積をS(cm)、吐出孔出口周囲の長さa(cm)より、平均直径としてd=4S/aで求めることができる。
【0017】
図3は、図1に示した浸漬ノズルを使用してスラブの連続鋳造を行った場合の吐出孔の長さLと直管部の平均孔直径Dの比L/Dとスラブの非金属介在物個数の関係を示す。なお、鋳型の断面形状は200mm厚み−幅1000mmのスラブ用で、SUS304鋼を0.75m/minの鋳造速度で鋳造した場合の結果である。L/Dが0.3未満では吐出流の偏流が激しくなり、吐出流に局所的に流れの淀みができるため、溶鋼中の非金属介在物が凝固シェルに捕捉されて非金属介在物個数が増大する。一方、L/Dが0.7を超えると吐出流の水平面内での広がりが小さくなって吐出流孔が内側から外側で広がりを有することによる吐出流速減衰の効果が小さくなり、吐出流速過大による攪拌効果が大き過ぎて非金属介在物の凝集粗大化が促進されるため、非金属介在物個数が増大する。好ましくは0.35≦L/D≦0.6である。
【0018】
以上述べたように本発明の連続鋳造用浸漬ノズルによると、適正な吐出流速を確保でき、偏流を防止できるので品質良好な鋳片を安定して製造できる。
【0019】
【実施例】
以下に本発明の効果を実施例に基づいて説明する。鋳型は断面形状が200mm厚み−幅1000mmのスラブ用で、SUS304鋼を鋳造した場合の結果である。表1に浸漬ノズルの形状と鋳片品質の調査結果をまとめて示す。
【0020】
得られたスラブは非金属介在物個数の調査を行った。非金属介在物の調査は溶鋼流の淀みが発生し易く、かつ鋼板のヘゲ疵が発生しやすい鋳片の幅中央部において、鋳片表層〜5mmより30×30×5mm厚のブロックを切り出し、ヨウ素アルコール溶液にブロックを浸漬して、50μ以上の大型介在物を抽出し、光学顕微鏡で介在物個数を測定した。非金属介在物個数はヨウ素アルコールによる鋼の溶解量100g当たりの介在物個数で表わした。
【0021】
【表1】

Figure 2005028387
【0022】
本発明例では本発明の浸漬ノズルを使用することにより、非金属介在物個数は10個/100kg未満であった。
【0023】
比較例No.7では吐出孔の広がり角θが0であり吐出孔は内側から外側で広がりを有していないため、吐出流速が大きく、偏流が発生したために非金属介在物個数が多くなっている。
【0024】
比較例No.8ではw/D及びL/Dが本発明の範囲を低めに外れており吐出流速が大きいため、吐出流の攪拌効果が大き過ぎて非金属介在物の凝集粗大化が促進され、また、吐出流の局所的な淀みが発生して溶鋼中の非金属介在物が凝固シェルに捕捉され、非金属介在物個数が増大した。
【0025】
比較例No.9ではw/Dが本発明の範囲を高めに外れているため吐出流速が小さくなって溶鋼中の非金属介在物が凝固シェルに捕捉され、また、L/Dが本発明の範囲を高めに外れているため、吐出流の攪拌効果が大き過ぎて非金属介在物の凝集粗大化が促進され、非金属介在物個数が増大した。
【0026】
【発明の効果】
本発明の連続鋳造用浸漬ノズルにより、吐出流速を適正化し、さらには吐出流を均一化することで、非金属介在物の凝集粗大化を防止し、さらには非金属介在物の凝固シェルへの捕捉を防止できるので非金属介在物の極めて少ない鋳片を安定して製造することが可能となる。
【図面の簡単な説明】
【図1】本発明による浸漬ノズルの例を示す図であり、(a)は軸心に沿う縦断面図、(b)は(a)のA−A線断面図である。
【図2】吐出孔外側端の幅wと直管部の平均孔直径Dの比w/Dとスラブの非金属介在物個数の関係を示す図である。
【図3】吐出孔の長さLとノズル直管部の平均孔直径Dの比L/Dとスラブの非金属介在物個数の関係を示す図である。
【符号の説明】
1 本発明の浸漬ノズル
2 浸漬ノズルの吐出孔
3 浸漬ノズルの底壁
4 浸漬ノズルの直管部
θ 吐出孔の広がり角
w 吐出孔出口端の幅
D 直管部の平均孔径
L 吐出孔の長さ[0001]
BACKGROUND OF THE INVENTION
The present invention makes it possible to improve the quality of the slab by uniformizing the molten steel flow discharged from the discharge hole of the immersion nozzle and appropriately controlling the discharge flow rate in continuous casting of the slab, particularly slab slab. The present invention relates to an immersion nozzle for continuous casting.
[0002]
[Prior art]
In continuous casting of slab slabs (hereinafter also simply referred to as slabs), when pouring molten steel from a ladle into a mold, the molten metal is usually poured into the tundish once from the ladle, and then the mold is poured from the tundish through an immersion nozzle. The cast slab is continuously produced by pouring into
[0003]
In continuous casting, the discharge flow rate changes due to a change in the balance between the hole cross-sectional area of the submerged nozzle straight pipe part and the cross-sectional area of the discharge hole, and the discharge flow is biased. If the discharge flow rate is too large or too small, nonmetallic inclusions in the molten steel are trapped by the solidified shell, and nonmetallic inclusions in the slab increase. Also, if drift occurs due to excessive discharge flow rate, nonmetallic inclusions in the molten steel are trapped by the solidified shell due to local stagnation, and powder on the molten metal surface is swallowed into the molten steel, causing non-containment in the slab. Metal inclusions increase, and further, vertical cracks occur in the slab due to uneven solidification, causing product defects.
[0004]
Therefore, the conventional continuous casting has been developed with a focus on appropriately controlling the discharge flow rate and preventing the drift by changing the dimensional balance between the straight pipe portion of the immersion nozzle and the discharge hole. For example, in Patent Document 1, the ratio of the average hole diameter of the nozzle straight pipe portion to the average diameter of the discharge hole is 1.0 or more, and the length of the discharge hole, the average hole diameter of the nozzle straight pipe portion, and the discharge hole An immersion nozzle having a ratio to the length of 0.8 or more is described. However, with this immersion nozzle, the drift in the molten steel cannot be sufficiently suppressed, powder penetration occurs, and nonmetallic inclusions in the molten steel are trapped by the solidified shell, resulting in defects due to inclusions. It turns out that there is a case.
[0005]
Further, in Patent Document 2, the relationship between the outer diameter x of the nozzle straight pipe portion and the thickness t of the inner die of the mold satisfies “40 (mm) ≦ t−x ≦ 120 (mm)”, and the nozzle straight pipe portion. An immersion nozzle is described in which the ratio of the hole cross-sectional area to the total cross-sectional area of the discharge holes is 1.0 or less. However, it has been found that the maximum discharge flow rate is too large with this immersion nozzle, so that powder penetration due to fluctuations in the molten metal surface occurs and breakout easily occurs.
[0006]
Further, in Patent Document 3, the ratio of the vertical length a to the horizontal length b of the discharge hole of the immersion nozzle satisfies “0.3 ≦ a / b ≦ 1.0” and the nozzle straight An immersion nozzle is described in which the ratio of the hole cross-sectional area of the pipe portion to the total cross-sectional area of the discharge holes is 1.2 to 2.6. Although no uneven flow occurs in this immersion nozzle, it has been found that the average discharge flow rate in the mold is small and nonmetallic inclusions in the molten steel are trapped by the solidified shell, so that defects due to inclusions occur.
[0007]
[Patent Document 1]
JP 54-8117 A [Patent Document 1]
JP-A-5-154625 [Patent Document 1]
JP 2001-129645 A
[Problems to be solved by the invention]
In view of the above-mentioned problems of the prior art, the present invention provides an immersion nozzle for continuous casting that enables the production of a slab with few quality defects by appropriately controlling the discharge flow rate and preventing the uneven discharge flow. It is to provide.
[0009]
[Means for Solving the Problems]
According to the present invention, the shape of the immersion nozzle is appropriately formed to appropriately control the speed of the molten steel flow discharged from the discharge hole, and the quality of the molten steel flow is prevented and uniformed by preventing the uneven flow of the molten steel flow. It has been clarified that a slab can be produced, and the gist thereof is as follows.
(1) A bottom wall 3 is provided at the lower end of the nozzle straight pipe part, and upward discharge holes (2, 2) are provided on the left and right sides of the lower part. The discharge holes are similar in shape from the inner end to the outer end. And has a breadth in the direction from the inside to the outside in the cross section, and the ratio of the width w of the outer end of the discharge hole to the average hole diameter D of the straight pipe portion is 1.1 ≦ w / D ≦ 1 The continuous casting immersion nozzle characterized by satisfying the relationship .6.
(2) A bottom wall 3 is provided at the lower end of the nozzle straight pipe part, and upward discharge holes (2, 2) are provided on the left and right sides of the lower part. The discharge holes are similar in shape from the inner end to the outer end. And has a spread in the direction from the inside to the outside in the cross section, and the ratio of the length L of the discharge hole to the average hole diameter D of the straight pipe portion is 0.3 ≦ L / D ≦ 0.7 An immersion nozzle for continuous casting characterized by satisfying
(3) The continuous casting immersion nozzle according to (1) or (2) above, wherein a spread angle θ of the discharge hole is 40 to 70 °.
(4) The continuous casting immersion nozzle according to any one of (1) to (3), wherein the discharge hole is upward and the upward angle α is 5 to 40 °.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The continuous casting immersion nozzle of the present invention will be described in detail with reference to the drawings. FIG. 1 is a view showing an example of an immersion nozzle for continuous casting according to the present invention. FIG. 1 (a) is a longitudinal sectional view along the nozzle axis, and FIG. 1 (b) is a transverse sectional view taken along line AA in FIG. It is.
[0011]
The immersion nozzle 1 has a bottom wall 3 at the lower end of the straight pipe portion 4, and discharge holes 2, 2 on the left and right sides of the lower portion of the straight pipe portion 4. The discharge holes 2 and 2 have a similar hole shape from the inner end to the outer end, and the hole shape may be any of a true circle, a horizontally long ellipse, a square, a horizontally long rectangle, and the like. The discharge holes 2 and 2 are widened in the direction from the inside to the outside in the cross section taken along the line AA in FIG. 1, and the discharge holes have a spread angle so that the discharge flow velocity can be dispersed and attenuated. it can.
[0012]
The spread angle (θ) of the discharge hole is desirably in the range of 40 ° to 70 °. If it is out of this range, fluctuations in the molten metal surface and drift will occur, and powder may be trapped and non-metallic inclusions may be trapped in the solidified shell.
[0013]
The direction of the discharge holes 2 and 2 is preferably upward, and the upward angle α is preferably 5 to 40 °. If the upward angle α is less than 5 °, the cast slab will be vertical due to non-uniform solidification by shell washing, and if the upward angle α exceeds 40 °, the powder will be entrained by the undulation of the molten metal surface.
[0014]
FIG. 2 shows the ratio w / D between the width w of the outer end of the discharge hole and the average hole diameter D of the straight pipe portion when the slab is continuously cast using the immersion nozzle shown in FIG. The relationship with the number of inclusions is shown. In addition, the width w of the discharge hole outer end is a diameter when the hole shape of the discharge hole outlet end is a circle, a long diameter when it is a horizontally long ellipse, and a long side when it is a horizontally long rectangle. .
[0015]
The mold cross-sectional shape is a result of casting SUS304 steel at a casting speed of 0.75 m / min with a slab having a thickness of 200 mm and a width of 1000 mm. If w / D is less than 1.1, the discharge flow rate is too high and the stirring effect due to the discharge flow becomes too great to promote agglomeration of non-metallic inclusions. As a result, uneven flow occurs in the discharge flow and local flow stagnation occurs, so that the nonmetallic inclusions are captured by the solidified shell and the number of nonmetallic inclusions in the slab increases. On the other hand, when w / D exceeds 1.6, the discharge flow rate is too small, and the nonmetallic inclusions in the molten steel are trapped by the solidified shell and the number of nonmetallic inclusions increases. Preferably 1.2 ≦ w / D ≦ 1.5.
[0016]
The width w of the outer end of the discharge hole is preferably larger than the average diameter d of the outlet of the discharge hole. Thereby, the damping effect of the discharge flow rate is increased, and since no drift occurs, defects such as vertical cracks are less likely to occur due to powder intrusion and uneven solidification due to the drift. The average diameter d of the discharge hole outlet can be obtained from the area of the discharge hole outlet as S (cm 2 ) and the length a (cm) around the discharge hole outlet as d = 4 S / a as an average diameter.
[0017]
FIG. 3 shows the ratio L / D between the length L of the discharge hole and the average hole diameter D of the straight pipe portion when the slab is continuously cast using the immersion nozzle shown in FIG. The relationship of the number of objects is shown. The cross-sectional shape of the mold is for a slab having a thickness of 200 mm and a width of 1000 mm, and is a result of casting SUS304 steel at a casting speed of 0.75 m / min. When the L / D is less than 0.3, the deviation of the discharge flow becomes intense, and the discharge flow can be locally stagnated. Therefore, the nonmetallic inclusions in the molten steel are trapped by the solidified shell, and the number of nonmetallic inclusions is Increase. On the other hand, when L / D exceeds 0.7, the spread of the discharge flow in the horizontal plane becomes small, and the effect of the discharge flow rate attenuation due to the discharge flow hole spreading from the inside to the outside becomes small, and the discharge flow rate is excessive. Since the agitation effect is too great and the coarsening of nonmetallic inclusions is promoted, the number of nonmetallic inclusions increases. Preferably, 0.35 ≦ L / D ≦ 0.6.
[0018]
As described above, according to the immersion nozzle for continuous casting of the present invention, an appropriate discharge flow rate can be ensured and uneven flow can be prevented, so that a slab of good quality can be manufactured stably.
[0019]
【Example】
The effects of the present invention will be described below based on examples. The mold is a result of casting SUS304 steel for a slab having a cross-sectional shape of 200 mm thickness-width 1000 mm. Table 1 summarizes the investigation results of the shape of the immersion nozzle and the slab quality.
[0020]
The obtained slab was examined for the number of non-metallic inclusions. The investigation of non-metallic inclusions cuts out a 30x30x5mm thick block from the slab surface to 5mm at the center of the width of the slab where stagnation of the molten steel flow is likely to occur and sag of the steel plate is likely to occur Then, the block was immersed in an iodine alcohol solution, large inclusions of 50 μm or more were extracted, and the number of inclusions was measured with an optical microscope. The number of non-metallic inclusions was expressed as the number of inclusions per 100 g of steel dissolved in iodine alcohol.
[0021]
[Table 1]
Figure 2005028387
[0022]
In the present invention example, the number of non-metallic inclusions was less than 10/100 kg by using the immersion nozzle of the present invention.
[0023]
Comparative Example No. In No. 7, the spread angle θ of the discharge hole is 0, and the discharge hole does not expand from the inside to the outside. Therefore, the discharge flow rate is large, and the number of non-metallic inclusions increases because of the occurrence of drift.
[0024]
Comparative Example No. In No. 8, w / D and L / D are out of the range of the present invention, and the discharge flow rate is large. Therefore, the stirring effect of the discharge flow is too great, and the aggregation and coarsening of nonmetallic inclusions is promoted. Local stagnation of the flow occurred, and nonmetallic inclusions in the molten steel were trapped by the solidified shell, increasing the number of nonmetallic inclusions.
[0025]
Comparative Example No. In No. 9, w / D is out of the range of the present invention, so the discharge flow rate is reduced and non-metallic inclusions in the molten steel are captured by the solidified shell, and L / D increases the range of the present invention. As a result, the agitation effect of the discharge flow is too great, which promotes the agglomeration and coarsening of nonmetallic inclusions, and increases the number of nonmetallic inclusions.
[0026]
【The invention's effect】
By the immersion nozzle for continuous casting of the present invention, the discharge flow rate is optimized, and the discharge flow is made uniform to prevent the non-metallic inclusions from agglomerating and coarsening, and further to the solidified shell of the non-metallic inclusions. Since the capture can be prevented, it is possible to stably produce a slab with very few non-metallic inclusions.
[Brief description of the drawings]
1A and 1B are diagrams showing an example of an immersion nozzle according to the present invention, in which FIG. 1A is a longitudinal sectional view along an axis, and FIG. 1B is a sectional view taken along line AA in FIG.
FIG. 2 is a diagram showing the relationship between the width w of the outer end of the discharge hole and the ratio w / D of the average hole diameter D of the straight pipe portion and the number of non-metallic inclusions in the slab.
FIG. 3 is a diagram showing the relationship between the ratio L / D of the discharge hole length L and the average hole diameter D of the nozzle straight pipe portion and the number of non-metallic inclusions in the slab.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Immersion nozzle 2 Immersion nozzle discharge hole 3 Immersion nozzle bottom wall 4 Immersion nozzle straight pipe portion θ Discharge hole spread angle w Discharge hole outlet end width D Straight tube portion average hole diameter L Discharge hole length The

Claims (4)

ノズル直管部の下端に底壁を有し、下部の左右に吐出孔を有し、該吐出孔は内側端から外側端までの孔形状が相似形であり、且つ横断面において内側から外側に向かう方向で広がりを有し、該吐出孔の外側端の幅wと直管部の平均孔直径Dの比が、1.1≦w/D≦1.6を満足することを特徴とする連続鋳造用浸漬ノズル。There is a bottom wall at the lower end of the nozzle straight pipe part, and there are discharge holes on the left and right sides of the lower part. The continuous is characterized in that the ratio of the width w of the outer end of the discharge hole and the average hole diameter D of the straight pipe portion satisfies 1.1 ≦ w / D ≦ 1.6. Immersion nozzle for casting. ノズル直管部の下端に底壁を有し、下部の左右に吐出孔を有し、該吐出孔は内側端から外側端までの孔形状が相似形であり、且つ横断面において内側から外側に向かう方向で広がりを有し、該吐出孔の長さLと直管部の平均孔直径Dの比が、0.3≦L/D≦0.7を満足することを特徴とする連続鋳造用浸漬ノズル。There is a bottom wall at the lower end of the nozzle straight pipe part, and there are discharge holes on the left and right sides of the lower part. For continuous casting, characterized in that the ratio of the length L of the discharge hole and the average hole diameter D of the straight pipe portion satisfies 0.3 ≦ L / D ≦ 0.7. Immersion nozzle. 前記吐出孔の広がり角θが40〜70°であることを特徴とする請求項1または2に記載の連続鋳造用浸漬ノズル。3. The continuous casting immersion nozzle according to claim 1, wherein a spread angle [theta] of the discharge hole is 40 to 70 [deg.]. 前記吐出孔は上向きであり、上向き角αが5〜40°であることを特徴とする請求項1ないし3のいずれかに記載の連続鋳造用浸漬ノズル。The immersion nozzle for continuous casting according to any one of claims 1 to 3, wherein the discharge hole is upward and the upward angle α is 5 to 40 °.
JP2003194297A 2003-07-09 2003-07-09 Immersion nozzle for continuous casting Pending JP2005028387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194297A JP2005028387A (en) 2003-07-09 2003-07-09 Immersion nozzle for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194297A JP2005028387A (en) 2003-07-09 2003-07-09 Immersion nozzle for continuous casting

Publications (1)

Publication Number Publication Date
JP2005028387A true JP2005028387A (en) 2005-02-03

Family

ID=34205505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194297A Pending JP2005028387A (en) 2003-07-09 2003-07-09 Immersion nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JP2005028387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131139A1 (en) * 2019-12-27 2021-07-01 品川リフラクトリーズ株式会社 Immersion nozzle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131139A1 (en) * 2019-12-27 2021-07-01 品川リフラクトリーズ株式会社 Immersion nozzle
JP2021107091A (en) * 2019-12-27 2021-07-29 品川リフラクトリーズ株式会社 Immersion nozzle
JP7121299B2 (en) 2019-12-27 2022-08-18 品川リフラクトリーズ株式会社 immersion nozzle
US11806781B2 (en) 2019-12-27 2023-11-07 Shinagawa Refractories Co., Ltd. Submerged entry nozzle

Similar Documents

Publication Publication Date Title
CN102196871A (en) Device for continuously casting steel
US3648761A (en) Apparatus for distributing molten steel in a mold for a continuous casting
EP0950453A1 (en) Submerged entry nozzle
JP4585504B2 (en) Method for continuous casting of molten metal
JPH0852547A (en) Immersion casting pipe
JP2005211936A (en) Method for continuously casting steel slab
JP2005028387A (en) Immersion nozzle for continuous casting
JP3214994B2 (en) Continuous casting method of thin slab and immersion nozzle for continuous casting
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JP4047241B2 (en) Billet continuous casting method
JP2007229736A (en) Vertical type continuous casting method of large cross section cast slab for thick steel plate
JPH02187240A (en) Submerged nozzle for high speed continuous casting
JP2001129645A (en) Immersion nozzle for continuous casting and continuous casting method
JP6497200B2 (en) Immersion nozzle for strip casting apparatus and strip casting apparatus
US6543656B1 (en) Method and apparatus for controlling standing surface wave and turbulence in continuous casting vessel
JP2002018562A (en) Method for continuously casting slab and immersion nozzle
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JPH10128506A (en) Immersion nozzle for continuous casting
JPH0238058B2 (en)
JP3866068B2 (en) Continuous casting method of high cleanliness steel
JP2006192441A (en) Method for continuously casting steel
JP3139927B2 (en) Continuous casting of thin slabs
JP2003205349A (en) Method for continuously casting cast slab having little blow hole defect, and produced cast slab
JP3303792B2 (en) Immersion nozzle for billet continuous casting and pouring method
JP2004283848A (en) Immersion nozzle for continuous casting of steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

RD02 Notification of acceptance of power of attorney

Effective date: 20050302

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A621 Written request for application examination

Effective date: 20051020

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Effective date: 20070821

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A02 Decision of refusal

Effective date: 20071113

Free format text: JAPANESE INTERMEDIATE CODE: A02