JP4047241B2 - Billet continuous casting method - Google Patents

Billet continuous casting method Download PDF

Info

Publication number
JP4047241B2
JP4047241B2 JP2003194295A JP2003194295A JP4047241B2 JP 4047241 B2 JP4047241 B2 JP 4047241B2 JP 2003194295 A JP2003194295 A JP 2003194295A JP 2003194295 A JP2003194295 A JP 2003194295A JP 4047241 B2 JP4047241 B2 JP 4047241B2
Authority
JP
Japan
Prior art keywords
discharge hole
discharge
nozzle
outlet
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003194295A
Other languages
Japanese (ja)
Other versions
JP2005028385A (en
Inventor
成雄 福元
洋 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2003194295A priority Critical patent/JP4047241B2/en
Publication of JP2005028385A publication Critical patent/JP2005028385A/en
Application granted granted Critical
Publication of JP4047241B2 publication Critical patent/JP4047241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビレットの連続鋳造において、鋳型内の溶鋼流動を制御することにより凝固均一性および非金属介在物の浮上分離を図り、品質良好なビレット鋳片(以下、単に鋳片ともいう)の製造を可能とする方法に関するものである。
【0002】
【従来の技術】
ビレットの連続鋳造では、溶鋼を取鍋から一旦タンディッシュに注湯し、タンディッシュから浸漬ノズルを介して鋳型に注湯することにより、直径が150〜400mm程度の丸ビレットまたは一辺が110〜400mm程度の角ビレットが連続的に製造される。
【0003】
ビレットの連続鋳造においては、浸漬ノズルと鋳型内面との間隔が狭いため、横向き吐出孔を設けた浸漬ノズルを使用すると、シェル洗いにより非金属介在物が凝固シェルに捕捉され、また、凝固シェルが再溶解して凝固不均一となり縦割れなどの表面欠陥やブレークアウト等が発生する。そのため、浸漬ノズルとしては横向き吐出孔がない円筒形状の単孔ノズルが一般的に使用されている。
【0004】
しかしながら、単孔ノズルを使用した場合にはメニスカス部への熱供給が不足するため、パウダーの溶融が不十分になり、パウダー起因の欠陥が発生し、また、単孔ノズルから吐出した溶鋼は鋳片下方の深くまで侵入するため、鋳型内での非金属介在物の浮上分離が不十分になり、高清浄な鋼を製造することが困難である。
【0005】
前記シェル洗いによる非金属介在物の凝固シェルへの捕捉を防止する方法として、例えば特許文献1には、鋳型の外側に電磁攪拌装置を設置し、鋳型内の溶鋼を引き抜き方向に対して垂直面内で旋回させる方法が提示されている。しかし、電磁攪拌を使用した場合には介在物清浄度は向上するものの、吐出流と電磁攪拌流の干渉によって偏流が発生するため、介在物清浄度のばらつきが大きいという問題が残る。
【0006】
前記ノズルから吐出した溶鋼が鋳片下方の深くまで侵入するのを防止する方法として、例えば特許文献2には、浸漬ノズルの側壁に下向きの吐出孔を対向して二孔設けることにより、下方への吐出流速を低下させる方法が提示されている。しかし、この方法は下方への吐出流速を低下できても上昇流を形成することが困難なため、非金属介在物の浮上分離を図ることができない。
【0007】
一方、鋳型内での非金属介在物の浮上分離を図る方法として、特許文献3には、浸漬ノズルの側壁に上向きの吐出孔を3孔設ける方法が提示されている。この方法では介在物清浄度が改善される場合があるが、吐出流速の制御が考慮されていないため安定して改善されず、偏流による凝固シェル再溶解により縦割れ等の表面欠陥が発生するという問題が残る。
【0008】
【特許文献1】
特開2001−25848号公報
【特許文献2】
特開2000−79454号公報
【特許文献3】
特開2000−202577号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点に鑑み、ビレットの連続鋳造において、シェル洗いによる非金属介在物の凝固シェルへの捕捉、凝固シェルの再溶解による縦割れ発生、パウダーの溶融不十分によるパウダー欠陥の発生及び吐出流の鋳片下方深くまでの侵入による非金属介在物欠陥の発生を防止することを課題とする。
【0010】
【課題を解決するための手段】
本発明は、吐出孔から吐出する吐出流の方向および速度など鋳型内の溶鋼流動を制御することにより偏流を防止、品質良好なビレットを製造できることを明らかにしたものであり、その要旨は以下のとおりである。
(1)ビレットの連続鋳造において、ノズル直管部の側壁に水平方向ないしは上向き勾配(角度θ1)の吐出孔を3孔または4孔有し且つ該吐出孔は先広がり角度θ 2 がゼロであり、前記ノズル直管部の平均孔直径Dと吐出孔出口の平均直径dとの比D/dが1.1〜1.5である浸漬ノズルを使用し、前記吐出孔出口の溶鋼流速をV(cm/sec)、該吐出孔出口と鋳型内面との水平距離をL(cm)、
U=1.45・V・d・cosθ1/L・・・・(1)式
としたとき、
5≦U(cm/sec)≦15・・・・(2)式
を満たすことを特徴とするビレット連続鋳造方法。
(2)ビレットの連続鋳造において、ノズル直管部の側壁に水平方向ないしは上向き勾配(角度θ1)の吐出孔を3孔または4孔有し且つ該吐出孔は先広がり(角度θ2)であり、前記ノズル直管部の平均孔直径Dと吐出孔出口の平均直径dとの比D/dが1.1〜1.5である浸漬ノズルを使用し、前記吐出孔出口の溶鋼流速をV(cm/sec)、該吐出孔出口と鋳型内面との水平距離をL(cm)、吐出孔出口の幅をw、
U=1.45・V・d・cosθ1/L ・・・・(1)式
α=w/(w+2(L・/cosθ1)・tan(θ2/2))・・・・(3)式
としたとき、
5≦α・U(cm/sec)≦15・・・・(4)式
を満たすことを特徴とするビレット連続鋳造方法。
【0011】
【発明の実施の形態】
図1〜図4は、本発明のビレット連続鋳造方法において使用する浸漬ノズルを示す図であり、吐出孔3,4の向きを水平向きないし上向きとする。図1は水平向き吐出孔3を有する浸漬ノズル1の縦断面図、図2は上向き吐出孔4を有する浸漬ノズル2の縦断面図である。水平向き吐出孔3及び上向き吐出孔4は、図3のように3孔設けるか、又は図4のように4孔設ける。吐出孔の孔形状は丸形、楕円形、四角形、三角形などの何れでもよいが、吐出孔の内側端から外側端にかけての孔形状は相似形である。なお、ノズル直管部の断面形状は湯流れの安定性より円形が望ましい。
【0012】
吐出口の孔形状が丸形以外の形状である場合、吐出孔出口の平均直径dは、吐出孔出口の面積S(cm2)、吐出孔出口周囲の長さa(cm)より、d=4S/aで求める。ノズル直管部の断面形状が円形以外の形状の場合、ノズル直管部の平均孔直径Dも同様にして求める。
【0013】
吐出孔3,4の向きを水平向きないし上向きとしたことにより、鋳型内で溶鋼に上向きの流れを与え、メニスカス部に溶湯熱を供給してパウダーの溶融を確保し、かつ鋳型内で非金属介在物が鋳片下方に深く侵入することを抑えることができる。
【0014】
上向き吐出孔4の上向き勾配(角度θ1)は30°以下であることが望ましい。勾配(角度θ1)が30°を超えると湯面変動によるパウダー捲き込み等の表面欠陥や凝固不均一による縦割れが発生し易くなる。吐出孔が下向きの場合には、鋳型内で非金属介在物が鋳片下方の深くまで侵入するので、鋳型内での非金属介在物の浮上分離が不十分になり、高清浄な鋼を製造することが困難になる。
【0015】
水平向き吐出孔3または上向き吐出孔4の孔数を3孔または4孔とした理由は、2孔以下では溶鋼の吐出流速が大きくなり過ぎて、偏流や湯面変動に凝固不均一により縦割れ等の欠陥が発生する。吐出孔が5孔以上では図1及び図2に示すノズル直管部の平均孔直径Dと後述する吐出孔出口の平均直径dとの比D/dを所定値に確保しようとすると、吐出孔出口近傍での偏流による凝固シェルへの介在物捕捉や凝固不均一に起因する縦割れ等が発生し、また、ノズル吐出孔部の強度を確保することが困難となる。
【0016】
図5は、断面形状が180mmφと270mm角の鋳型と、図1〜図4に示す浸漬ノズルを使用して、SUS410鋼を鋳造した場合の、ノズル直管部の平均孔直径Dと吐出孔出口の平均直径dとの比D/dと鋳片の非金属介在物個数及び縦割れ発生有無の関係を示す。吐出孔出口の平均直径dは吐出孔出口の面積S(cm2)、吐出孔出口周囲の長さa(cm)より、水力直径としてd=4S/aで求めた。図5より、D/dが1.1未満では吐出流速が小さ過ぎるため非金属介在物が凝固シェルに捕捉され易くなって非金属介在物個数が増大し、また、溶鋼流れが不均一になって凝固不均一により縦割れが発生する場合がある。
【0017】
一方、D/dが1.5を超えると吐出流速が大き過ぎるためノズル直管部において溶鋼未充満に起因する偏流が発生し、局所的な流れの淀みができるため非金属介在物個数が増大し、また凝固遅れに起因する縦割れも発生する。
【0018】
上記規定に加えて、図1〜4に示す上向きの勾配(角度θ1)、吐出孔出口の平均直径d(cm)、ノズル直管部の溶鋼流速V(cm/sec)、吐出孔3,4の数n、吐出孔出口と鋳型内面との水平距離L(cm)を調整することで吐出流速を減衰させて(1)式に示す凝固シェル衝突流速Uを(2)式の範囲に制御することが鋳片の品質向上に非常に重要である。なお、吐出孔出口の溶鋼流速V(cm/sec)は溶鋼密度ρ(=7g/cm3)、鋳込み量Q(g/sec)、吐出孔出口の面積S(cm2)、吐出孔の数nよりV=ρQ/(n・S)で求めることができる。
【0019】
図6は、鋳型断面形状が180mmφと270mm角の鋳型と、図1〜図4に示す浸漬ノズルを使用して、SUS410鋼を鋳造した場合の、(1)式に示す凝固シェル衝突流速Uと鋳片の非金属介在物個数及び縦割れ発生有無の関係を示す。凝固シェル衝突流速Uが5cm/sec未満であると吸い込み流に起因した偏流による凝固不均一により縦割れが発生するとともに、凝固シェルへの衝突流速が遅いため、非金属介在物が凝固シェルに捕捉され易くなるという問題が発生する。凝固シェル衝突流速Uが15cm/secを超えると、凝固不均一による縦割れが発生するとともに、各吐出流が凝固シェルに衝突する位置の中間で局所的な流れの淀みができるため非金属介在物が凝固シェルに捕捉され易くなるという問題が発生する。凝固シェル衝突流速Uが5〜15cm/secの範囲では均一な溶鋼流動を確保できるため、凝固不均一による縦割れ発生もなく、かつシェル洗いによる非金属介在物の凝固シェルへの捕捉を抑制できるので鋳片表層部の非金属介在物個数を低減できる。
【0020】
更には浸漬ノズルとして図8に示すように、先広がり吐出孔8を3孔または4孔設けた浸漬ノズル7を使用し、先広がり(角度θ2)、吐出孔出口の幅wを調整することで吐出流速を更に減衰させることとすると好ましい。この場合、(1)式と(3)式で示す凝固シェル衝突流速α・Uを(4)式の範囲に制御することが鋳片の品質向上に非常に重要である。なお、吐出口出口の幅wとは、吐出口出口のノズル円周方向最大幅を意味する。
【0021】
図7は、鋳型断面形状が180mmφと270mm角の鋳型と図8に示す浸漬ノズルを使用して、SUS410鋼を鋳造した場合の、(4)式に示す、凝固シェル衝突流速α・Uと鋳片の非金属介在物個数及び縦割れ発生有無の関係を示す。α・Uが5cm/sec未満であると、吸い込み流に起因した偏流による凝固不均一により縦割れが発生するとともに、凝固シェルへの衝突流速が遅いため、非金属介在物が凝固シェルに捕捉され易くなるという問題が発生する。凝固シェル衝突流速α・Uが15cm/secを超えると、偏流による縦割れが発生し、また、各吐出流が凝固シェルに衝突する位置同士の中間に局所的な流れの淀みが発生するため、非金属介在物が凝固シェルに捕捉され易くなるという問題が発生する。凝固シェル衝突流速α・Uが5〜15cm/secの範囲では均一な溶鋼流動を確保できるため凝固均一性を確保でき、縦割れ発生もなく、かつシェル洗いによる非金属介在物の凝固シェルへの捕捉を抑制でき、鋳片表層部の非金属介在物個数を低減できる。
【0022】
図8は、先広がりの吐出孔8を有する浸漬ノズル7の横断面図を示す。(3)式に示すαは吐出孔8が先広がり(角度θ2)を有することによる吐出流速の減衰を表わす指標であり、αの値を小さくすることによって実際の凝固シェル衝突流速を低減させることができる。吐出孔の先広がり(角度θ2)は60°以下であることが望ましい。60°を超えると偏流が発生し易くなって鋳片に縦割れが発生し、また、ノズル吐出孔部の強度を確保することが困難となる。なお、図8では、先広がりの吐出孔8を3孔設けたが4孔設けてもよい。
【0023】
また、吐出孔8の出口幅wは吐出孔出口の平均直径dより大きいことが望ましい。これにより、吐出流速の減衰効果が大きくなるとととも、偏流に起因するパウダー捲き込みや縦割れ等の欠陥が発生し難くなる。
【0024】
以上述べたように本発明によると、均一な溶鋼流動を確保でき、非金属介在物の浮上分離を図れるとともに、凝固均一性を確保できるので表面品質の良好な鋳片を安定して製造できる。
【0025】
【実施例】
以下に本発明の効果を実施例に基づいて説明する。鋳型は断面形状が180mmφと270mm角を使用し、浸漬ノズルは図1〜図4または図8のものを使用し、SUS410鋼とSUS420J2を鋳造した。表1、表2に連続鋳造条件をまとめて示す。表2において、θ2欄に値を記載していない例が図1〜図4に記載の浸漬ノズルを使用した例であり、θ2欄に値を記載している例が図8に記載の浸漬ノズルを使用した例である。
【0026】
【表1】

Figure 0004047241
【0027】
【表2】
Figure 0004047241
【0028】
【表3】
Figure 0004047241
【0029】
表3に鋳片の品質を調査した結果を示す。得られた鋳片は非金属介在物個数の調査と鋳片表面の縦割れの観察を行った。非金属介在物の調査は鋳片の円周方向の8箇所において、鋳片表層〜5mmと、5〜10mmより30×30×5mm厚のブロックを切り出し、ヨウ素アルコール溶液にブロックを浸漬して、50μ以上の大型介在物を抽出し、光学顕微鏡で介在物個数を測定した。
【0030】
前記ブロックを鋳片の円周方向の8箇所より採取したのは、吐出流が凝固シェルに衝突する位置同士の中間での淀み発生による介在物集積の有無を確認するためである。非金属介在物個数はヨウ素アルコールによる鋼の溶解量100g当たりの介在物個数で表わした。鋳片表面の縦割れ観察はビレットの総長10mに渡って、目視観察により鋳片の縦割れの有無を確認した。
【0031】
本発明の実施例では非金属介在物個数は10個/100kg未満であり、縦割れの発生は全く観察されなかった。表1のNo.8は、図2のように、鋳型内に電磁攪拌装置11を設けた場合の結果である。本発明における浸漬ノズルと鋳型内電磁攪拌を組み合わせると、シェル洗いによる非金属介在物の凝固シェルへの捕捉抑制と介在物浮上分離促進の効果が増大し、極めて清浄度の高い鋼を製造することが可能になる。なお、吐出流速が大きすぎる場合には吐出流と電磁攪拌流が干渉してしまうため溶鋼流動が不均一になり、比較例No.16のように非金属介在物個数や縦割れが増大する。なお、電磁攪拌における好ましい推力は10〜300mmFeである。
【0032】
表1のNo.9は、図9に示すように、内面に縦方向の溝9を設けた鋳型を使用した場合の結果である。本発明における浸漬ノズルと溝加工付き鋳型を組み合わせると、本発明の均一凝固の効果と溝加工付き鋳型による緩冷却効果によってSUS420J2のような割れ感受性の高い鋼種においても、縦割れ等の欠陥もなく、安定して製造することが可能になる。なお、図9において、溝9の好ましい寸法範囲は、P=0.4〜2.0mm、w1=0.2〜2.0mm、w2=0〜2.0mm、D=0.2〜2.0mmである。
【0033】
比較例No.10は、D/dが本発明の範囲を高めに外れ、No.11は、D/dおよび凝固シェル衝突流速Uが本発明の範囲を低めに外れているため非金属介在物個数が多く、No.10では縦割れも発生している。比較例No.12は、凝固シェル衝突流速Uが本発明の範囲を高めに外れているため非金属介在物個数が若干多く、かつ縦割れも発生している。比較例No.13は、凝固シェル衝突流速α・Uが本発明の範囲を低めに外れているため非金属介在物個数が非常に多くなっている。
【0034】
比較例No.14は、吐出孔が2孔であり、凝固シェル衝突流速α・Uが本発明の範囲を高めに外れているため非金属介在物個数が若干多く、かつ縦割れも発生している。比較例No.15は、割れ感受性の高いSUS420J2の例であるが、凝固シェル衝突流速α・Uが本発明の範囲を低めに外れているため非金属介在物個数が多く、かつ縦割れも発生している。比較例No.16では凝固シェル衝突流速Uが本発明の範囲を高めに外れているため非金属介在物個数が若干多く、かつ縦割れも発生している。
【0035】
【発明の効果】
本発明によれば、ビレットの連続鋳造において、浸漬ノズルから吐出する吐出流の方向および速度など鋳型内の溶鋼流動を適正に制御することにより、凝固シェルの再溶解を防止して凝固不均一による縦割れ発生及び非金属介在物の凝固シェルへの捕捉、さらには吐出流の鋳片下方深くまでの侵入による非金属介在物欠陥の発生を防止して非金属介在物および縦割れ等の欠陥の極めて少ない鋳片を製造することが可能となる。
【図面の簡単な説明】
【図1】本発明において使用する浸漬ノズルの例で、水平向き吐出孔を持つものの縦断面図
【図2】本発明において使用する浸漬ノズルの例で、上向き吐出孔を持つものの縦断面図
【図3】本発明において使用する浸漬ノズルの例で、3孔の吐出孔を持つものの横断面図
【図4】本発明において使用する浸漬ノズルの例で、4孔の吐出孔を持つものの横断面図
【図5】浸漬ノズルの直管部の平均孔直径Dと吐出孔出口の平均直径dとの比D/dと非金属介在物個数及び縦割れ発生有無の関係を示す図
【図6】(1)式に示す凝固シェル衝突流速Uと鋳片の非金属介在物個数及び縦割れ発生有無の関係を示す図
【図7】(4)式に示す凝固シェル衝突流速α・Uと鋳片の非金属介在物個数及び縦割れ発生有無の関係を示す図
【図8】本発明において使用する浸漬ノズルの例で、先広がり(角度θ2)の吐出孔を設けた浸漬ノズルの横断面図
【図9】本発明において使用する鋳型の例で、内面に縦溝を設けた横断面の一部を示す図
【符号の説明】
1 水平向き吐出孔を設けた浸漬ノズル
2 上向き吐出孔を設けた浸漬ノズル
3 水平向き吐出孔
4 上向き吐出孔
5 3孔浸漬ノズル
6 4孔浸漬ノズル
7 先広がり吐出孔を設けた浸漬ノズル
8 先広がりの吐出孔
9 鋳型内面の溝
10 鋳型
11 電磁攪拌装置
L 吐出孔出口と鋳型内面との距離
θ1 吐出孔の上向き勾配
θ2 吐出孔の先広がり
D ノズル直管部の平均孔直径
d 吐出孔出口の平均直径
w 先広がり吐出孔の出口幅[0001]
BACKGROUND OF THE INVENTION
In the continuous casting of the billet, the present invention achieves solidification uniformity and floating separation of non-metallic inclusions by controlling the flow of molten steel in the mold, so that a billet slab of good quality (hereinafter also simply referred to as a slab) is obtained. The present invention relates to a method enabling manufacturing.
[0002]
[Prior art]
In continuous billet casting, molten steel is once poured into a tundish from a ladle and then poured into a mold from the tundish through an immersion nozzle, whereby a round billet having a diameter of about 150 to 400 mm or a side of 110 to 400 mm. A degree billet is produced continuously.
[0003]
In continuous casting of a billet, since the distance between the immersion nozzle and the inner surface of the mold is narrow, when using an immersion nozzle with a lateral discharge hole, non-metallic inclusions are captured by the solidified shell by shell washing, and the solidified shell is Re-melting causes non-uniform solidification and surface defects such as vertical cracks and breakouts. For this reason, a cylindrical single-hole nozzle having no lateral discharge holes is generally used as the immersion nozzle.
[0004]
However, when a single-hole nozzle is used, the heat supply to the meniscus portion is insufficient, so that the powder is not sufficiently melted, resulting in powder-induced defects, and the molten steel discharged from the single-hole nozzle is cast. Since it penetrates deeply below one side, the floating separation of nonmetallic inclusions in the mold becomes insufficient, and it is difficult to produce highly clean steel.
[0005]
As a method for preventing non-metallic inclusions from being trapped in the solidified shell by the shell washing, for example, in Patent Document 1, an electromagnetic stirring device is installed outside the mold, and the molten steel in the mold is perpendicular to the drawing direction. The method of turning inside is presented. However, when electromagnetic stirring is used, the inclusion cleanliness is improved. However, since uneven flow occurs due to interference between the discharge flow and the electromagnetic stirring flow, there remains a problem that the inclusion cleanliness varies greatly.
[0006]
As a method for preventing the molten steel discharged from the nozzle from penetrating deeply below the slab, for example, in Patent Document 2, by providing two downward discharge holes on the side wall of the immersion nozzle, the downward direction is provided. A method of reducing the discharge flow rate is proposed. However, even if this method can reduce the discharge flow rate downward, it is difficult to form an upward flow, so that non-metallic inclusions cannot be floated and separated.
[0007]
On the other hand, as a method for achieving floating separation of non-metallic inclusions in a mold, Patent Document 3 proposes a method of providing three upward discharge holes on the side wall of an immersion nozzle. Inclusion cleanliness may be improved by this method, but it is not stably improved because control of the discharge flow rate is not taken into account, and surface defects such as vertical cracks occur due to remelting of the solidified shell due to drift. The problem remains.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-25848 [Patent Document 2]
JP 2000-79454 A [Patent Document 3]
Japanese Patent Laid-Open No. 2000-202577
[Problems to be solved by the invention]
In view of the above-mentioned problems of the prior art, the present invention provides a method for capturing non-metallic inclusions in a solidified shell by washing the shell, generating vertical cracks due to remelting of the solidified shell, and powder due to insufficient melting of the powder in continuous casting of the billet. It is an object of the present invention to prevent the occurrence of defects and the occurrence of non-metallic inclusion defects due to penetration of the discharge flow deeply below the slab.
[0010]
[Means for Solving the Problems]
The present invention clarifies that by controlling the flow of molten steel in the mold, such as the direction and speed of the discharge flow discharged from the discharge hole, it is possible to prevent uneven flow and manufacture a billet with good quality. It is as follows.
(1) In the continuous casting of the billet, the side wall of the nozzle straight pipe portion has three or four discharge holes having a horizontal direction or an upward gradient (angle θ 1 ), and the discharge holes have a zero forward angle θ 2 . There, the ratio D / d between the mean diameter d of the discharge hole outlet and the average pore diameter D of the nozzle straight tube section using the immersion nozzle is 1.1 to 1.5, the molten steel flow velocity of the discharge hole outlet V (cm / sec), the horizontal distance between the outlet of the discharge hole and the inner surface of the mold is L (cm),
U = 1.45 · V · d · cos θ 1 / L (1)
5 ≦ U (cm / sec) ≦ 15 (15) The billet continuous casting method characterized by satisfying the formula (2).
(2) In the continuous casting of the billet, the side wall of the nozzle straight pipe portion has three or four discharge holes with a horizontal direction or an upward gradient (angle θ 1 ), and the discharge holes are widened (angle θ 2 ). Yes, an immersion nozzle having a ratio D / d of 1.1 to 1.5 of the average hole diameter D of the nozzle straight pipe portion and the average diameter d of the discharge hole outlet is 1.1 to 1.5. V (cm / sec), the horizontal distance between the outlet of the discharge hole and the inner surface of the mold is L (cm), the width of the outlet of the discharge hole is w,
U = 1.45 · V · d · cosθ 1 / L ···· (1) equation α = w / (w + 2 (L · / cosθ 1) · tan (θ 2/2)) ···· (3 )
5 ≦ α · U (cm / sec) ≦ 15 (15) A billet continuous casting method characterized by satisfying the formula (4).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
1-4 is a figure which shows the immersion nozzle used in the billet continuous casting method of this invention, and makes the direction of the discharge holes 3 and 4 into horizontal direction or upward. FIG. 1 is a longitudinal sectional view of the immersion nozzle 1 having the horizontal discharge holes 3, and FIG. 2 is a longitudinal sectional view of the immersion nozzle 2 having the upward discharge holes 4. The horizontal discharge holes 3 and the upward discharge holes 4 are provided as shown in FIG. 3, or as shown in FIG. The hole shape of the discharge hole may be any of a round shape, an ellipse shape, a square shape, a triangle shape, and the like, but the hole shape from the inner end to the outer end of the discharge hole is similar. In addition, the cross-sectional shape of the nozzle straight pipe part is preferably a circular shape in view of the stability of the hot water flow.
[0012]
When the hole shape of the discharge port is a shape other than a round shape, the average diameter d of the discharge hole outlet is determined from the area S (cm 2 ) of the discharge hole outlet and the length a (cm) around the discharge hole outlet, d = Obtained by 4S / a. When the cross-sectional shape of the nozzle straight pipe portion is a shape other than a circle, the average hole diameter D of the nozzle straight pipe portion is obtained in the same manner.
[0013]
By making the direction of the discharge holes 3 and 4 horizontal or upward, an upward flow is given to the molten steel in the mold, the molten metal heat is supplied to the meniscus portion to ensure the melting of the powder, and the non-metal in the mold It can suppress that an inclusion penetrates deeply under the slab.
[0014]
The upward gradient (angle θ 1 ) of the upward discharge hole 4 is desirably 30 ° or less. If the gradient (angle θ 1 ) exceeds 30 °, surface defects such as powder penetration due to fluctuations in the molten metal surface and vertical cracks due to uneven solidification are likely to occur. When the discharge hole is facing downward, non-metallic inclusions penetrate deep into the slab below the mold, so that the non-metallic inclusions in the mold are insufficiently levitated and manufactured to produce highly clean steel. It becomes difficult to do.
[0015]
The reason why the number of the horizontal discharge holes 3 or the upward discharge holes 4 is 3 or 4 is that if the number of holes is 2 or less, the discharge speed of the molten steel becomes too high, and the vertical cracks due to uneven flow and fluctuations in the molten metal surface due to uneven solidification. Such defects occur. When the number of discharge holes is 5 or more, an attempt is made to secure a ratio D / d between the average hole diameter D of the nozzle straight pipe portion shown in FIGS. Inclusion trapping in the solidified shell due to drift near the outlet, vertical cracks due to non-uniform solidification, etc. occur, and it becomes difficult to ensure the strength of the nozzle discharge hole.
[0016]
FIG. 5 shows the average hole diameter D of the nozzle straight pipe part and the outlet of the discharge hole when SUS410 steel is cast using a mold having a cross-sectional shape of 180 mmφ and 270 mm square and the immersion nozzle shown in FIGS. The relationship between the ratio D / d with respect to the average diameter d, the number of non-metallic inclusions in the slab, and the presence or absence of vertical cracks is shown. The average diameter d of the discharge hole outlet was obtained as d = 4 S / a as the hydraulic diameter from the area S (cm 2 ) of the discharge hole outlet and the length a (cm) around the discharge hole outlet. From FIG. 5, when D / d is less than 1.1, the discharge flow rate is too small, so that nonmetallic inclusions are easily trapped by the solidified shell, the number of nonmetallic inclusions increases, and the molten steel flow becomes uneven. Longitudinal cracks may occur due to uneven solidification.
[0017]
On the other hand, when D / d exceeds 1.5, the discharge flow velocity is too large, and therefore, drift occurs due to the unfilled molten steel in the nozzle straight pipe part, and local flow stagnation can occur, increasing the number of non-metallic inclusions. In addition, vertical cracks due to solidification delay also occur.
[0018]
In addition to the above rules, the upward gradient (angle θ 1 ) shown in FIGS. 1 to 4, the average diameter d (cm) at the outlet of the discharge hole, the molten steel flow velocity V (cm / sec) at the nozzle straight pipe, the discharge hole 3, By adjusting the number n of 4 and the horizontal distance L (cm) between the outlet of the discharge hole and the inner surface of the mold, the discharge flow velocity is attenuated and the solidified shell collision flow velocity U shown in the equation (1) is controlled within the range of the equation (2). It is very important to improve the quality of the slab. The molten steel flow velocity V (cm / sec) at the discharge hole outlet is the molten steel density ρ (= 7 g / cm 3 ), the casting amount Q (g / sec), the area S (cm 2 ) of the discharge hole outlet, and the number of discharge holes. From n, V = ρQ / (n · S).
[0019]
FIG. 6 shows a solidified shell collision flow velocity U expressed by equation (1) when casting SUS410 steel using a mold having a mold cross-sectional shape of 180 mmφ and 270 mm square and an immersion nozzle shown in FIGS. The relationship between the number of non-metallic inclusions in the slab and the presence or absence of vertical cracks is shown. If the solidification shell collision flow velocity U is less than 5 cm / sec, vertical cracks occur due to uneven solidification due to drift due to suction flow, and non-metallic inclusions are trapped in the solidification shell because the collision flow velocity to the solidification shell is slow. The problem that it becomes easy to be done occurs. When the solidified shell collision flow velocity U exceeds 15 cm / sec, vertical cracks due to non-uniform solidification occur, and local stagnation can occur in the middle of the position where each discharge flow collides with the solidified shell. There arises a problem that is easily trapped by the solidified shell. When the solidified shell collision flow velocity U is in the range of 5 to 15 cm / sec, a uniform molten steel flow can be secured, so that vertical cracking due to non-uniform solidification does not occur, and trapping of non-metallic inclusions into the solidified shell by shell washing can be suppressed. Therefore, the number of non-metallic inclusions in the slab surface layer can be reduced.
[0020]
Further, as shown in FIG. 8, as the immersion nozzle, an immersion nozzle 7 having three or four forwardly spread discharge holes 8 is used, and the forward width (angle θ 2 ) and the width w of the discharge hole outlet are adjusted. It is preferable to further attenuate the discharge flow rate. In this case, it is very important to improve the quality of the slab by controlling the solidified shell collision flow velocity α · U shown in the formulas (1) and (3) within the range of the formula (4). The width w of the discharge port outlet means the maximum width in the nozzle circumferential direction of the discharge port outlet.
[0021]
FIG. 7 shows the solidified shell collision flow velocity α · U and the casting shown in the equation (4) when SUS410 steel is cast using a mold having a 180 mmφ and 270 mm square mold shape and the immersion nozzle shown in FIG. The relationship between the number of non-metallic inclusions on a piece and the presence or absence of vertical cracks is shown. If α · U is less than 5 cm / sec, vertical cracking occurs due to uneven solidification due to drift due to suction flow, and the collision velocity to the solidified shell is slow, so nonmetallic inclusions are trapped in the solidified shell. The problem that it becomes easy occurs. When the solidified shell collision flow velocity α · U exceeds 15 cm / sec, vertical cracks occur due to drift, and local flow stagnation occurs between the positions where each discharge flow collides with the solidified shell. There arises a problem that non-metallic inclusions are easily captured by the solidified shell. When the solidified shell collision flow velocity α · U is in the range of 5 to 15 cm / sec, uniform molten steel flow can be ensured, so that solidification uniformity can be ensured, vertical cracks do not occur, and nonmetallic inclusions are solidified into the solidified shell by washing the shell. Capturing can be suppressed and the number of non-metallic inclusions in the slab surface layer can be reduced.
[0022]
FIG. 8 shows a cross-sectional view of the submerged nozzle 7 having the discharge port 8 which is widened. In the equation (3), α is an index representing the attenuation of the discharge flow velocity due to the discharge hole 8 having a pre-expansion (angle θ 2 ), and the actual solidified shell collision flow velocity is reduced by reducing the value of α. be able to. It is desirable that the forward expansion (angle θ 2 ) of the discharge hole is 60 ° or less. If it exceeds 60 °, drift is likely to occur, vertical cracks occur in the slab, and it becomes difficult to ensure the strength of the nozzle discharge holes. In FIG. 8, three holes 8 that are widened forward are provided, but four holes may be provided.
[0023]
The outlet width w of the discharge hole 8 is preferably larger than the average diameter d of the discharge hole outlet. As a result, the discharge flow velocity attenuation effect is increased, and defects such as powder entrainment and vertical cracking due to drift are less likely to occur.
[0024]
As described above, according to the present invention, uniform molten steel flow can be ensured, non-metallic inclusions can be floated and separated, and solidification uniformity can be ensured, so that a slab having good surface quality can be stably produced.
[0025]
【Example】
The effects of the present invention will be described below based on examples. The casting mold used was 180 mmφ and 270 mm square, and the immersion nozzle was the one shown in FIGS. 1 to 4 or 8, and SUS410 steel and SUS420J2 were cast. Tables 1 and 2 summarize the continuous casting conditions. In Table 2, examples not described values to theta 2 column is an example of using the immersion nozzle according to FIGS. 1-4, an example which describes the value in theta 2 column is described in FIG. 8 It is an example using an immersion nozzle.
[0026]
[Table 1]
Figure 0004047241
[0027]
[Table 2]
Figure 0004047241
[0028]
[Table 3]
Figure 0004047241
[0029]
Table 3 shows the results of investigating the quality of the slab. The obtained slab was examined for the number of non-metallic inclusions and observed for vertical cracks on the slab surface. Non-metallic inclusions were investigated at 8 locations in the circumferential direction of the slab, by cutting out a slab surface layer to 5 mm and a block of 30 × 30 × 5 mm thickness from 5 to 10 mm, immersing the block in iodine alcohol solution, Large inclusions of 50 μm or more were extracted, and the number of inclusions was measured with an optical microscope.
[0030]
The reason why the blocks were collected from eight locations in the circumferential direction of the slab is to confirm the presence or absence of inclusion accumulation due to the occurrence of stagnation between the positions where the discharge flow collides with the solidified shell. The number of non-metallic inclusions was expressed as the number of inclusions per 100 g of steel dissolved in iodine alcohol. The observation of the vertical cracks on the surface of the slab was confirmed by visual observation over the total length of the billet of 10 m for the presence of vertical cracks in the slab.
[0031]
In the examples of the present invention, the number of nonmetallic inclusions was less than 10/100 kg, and no vertical cracks were observed. No. in Table 1 8 shows the result when the electromagnetic stirring device 11 is provided in the mold as shown in FIG. Combining the immersion nozzle and electromagnetic stirring in the mold according to the present invention increases the effect of suppressing the trapping of non-metallic inclusions in the solidified shell by shell washing and promoting the floating separation of inclusions, thereby producing extremely clean steel. Is possible. When the discharge flow rate is too large, the discharge flow and the electromagnetic stirring flow interfere with each other, so that the molten steel flow becomes non-uniform. As in 16, the number of non-metallic inclusions and vertical cracks increase. In addition, the preferable thrust in electromagnetic stirring is 10-300 mmFe.
[0032]
No. in Table 1 9 shows the results when a mold having a longitudinal groove 9 on the inner surface is used as shown in FIG. By combining the immersion nozzle and grooved mold in the present invention, there is no defect such as vertical cracking even in a steel type with high cracking sensitivity such as SUS420J2 due to the effect of uniform solidification and the slow cooling effect of the grooved mold of the present invention. It becomes possible to manufacture stably. 9, the preferable dimension ranges of the groove 9 are P = 0.4 to 2.0 mm, w1 = 0.2 to 2.0 mm, w2 = 0 to 2.0 mm, D = 0.2 to 2.mm. 0 mm.
[0033]
Comparative Example No. No. 10 has a D / d that deviates from the scope of the present invention. No. 11 has a large number of non-metallic inclusions because the D / d and the solidified shell collision flow velocity U are out of the range of the present invention. No. 10 also causes vertical cracks. Comparative Example No. No. 12, since the solidified shell collision flow velocity U is outside the range of the present invention, the number of non-metallic inclusions is slightly larger and vertical cracks are also generated. Comparative Example No. No. 13 has a very large number of non-metallic inclusions because the solidified shell collision flow velocity α · U is out of the range of the present invention.
[0034]
Comparative Example No. No. 14 has two discharge holes, and since the solidified shell collision flow velocity α · U deviates from the range of the present invention, the number of non-metallic inclusions is slightly larger and vertical cracks are also generated. Comparative Example No. 15 is an example of SUS420J2 having high cracking sensitivity. However, since the solidified shell collision flow velocity α · U is out of the range of the present invention, the number of nonmetallic inclusions is large and vertical cracks are also generated. Comparative Example No. In No. 16, the solidified shell collision flow velocity U is out of the range of the present invention, so the number of non-metallic inclusions is slightly larger and vertical cracks are also generated.
[0035]
【The invention's effect】
According to the present invention, in the continuous casting of the billet, by appropriately controlling the molten steel flow in the mold, such as the direction and speed of the discharge flow discharged from the immersion nozzle, re-melting of the solidified shell is prevented, resulting in non-uniform solidification. Non-metallic inclusions and defects such as vertical cracks can be prevented by preventing the occurrence of vertical cracks and trapping of non-metallic inclusions in the solidified shell, as well as the occurrence of non-metallic inclusion defects due to the penetration of the discharge flow deep into the slab. It becomes possible to produce very few slabs.
[Brief description of the drawings]
FIG. 1 is a vertical cross-sectional view of an example of an immersion nozzle used in the present invention and having a horizontal discharge hole. FIG. 2 is a vertical cross-sectional view of an example of an immersion nozzle used in the present invention and having an upward discharge hole. FIG. 3 is a cross-sectional view of an example of an immersion nozzle used in the present invention and having three discharge holes. FIG. 4 is a cross-sectional view of an example of an immersion nozzle used in the present invention and having four discharge holes. FIG. 5 is a diagram showing the relationship between the ratio D / d of the average hole diameter D of the straight pipe portion of the immersion nozzle and the average diameter d of the discharge hole outlet, the number of non-metallic inclusions, and the presence or absence of vertical cracks. FIG. 7 is a diagram showing the relationship between the solidified shell collision flow velocity U shown in equation (1), the number of non-metallic inclusions in the slab and the presence or absence of vertical cracks. FIG. 8 is a graph showing the relationship between the number of non-metallic inclusions and the presence or absence of vertical cracks. In the example of the immersion nozzle to be used Te, an example of a mold used in the cross-sectional view of the immersion nozzle having a discharge hole of the flared (angle theta 2) [9] The present invention, cross provided with longitudinal grooves on the inner surface Figure showing part of the surface 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Immersion nozzle provided with horizontal discharge hole 2 Immersion nozzle provided with upward discharge hole 3 Horizontal discharge hole 4 Upward discharge hole 5 3-hole immersion nozzle 6 4-hole immersion nozzle 7 Immersion nozzle 8 provided with widening discharge holes Widened discharge hole 9 Groove 10 on the inner surface of the mold 10 Mold 11 Electromagnetic stirrer L Distance between the outlet of the discharge hole and the inner surface of the mold θ 1 Upward gradient of the discharge hole θ 2 Pre-expansion of the discharge hole D Average hole diameter d of the nozzle straight pipe portion The average diameter w of the hole outlet W

Claims (2)

ビレットの連続鋳造において、ノズル直管部の側壁に水平方向ないし上向き勾配(角度θ1)の吐出孔を3孔または4孔有し且つ該吐出孔は先広がり角度θ 2 がゼロであり、前記ノズル直管部の平均孔直径Dと吐出孔出口の平均直径dとの比D/dが1.1〜1.5である浸漬ノズルを使用し、前記吐出孔出口の溶鋼流速をV(cm/sec)、該吐出孔出口と鋳型内面との水平距離をL(cm)、U=1.45・V・d・cosθ1/Lとしたとき、
5≦U(cm/sec)≦15
を満たすことを特徴とするビレット連続鋳造方法。
In the continuous casting of the billet, the side wall of the nozzle straight pipe portion has three or four discharge holes having a horizontal direction or an upward gradient (angle θ 1 ), and the discharge hole has a diverging angle θ 2 of zero, An immersion nozzle having a ratio D / d between the average hole diameter D of the nozzle straight pipe portion and the average diameter d of the discharge hole outlet of 1.1 to 1.5 is used, and the molten steel flow velocity at the discharge hole outlet is V (cm / Sec), when the horizontal distance between the outlet of the discharge hole and the inner surface of the mold is L (cm), and U = 1.45 · V · d · cos θ 1 / L,
5 ≦ U (cm / sec) ≦ 15
The billet continuous casting method characterized by satisfy | filling.
ビレットの連続鋳造において、ノズル直管部の側壁に水平方向ないし上向き勾配(角度θ1)の吐出孔を3孔または4孔有し且つ該吐出孔は先広がり(角度θ2)であり、前記ノズル直管部の平均孔直径Dと吐出孔出口の平均直径dとの比D/dが1.1〜1.5である浸漬ノズルを使用し、前記吐出孔出口の溶鋼流速をV(cm/sec)、該吐出孔出口と鋳型内面との水平距離をL(cm)、U=1.45・V・d・cosθ1/L、吐出孔出口の幅をw(cm)、α=w/(w+2(L・/cosθ1)・tan(θ2/2))としたとき、
5≦α・U(cm/sec)≦15
を満たすことを特徴とするビレット連続鋳造方法。
In the continuous casting of the billet, the side wall of the nozzle straight pipe part has three or four discharge holes having a horizontal direction or an upward gradient (angle θ 1 ), and the discharge holes are widened (angle θ 2 ), An immersion nozzle having a ratio D / d between the average hole diameter D of the nozzle straight pipe portion and the average diameter d of the discharge hole outlet of 1.1 to 1.5 is used, and the molten steel flow velocity at the discharge hole outlet is V (cm / Sec), the horizontal distance between the discharge hole outlet and the mold inner surface is L (cm), U = 1.45 · V · d · cos θ 1 / L, the width of the discharge hole outlet is w (cm), α = w / (w + 2 (L · / cosθ 1) · tan (θ 2/2)) and the time,
5 ≦ α · U (cm / sec) ≦ 15
The billet continuous casting method characterized by satisfy | filling.
JP2003194295A 2003-07-09 2003-07-09 Billet continuous casting method Expired - Lifetime JP4047241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194295A JP4047241B2 (en) 2003-07-09 2003-07-09 Billet continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194295A JP4047241B2 (en) 2003-07-09 2003-07-09 Billet continuous casting method

Publications (2)

Publication Number Publication Date
JP2005028385A JP2005028385A (en) 2005-02-03
JP4047241B2 true JP4047241B2 (en) 2008-02-13

Family

ID=34205503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194295A Expired - Lifetime JP4047241B2 (en) 2003-07-09 2003-07-09 Billet continuous casting method

Country Status (1)

Country Link
JP (1) JP4047241B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102274961A (en) * 2011-08-31 2011-12-14 中冶南方工程技术有限公司 Submersed nozzles for shaped blank continuous casting crystallizer
JP5451868B2 (en) * 2012-04-26 2014-03-26 品川リフラクトリーズ株式会社 Immersion nozzle for continuous casting equipment

Also Published As

Publication number Publication date
JP2005028385A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
CA2257486C (en) Submerged nozzle for the continuous casting of thin slabs
US3648761A (en) Apparatus for distributing molten steel in a mold for a continuous casting
EP0950453A1 (en) Submerged entry nozzle
JP4585504B2 (en) Method for continuous casting of molten metal
KR20050021961A (en) Method for producing ultra low carbon steel slab
JP4047241B2 (en) Billet continuous casting method
US20050284603A1 (en) Controlled fluid flow mold and molten metal casting method for improved surface
JP3018960B2 (en) Continuous casting method and its straight immersion nozzle
JP3214994B2 (en) Continuous casting method of thin slab and immersion nozzle for continuous casting
JP2018051598A (en) Bottom pouring ingot-making equipment
JP2005028387A (en) Immersion nozzle for continuous casting
JP2001347348A (en) Immersion nozzle for continuous casting
JP2002501438A (en) Method and apparatus for manufacturing a slab
JP2603402B2 (en) Continuous casting method of defect-free slab using straight immersion nozzle
JP3139927B2 (en) Continuous casting of thin slabs
JP6497200B2 (en) Immersion nozzle for strip casting apparatus and strip casting apparatus
JP3917748B2 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the same
JPH0616930B2 (en) Immersion nozzle for continuous casting
JPH0238058B2 (en)
JP5440933B2 (en) Immersion nozzle and continuous casting method using the same
CN110382137B (en) Continuous casting method and continuous casting apparatus
JP2024085134A (en) Continuous Casting Method
RU2381086C1 (en) Method of continuous casting of rectangular steel ingots
RU2204461C1 (en) Dead-bottom immersible nozzle
JP6904132B2 (en) Tandish for continuous casting

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4047241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term