JP2005026582A - Semiconductor device and method for manufacturing the semiconductor device - Google Patents

Semiconductor device and method for manufacturing the semiconductor device Download PDF

Info

Publication number
JP2005026582A
JP2005026582A JP2003192347A JP2003192347A JP2005026582A JP 2005026582 A JP2005026582 A JP 2005026582A JP 2003192347 A JP2003192347 A JP 2003192347A JP 2003192347 A JP2003192347 A JP 2003192347A JP 2005026582 A JP2005026582 A JP 2005026582A
Authority
JP
Japan
Prior art keywords
semiconductor device
wafer
semiconductor
electrode
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003192347A
Other languages
Japanese (ja)
Inventor
Kenji Miyata
憲治 宮田
Shigeru Hosogai
茂 細貝
Toshihiko Isokawa
俊彦 磯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003192347A priority Critical patent/JP2005026582A/en
Publication of JP2005026582A publication Critical patent/JP2005026582A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and a method for manufacturing the semiconductor device, in which a scribe region is not made greater than required and a wiring is formed easily with a high reliability. <P>SOLUTION: The scribe region containing a dicing region 11 is provided between neighboring semiconductor chips on a wafer 1. Element active regions 12 are formed on the respective semiconductor chips, and a plurality of signal wirings 13 are extended. An electrode pad 14 is provided at an end of the signal wiring 13 and a through electrode 15 is provided in the scribe region except the dicing region 11. A re-wiring 16 for electrically connecting the electrode pad 14 with the through electrode 15 is formed on a surface of the semiconductor chip. The other end of the re-wiring 16 is positioned short of the dicing region 11. When the wafer 1 on which a plurality of semiconductor chips are arrayed is cut off along a cutting line, a semiconductor device 3 is formed on a cut surface so as to prevent an exposure of the through electrode 15 in the wiring. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップをチップサイズパッケージ(Chip Size Package(CSPとも記載))として実装した半導体装置及びその半導体装置の製造方法に関する。
【0002】
【従来の技術】
従来、半導体装置の実装形態としてワイヤボンディング、TAB、フリップチップが知られている。近年では、前述した実装形態に比較して、電気的性能が高い上に、小型軽量で、高密度実装を可能にした半導体装置としてチップサイズパッケージ(Chip Size Package(以下、CSPと略記する))が主流になっている。
例えば、特表平9−511097号公報には集積回路素子の製造方法及び製造装置が示されている。
【0003】
【特許文献1】特表平9−511097号公報(頁2ないし頁15、図1ないし図10)
【0004】
【発明が解決しようとする課題】
しかしながら、前記特表平9−511097号公報に示されている集積回路素子の製造方法及び製造装置では以下の不具合が発生する。
1)前記公報の図1に示すような傾斜端面14を設けたことによって、その傾斜端面14分、スクライブ領域が幅広になる。
【0005】
2)前記公報の図7に示すような傾斜端面14に対して金属接触部12を形成する形成工程は複雑である。
3)前記公報の図8に示す最終切断位置である縦線58で分離切断して半導体装置を形成したとき、各半導体装置の切断面に金属接触部12の一部が露出した状態になる。このため、この露出した金属接触部12に水分等が付着、もしくは金属接触部から水分等が半導体装置内に混入して、金属部或いは半導体装置内部から腐食等が発生して信頼性が損なわれるおそれがある。
【0006】
4)前記公報には、最初にダイを複数のチップに分離切断することなく、パッド部34の表面51とで電気的接触している金属接触部をダイ上に形成していると、記載されている。このため、各半導体装置の電気的検査は、ウエハーを半導体装置に分離切断した後、それぞれについて行われる。このため、検査工程が繁雑になる。
【0007】
本発明は上記事情に鑑みてなされたものであり、スクライブ領域を必要以上に大きくすることなく、配線の形成が容易で、半導体装置に分離切断する前に電気的検査を行える、信頼性が高く、積層構造の容易な半導体装置及びその半導体装置の製造方法を提供することを目的にしている。
【0008】
【課題を解決するための手段】
第1の発明による半導体装置は、ウエハーに配列された半導体チップの表面から延出する信号線に対し一端側が電気的に接続され、他端がこれら半導体チップを切断分離するための切断線であるダイシング領域の手前に位置する再配線と、前記ウエハーを貫通して、一端側が前記再配線に電気的に導通するように形成され、他端側が前記半導体チップの裏面に到達した貫通電極部とを具備している。
【0009】
この構成によれば、半導体チップを配列したウエハーをダイシング領域で分離切断して半導体装置を形成したとき、切り出された半導体装置の切断面に再配線及び貫通電極部が露出することが防止される。
【0010】
第2の発明による半導体装置の製造方法は、ウエハーに配列された半導体チップの表面に設けられた信号線に一端側が電気的に接続され、他端がダイシング領域の手前に位置する再配線を形成する工程と、前記ウエハーの裏面から前記再配線に至る貫通電極部を形成する工程と、前記ウエハーの裏面に、前記貫通電極部と電気的に接続した裏面配線を形成する工程と、前記貫通電極部又は前記裏面配線上に、外部端子との電気的接続を行うための突起電極を形成する工程と、前記ウエハーの有するダイシング領域に沿って、このウエハーを切断して半導体装置を形成する工程とを少なくとも具備している。
【0011】
この半導体装置の製造方法によれば、半導体チップを配列したウエハーをダイシング領域に沿って分離切断することによって、切断面に再配線及び貫通電極部の露出を防止した半導体装置が形成される。また、ウエハーの裏面側の任意の位置に外部端子との電気的接続のための突起電極を容易に設けられる。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
(第1実施形態)
図1ないし図6は本発明の第1実施形態に係り、図1は半導体チップを複数配列したウエハー及び切り出された半導体装置を示す図、図2はウエハー上で隣り合う半導体チップを説明する図、図3は分離切断された半導体装置の切断面近傍を説明する図、図4は半導体装置の裏面に設ける突起電極を説明する図、図5は幅寸法が同一の半導体装置を積層して構成した半導体モジュールを示す図、図6は幅寸法の異なる半導体装置を積層して構成した半導体モジュールを示す図である。
【0013】
なお、図2(a)は隣り合う半導体チップを表面側から見た図、図2(b)は図2(a)のA−A線断面図、図4(a)は貫通電極部上に設けた突起電極を示す図、図4(b)は半導体装置の裏面に裏面配線を設け、その裏面配線上の任意の位置に突起電極を設けた状態を説明する図である。
【0014】
図1に示すようにシリコンウエハー(以下、ウエハーと略記する)1には複数の半導体チップ10が所定のピッチで複数配列されており、所定の切断線2に沿ってこのウエハー1を切断していくことによって、複数の半導体装置3が分離形成される。
【0015】
図2(a)及び図2(b)に示すようにウエハー1上に形成されている隣り合う半導体チップ10同士の間にはスクライブ領域が設けられている。このスクライブ領域には、所定幅の切断線2となるダイシング領域11が含まれている。
【0016】
それぞれの半導体チップ10には図示しないICチップ等で回路を形成した素子能動領域12が設けられている。この素子能動領域12の表面側からは複数の信号配線13が延出しており、これら信号配線13のそれぞれの端部には例えば電極パッド14が設けられている。
【0017】
本実施形態の各半導体チップ10のダイシング領域11を除くスクライブ領域には、前記電極パッド14に対応する貫通電極部15が設けられるようになっている。この貫通電極部15は、前記ウエハー1の所定位置に裏面側から形成した貫通孔1aの内壁に絶縁膜を形成した後、導電性ペーストを注入して形成したものであり、前記貫通孔1aの中心は対応する信号配線13の中心線延長線上に位置している。
【0018】
また、前記半導体チップ10の表面には、前記電極パッド14と前記貫通電極部15とを電気的に接続する帯状の再配線16が形成されるようになっている。この再配線16の一端部は前記電極パッド14に電気的に導通状態であり、他端は前記ダイシング領域11より所定間隔だけ手前に位置するように規定されている。このことによって、隣り合う半導体チップ10同士が前記再配線16を介して電気的に接続されることを防止している。
【0019】
したがって、前記ウエハー1をダイシング工程に移行する前に、検査工程に移行させることによって、このウエハー1に規則的に配列されている各半導体チップ10の電気的検査を行うことが可能になっている。
【0020】
なお、符号17はウエハー1の表面を覆う絶縁膜であり、前記信号配線13、電極パッド14、再配線16等を被覆している。また、符号18は保護ダイオード等でI/O回路を形成したI/O領域である。さらに、前記貫通孔1aを形成する際、ウエハーを予め、貫通孔径を考慮して研磨等で薄く形成しておくようにしてもよい。
【0021】
上述のように構成した前記半導体チップ10を複数配列して構成されているウエハー1を切断線2に沿って切断すると半導体装置3が形成される。図3に示すように本実施形態の各半導体装置3においては切断面である端面から配線に関わる金属部である貫通電極部15が露出することを確実に防止した半導体装置3が構成される。
【0022】
具体的に、前記ウエハー1を切断線2に沿って切断して分割形成された各半導体装置3においては、配線に関わる金属部である信号配線13、電極パッド14、及び再配線16が露出することなく絶縁膜17内に配置され、配線に関わる金属部である貫通電極部15がウエハー1内に位置した状態になっている。
【0023】
そして、図4(a)及び図4(b)に示すように貫通電極部15の裏面側に裏面電極21、或いは所望の裏面配線22を形成することによって、半導体装置3の裏面の貫通電極部上、或いは、裏面の所望する位置に外部端子との電気的接続部となる突起電極23を設けられる。
したがって、図5に示すように例えば幅寸法を略同一に形成した各半導体装置3a、3b、3cの所定の位置に突起電極23を設けるとともに、前記絶縁膜17上に所望の配線部24を形成することによって、複数の半導体装置3a、3b、3cを容易に積層構造にして、例えば撮像モジュール等の半導体モジュール20を構成することが可能になる。なお、この半導体モジュール20は、一例として固体撮像素子である半導体装置3a、駆動用及び信号処理用ICである半導体装置3b、メモリである半導体装置3c等で構成される。
【0024】
また、前記図5に示した半導体モジュール20においては幅寸法を略同一に形成した複数の半導体装置3を積層して半導体モジュールを示しているが、半導体モジュールの構成はこれに限定されるものではなく、図6に示すように幅寸法の異なる半導体装置3d、3e、3f、3gを積層して半導体モジュール20Aを構成するようにしてもよい。この半導体モジュール20Aを撮像モジュールとした場合、一例として半導体装置3dは固体撮像素子、半導体装置3eは駆動用IC、半導体装置3fは信号処理用IC、半導体装置3gはメモリなどが考えられる。
【0025】
なお、複数の半導体装置3を積層して半導体モジュールを構成する場合、各半導体装置3の間を絶縁性樹脂25で封止する。また、符号26は基板であり、前記半導体モジュール20、20Aは、基板26上に構成されている。
【0026】
このように、ウエハーに複数設けられた隣り合う半導体チップのスクライブ領域で且つ、ダイシング領域とは異なる信号配線に対応する位置にウエハーの表面側と裏面側とを結ぶ貫通電極部を設けるとともに、このウエハーの表面側にこの貫通電極部と半導体チップから延出した信号配線に電気的に接続された電極パッドとを電気的に導通させる端面がダイシング領域より手前に位置する再配線を設けたことによって、ウエハーを切断線に沿ってダイシングして半導体装置を切り出したとき、各半導体装置の切断面に配線のための金属部が露出することを確実に防止して、信頼性の高い半導体装置を形成することができる。
このことによって、半導体装置に水分等が混入して金属配線が腐食される不具合が確実に解消される。
【0027】
また、貫通電極部を素子能動領域外であるスクライブ領域に設けたことによって、貫通電極部を設けることによって半導体チップにかかるダメージを少なくすることができる。
【0028】
さらに、ウエハーの裏面に裏面電極又は所望の裏面配線を設けておくことによって、半導体装置裏面の裏面電極又は裏面配線上の所望の位置に突起電極を設けることができる。このことによって、半導体装置を積層構造にした半導体モジュールの構成を容易に行える。
【0029】
なお、前記貫通電極部15を形成する位置は、図2(a)ないし図3に示した位置に限定されるものではなく、図7及び図8に示す位置に貫通電極部15を設けて半導体装置3A、3Bを構成することによって前記半導体装置3に比べてさらに小型な半導体装置を構成することができる。
【0030】
具体的に、図7の半導体装置の他の構成を説明する図に示す半導体装置3Aでは再配線16の他端を、前記ダイシング領域11外であって、且つスクライブ領域より所定間隔だけ手前になる位置に規定するとともに、電極パッド14形成位置を除いた領域内に前記貫通電極部15を設けている。
【0031】
一方、図8の半導体装置の別の構成を説明する図に示す半導体装置3Bでは素子能動領域12より外側で、かつI/O領域18等を除いた、I/O回路にダメージを与えない距離aだけ離れた位置に、貫通電極部15を設けている。そして、本図に示すように電極パッド14を設ける代わりに信号配線13をダイシング領域11より所定間隔だけ手前になる位置まで延長している。つまり、この信号配線13を再配線16を兼ねた構成にしている。
【0032】
このように、貫通電極部を素子能動領域外に設けることによって、上述した効果に加え、半導体チップにかかるダメージを少なくして小型の半導体装置を構成することができる。
特に、図8に示した半導体装置によれば、電極パッドが不要になるとともに、スクライブ領域を狭くすることができるため、更なる小型化が期待できる。
【0033】
ここで、半導体装置3を製造する工程を簡単に説明する。
まず、ウエハー1に配列された半導体チップ10の表面に設けられた電極パッド14に一端側が電気的に接続され、他端がダイシング領域11の手前に位置する帯状の再配線16を形成する。
【0034】
次に、前記ウエハー1の裏面側から前記再配線16に至る貫通孔1aを形成し、この貫通孔1a内の内壁にプラズマ酸化膜或いはポリイミドなどの有機絶縁膜を形成した後、導電性ペーストを注入して貫通電極部15を形成する。
【0035】
次いで、前記ウエハー1の裏面に、必要に応じて、前記貫通電極部と電気的に接続された、裏面電極21又は裏面配線22を形成し、この貫通電極部15上である裏面電極21又は裏面配線22上に図示しない外部端子との電気的な接続部となる突起電極23を形成する。
【0036】
最後に、前記ウエハー1の有するダイシング領域11に沿ってダイシングを行って半導体装置3を形成する。
【0037】
このように、再配線を形成した後、ダイシングして半導体装置を形成するため、IC等が形成されている汎用ウエハーに対して再配線、貫通電極部、突起電極を追加工して、CSPを実現することができる。
【0038】
また、半導体装置裏面の任意の位置に突起電極を設けることによって、複数の半導体装置を積層して半導体モジュールを構成することができるとともに、半導体装置裏面の突起電極に検査用プローブを当接させてウエハー検査を速やかに行うことができる。このことによって、検査工数の大幅な削減を行える。
【0039】
尚、本発明は、以上述べた実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲で種々変形実施可能である。
【0040】
[付記]
以上詳述したような本発明の上記実施形態によれば、以下の如き構成を得ることができる。
【0041】
(1)ウエハーに配列された半導体チップの表面から延出する信号線に対し一端側が電気的に接続され、他端がこれら半導体チップを切断分離するための切断線であるダイシング領域の手前に位置する再配線と、
前記ウエハーを貫通して、一端側が前記再配線に電気的に導通するように形成され、他端側が前記半導体チップの裏面に到達した貫通電極部と、を具備することを特徴とする半導体装置。
【0042】
(2)前記半導体チップの裏面に到達した貫通電極部に対して電気的に導通する裏面配線を形成した付記1に記載の半導体装置。
【0043】
(3)前記貫通電極部又は前記裏面配線上に突起電極を設けた付記2に記載の半導体装置。
【0044】
(4)複数の半導体装置を積層構造で電気的に接続して、半導体モジュールを構成する付記1ないし付記3のいずれかに記載の半導体装置。
【0045】
(5)ウエハーに配列された半導体チップの表面に設けられた信号線に一端側が電気的に接続され、他端がダイシング領域の手前に位置する再配線を形成する工程と、
前記ウエハーの裏面から前記再配線に至る貫通電極部を形成する工程と、
前記ウエハーの裏面に、前記貫通電極部と電気的に接続した裏面配線を形成する工程と、
前記貫通電極部又は前記裏面配線上に、外部端子との電気的接続を行うための突起電極を形成する工程と、
前記ウエハーの有するダイシング領域に沿って、このウエハーを切断して半導体装置を形成する工程と、を少なくとも具備する半導体装置の製造方法。
【0046】
【発明の効果】
以上説明したように本発明によれば、スクライブ領域を必要以上に大きくすることなく、配線の形成が容易で、半導体装置に分離切断する前に電気的検査を行える、信頼性が高く、積層構造の容易な半導体装置及びその半導体装置の製造方法を提供することができる。
【図面の簡単な説明】
【図1】図1ないし図6は本発明の第1実施形態に係り、図1は半導体チップを複数配列したウエハー及び切り出された半導体装置を示す図
【図2】ウエハー上で隣り合う半導体チップを説明する図
【図3】分離切断された半導体装置の切断面近傍を説明する図
【図4】半導体装置の裏面に設ける突起電極を説明する図
【図5】幅寸法が同一の半導体装置を積層して構成した半導体モジュールを示す図
【図6】幅寸法の異なる半導体装置を積層して構成した半導体モジュールを示す図
【図7】半導体装置の他の構成を説明する図
【図8】半導体装置の別の構成を説明する図
【符号の説明】
3…半導体装置
11…ダイシング領域
12…素子能動領域
13…信号配線
14…電極パッド
15…貫通電極部
16…再配線
17…絶縁膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device in which a semiconductor chip is mounted as a chip size package (also referred to as CSP) and a method for manufacturing the semiconductor device.
[0002]
[Prior art]
Conventionally, wire bonding, TAB, and flip chip are known as mounting forms of semiconductor devices. In recent years, a chip size package (hereinafter abbreviated as CSP) is a semiconductor device that has high electrical performance as compared with the above-described mounting form, and is small, light, and capable of high-density mounting. Has become mainstream.
For example, Japanese Patent Publication No. 9-511097 discloses a manufacturing method and a manufacturing apparatus for an integrated circuit element.
[0003]
[Patent Document 1] Japanese Patent Publication No. 9-511097 (Page 2 to Page 15, FIG. 1 to FIG. 10)
[0004]
[Problems to be solved by the invention]
However, the following problems occur in the method and apparatus for manufacturing an integrated circuit element disclosed in the above-mentioned Japanese National Publication No. 9-511097.
1) By providing the inclined end surface 14 as shown in FIG. 1 of the above publication, the scribe region becomes wider by the inclined end surface 14.
[0005]
2) The formation process for forming the metal contact portion 12 on the inclined end surface 14 as shown in FIG. 7 of the publication is complicated.
3) When the semiconductor device is formed by separating and cutting along the vertical line 58 which is the final cutting position shown in FIG. 8 of the above publication, a part of the metal contact portion 12 is exposed on the cut surface of each semiconductor device. For this reason, moisture or the like adheres to the exposed metal contact portion 12, or moisture or the like mixes into the semiconductor device from the metal contact portion, and corrosion or the like occurs from the metal portion or the inside of the semiconductor device, thereby impairing reliability. There is a fear.
[0006]
4) In the publication, it is described that a metal contact portion that is in electrical contact with the surface 51 of the pad portion 34 is formed on the die without first separating and cutting the die into a plurality of chips. ing. For this reason, electrical inspection of each semiconductor device is performed for each of the wafers after the wafer is separated and cut into semiconductor devices. For this reason, the inspection process becomes complicated.
[0007]
The present invention has been made in view of the above circumstances, and it is easy to form a wiring without making a scribe region larger than necessary, and can perform an electrical inspection before being separated and cut into a semiconductor device, and has high reliability. An object of the present invention is to provide a semiconductor device having a laminated structure and a method for manufacturing the semiconductor device.
[0008]
[Means for Solving the Problems]
A semiconductor device according to a first aspect of the present invention is a cutting line for electrically connecting one end side to a signal line extending from the surface of a semiconductor chip arranged on a wafer and for cutting and separating the semiconductor chip at the other end. A rewiring located in front of the dicing region, and a through electrode portion formed so as to penetrate the wafer and have one end electrically connected to the rewiring, and the other end reaching the back surface of the semiconductor chip. It has.
[0009]
According to this configuration, when the semiconductor device is formed by separating and cutting the wafer on which the semiconductor chips are arranged in the dicing region, the rewiring and the through electrode portion are prevented from being exposed on the cut surface of the cut-out semiconductor device. .
[0010]
According to a second aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein a rewiring is formed in which one end is electrically connected to a signal line provided on a surface of a semiconductor chip arranged on a wafer and the other end is positioned in front of a dicing region. A step of forming a through electrode portion extending from the back surface of the wafer to the rewiring, a step of forming a back surface wiring electrically connected to the through electrode portion on the back surface of the wafer, and the through electrode Forming a protruding electrode for electrical connection with an external terminal on a portion or the backside wiring, and forming a semiconductor device by cutting the wafer along a dicing region of the wafer At least.
[0011]
According to this method for manufacturing a semiconductor device, a wafer on which semiconductor chips are arranged is separated and cut along a dicing region, thereby forming a semiconductor device in which rewiring and through electrode portions are prevented from being exposed on the cut surface. Further, a protruding electrode for electrical connection with an external terminal can be easily provided at an arbitrary position on the back side of the wafer.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
1 to 6 relate to a first embodiment of the present invention. FIG. 1 is a view showing a wafer in which a plurality of semiconductor chips are arrayed and a semiconductor device cut out. FIG. 2 is a view for explaining adjacent semiconductor chips on the wafer. FIG. 3 is a diagram for explaining the vicinity of the cut surface of the separated semiconductor device, FIG. 4 is a diagram for explaining a protruding electrode provided on the back surface of the semiconductor device, and FIG. FIG. 6 is a diagram illustrating a semiconductor module configured by stacking semiconductor devices having different width dimensions.
[0013]
2A is a view of adjacent semiconductor chips as viewed from the surface side, FIG. 2B is a cross-sectional view taken along the line AA in FIG. 2A, and FIG. 4A is on the through electrode portion. FIG. 4B is a diagram for explaining a state in which the back surface wiring is provided on the back surface of the semiconductor device and the protrusion electrode is provided at an arbitrary position on the back surface wiring.
[0014]
As shown in FIG. 1, a plurality of semiconductor chips 10 are arranged at a predetermined pitch on a silicon wafer (hereinafter abbreviated as “wafer”) 1, and the wafer 1 is cut along a predetermined cutting line 2. As a result, a plurality of semiconductor devices 3 are formed separately.
[0015]
As shown in FIGS. 2A and 2B, a scribe region is provided between adjacent semiconductor chips 10 formed on the wafer 1. The scribe region includes a dicing region 11 that becomes a cutting line 2 having a predetermined width.
[0016]
Each semiconductor chip 10 is provided with an element active region 12 in which a circuit is formed by an IC chip (not shown) or the like. A plurality of signal wirings 13 extend from the surface side of the element active region 12, and for example, electrode pads 14 are provided at the ends of the signal wirings 13.
[0017]
A through electrode portion 15 corresponding to the electrode pad 14 is provided in the scribe region excluding the dicing region 11 of each semiconductor chip 10 of the present embodiment. The through electrode portion 15 is formed by injecting a conductive paste after forming an insulating film on the inner wall of the through hole 1a formed at the predetermined position of the wafer 1 from the back surface side. The center is located on the center line extension line of the corresponding signal wiring 13.
[0018]
Further, a strip-shaped rewiring 16 that electrically connects the electrode pad 14 and the through electrode portion 15 is formed on the surface of the semiconductor chip 10. One end of the rewiring 16 is electrically connected to the electrode pad 14, and the other end is defined to be positioned at a predetermined distance from the dicing region 11. This prevents the adjacent semiconductor chips 10 from being electrically connected via the rewiring 16.
[0019]
Therefore, before the wafer 1 is transferred to the dicing process, the semiconductor chips 10 regularly arranged on the wafer 1 can be electrically inspected by moving to the inspection process. .
[0020]
Reference numeral 17 denotes an insulating film that covers the surface of the wafer 1, and covers the signal wiring 13, the electrode pad 14, the rewiring 16, and the like. Reference numeral 18 denotes an I / O region in which an I / O circuit is formed by a protection diode or the like. Furthermore, when forming the through-hole 1a, the wafer may be formed in advance thinly by polishing or the like in consideration of the diameter of the through-hole.
[0021]
When the wafer 1 constituted by arranging a plurality of the semiconductor chips 10 configured as described above is cut along the cutting line 2, a semiconductor device 3 is formed. As shown in FIG. 3, in each semiconductor device 3 of the present embodiment, a semiconductor device 3 that reliably prevents the through electrode portion 15 that is a metal portion related to wiring from being exposed from an end surface that is a cut surface is configured.
[0022]
Specifically, in each semiconductor device 3 formed by cutting the wafer 1 along the cutting line 2, the signal wiring 13, the electrode pad 14, and the rewiring 16 that are metal parts related to the wiring are exposed. The through electrode portion 15, which is disposed in the insulating film 17 and is a metal portion related to the wiring, is positioned in the wafer 1.
[0023]
Then, as shown in FIG. 4A and FIG. 4B, the back electrode 21 or the desired back wiring 22 is formed on the back side of the through electrode portion 15, so that the through electrode portion on the back surface of the semiconductor device 3 is formed. A protruding electrode 23 serving as an electrical connection portion with an external terminal is provided at a desired position on the upper surface or the back surface.
Therefore, as shown in FIG. 5, for example, the projecting electrode 23 is provided at a predetermined position of each of the semiconductor devices 3a, 3b, and 3c having substantially the same width dimension, and the desired wiring portion 24 is formed on the insulating film 17. By doing so, it is possible to easily form a plurality of semiconductor devices 3a, 3b, and 3c in a laminated structure and configure a semiconductor module 20 such as an imaging module, for example. The semiconductor module 20 includes, for example, a semiconductor device 3a that is a solid-state imaging device, a semiconductor device 3b that is a driving and signal processing IC, a semiconductor device 3c that is a memory, and the like.
[0024]
Further, in the semiconductor module 20 shown in FIG. 5, a semiconductor module is shown by laminating a plurality of semiconductor devices 3 having substantially the same width dimension, but the configuration of the semiconductor module is not limited to this. Alternatively, as shown in FIG. 6, the semiconductor module 20A may be configured by stacking semiconductor devices 3d, 3e, 3f, and 3g having different width dimensions. When the semiconductor module 20A is an imaging module, for example, the semiconductor device 3d may be a solid-state imaging device, the semiconductor device 3e may be a driving IC, the semiconductor device 3f may be a signal processing IC, and the semiconductor device 3g may be a memory.
[0025]
When a plurality of semiconductor devices 3 are stacked to form a semiconductor module, the space between the semiconductor devices 3 is sealed with an insulating resin 25. Reference numeral 26 denotes a substrate, and the semiconductor modules 20 and 20A are formed on the substrate 26.
[0026]
In this way, a through electrode portion connecting the front surface side and the back surface side of the wafer is provided at a position corresponding to the signal wiring different from the dicing region in the scribe region of a plurality of adjacent semiconductor chips provided on the wafer. By providing a rewiring on the front surface side of the wafer with an end surface that electrically connects the through electrode portion and the electrode pad electrically connected to the signal wiring extending from the semiconductor chip positioned in front of the dicing region When a semiconductor device is cut out by dicing the wafer along the cutting line, the metal part for wiring is surely prevented from being exposed on the cut surface of each semiconductor device, thereby forming a highly reliable semiconductor device. can do.
This surely eliminates the problem that metal wiring is corroded due to moisture mixed into the semiconductor device.
[0027]
In addition, by providing the through electrode portion in the scribe region outside the element active region, it is possible to reduce damage to the semiconductor chip by providing the through electrode portion.
[0028]
Further, by providing a back electrode or a desired back surface wiring on the back surface of the wafer, a protruding electrode can be provided at a desired position on the back surface electrode or back surface wiring on the back surface of the semiconductor device. This facilitates the configuration of the semiconductor module in which the semiconductor device has a stacked structure.
[0029]
The position where the through electrode portion 15 is formed is not limited to the position shown in FIGS. 2A to 3, and the through electrode portion 15 is provided at the position shown in FIGS. By configuring the devices 3A and 3B, it is possible to configure a smaller semiconductor device than the semiconductor device 3.
[0030]
Specifically, in the semiconductor device 3A shown in the drawing for explaining another configuration of the semiconductor device in FIG. 7, the other end of the rewiring 16 is outside the dicing region 11 and in front of the scribe region by a predetermined interval. The through electrode portion 15 is provided in a region excluding the position where the electrode pad 14 is formed.
[0031]
On the other hand, in the semiconductor device 3B shown in FIG. 8 illustrating another configuration of the semiconductor device, the distance outside the element active region 12 and excluding the I / O region 18 and the like does not damage the I / O circuit. A through electrode portion 15 is provided at a position separated by a. As shown in the figure, instead of providing the electrode pad 14, the signal wiring 13 is extended from the dicing area 11 to a position that is closer to the front by a predetermined interval. That is, the signal wiring 13 is configured to also serve as the rewiring 16.
[0032]
Thus, by providing the through electrode portion outside the element active region, in addition to the effects described above, it is possible to reduce the damage applied to the semiconductor chip and to configure a small semiconductor device.
In particular, according to the semiconductor device shown in FIG. 8, the electrode pad is not necessary and the scribe region can be narrowed, so that further miniaturization can be expected.
[0033]
Here, a process of manufacturing the semiconductor device 3 will be briefly described.
First, a strip-shaped rewiring 16 is formed, one end of which is electrically connected to the electrode pad 14 provided on the surface of the semiconductor chip 10 arranged on the wafer 1 and the other end is located in front of the dicing region 11.
[0034]
Next, a through hole 1a extending from the back side of the wafer 1 to the rewiring 16 is formed, and after forming an organic insulating film such as a plasma oxide film or polyimide on the inner wall of the through hole 1a, a conductive paste is applied. The through electrode portion 15 is formed by implantation.
[0035]
Next, a back electrode 21 or a back wiring 22 electrically connected to the through electrode portion is formed on the back surface of the wafer 1 as necessary, and the back electrode 21 or the back surface on the through electrode portion 15 is formed. A protruding electrode 23 is formed on the wiring 22 as an electrical connection with an external terminal (not shown).
[0036]
Finally, dicing is performed along the dicing region 11 of the wafer 1 to form the semiconductor device 3.
[0037]
In this way, after forming the rewiring, dicing is performed to form a semiconductor device. Therefore, the rewiring, the through electrode portion, and the protruding electrode are additionally processed on the general-purpose wafer on which the IC or the like is formed, and the CSP is formed. Can be realized.
[0038]
Also, by providing a protruding electrode at an arbitrary position on the back surface of the semiconductor device, a semiconductor module can be configured by stacking a plurality of semiconductor devices, and an inspection probe is brought into contact with the protruding electrode on the back surface of the semiconductor device. Wafer inspection can be performed quickly. This can greatly reduce the inspection man-hours.
[0039]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.
[0040]
[Appendix]
According to the embodiment of the present invention as described above in detail, the following configuration can be obtained.
[0041]
(1) One end side is electrically connected to a signal line extending from the surface of the semiconductor chip arranged on the wafer, and the other end is positioned in front of the dicing region which is a cutting line for cutting and separating the semiconductor chip. Rewiring to
A semiconductor device comprising: a through-electrode portion penetrating the wafer and having one end side electrically connected to the rewiring and the other end reaching the back surface of the semiconductor chip.
[0042]
(2) The semiconductor device according to appendix 1, wherein a back surface wiring is formed that is electrically connected to the through electrode portion that has reached the back surface of the semiconductor chip.
[0043]
(3) The semiconductor device according to appendix 2, wherein a protruding electrode is provided on the through electrode portion or the backside wiring.
[0044]
(4) The semiconductor device according to any one of appendix 1 to appendix 3, wherein the semiconductor module is configured by electrically connecting a plurality of semiconductor devices in a stacked structure.
[0045]
(5) forming a rewiring having one end electrically connected to a signal line provided on the surface of the semiconductor chip arranged on the wafer and the other end positioned in front of the dicing area;
Forming a through electrode portion extending from the back surface of the wafer to the rewiring;
Forming a backside wiring electrically connected to the through electrode portion on the backside of the wafer;
Forming a protruding electrode for electrical connection with an external terminal on the through electrode portion or the backside wiring; and
And a step of cutting the wafer along the dicing region of the wafer to form a semiconductor device.
[0046]
【The invention's effect】
As described above, according to the present invention, it is easy to form a wiring without making a scribe region larger than necessary, and an electrical inspection can be performed before separating and cutting into a semiconductor device. It is possible to provide a semiconductor device that is easy to manufacture and a method for manufacturing the semiconductor device.
[Brief description of the drawings]
FIG. 1 to FIG. 6 relate to a first embodiment of the present invention, and FIG. 1 is a view showing a wafer in which a plurality of semiconductor chips are arranged and a semiconductor device cut out. FIG. 2 shows adjacent semiconductor chips on the wafer. FIG. 3 is a diagram illustrating the vicinity of a cut surface of a semiconductor device that has been separated and cut. FIG. 4 is a diagram illustrating a protruding electrode provided on the back surface of the semiconductor device. FIG. FIG. 6 is a diagram illustrating a semiconductor module configured by stacking. FIG. 6 is a diagram illustrating a semiconductor module configured by stacking semiconductor devices having different width dimensions. FIG. 7 is a diagram illustrating another configuration of the semiconductor device. Diagram explaining another configuration of the device [Explanation of symbols]
DESCRIPTION OF SYMBOLS 3 ... Semiconductor device 11 ... Dicing area | region 12 ... Element active area 13 ... Signal wiring 14 ... Electrode pad 15 ... Through-electrode part 16 ... Rewiring 17 ... Insulating film

Claims (2)

ウエハーに配列された半導体チップの表面から延出する信号線に対し一端側が電気的に接続され、他端がこれら半導体チップを切断分離するための切断線であるダイシング領域の手前に位置する再配線と、
前記ウエハーを貫通して、一端側が前記再配線に電気的に導通するように形成され、他端側が前記半導体チップの裏面に到達した貫通電極部と、を具備することを特徴とする半導体装置。
Rewiring is arranged such that one end side is electrically connected to the signal line extending from the surface of the semiconductor chip arranged on the wafer, and the other end is located in front of the dicing area which is a cutting line for cutting and separating the semiconductor chip. When,
A semiconductor device comprising: a through-electrode portion penetrating the wafer and having one end side electrically connected to the rewiring and the other end reaching the back surface of the semiconductor chip.
ウエハーに配列された半導体チップの表面に設けられた信号線に一端側が電気的に接続され、他端がダイシング領域の手前に位置する再配線を形成する工程と、
前記ウエハーの裏面から前記再配線に至る貫通電極部を形成する工程と、
前記ウエハーの裏面に、前記貫通電極部と電気的に接続した裏面配線を形成する工程と、
前記貫通電極部又は前記裏面配線上に、外部端子との電気的接続を行うための突起電極を形成する工程と、
前記ウエハーの有するダイシング領域に沿って、このウエハーを切断して半導体装置を形成する工程と、を少なくとも具備することを特徴とする半導体装置の製造方法。
Forming a rewiring having one end electrically connected to a signal line provided on the surface of the semiconductor chip arranged on the wafer and the other end positioned in front of the dicing area;
Forming a through electrode portion extending from the back surface of the wafer to the rewiring;
Forming a backside wiring electrically connected to the through electrode portion on the backside of the wafer;
Forming a protruding electrode for electrical connection with an external terminal on the through electrode portion or the backside wiring; and
And a step of forming the semiconductor device by cutting the wafer along a dicing region of the wafer.
JP2003192347A 2003-07-04 2003-07-04 Semiconductor device and method for manufacturing the semiconductor device Withdrawn JP2005026582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192347A JP2005026582A (en) 2003-07-04 2003-07-04 Semiconductor device and method for manufacturing the semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192347A JP2005026582A (en) 2003-07-04 2003-07-04 Semiconductor device and method for manufacturing the semiconductor device

Publications (1)

Publication Number Publication Date
JP2005026582A true JP2005026582A (en) 2005-01-27

Family

ID=34189674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192347A Withdrawn JP2005026582A (en) 2003-07-04 2003-07-04 Semiconductor device and method for manufacturing the semiconductor device

Country Status (1)

Country Link
JP (1) JP2005026582A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072596A (en) * 2003-08-26 2005-03-17 Samsung Electronics Co Ltd Chip stack package and method of manufacturing the same
WO2007023947A1 (en) * 2005-08-26 2007-03-01 Hitachi, Ltd. Semiconductor device manufacturing method and semiconductor device
JP2009105311A (en) * 2007-10-25 2009-05-14 Shinko Electric Ind Co Ltd Substrate method for manufacturing
US7544538B2 (en) 2006-07-07 2009-06-09 Samsung Electronic Co., Ltd. Method of forming semiconductor chips, the semiconductor chips so formed and chip-stack package having the same
JP2011171607A (en) * 2010-02-19 2011-09-01 Sony Corp Semiconductor device and method of testing through electrode
WO2012001916A1 (en) * 2010-06-30 2012-01-05 Canon Kabushiki Kaisha Solid-state imaging device and imaging system
JP2012009808A (en) * 2010-06-28 2012-01-12 Headway Technologies Inc Laminated semiconductor substrate, laminated chip package and method of manufacturing the same
JP2012033860A (en) * 2010-08-02 2012-02-16 Headway Technologies Inc Laminated semiconductor substrate, laminated chip package, and method of manufacturing the same
US8319324B2 (en) 2006-12-05 2012-11-27 Samsung Electronics Co., Ltd. High I/O semiconductor chip package and method of manufacturing the same
JP2012235174A (en) * 2008-06-30 2012-11-29 Sk Hynix Inc Method for manufacturing circuit board with circuit wiring and semiconductor package with circuit wiring
JP2013098535A (en) * 2011-11-01 2013-05-20 Headway Technologies Inc Laminated semiconductor substrate, semiconductor substrate, laminated chip package and manufacturing method of those
KR101533460B1 (en) * 2007-12-27 2015-07-02 스태츠 칩팩, 엘티디. A semiconductor device and a method of making a semiconductor device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368231B2 (en) 2003-08-26 2013-02-05 Samsung Electronics Co., Ltd. Chipstack package and manufacturing method thereof
JP4602715B2 (en) * 2003-08-26 2010-12-22 三星電子株式会社 Chip stack package and manufacturing method thereof
US7977156B2 (en) 2003-08-26 2011-07-12 Samsung Electronics Co., Ltd. Chipstack package and manufacturing method thereof
JP2005072596A (en) * 2003-08-26 2005-03-17 Samsung Electronics Co Ltd Chip stack package and method of manufacturing the same
WO2007023947A1 (en) * 2005-08-26 2007-03-01 Hitachi, Ltd. Semiconductor device manufacturing method and semiconductor device
US8354730B2 (en) 2005-08-26 2013-01-15 Hitachi, Ltd. Manufacturing method of semiconductor device and semiconductor device
US7544538B2 (en) 2006-07-07 2009-06-09 Samsung Electronic Co., Ltd. Method of forming semiconductor chips, the semiconductor chips so formed and chip-stack package having the same
US8039937B2 (en) 2006-07-07 2011-10-18 Samsung Electronics Co., Ltd. Method of forming semiconductor chips, the semiconductor chips so formed and chip-stack package having the same
US8319324B2 (en) 2006-12-05 2012-11-27 Samsung Electronics Co., Ltd. High I/O semiconductor chip package and method of manufacturing the same
JP2009105311A (en) * 2007-10-25 2009-05-14 Shinko Electric Ind Co Ltd Substrate method for manufacturing
KR101533460B1 (en) * 2007-12-27 2015-07-02 스태츠 칩팩, 엘티디. A semiconductor device and a method of making a semiconductor device
JP2012235174A (en) * 2008-06-30 2012-11-29 Sk Hynix Inc Method for manufacturing circuit board with circuit wiring and semiconductor package with circuit wiring
JP2011171607A (en) * 2010-02-19 2011-09-01 Sony Corp Semiconductor device and method of testing through electrode
US8426946B2 (en) 2010-06-28 2013-04-23 Headway Technologies, Inc. Laminated semiconductor substrate, laminated chip package and method of manufacturing the same
JP2012009808A (en) * 2010-06-28 2012-01-12 Headway Technologies Inc Laminated semiconductor substrate, laminated chip package and method of manufacturing the same
US11102440B2 (en) 2010-06-30 2021-08-24 Canon Kabushiki Kaisha Solid-state imaging device and imaging system
WO2012001916A1 (en) * 2010-06-30 2012-01-05 Canon Kabushiki Kaisha Solid-state imaging device and imaging system
JP2012015277A (en) * 2010-06-30 2012-01-19 Canon Inc Solid-state imaging apparatus, and imaging system
US9252169B2 (en) 2010-06-30 2016-02-02 Canon Kabushiki Kaisha Solid-state imaging device and imaging system
US9899449B2 (en) 2010-06-30 2018-02-20 Canon Kabushiki Kaisha Solid-state imaging device and imaging system
US10304899B2 (en) 2010-06-30 2019-05-28 Canon Kabushiki Kaisha Solid-state imaging device and imaging system
JP2012033860A (en) * 2010-08-02 2012-02-16 Headway Technologies Inc Laminated semiconductor substrate, laminated chip package, and method of manufacturing the same
JP2013098535A (en) * 2011-11-01 2013-05-20 Headway Technologies Inc Laminated semiconductor substrate, semiconductor substrate, laminated chip package and manufacturing method of those

Similar Documents

Publication Publication Date Title
KR101566026B1 (en) A semiconductor device and a method of manufacturing the same
JP4307284B2 (en) Manufacturing method of semiconductor device
US7663222B2 (en) Semiconductor device and method for producing same
US7365364B2 (en) Sensor semiconductor device with sensor chip
CN101866897B (en) Solid-state imaging device comprising through-electrode
JP3602118B2 (en) Semiconductor device
JP2006237594A (en) Semiconductor device and manufacturing method thereof
US10748871B2 (en) Semiconductor chip and semiconductor package including the same
KR20080062577A (en) Stack package and manufacturing method of the same
JP2005026582A (en) Semiconductor device and method for manufacturing the semiconductor device
US20090206466A1 (en) Semiconductor device
US7511320B2 (en) Semiconductor device and manufacturing method of the same
US6852570B2 (en) Method of manufacturing a stacked semiconductor device
JP2008140894A (en) Semiconductor device and its manufacturing method
CN110581121A (en) Semiconductor package
US20120223425A1 (en) Semiconductor device and fabrication method thereof
US11581289B2 (en) Multi-chip package
KR101601793B1 (en) Improved electrical connections for multichip modules
JP4845986B2 (en) Semiconductor device
JP2004179635A (en) Electronic element and its manufacturing method, circuit board and its manufacturing method, and electronic device and its manufacturing method
JP2004128523A (en) Semiconductor device and method of manufacturing semiconductor device
JP2007273876A (en) Semiconductor device and manufacturing method thereof
JP2006165393A (en) Semiconductor device and its manufacturing method
JP2006049637A (en) Semiconductor device and manufacturing method thereof
JP2008078327A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905