【0001】
【発明の属する技術分野】
本発明は、液晶パネルにTCPなどのフレキシブル基板を接続してなる液晶表示素子に関し、さらに詳しく言えば、パネル側リード電極と基板側出力電極とを接続する技術に関するものである。
【0002】
【従来の技術】
液晶表示素子(液晶モジュール)の組立工程の一つに、図5(a)の平面図に示すように、液晶パネル10の端子部11に対して、TCP(tape carrier package)などの液晶駆動回路基板としてのフレキシブル基板20を接続する工程がある。なお、図5(b)は図5(a)の側面図である。
【0003】
端子部11には液晶パネル10の表示面側から引き出されたリード電極が所定のピッチで短冊状に形成されており、また、フレキシブル基板20側の接続部にも基板本体から引き出された出力電極が上記リード電極と同一ピッチとなるように短冊状に形成されている。
【0004】
図6(a)に上記パネル側リード電極に含まれている隣接する2つのリード電極12,13および上記基板側出力電極に含まれている隣接する2つの出力電極22,23を拡大して示す。また、図6(b)にその接続部分の拡大断面図を示す。
【0005】
パネル側リード電極12(13)は透明電極材(ITO材)により形成され、基板側出力電極22(23)はベースフィルム21上に形成された銅箔よりなり、これらの各電極同士12(13),22(23)の接続には、多くの場合、異方性導電フィルム(ACF)30が用いられる。
【0006】
異方性導電フィルム30は、例えば熱硬化性樹脂フィルム内に導電粒子を分散させたフィルムで、端子部11とフレキシブル基板20との間に挟んで図示しない加熱圧着ヘッドにて押圧することにより、単一方向の導電性を発揮しパネル側リード電極12(13)と基板側出力電極22(23)との間の導通をとる。
【0007】
通常の設計において、パネル側リード電極12(13)は、図6(a)に示すように、端子部11の基端部11a側から端子部11の端縁11b側にかけて同一幅として形成され、基板側出力電極22(23)も基板本体20aから基板端縁20bにかけて同一幅として形成されている。
【0008】
また、パネル側リード電極12(13)の幅はリードピッチの1/2〜2/3で、基板側出力電極22(23)の幅はパネル側リード電極12の幅の1/1〜2/3として設計されている。なお、フレキシブル基板20の基板本体20aとは、基板側出力電極22に連なるベースフィルム21上の銅箔パターンが図6(b)に示すソルダレジスト(耐熱性絶縁被膜)24で被覆されている部分を言う。
【0009】
近年においては、表示の高精細化に伴って、これら接続電極部のリードピッチを例えば100μm以下とすることが要求されてきている。このような狭ピッチ化を実現するには、パネル側リード電極12(13)および基板側出力電極22(23)の幅を狭くする必要がある。
【0010】
しかしながら、パネル側リード電極12(13)は別として、基板側出力電極22(23)は銅箔よりなるため、その電極幅を狭く形成するにはエッチングとの関係から、フレキシブル基板20に銅箔の厚みが薄いものを用いる必要がある。すなわち、銅箔の厚みが薄くないと狭ピッチの電極をきれいにエッチングしきれないからである。
【0011】
そうすると、フレキシブル基板20を端子部11に接続した後にほぼ180゜折り曲げて液晶パネル10の裏面側に配置するような場合、図6(b)の矢印Aで示す折り曲げ部分で基板側出力電極22(23)が断線してしまうことがある。
【0012】
これを防止するには、図7(a)に示すように、基板側出力電極22(23)の幅を例えばパネル側リード電極12(13)の幅よりも広くすればよい。これによれば、耐折り曲げ性は改善されるものの、次のような別の問題が発生する。
【0013】
すなわち、パネル側リード電極12(13)と基板側出力電極22(23)とを接続する際、その位置合わせ装置の位置決め精度能力や液晶パネル10およびフレキシブル基板20の寸法公差などに起因して、パネル側リード電極12(13)と基板側出力電極22(23)との間でしばしばずれが生ずる。図7(b)に、パネル側リード電極12(13)に対して基板側出力電極22(23)が芯−芯で例えば右側にαだけずれた状態を示す。
【0014】
このようなずれが生ずると、基板側出力電極22とこれに隣接するパネル側リード電極13との間のリード間隙βが狭くなるため、本来、基板側出力電極22はパネル側リード電極12とのみ電気的に接続されるべきところ、上記異方性導電フィルム30に含まれている導電粒子を介してパネル側リード電極13とも電気的に接続し電極間リークが発生することがある。
【0015】
現在のところ、リードピッチが100μm以下の狭ピッチにおいては、上記電極間リークを防止するうえで、基板側出力電極22とこれに隣接するパネル側リード電極13との間(もしくは基板側出力電極23とこれに隣接するパネル側リード電極12との間)の上記リード間隙βは15μm以上が必要とされている。
【0016】
上記したように、基板側出力電極22の折り曲げによる断線が生じないようにするには、その電極幅をできるだけ広くすることが好ましいが、現在の製造技術では基板側出力電極22,23間の隣接リード間隔は20〜25μmがほぼ限界とされている。
【0017】
基板側出力電極22(23)の幅に、このような制約がある中で上記リード間隙βは15μm以上が必要という条件を満足するには、パネル側リード電極12(13)の幅を極力狭くすればよい。現在の製造技術によると、パネル側リード電極12(13)の幅は15〜25μm位にまで形成可能である。
【0018】
したがって、基板側出力電極22(23)の幅をその隣接リード間隔が20〜25μmとなる程度にまで広げるとともに、パネル側リード電極12(13)の幅を15〜25μm程度にまで狭くすることにより、基板側出力電極22(23)の折り曲げによる断線の問題と、接続時の位置ずれによるリード間絶縁性低下の問題をともに解決することができる。
【0019】
【発明が解決しようとする課題】
しかしながら、パネル側リード電極12(13)の幅を15〜25μm程度にまで狭くすると、傷などによってパネル側リード電極12(13)が断線しやすくなるという別の問題が発生する。特に、この断線がパネル側リード電極12(13)内の基端部11a側でフレキシブル基板20との接続に寄与しない部分で発生した場合には致命的な欠点となる。
【0020】
したがって、本発明の課題は、液晶パネル側のリード電極とフレキシブル基板側の出力電極とを、それらの面同士を対向させて導電粒子を含む接着手段により接続する液晶表示素子において、折り曲げによるフレキシブル基板側の断線、接続時の位置ずれによるリード間絶縁性低下および傷などによるパネル側リード電極の断線をともに生じないようにすることにある。
【0021】
【課題を解決するための手段】
上記課題を解決するため、本発明は、複数本のリード電極が一定のピッチで互いに平行に形成されている端子部を有する液晶パネルと、上記リード電極と同一ピッチになるように形成された複数の出力電極を有するフレキシブル基板とを含み、上記パネル側リード電極と上記基板側出力電極とをそれらの接続面同士を対向させて導電粒子を含む接着手段を介して電気的・機械的に接続してなる液晶表示素子において、上記パネル側リード電極には、上記端子部の基端部側を底辺とし、上記端子部の端縁側を上記基端部側底辺よりも幅の狭い上辺とする二等辺台形形状の第1接続面が含まれ、上記基板側出力電極には、上記フレキシブル基板の基板本体側を底辺とし、上記フレキシブル基板の端縁側を上記基板本体側底辺よりも幅の狭い上辺とする二等辺台形形状の第2接続面が含まれ、上記各接続面同士が、その一方の上辺側を他方の底辺側に配置した状態で上記接着手段を介して接続されていることを特徴としている。
【0022】
この構成によれば、フレキシブル基板側においては折り曲げにより断線しやすい部分(二等辺台形形状の底辺側の部分)の幅を広げることができるとともに、接続工程で比較的大きなずれが生じても十分なリード間隙を確保できる。また、液晶パネルの端子部側においてもフレキシブル基板との接続に寄与しない基端部側の部分(二等辺台形形状の底辺側の部分)の幅を広げることができるため、断線対策として有効である。なお、本発明において、上記第1接続面と上記第2接続面は、上記上辺と上記底辺間の長さを含めて同一の二等辺台形形状であることが好ましい。
【0023】
【発明の実施の形態】
次に、図1ないし図4を参照して、本発明をより詳しく説明する。図1(a)は本発明の要部であるパネル側リード電極を示す拡大平面図で、図1(b)はその相手となる基板側出力電極を示す拡大平面図である。なお、液晶パネル10およびフレキシブル基板20の基本的な構成は先に説明した従来例と同じであってよい。
【0024】
図1(a)および図1(b)には、隣接および対向のリード間隙を説明するうえでパネル側リード電極100,基板側出力電極200ともに2個の電極のみを示す。なお、図中の参照符号について、左側の電極にはL,右側の電極にはRを付すが、以下の説明においては、位置関係の説明が必要なときにのみL,Rを使用する。
【0025】
パネル側リード電極100は透明電極材(ITO材)よりなり、端子部11の基端部11aから端子部11の端縁11bに向けて延ばされている。基板側出力電極200は銅箔(もしくは表面に錫またはニッケル・金などのめっきが施された銅箔)よりなり、フレキシブル基板20の基板本体20a側から先端の端縁20bに向けて延ばされている。
【0026】
なお、この例において、パネル側リード電極100は端子部11の端縁11bの手前側で終端しているのに対して、基板側出力電極200はフレキシブル基板20端縁20bまで延ばされているが、これは本発明の特徴に含まれない。
【0027】
パネル側リード電極100と基板側出力電極200は、ともに同一のリードピッチPで配列されており、先の図6(b)で説明したように、それらの接続面同士を対向させた状態で導電粒子を含む例えば異方性導電フィルムを介して電気的・機械的に接続される。
【0028】
その接続時において、フレキシブル基板20の端縁20bが図1(a)に示す仮想線Xaに揃えられるとき、パネル側リード電極100の先端101は図1(b)に示す仮想線Xb上に位置する。したがって、両電極100,200のうち、仮想線Xa〜Xbの範囲が実質的な接続面となる。
【0029】
パネル側リード電極100の接続面を第1接続面110とし、基板側出力電極200の接続面を第2接続面210とすると、本発明において、各接続面110,210ともに二等辺台形形状のパターンとして形成される。
【0030】
すなわち、第1接続面110は、パネル側リード電極100の先端101が上辺で、上記仮想線Xaに沿った辺を底辺102とする上辺側の幅が底辺側の幅よりも狭い二等辺台形形状である。なお、底辺102から基端部11aまでは底辺102と同幅である。
【0031】
また、第2接続面210は、基板側出力電極200の先端201を上辺とし、上記仮想線Xbに沿った辺を底辺202とする上辺側の幅が底辺側の幅よりも狭い二等辺台形形状である。なお、底辺202から基板本体20aに至る部分は底辺202と同幅である。
【0032】
図1(a)において、パネル側リード電極100Lと100Rの基端部11a側の隣接リード間隙をgaとすると、底辺102の幅A1はA1=P−gaで表される。ITO材よりなる電極の製造上の制約から隣接リード間隙gaおよび先端(上辺)101の幅A2は、ともに15〜25μmの範囲から選択されることが好ましい。
【0033】
図1(b)において、基板側出力電極200Lと200Rの基板本体20a側の隣接リード間隙をgbとすると、底辺202の幅B1はB1=P−gbで表される。銅箔よりなる電極の製造上の制約から隣接リード間隙gbおよび先端(上辺)201の幅B2は、ともに20〜25μmの範囲から選択されることが好ましい。
【0034】
このように、パネル側リード電極100の第1接続面110と基板側出力電極200の第2接続面210を二等辺台形形状とすることにより、フレキシブル基板20側においては折り曲げにより断線しやすい部分の電極幅が広くなり、また、液晶パネル10側においてもフレキシブル基板20との接続に寄与しない基端部11a側の電極幅が広くなるため、断線防止対策として効果がある。
【0035】
また、図2にパネル側リード電極100と基板側出力電極200の接続工程において、パネル側リード電極100に対して基板側出力電極200が右側に位置ずれした場合を示すが、各接続面110,210を二等辺台形形状としていることから、そのずれが比較的大きい場合でも、基板側出力電極200Lとパネル側リード電極100Rとの間の対向リード間隙gcを15μm以上確保することが可能となる。
【0036】
なお、本発明におけるもっとも好ましい態様は、上記した幅の範囲内において第1接続面110と第2接続面210は同一、すなわちA1=B1,A2=B2である。
【0037】
この点についての具体例を図3および図4により説明する。図3はリードピッチを60μmとした場合の従来例で、図3(a)は位置ずれがない場合を示し、図3(b)は液晶パネル10に対してフレキシブル基板20が右側に位置ずれしたときの状態を示している。なお、図3は従来例であることから、図6(a)と同じ参照符号を用いる。
【0038】
接続工程での位置決め装置などの能力により位置ずれが最大で15μm程度発生することがある。この場合でも、基板側出力電極22とパネル側リード電極13との間の対向リード間隙gcを15μm以上確保するには、逆算して図3(a)に示すように、パネル側リード電極12,13の幅を35μm,基板側出力電極22,23の幅を25μmとして、パネル側リード電極12,13間の隣接リード間隙gaを25μmとする必要がある。
【0039】
図4はリードピッチを60μmとした場合の本発明の実施例で、図4(a)は位置ずれがない場合を示し、図4(b)は液晶パネル10に対してフレキシブル基板20が右側に位置ずれしたときの状態を示している。
【0040】
上記図3の従来例と同じく、接続工程において位置ずれが最大で15μm程度発生したとして、図4(b)に示すように、基板側出力電極200Lとパネル側リード電極100Rとの間の対向リード間隙gcを15μm以上確保するには、逆算して図4(a)に示すように、パネル側リード電極100の底辺102の幅A1および基板側出力電極200の底辺202の幅B1をともに40μm,パネル側リード電極100の上端(上辺)101の幅A2および基板側出力電極200の上端(上辺)202の幅B2をともに20μmとして、パネル側リード電極100の隣接リード間隙gaおよび基板側出力電極200の隣接リード間隙gbをともに20μmとすればよく、したがって、上記図3の従来例に比べて、フレキシブル基板20側では断線しやすい箇所の幅を15μm,液晶パネル10側では断線が許されない箇所の幅を5μmそれぞれ広げることが可能となる。
【0041】
【発明の効果】
以上説明したように、本発明によれば、液晶パネル側のリード電極とフレキシブル基板側の出力電極とを、それらの接続面同士を対向させて導電粒子を含む接着手段により接続する液晶表示素子において、パネル側リード電極と基板側出力電極の各々に、上辺側の幅が底辺側の幅よりも狭い二等辺台形形状の接続面を上下反転した状態で形成したことにより、折り曲げによるフレキシブル基板側の断線、接続工程での位置ずれによるリード間絶縁性低下および傷などによるパネル側リード電極の断線をともに効果的に防止することができる。
【図面の簡単な説明】
【図1】本発明の説明図で、(a)パネル側リード電極を示す拡大図、(b)基板側出力電極を示す拡大図。
【図2】接続工程において、上記パネル側リード電極に対して上記基板側出力電極が位置ずれした状態を示す模式図。
【図3】本発明と対比される従来技術による具体例の説明図で、(a)位置ずれのないときの状態を示す模式図、(b)位置ずれしたときの状態を示す模式図。
【図4】本発明による具体的な実施例の説明図で、(a)位置ずれのないときの状態を示す模式図、(b)位置ずれしたときの状態を示す模式図。
【図5】(a)液晶パネルにフレキシブル基板を接続した一般的な液晶表示素子を模式的に示す平面図、(b)その側面図。
【図6】(a)従来のパネル側リード電極と基板側出力電極の接続部分を模式的に示す拡大平面図、(b)その断面図。
【図7】(a)別の従来技術によるパネル側リード電極と基板側出力電極とを位置ずれのない状態で示す模式図、(b)同各電極の位置ずれしたときの状態を示す模式図。
【符号の説明】
10 液晶パネル
11 端子部
11a 基端部
11b 端縁
20 フレキシブル基板
20a 基板本体
20b 端縁
100 パネル側リード電極
101 先端(上辺)
102 底辺
110 第1接続面
200 基板側出力電極
201 先端(上辺)
202 底辺
210 第2接続面
ga,gf 隣接リード間隙
gc 対向リード間隙[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display element in which a flexible substrate such as TCP is connected to a liquid crystal panel, and more particularly to a technique for connecting a panel-side lead electrode and a substrate-side output electrode.
[0002]
[Prior art]
In one of the assembly processes of the liquid crystal display element (liquid crystal module), as shown in the plan view of FIG. 5A, a liquid crystal driving circuit such as a TCP (tape carrier package) is provided for the terminal portion 11 of the liquid crystal panel 10. There is a step of connecting a flexible substrate 20 as a substrate. FIG. 5B is a side view of FIG.
[0003]
Lead electrodes drawn out from the display surface side of the liquid crystal panel 10 are formed in a strip shape at a predetermined pitch in the terminal portion 11, and output electrodes drawn out from the substrate body also in the connection portion on the flexible substrate 20 side. Are formed in a strip shape so as to have the same pitch as the lead electrodes.
[0004]
FIG. 6A shows an enlarged view of two adjacent lead electrodes 12 and 13 included in the panel-side lead electrode and two adjacent output electrodes 22 and 23 included in the substrate-side output electrode. . FIG. 6B shows an enlarged cross-sectional view of the connecting portion.
[0005]
The panel-side lead electrode 12 (13) is made of a transparent electrode material (ITO material), and the substrate-side output electrode 22 (23) is made of a copper foil formed on the base film 21, and each of these electrodes 12 (13 In many cases, an anisotropic conductive film (ACF) 30 is used for the connection of 22) and 23 (23).
[0006]
The anisotropic conductive film 30 is, for example, a film in which conductive particles are dispersed in a thermosetting resin film, and is sandwiched between the terminal portion 11 and the flexible substrate 20 and pressed by a thermocompression bonding head (not shown). It exhibits conductivity in a single direction, and conducts electrical conduction between the panel-side lead electrode 12 (13) and the substrate-side output electrode 22 (23).
[0007]
In a normal design, the panel-side lead electrode 12 (13) is formed to have the same width from the base end 11a side of the terminal portion 11 to the end edge 11b side of the terminal portion 11, as shown in FIG. The substrate-side output electrode 22 (23) is also formed with the same width from the substrate body 20a to the substrate edge 20b.
[0008]
Further, the width of the panel side lead electrode 12 (13) is 1/2 to 2/3 of the lead pitch, and the width of the substrate side output electrode 22 (23) is 1/1 to 2/2 of the width of the panel side lead electrode 12. Designed as 3. The substrate body 20a of the flexible substrate 20 is a portion in which the copper foil pattern on the base film 21 connected to the substrate-side output electrode 22 is covered with a solder resist (heat-resistant insulating coating) 24 shown in FIG. Say.
[0009]
In recent years, it has been required that the lead pitch of these connection electrode portions be set to 100 μm or less, for example, as the display becomes higher in definition. In order to realize such a narrow pitch, it is necessary to narrow the widths of the panel-side lead electrode 12 (13) and the substrate-side output electrode 22 (23).
[0010]
However, apart from the panel-side lead electrode 12 (13), the substrate-side output electrode 22 (23) is made of a copper foil. It is necessary to use one having a small thickness. That is, if the thickness of the copper foil is not thin, the narrow pitch electrodes cannot be completely etched.
[0011]
Then, when the flexible substrate 20 is connected to the terminal portion 11 and then bent by approximately 180 ° and disposed on the back side of the liquid crystal panel 10, the substrate-side output electrode 22 (at the bent portion indicated by the arrow A in FIG. 23) may break.
[0012]
In order to prevent this, as shown in FIG. 7A, the width of the substrate side output electrode 22 (23) may be made wider than the width of the panel side lead electrode 12 (13), for example. According to this, although the bending resistance is improved, the following another problem occurs.
[0013]
That is, when connecting the panel-side lead electrode 12 (13) and the substrate-side output electrode 22 (23), due to the positioning accuracy capability of the alignment device, the dimensional tolerance of the liquid crystal panel 10 and the flexible substrate 20, etc. There is often a shift between the panel-side lead electrode 12 (13) and the substrate-side output electrode 22 (23). FIG. 7B shows a state in which the substrate-side output electrode 22 (23) is shifted from the panel-side lead electrode 12 (13) by a to the right side, for example, by α.
[0014]
When such a deviation occurs, the lead gap β between the substrate side output electrode 22 and the panel side lead electrode 13 adjacent to the substrate side output electrode 22 becomes narrow. Where it should be electrically connected, the panel-side lead electrode 13 may also be electrically connected through the conductive particles contained in the anisotropic conductive film 30 to cause interelectrode leakage.
[0015]
At present, when the lead pitch is a narrow pitch of 100 μm or less, in order to prevent the leakage between the electrodes, between the substrate side output electrode 22 and the panel side lead electrode 13 adjacent thereto (or the substrate side output electrode 23). And the panel-side lead electrode 12 adjacent thereto) is required to be 15 μm or more.
[0016]
As described above, in order to prevent disconnection due to bending of the substrate-side output electrode 22, it is preferable to make the electrode width as wide as possible. However, in the current manufacturing technology, the substrate-side output electrodes 22 and 23 are adjacent to each other. The lead interval is almost limited to 20 to 25 μm.
[0017]
In order to satisfy the condition that the above-mentioned lead gap β needs to be 15 μm or more under such restrictions on the width of the substrate-side output electrode 22 (23), the width of the panel-side lead electrode 12 (13) is made as narrow as possible. do it. According to the current manufacturing technology, the width of the panel-side lead electrode 12 (13) can be formed to about 15 to 25 μm.
[0018]
Therefore, by expanding the width of the substrate side output electrode 22 (23) to such an extent that the adjacent lead interval is 20 to 25 μm, and narrowing the width of the panel side lead electrode 12 (13) to about 15 to 25 μm. Thus, it is possible to solve both the problem of disconnection due to bending of the substrate side output electrode 22 (23) and the problem of deterioration of insulation between leads due to misalignment during connection.
[0019]
[Problems to be solved by the invention]
However, if the width of the panel-side lead electrode 12 (13) is reduced to about 15 to 25 μm, another problem that the panel-side lead electrode 12 (13) is likely to be disconnected due to scratches or the like occurs. In particular, when this disconnection occurs in a portion that does not contribute to the connection with the flexible substrate 20 on the base end portion 11a side in the panel side lead electrode 12 (13), it becomes a fatal defect.
[0020]
Accordingly, an object of the present invention is to provide a flexible substrate by bending in a liquid crystal display element in which a lead electrode on the liquid crystal panel side and an output electrode on the flexible substrate side are connected to each other by an adhesive means including conductive particles with their surfaces facing each other. It is intended to prevent the panel-side lead electrode from being disconnected due to a disconnection on the side, a decrease in insulation between leads due to a positional shift at the time of connection, and a scratch.
[0021]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a liquid crystal panel having terminal portions in which a plurality of lead electrodes are formed in parallel with each other at a constant pitch, and a plurality of lead electrodes formed to have the same pitch as the lead electrodes. The panel-side lead electrode and the substrate-side output electrode are electrically and mechanically connected via an adhesive means containing conductive particles with their connection surfaces facing each other. In the liquid crystal display element, the panel-side lead electrode has an isosceles side having a base end side of the terminal portion as a base and an end edge side of the terminal portion being an upper side narrower than the base end side base. A trapezoidal first connection surface is included, and the substrate-side output electrode includes a substrate body side of the flexible substrate as a bottom side, and an edge side of the flexible substrate as an upper side that is narrower than the substrate body side bottom side. A second connection surface having an isosceles trapezoidal shape, and the connection surfaces are connected to each other via the bonding means in a state where the upper side of one of the connection surfaces is disposed on the bottom side of the other. Yes.
[0022]
According to this configuration, on the flexible substrate side, it is possible to widen the width of the portion that is easily broken by bending (portion on the bottom side of the isosceles trapezoidal shape), and it is sufficient even if a relatively large shift occurs in the connection process. A lead gap can be secured. Moreover, since the width of the base end side portion (the isosceles trapezoidal base side portion) that does not contribute to the connection with the flexible substrate can be increased also on the terminal portion side of the liquid crystal panel, it is effective as a measure against disconnection. . In the present invention, the first connection surface and the second connection surface preferably have the same isosceles trapezoidal shape including the length between the upper side and the bottom side.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to FIGS. FIG. 1A is an enlarged plan view showing a panel-side lead electrode which is a main part of the present invention, and FIG. 1B is an enlarged plan view showing a substrate-side output electrode which is the counterpart. The basic configuration of the liquid crystal panel 10 and the flexible substrate 20 may be the same as the conventional example described above.
[0024]
FIGS. 1A and 1B show only two electrodes for both the panel-side lead electrode 100 and the substrate-side output electrode 200 in order to explain the adjacent and opposing lead gaps. Regarding the reference numerals in the figure, L is attached to the left electrode and R is attached to the right electrode. In the following description, L and R are used only when the positional relationship needs to be explained.
[0025]
The panel-side lead electrode 100 is made of a transparent electrode material (ITO material) and extends from the base end portion 11 a of the terminal portion 11 toward the end edge 11 b of the terminal portion 11. The substrate-side output electrode 200 is made of a copper foil (or a copper foil whose surface is plated with tin, nickel, gold, or the like) and extends from the substrate body 20a side of the flexible substrate 20 toward the end edge 20b. ing.
[0026]
In this example, the panel-side lead electrode 100 terminates in front of the edge 11b of the terminal portion 11, whereas the substrate-side output electrode 200 extends to the flexible substrate 20 edge 20b. However, this is not included in the features of the present invention.
[0027]
The panel-side lead electrode 100 and the substrate-side output electrode 200 are both arranged at the same lead pitch P, and as described with reference to FIG. It is electrically and mechanically connected through, for example, an anisotropic conductive film containing particles.
[0028]
At the time of the connection, when the edge 20b of the flexible substrate 20 is aligned with the virtual line Xa shown in FIG. 1A, the tip 101 of the panel-side lead electrode 100 is positioned on the virtual line Xb shown in FIG. To do. Therefore, the range of the imaginary lines Xa to Xb is a substantial connection surface among the electrodes 100 and 200.
[0029]
When the connection surface of the panel-side lead electrode 100 is a first connection surface 110 and the connection surface of the substrate-side output electrode 200 is a second connection surface 210, in the present invention, each of the connection surfaces 110 and 210 has an isosceles trapezoidal pattern. Formed as.
[0030]
That is, the first connection surface 110 has an isosceles trapezoidal shape in which the tip 101 of the panel-side lead electrode 100 is the upper side, and the width on the upper side with the side along the virtual line Xa as the base 102 is narrower than the width on the bottom side. It is. Note that the width from the base 102 to the base end portion 11a is the same width as the base 102.
[0031]
Further, the second connection surface 210 has an isosceles trapezoidal shape in which the top side 201 is the top side and the side along the virtual line Xb is the bottom side 202 and the width on the top side is narrower than the width on the bottom side. It is. A portion from the base 202 to the substrate body 20 a has the same width as the base 202.
[0032]
In FIG. 1A, when the adjacent lead gap on the base end portion 11a side of the panel-side lead electrodes 100L and 100R is ga, the width A1 of the bottom 102 is expressed by A1 = P-ga. It is preferable that the adjacent lead gap ga and the width (A2) of the tip (upper side) 101 are both selected from a range of 15 to 25 μm because of restrictions in manufacturing an electrode made of an ITO material.
[0033]
In FIG. 1B, when the adjacent lead gap between the substrate-side output electrodes 200L and 200R on the substrate body 20a side is gb, the width B1 of the base 202 is expressed by B1 = P−gb. It is preferable that the adjacent lead gap gb and the width (B2) of the tip (upper side) 201 are both selected from a range of 20 to 25 μm because of restrictions in manufacturing an electrode made of copper foil.
[0034]
In this way, by forming the first connection surface 110 of the panel-side lead electrode 100 and the second connection surface 210 of the substrate-side output electrode 200 into an isosceles trapezoidal shape, a portion of the flexible substrate 20 that is likely to be disconnected due to bending is obtained. Since the electrode width is increased and the electrode width on the base end portion 11a side that does not contribute to the connection with the flexible substrate 20 on the liquid crystal panel 10 side is also increased, it is effective as a measure for preventing disconnection.
[0035]
2 shows a case where the substrate side output electrode 200 is displaced to the right side with respect to the panel side lead electrode 100 in the connection process of the panel side lead electrode 100 and the substrate side output electrode 200. Since 210 has an isosceles trapezoidal shape, even when the deviation is relatively large, the opposing lead gap gc between the substrate-side output electrode 200L and the panel-side lead electrode 100R can be secured to 15 μm or more.
[0036]
In the most preferable aspect of the present invention, the first connection surface 110 and the second connection surface 210 are the same within the above-described width range, that is, A1 = B1, A2 = B2.
[0037]
A specific example of this point will be described with reference to FIGS. FIG. 3 shows a conventional example when the lead pitch is 60 μm. FIG. 3A shows a case where there is no positional displacement, and FIG. 3B shows a case where the flexible substrate 20 is displaced to the right with respect to the liquid crystal panel 10. Shows the state. 3 is a conventional example, the same reference numerals as in FIG. 6A are used.
[0038]
Due to the ability of the positioning device or the like in the connection process, a positional deviation may occur up to about 15 μm. Even in this case, in order to secure the opposing lead gap gc between the substrate side output electrode 22 and the panel side lead electrode 13 to 15 μm or more, as shown in FIG. 13 has a width of 35 μm, the substrate-side output electrodes 22 and 23 have a width of 25 μm, and the adjacent lead gap ga between the panel-side lead electrodes 12 and 13 needs to be 25 μm.
[0039]
FIG. 4 shows an embodiment of the present invention when the lead pitch is 60 μm. FIG. 4A shows a case where there is no displacement, and FIG. 4B shows the flexible substrate 20 on the right side with respect to the liquid crystal panel 10. The state when the position is shifted is shown.
[0040]
As in the conventional example of FIG. 3 above, assuming that a positional deviation of about 15 μm occurs at the maximum in the connection process, as shown in FIG. 4B, the opposing lead between the substrate side output electrode 200L and the panel side lead electrode 100R. In order to secure the gap gc of 15 μm or more, as shown in FIG. 4A, the width A1 of the bottom 102 of the panel-side lead electrode 100 and the width B1 of the bottom 202 of the substrate-side output electrode 200 are both 40 μm. The width A2 of the upper end (upper side) 101 of the panel side lead electrode 100 and the width B2 of the upper end (upper side) 202 of the substrate side output electrode 200 are both set to 20 μm, and the adjacent lead gap ga of the panel side lead electrode 100 and the substrate side output electrode 200 are set. The adjacent lead gap gb may be 20 μm, and therefore, on the side of the flexible substrate 20 as compared with the conventional example of FIG. It is possible to increase the width of a portion that is easily lined by 15 μm and the width of a portion where disconnection is not permitted on the liquid crystal panel 10 side by 5 μm.
[0041]
【The invention's effect】
As described above, according to the present invention, in the liquid crystal display element in which the lead electrode on the liquid crystal panel side and the output electrode on the flexible substrate side are connected by the adhesive means including the conductive particles with their connection surfaces facing each other. Each of the panel-side lead electrode and the substrate-side output electrode has an isosceles trapezoidal connection surface in which the width on the upper side is narrower than the width on the bottom side. It is possible to effectively prevent disconnection of the panel-side lead electrode due to a decrease in insulation between leads due to disconnection or misalignment in the connection process, and damage.
[Brief description of the drawings]
1A and 1B are explanatory views of the present invention, in which FIG. 1A is an enlarged view showing a panel-side lead electrode, and FIG. 1B is an enlarged view showing a substrate-side output electrode.
FIG. 2 is a schematic diagram showing a state in which the substrate-side output electrode is displaced with respect to the panel-side lead electrode in a connection step.
FIGS. 3A and 3B are explanatory diagrams of a specific example according to the prior art compared with the present invention, in which FIG. 3A is a schematic diagram illustrating a state when there is no displacement, and FIG. 3B is a schematic diagram illustrating a state when there is a displacement;
FIGS. 4A and 4B are explanatory diagrams of a specific embodiment according to the present invention, in which FIG. 4A is a schematic diagram illustrating a state when there is no positional shift, and FIG. 4B is a schematic diagram illustrating a state when there is a positional shift.
5A is a plan view schematically showing a general liquid crystal display element in which a flexible substrate is connected to a liquid crystal panel, and FIG. 5B is a side view thereof.
6A is an enlarged plan view schematically showing a connection portion between a conventional panel-side lead electrode and a substrate-side output electrode, and FIG. 6B is a cross-sectional view thereof.
7A is a schematic diagram showing a panel-side lead electrode and a substrate-side output electrode according to another prior art in a state where there is no misalignment, and FIG. 7B is a schematic diagram showing a state where the respective electrodes are misaligned. .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Liquid crystal panel 11 Terminal part 11a Base end part 11b Edge 20 Flexible substrate 20a Board | substrate body 20b Edge 100 Panel side lead electrode 101 Tip (upper side)
102 bottom 110 first connection surface 200 substrate side output electrode 201 tip (upper side)
202 Base 210 Second connection surface ga, gf Adjacent lead gap gc Opposing lead gap