JP2005024438A - 曲面鏡の鏡面精度検査方法、曲面鏡の鏡面精度検査装置、曲面鏡の鏡面精度検査用パターンの作成方法および曲面鏡の鏡面精度検査用パターン - Google Patents

曲面鏡の鏡面精度検査方法、曲面鏡の鏡面精度検査装置、曲面鏡の鏡面精度検査用パターンの作成方法および曲面鏡の鏡面精度検査用パターン Download PDF

Info

Publication number
JP2005024438A
JP2005024438A JP2003191616A JP2003191616A JP2005024438A JP 2005024438 A JP2005024438 A JP 2005024438A JP 2003191616 A JP2003191616 A JP 2003191616A JP 2003191616 A JP2003191616 A JP 2003191616A JP 2005024438 A JP2005024438 A JP 2005024438A
Authority
JP
Japan
Prior art keywords
pattern
inspection
mirror
curved mirror
mirror surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003191616A
Other languages
English (en)
Inventor
Yasuhiro Sato
康浩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakami Corp
Original Assignee
Murakami Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Corp filed Critical Murakami Corp
Priority to JP2003191616A priority Critical patent/JP2005024438A/ja
Publication of JP2005024438A publication Critical patent/JP2005024438A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

【課題】自由曲面等の非球面の曲面鏡について鏡面精度を検査できるようにする。
【解決手段】検査対象曲面鏡の配置位置、撮像手段の撮像位置、検査用パターンの配置位置をそれぞれ想定する。検査対象曲面鏡の設計データを基に、撮像位置で撮像される検査用パターンの反射像がゆがみのない直線状または真円状のパターンとなるように、検査用パターン配置位置での該検査用パターンを光線追跡演算で求めて作成する。設計データに基づき実際に作製された検査対象曲面鏡と、撮像手段と、前記作成された検査用パターンを、前記検査用パターンの作成時に想定した各対応する位置またはこれと同等な位置に配置する。検査用パターンを作製された検査対象曲面鏡で反射し、その反射像を前記撮像手段で撮像し、該撮像された反射像に基づき該検査対象曲面鏡の鏡面精度を検査する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、曲面鏡の鏡面精度を検査するための鏡面精度検査方法、鏡面精度検査装置、鏡面精度検査用パターンの作成方法および鏡面精度検査用パターンに関し、任意の曲面形状の鏡面の面精度を測定できるようにしたものである。
【0002】
【従来の技術】
従来、鏡のゆがみを検査する方法として、非特許文献1、2および特許文献1に記載の方法があった。非特許文献1では鏡材一般について、「8.4 反射像のゆがみ試験」として、「鏡材の反射像のゆがみ試験は、8.2と同様に、明るいところに供試体を鉛直に設置し、一度に約500mm×500mmの領域を検査する。検査者は、供試体の前方2mの位置から目視によって、反射像のゆがみを検査する。」と規定している。
【0003】
非特許文献2では自動車用ミラーについて、「4.2 ひずみ率」として、「ミラーの鏡面のひずみ率は、10.3に規定する試験を行ったとき、平面鏡で2%以下、凸面鏡で5%以下でなければならない。ただし、アウトサイドアンダーミラーの凸面鏡のひずみ率は、8%以下でよい。」と規定している。そして.「10.3 ひずみ率試験」では、「ミラーの前方300mmの距離に、目盛の間隔10mmの同心円目盛とその中心を通る8等分線とを描いたつい立てを正対させ、つい立ての目盛中心の穴から鏡面の同心円目盛の像を写せるような装置」を用いてひずみ率試験を行う方法が規定されている。装置(写真機等)で写した同心円目盛の反射像の8等分線位置での半径をそれぞれ計測して、所定の演算をすることにより、ひずみ率が求められる。
【0004】
特許文献1では、「検査対象に対して複数の格子からなる格子パターンを投射し、前記検査対象により反射された反射格子パターンの各格子の歪量を演算し、その歪量に基づいて前記検査対象の合否を検査する」(請求項1)方法が記載されている。
【0005】
【特許文献1】
特開平9−175457号公報
【非特許文献1】
JIS R3220(第8.4項)
【非特許文献2】
JIS D5705(第4.2項、第10.3項)
【0006】
【発明が解決しようとする課題】
非特許文献1に記載の方法では、平面鏡についてしか鏡面精度(設計鏡面に対する誤差)を検査できない欠点があった。非特許文献2および特許文献1記載の方法では、平面鏡または球面鏡について鏡面精度を検査することができるが、自由曲面等の非球面の曲面鏡については、たとえ鏡面が設計どおりに形成されていても反射像がゆがむことから、鏡面精度を検査することができなかった。
【0007】
この発明は、上述の点に鑑みてなされたもので、自由曲面等の非球面の曲面鏡についても鏡面精度を検査できるようにした鏡面精度検査方法、鏡面精度検査装置、鏡面精度検査用パターンの作成方法および鏡面精度検査用パターンを提供しようとするものである。
【0008】
【課題を解決するための手段】
この発明の曲面鏡の鏡面精度検査方法は、適宜の図形で構成される検査用パターンを検査対象曲面鏡で反射し、その反射像を撮像手段で撮像し、該撮像された反射像に基づき該曲面鏡の鏡面精度を検査する方法であって、前記検査用パターン、前記検査対象曲面鏡および前記撮像手段が予め想定した光学的位置関係またはこれと同等な位置関係にあり、かつ、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に、前記撮像手段で撮像される前記検査用パターンの反射像が、ゆがみのない直線状パターン(本明細書において「直線状パターン」は、連続線による直線パターン、点線等の不連続線による直線パターン、ドット等のマークを直線状に配列したパターンを含む意味で用いる。)、もしくは、ゆがみのない真円状パターン(本明細書において「真円状パターン」は、連続線による真円パターン、点線等の不連続線による真円パターン、ドット等のマークを真円状に配列したパターンを含む意味で用いる。)、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように(ただし、直線状パターンまたは真円状パターン以外のパターンを併せて含むことを妨げない。この出願の発明全体を通じて同じ。)、前記検査用パターンが作成されているものである。
【0009】
また、この発明の曲面鏡の鏡面精度検査方法は、検査対象曲面鏡の配置位置、撮像手段の撮像位置、検査用パターンの配置位置をそれぞれ想定して、該検査対象曲面鏡の設計データを基に、前記撮像位置で撮像される前記検査対象曲面鏡による前記検査用パターンの反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように、前記検査用パターン配置位置での該検査用パターンを光線追跡演算で求めて作成し、前記設計データに基づき実際に作製された検査対象曲面鏡と、撮像手段と、前記作成された検査用パターンを、前記検査用パターンの作成時に想定した各対応する位置またはこれと同等な位置に配置し、該検査用パターンを前記作製された検査対象曲面鏡で反射し、その反射像を前記撮像手段で撮像し、該撮像された反射像に基づき該検査対象曲面鏡の鏡面精度を検査するものである。
【0010】
この発明の曲面鏡の鏡面精度検査方法によれば、自由曲面等の非球面の曲面鏡についても、前記検査対象曲面鏡および前記撮像手段が予め想定した光学的位置関係またはこれと同等な位置関係にあり、かつ、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合には、前記撮像手段で撮像される前記検査用パターンの反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるので、該反射像のパターンが直線あるいは真円から外れている状態を目視、演算等で調べて鏡面精度を検査することができる。
【0011】
この曲面鏡の鏡面精度検査方法は、前記撮像手段で撮像された前記検査用パターンの反射像をディスプレイ表示、印刷表示等で表示し、該表示された反射像を目視して前記検査対象曲面鏡の鏡面精度を検査することができる。また、この曲面鏡の鏡面精度検査方法は、前記撮像手段で撮像された前記検査用パターンの反射像を演算処理して前記検査対象曲面鏡の鏡面精度を検査することもできる。
【0012】
この曲面鏡の鏡面精度検査方法は、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に前記撮像手段で撮像される前記検査用パターンの反射像の大きさに対する、実際に該撮像手段で撮像される該検査用パターンの反射像の大きさの変動(差、比等)に基づき、該実際の反射像の鏡面誤差のうち曲率誤差成分を検出することができる。また、この曲面鏡の鏡面精度検査方法は、前記反射像の鏡面誤差から曲率誤差成分をキャンセルする処理を予め行い、次いで、該曲率誤差がキャンセルされた反射像を演算処理して、うねり誤差成分を演算することができる。この場合、前記曲率誤差成分をキャンセルする処理は、前記撮像手段で撮像される前記検査用パターンの反射像の大きさが、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に撮像される反射像の大きさに一致するように、前記検査用パターンと前記検査対象曲面鏡との距離、または、該距離および前記撮像手段と前記検査対象曲面鏡との距離を変化させることによって行うことができる。
【0013】
この曲面鏡の鏡面精度検査方法は、前記検査用パターンを、線{連続線(実線)、不連続線(点線等)}またはマーク(ドット等)を配列した図形で構成することができる。また、この曲面鏡の鏡面精度検査方法は、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に前記撮像手段で撮像される前記検査用パターンの反射像が、直線状のパターン同士を組み合わせた格子状パターン(複数本の直線状のパターンを平行に配列した平行格子、縦方向の平行格子と横方向の平行格子を直角に重ね合わせた正方格子や直方格子等の直交格子、縦方向の平行格子と横方向の平行格子を非直角に重ね合わせた平行四辺形格子、複数本の直線状のパターンを非平行に配列した非平行格子と複数本の直線状のパターンを平行に配列した平行格子を縦横に重ね合わせた台形格子等)、または、径の異なる複数の真円状パターンを同心円状に組み合わせた同心円状パターン(本明細書において「格子状パターン」は、同心円状パターンを含む意味で用いる。)、または、真円状のパターンと直線状のパターンを組み合わせた格子状パターン(同心円状のパターンと、該同心円状パターンの中心をそれぞれ通り該同心円の全周を等分する複数本の直線状のパターンで構成される同心円・等分線複合格子パターン等)等の幾何学的パターンとなるように前記検査用パターンを構成することができる。反射像が格子状パターンとなるように構成した場合には、該反射像の格子間隔を計測し、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に得られる反射像の格子間隔との違い(差、比等)に基づき、前記反射像の鏡面誤差に含まれる曲率誤差成分を検出することができる。
【0014】
この発明の鏡面精度検査装置は、適宜の図形で構成される検査用パターンを検査対象曲面鏡に投影する投影手段と、前記検査対象曲面鏡による前記検査用パターンの反射像を撮像する撮像手段と、該撮像手段で撮像された前記検査用パターンの反射像を表示する画像表示手段とを具備してなり、前記投影手段、前記検査対象曲面鏡および前記撮像手段が予め想定した光学的位置関係またはこれと同等な位置関係にあり、かつ、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に、前記撮像手段で撮像される前記検査用パターンの反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように、前記検査用パターンが作成されているものである。
【0015】
また、この発明の鏡面精度検査装置は、適宜の図形で構成される検査用パターンを検査対象曲面鏡に投影する投影手段と、前記検査対象曲面鏡による前記検査用パターンの反射像を撮像する撮像手段と、該撮像手段で撮像された前記検査用パターンの反射像に基づいて前記検査対象曲面鏡の鏡面精度に関する演算処理をする鏡面精度演算手段とを具備してなり、前記投影手段、前記検査対象曲面鏡および前記撮像手段が予め想定した光学的位置関係またはこれと同等な位置関係にあり、かつ、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に、前記撮像手段で撮像される前記検査用パターンの反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように、前記検査用パターンが作成されているものである。
【0016】
この鏡面精度検査装置において、前記鏡面精度演算手段は、前記撮像手段で撮像された反射像のパターンと、該反射像の理想的なパターン(前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に得られる反射像パターン)との誤差を求めて前記検査対象曲面鏡の鏡面精度に関する演算処理をすることができる。
【0017】
この鏡面精度検査装置は、前記検査用パターンが適宜のマークを格子状に配列したマーク格子状配列パターンである場合に、前記鏡面精度演算手段が、前記撮像手段で撮像された反射像のパターンの所定位置(例えば、反射像の中央位置付近のマークの重心位置)と該反射像の理想的なパターンの対応する位置をそれぞれの原点位置として、該撮像された反射像のパターンの前記原点位置からマーク位置までの距離と、該反射像の理想的なパターンの前記原点位置から対応するマーク位置までの距離との相対誤差を、該撮像された反射像の複数のマーク(原点位置を除いた全マークまたは適宜選択されたマーク)についてそれぞれ求め、該相対誤差を統計処理して前記検査対象曲面鏡の鏡面精度に関する演算処理をする(例えば、相対誤差の標準偏差、分散、P−V値、RMS値を鏡面精度評価尺度として求める)ものとすることができる。あるいは、前記検査用パターンが適宜のマークを格子状に配列したマーク格子状配列パターンである場合に、前記鏡面精度演算手段が、前記撮像手段で撮像された反射像のパターンの適宜のマークの重心位置(例えば、反射像の中央位置付近のマークの重心位置)と該反射像の理想的なパターンの対応するマークの重心位置を重ね合わせたときの、該撮像された反射像のパターンの他のマークの重心位置と該反射像の理想的なパターンの対応するマークの重心位置間の距離を、該撮像された反射像の複数のマークについてそれぞれ求め、該距離を統計処理して前記検査対象曲面鏡の鏡面精度に関する演算処理をする(例えば、該距離の標準偏差、分散、P−V値、RMS値を鏡面精度評価尺度として求める)ものとすることもできる。
【0018】
この鏡面精度検査装置は、記撮像手段の光軸を、少なくとも該光軸が前記検査対象曲面鏡の鏡面に入射される位置において、該鏡面の法線に沿って配置し(直交入射)、前記投影手段を、前記検査対象曲面鏡による前記検査用パターンの反射像が前記撮像手段で捉えられる位置(前記法線上または該法線を光学手段で折り曲げた線上)に配置することができる。この場合、前記撮像素子の光軸の前記検査対象曲面鏡に入射する光路と、該検査対象曲面鏡で反射されて前記投影手段に至る光路とを、両光路の途中位置に配置したハーフミラー、ハーフプリズム等の光路分離手段で分離することができる。また、この鏡面精度検査装置は、前記撮像手段の光軸を検査対象曲面鏡の法線に対し傾斜して配置し(斜め入射)、前記投影手段を、前記検査対象曲面鏡による前記検査用パターンの反射像が前記撮像手段で捉えられる位置に配置することもできる。
【0019】
この鏡面精度検査装置は、前記投影手段が、前記検査用パターンを描画した半透明板状部材に裏面側から照明装置によるバックライト照明を照射して該検査用パターンを表示し前記検査対象曲面鏡に投影するように構成することができる。また、該投影手段は、前記検査用パターンを描画した部材におもて面側から照明装置による照明を照射して該検査用パターンを表示し前記検査対象曲面鏡に投影するように構成することもできる。また、該投影手段は、LED(発光ダイオード)、バックライト付LCD(液晶表示装置)、CRT表示装置、EL表示装置、プラズマ表示装置等の各種発光式表示装置で検査用パターンを表示し、前記検査対象曲面鏡に投影するように構成することもできる。また、投影手段は、検査対象鏡に検査用パターンを投射するプロジェクター(投射機)で構成することもできる。
【0020】
この発明の鏡面精度検査用パターンの作成方法は、検査対象曲面鏡の設計データを基に、所定の撮像位置で撮像される該検査対象曲面鏡による反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように、該パターンの反射前の所定の面上(平面上等)でのパターンを光線追跡演算で求めて検査用パターンとして作成するものである。
【0021】
この発明の鏡面精度検査用パターンは、検査対象曲面鏡の鏡面が設計どおりに作られている場合に、所定位置で見た該検査対象曲面鏡による反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように作成されているものである。
【0022】
なお、この発明は各種用途の曲面鏡を検査対象鏡とすることができ、例えば、自動車用HUD(ヘッド・アップ・ディスプレイ)装置の発光表示装置(LCD、CRT等で構成され、ダッシュボード内に配置される。)とビームコンバイナ用ハーフミラー(フロントウインドウ付近に配置される)との間に配置される中間ミラー(ダッシュボード内に配置される凹面鏡)、同HUD装置のビームコンバイナ用ハーフミラー(フロントウインドウ付近に配置される凹面鏡)、自動車用バックミラー(凸面鏡)、自動車用途以外の各種曲面鏡(凹面鏡、凸面鏡)の鏡面精度の検査に用いることができる。
【0023】
【発明の実施の形態】
(実施の形態1)
この発明の実施の形態1を説明する。図1は実施の形態1による鏡面精度検査装置のシステム構成の外観図を示す。図2は該システム構成のブロック図を示す。図1において、鏡面精度検査装置10は、大きく分けて検査部12と処理部14で構成される。図3は、検査部12の側面図を示す。図3において、検査部12は、平板状のベース板16上に被検物位置調整装置18を介して被検物載置テーブル19(可動テーブル)を、その載置面を水平に保持して装着している。被検物載置テーブル19の上には、被検物として検査対象の曲面鏡20が、使用時に表側になる面を上方に向けて載置される。図1の検査対象鏡20は、長方形状の非球面凹面鏡(表面鏡)で構成されているもので、例えば自動車用HUD装置の発光表示装置とビームコンバイナ用ハーフミラーとの間に配置される中間ミラー(ダッシュボード内に配置される凹面鏡)、または、同HUD装置のビームコンバイナ用ハーフミラー(フロントウインドウ付近に配置される凹面鏡)を想定している。自動車用HUD装置は、周知のように、ダッシュボード内に配置されたLCD、CRT等の発光表示装置による表示(速度表示等)を同ダッシュボード内に配置された中間ミラーで反射して(ただし、中間ミラーが無いタイプもある。)、フロントウインドウ付近に配置されたハーフミラーで構成されるビームコンバイナに投影して、運転者の前方に虚像表示させるように構成されている。被検物載置テーブル19の上面には、検査対象鏡20の外周縁部を載置支持して、該検査対象鏡20を該被検物載置テーブル19上の所定位置に所定の姿勢で安定に支持するための支持部材21が固定配置されている。図1の例では、支持部材21は、検査対象鏡20を、概ねその長手方向を被検物載置テーブル19のX軸方向に沿って配置し、短手方向を同Y軸方向に沿って配置した状態で、ほぼ水平に支持している。被検物位置調整装置18は、検査対象鏡20の位置を、検査用パターン作成時に想定した位置に調整するためのもので、検査対象鏡20の水平2軸(X,Y)位置、垂直(Z軸)位置、X軸中心の回転角度θx、Y軸中心の回転角度θy、Z軸中心の回転角度θzの合計6軸を調整可能に構成されている。
【0024】
ベース板16の後部には支柱22が垂直に立設固定されている。支柱22には、昇降部材24が昇降自在にかつ任意の高さ位置に保持可能に取り付けられている。昇降部材24には、ブラケット26を介して直方体状の箱体28が固定装着されている。箱体28の下面には開口部30が構成され(この開口部に絞りを配置することもできる。)、該開口部30は被検物載置テーブル19に対面している。箱体28の下面以外の面は不透明に構成されている。箱体28内には、光路分離手段を構成するハーフミラー32(平面鏡)が水平面に対して45°傾斜して固定配置されている。箱体28の上面28aの中央部には、撮像手段としてCCDカメラ等のビデオカメラ34が光軸Lを鉛直下方に向けて装着されている。ビデオカメラ34の光軸Lは検査対象鏡20の中央部と交差し、その視野角は検査対象鏡20の全体が映る広さに設定されている。ビデオカメラ34の光軸Lが検査対象鏡20の鏡面と交わる点Aにおいて、該鏡面の接平面は水平面を構成し、光軸Lと直交する。したがって、光軸Lは検査対象鏡20の鏡面で反射されて鉛直上方に向けて折り返す。上方に折り返した光軸Lは、ハーフミラー32で反射されて水平方向に直角に曲げられる(光軸L’)。
【0025】
箱体28の、ハーフミラー32の下面に対面する位置の側面28bには開口部36が形成されている。箱体28の側面28bには、投影手段として正方形の薄箱状の検査用パターン表示装置38が装着されて、開口部36を塞いでいる。検査用パターン表示装置38の開口部36に対面する側の面38aは、検査用パターンを描画した半透明板状部材で構成されている。検査用パターン表示装置38の面38a以外の面は不透明に構成されている。検査用パターン表示装置38内には、バックライト照明装置(図示せず)が収容されている。検査時には、該バックライト照明装置が点灯され、検査用パターン表示装置38の面38aに検査用パターンが明るく表示される。表示された検査用パターンは、ハーフミラー32で垂直下方に向けて反射され、検査対象鏡20に投影され、その反射像はハーフミラー32を透過してビデオカメラ34で撮像される。なお。ビデオカメラ34と検査用パターン表示装置38の配置を入れ替えることもできる。
【0026】
図1において、処理部14はパソコンシステムで構成され、鏡面精度演算手段としてのパソコン本体40と、キーボード42と、LCD等のディスプレイ44を具備している。ディスプレイ44は画像表示手段として、ビデオカメラ34で撮像された検査用パターンの反射像を表示するほか、鏡面精度演算処理のための表示、鏡面精度演算結果の表示等を行う。検査者はディスプレイ44に表示された反射像を目視して鏡面精度を大まかに判断することができる。パソコン本体40は、該表示された反射像について、鏡面精度演算処理を実行する。この時、検査者は、必要に応じて、キーボード操作(あるいはマウス操作)により、表示された画像上で、鏡面精度検査を行う領域を指定することができる。鏡面精度演算によって求められた歪曲量等の鏡面精度評価尺度値はディスプレイ44に表示される。なお、目視のみによって鏡面精度検査を行う場合は、パソコンシステム14に代えてテレビモニタ46を設けて、ビデオカメラ34で撮像された検査用パターンの反射像を該テレビモニタ46に表示して、検査者が該反射像のゆがみ状態を目視して鏡面精度を検査する。
【0027】
検査用パターンの作成方法について説明する。検査用パターンは、CAD(コンピュータを用いた設計・製図支援システム)を用いて作成することができる。CADを用いて検査用パターンを作成するときは、図1に示す実際の検査時の配置に合わせて(すなわち、距離、角度等の配置状態を一致させて)、図4に示すように、ビデオカメラ34の撮像位置(レンズ入射瞳位置)34a、検査対象鏡20の鏡面20a、ハーフミラー32の鏡面32a、検査用パターンを配置する平面48、仮想正方格子平面50を想定する。なお、検査時の配置は、例えば、実際の使用時に合わせて設定することができる。すなわち、検査対象鏡20が自動車用HUD装置の発光表示装置とビームコンバイナ用ハーフミラーとの間に配置される中間ミラーである場合には、検査用パターン表示装置38の表示面38aと検査対象鏡20間の光軸方向距離を、HUD装置の発光表示装置表示面と中間ミラーとの光軸方向距離に設定する。検査対象鏡20とビデオカメラ34のレンズ入射瞳位置34aとの光軸方向距離は、ビデオカメラ34の撮影エリアに検査対象鏡20全体が入り(近すぎると全体が入らなくなる。)、かつ、要求される検査精度に合致する検出分解能が得られる(遠すぎると撮影される検査対象鏡20の像が小さくなり検出分解能が低下する。)ように設定する。また、検査対象鏡20が自動車用HUD装置のビームコンバイナ用ハーフミラーである場合には、検査用パターン表示装置38の表示面38aと検査対象鏡20間の光軸方向距離を、HUD装置の発光表示装置表示面から中間ミラーを経てビームコンバイナ用ハーフミラーに至る光軸方向距離に設定する(中間ミラーが無いタイプの場合は、HUD装置の発光表示装置表示面からビームコンバイナ用ハーフミラーに至る光軸方向距離に設定する。)。検査対象鏡20とビデオカメラ34のレンズ入射瞳位置34aとの光軸方向距離は、ビデオカメラ34の撮影エリアに検査対象鏡20全体が入り、かつ、要求される検査精度に合致する検出分解能が得られるように設定する。また、検査対象鏡20がその他の用途に使用される鏡である場合にも、実際の使用条件に合わせて検査用パターン表示装置38の表示面38aと検査対象鏡20間の光軸方向距離を設定し、検査対象鏡20とビデオカメラ34のレンズ入射瞳位置34aとの光軸方向距離を、ビデオカメラ34の撮影エリアに検査対象鏡20全体が入り、かつ、要求される検査精度に合致する検出分解能が得られるように設定する。なお、実際の使用条件に対し検査用パターン表示装置38の表示面38aと検査対象鏡20間の光軸方向距離を変更することにより、検査用パターンの反射像がビデオカメラ34でより大きな画像として撮像されるようにして、検査対象鏡20の鏡面精度の測定精度を高めることもできる。検査対象鏡20が凹面鏡の場合に、実際の使用条件よりも大きな画像として撮像されるようにするためには、反射像を正立像とする場合(表示面38aと検査対象鏡20間の光軸方向距離を検査対象鏡20の焦点距離よりも短く設定する場合)には、表示面38aと検査対象鏡20間の光軸方向距離(あるいは、箱体28全体と検査対象鏡20間の距離)を、実際の使用条件よりも長く設定する。また、反射像を倒立像とする場合(表示面38aと検査対象鏡20間の光軸方向距離を検査対象鏡20の焦点距離よりも長くする場合)には、表示面38aと検査対象鏡20間の光軸方向距離(あるいは、箱体28全体と検査対象鏡20間の距離)を、実際の使用条件よりも短く設定する。また、検査対象鏡20が凸面鏡の場合は、表示面38aと検査対象鏡20間の光軸方向距離(あるいは、箱体28全体と検査対象鏡20間の距離)を、実際の使用条件よりも短く設定する。なお、このように実際の使用条件よりも大きな画像として撮像されるようにする場合には、CADを用いて検査用パターンを作成するときに、この検査時の配置に合わせてビデオカメラ34の撮像位置(レンズ入射瞳位置)34a、検査対象鏡20の鏡面20a、ハーフミラー32の鏡面32a、検査用パターンを配置する平面48、仮想正方格子平面50を想定する。
【0028】
図4において、検査対象鏡20の鏡面20aは設計データどおりの曲面を有する理想鏡面である。仮想正方格子平面50は、ビデオカメラ34の光軸Lが検査対象鏡20の鏡面20aと交わる点Aにおいて該鏡面20aの接平面を構成し、光軸Lと直交する。仮想正方格子平面50には検査対象鏡20の鏡面20a全体を一定の大きさの正方形で細かく分割する正方格子を想定する。正方格子はX軸方向に沿って等間隔で平行に配列された直線と、Y軸方向に沿って前記と同じ等間隔で平行に配列された直線とを直角に重ね合わせた幾何学図形で構成される。ハーフミラー鏡面32aは、水平面に対し、その面内のX軸方向の軸を中心として45°回転させた平面として想定される。なお、仮想正方格子平面50が鏡面20aの接平面を構成するように想定したのは、鏡面誤差の演算処理(後述)で使用する理想正方格子の格子間隔値として、仮想正方格子平面50に想定した正方格子の格子間隔値をそのまま用いることができるので、演算が簡単になるためである。したがって、仮想正方格子平面50は、必ずしも鏡面20aの接平面を構成する位置に想定する必要はなく、光軸Lに沿って平行移動させて鏡面20aから離れた位置に想定することもできる。
【0029】
なお、ハーフミラー32を省き、検査用パターン配置平面48に代えて、ビデオカメラ34の光軸L上に、該光軸Lに直交する検査用パターン配置平面48’を想定することもできる。検査用パターン配置平面48’を想定する場合は、光軸Lがハーフミラー32の鏡面32aと交わる点Bと検査用パターン配置平面48’と交わる点C’間の距離(BC’)を、光軸Lがハーフミラー32の鏡面32aと交わる点Bと該光軸Lがハーフミラー32で水平方向に直角に曲げられた光軸L’が検査用パターン配置平面48と交わる点C間の距離(BC)に等しく設定する。このように設定すれば、検査用パターン配置平面48で得られる検査用パターンと、検査用パターン配置平面48’で得られる検査用パターンとは同一形状となる。ただし、検査用パターン配置平面48で得られる検査用パターンはハーフミラー32で反射されたパターンであるため、検査用パターン配置平面48で得られる検査用パターンとは表裏が反転した関係となる。
【0030】
図5は、ビデオカメラ34の光軸L上に、検査用パターン配置平面48’を想定した場合の配置を示す。この図を用いて、検査用パターンの作成方法を説明する。検査用パターンは、ビデオカメラ34の撮像位置34aから仮想正方格子平面50の格子交点Dの1つを透視した光路Eが検査対象鏡20の鏡面20aと交差する位置Fで正反射して(光路E’)、検査用パターン配置平面48’に投影される位置Gを光線追跡で求め、この操作を仮想正方格子平面50の全ての格子交点Dについて行うことにより求めることができる。そして、該求められた全ての格子交点Dの各投影位置Gを、例えば黒点ドット等のマークで表示することにより、検査用パターンが作成される。
【0031】
図6は、図5の配置による格子像の一例を示すもので、(a)は仮想正方格子平面50に想定する仮想正方格子の正面図、(b)は該仮想正方格子全体を光線追跡して検査用パターン配置平面48’で得られる格子像の正面図、(c)は該仮想正方格子の全格子交点Dを光線追跡して検査用パターン配置平面48’で得られる各投影位置Gを黒点ドットマークで表示した格子像である。(b)の格子像を検査用パターンとすることもできるが、この場合にはビデオカメラで撮像された格子像から各格子交点を画像処理で求める等の処理が複雑となる。これに対し、(c)の黒点ドットマークの配列による格子像を検査用パターンとして定めればそのような問題が無く処理が容易となる。そこで、ここでは(c)の黒点ドットマークの配列による格子像を検査用パターンとして定めて、図3の検査用パターン表示装置38の面38aに表裏反転して描画する。この描画された検査用パターンを用いて、鏡面20aの設計データに基づいて実際に作製された曲面鏡の鏡面精度を検査することができる。
【0032】
ここで、鏡面誤差について説明する。作製された実際の鏡面では、設計値に対し誤差を持っていることが殆どであり、その誤差(鏡面誤差)は「曲率誤差」と「うねり誤差」の2つに大別される。曲率誤差は球面成分であり、曲面を数式で表した際に、曲率半径Rの球面を表す項となる。うねり誤差は非球面成分であり、曲面を数式で表した際に、曲率半径Rの球面からの変位量を表す項となる。これを図7の例で説明する。この図は、鏡面を、その光軸を通る平面で切断した断面の半分を示したものである。面52が設計データによる曲率半径Rの鏡面(理想鏡面)である。面54が該設計データに基づいて実際に作製された誤差を有する鏡面(測定鏡面)である。理想鏡面52に対する測定鏡面54の曲率誤差は、測定鏡面54に近似した球面56を球面フィッティング処理で求めることにより、理想鏡面52に対する球面56の曲率差(または、焦点距離の逆数である面パワーの差)として求められる。球面フィッティング処理は、一般的には最小二乗法により、測定鏡面54との誤差の二乗和を最小にする球面56を求めることにより行われる。
【0033】
うねり誤差は、測定鏡面54の各部が、フィッティングされた球面56に対してどれだけずれているかを表すものであり、測定鏡面54上の各サンプリング位置において、フィッティング球面56に対する光軸方向の距離Δxをそれぞれ求め、Δxを統計処理した値{Δxの分散σや標準偏差、P−V(ピーク・ツー・ボトム)値、RMS値(二乗和平均の平方根)等}として表すのが一般的であり、該統計値によりうねり誤差の程度を評価することができる。
【0034】
図1(図3)の鏡面精度検査装置による鏡面精度検査手法について説明する。図8は、検査手順を示す。鏡面精度検査を行うときは、はじめに各部のセッティングを行う(S1)。すなわち、検査対象鏡20の設計データに基づいて作成した検査用パターンを図3の検査用パターン表示装置38の面38aに描画し{例えば、図6(c)の黒点ドットマークの配列からなる検査用パターンを印刷等で描画した透明フィルムを面38aに貼り付ける等}、検査対象鏡20を被検物載置テーブル19に検査用パターン作成時に想定した姿勢で載置支持し、検査用パターン(面38a)と検査対象鏡20との光軸方向距離およびビデオカメラ34と検査対象鏡20との光軸方向距離が検査用パターン作成時に想定した距離となるように、箱体28の高さ位置を調節する。
【0035】
セッティングが終了したら、鏡面誤差の検出を行う。検査対象鏡20に鏡面誤差がなければ(鏡面が設計データどおりに作製されていれば)、ビデオカメラ34で撮像された検査用パターンの反射像は黒点ドットマークが、直交する直線上に正しく配列された正方格子状パターンとなる。しかし、殆どの場合は鏡面誤差をもっているので、反射像の大きさが正規の大きさと異なったり、ゆがみが生じたものとなる。
【0036】
鏡面誤差の検出として、最初に曲率誤差の検出を行う(S2)。検査対象鏡20に曲率誤差があると、ビデオカメラ34で撮像される検査用パターンの反射像の大きさすなわち格子間隔が変化するので、該反射像の格子間隔(ドット間隔)をディスプレイ44上で画像処理により自動で計測し、理想鏡面52による格子間隔との差を求めることにより、曲率誤差を検出することができる。この場合、前述のように(図5)、検査用パターンの作成時に、ビデオカメラ34の光軸Lが検査対象鏡20の鏡面20aと交わる点Aにおいて、仮想正方格子平面50が該鏡面20aの接平面を構成することを想定しているので、理想鏡面52による格子間隔値としては、仮想正方格子平面50に想定した正方格子の格子間隔値を用いることができる。求められた格子間隔の差を曲率誤差に関する鏡面精度評価尺度としてディスプレイ44に表示することにより、検査者はその表示を見て曲率誤差に関する鏡面精度を評価することができる。
【0037】
なお、検査対象鏡20に曲率誤差があると、反射像の格子間隔の変化に伴い、検査対象鏡20の適宜に設定した検査エリアから反射されるドット数(=ビデオカメラ34で撮像されるドット数)が変化する(反射像の格子間隔が狭くなるとドット数が多くなり、同格子間隔が広くなるとドット数が少なくなる)ので、格子間隔を計測するのに代えて、ディスプレイ44上で検査対象鏡20の前記検査エリアから反射されるドット数を画像処理により自動で、あるいは検査者が目視によりカウントし、理想鏡面52の場合に該検査エリアから反射されるドット数との差を求めることにより、曲率誤差を簡便に検出することもできる。この場合、前述のように、理想鏡面52による格子間隔は、仮想正方格子平面50に想定した正方格子の格子間隔に等しいので、理想鏡面52の場合に得られるドット数は、該想定した正方格子の格子間隔に基づき算出することができる。
【0038】
曲率誤差の検出が完了したら、引き続き曲率誤差のキャンセル(吸収)処理を行う(S3)。すなわち、曲率誤差があると、前述のように、ビデオカメラ34で撮像される検査用パターンの反射像の大きさすなわち格子間隔が変化するので、該反射像の格子間隔(ドット間隔)が理想鏡面52による格子間隔と等しくなるように、箱体28の位置を上下させて調整する。ビデオカメラ34で撮像される検査用パターンの格子間隔が理想鏡面52による格子間隔と等しくなれば、曲率誤差がキャンセルされたことになるので、箱体28の位置をそこで固定する。なお、格子間隔を測定するのに代えて、前記曲率誤差の検出時と同様に適宜に設定した検査エリアから反射されるドット数をカウントして、それが理想鏡面52の場合のドット数と等しくなるように箱体28の上下方向位置を調整することもできる。また、当初想定した箱体28の位置(検査用パターン作成時に想定した撮像位置および検査用パターンの配置位置に対応した位置)に対する曲率誤差キャンセル処理終了後の箱体28位置の変位量は、曲率誤差に対応した値となるので、前記曲率誤差の検出(S2)は、該変位量をもって行うこともできる。また、曲率誤差のキャンセル処理は、調整量が少なくて済む場合は、箱体28を固定したままで、被検物位置調整装置18で検査対象鏡20の垂直方向位置を調整することにより行うこともできる。この場合は、被検物位置調整装置18の変位量をもって曲率誤差を検出することができる。
【0039】
なお、曲率誤差のキャンセル処理は、箱体28全体を移動させる(検査用パターンと前記検査対象曲面鏡との距離、および、前記撮像手段と前記検査対象曲面鏡との距離を共に変化させることに相当)ほか、検査用パターンの光軸方向位置のみ変化させる(検査用パターンと前記検査対象曲面鏡との距離のみ変化させることに相当)ことによって行うこともできる。
【0040】
曲率誤差がキャンセルされた状態では、ビデオカメラ34で撮像される検査用パターンの反射像に含まれる鏡面誤差はうねり誤差だけになるので、該うねり誤差の検出処理を行う(S4)。処理部14によるうねり誤差の検出手順を図9に示す。はじめに、ビデオカメラ34で撮像された検査用パターンの反射像(曲率誤差がキャンセルされた反射像)を静止画像として取り込む(S11)。取り込まれた反射像はディスプレイ44に表示される。ディスプレイ44に表示された反射像の一例を図10に示す。検査対象鏡20にゆがみがなければ黒点ドット20は直線状(正方格子状)に配列されたパターンとなるが、この例では検査対象鏡20にゆがみがあるので、黒点ドット20の配列は直線から外れている(ゆがみが生じている)ことがわかる。
【0041】
次いで、検査者が、ディスプレイ44上でポインタを操作して、うねり誤差の解析を行う解析エリアを設定する(S12)。ディスプレイ44に表示されている反射像全体(鏡面全体)を解析エリアとして設定することもできる。解析エリアが設定されると、解析エリア内の画素データの読み取りおよび二値化処理が行われ、該二値化処理されたデータに基づいて、各黒点ドットの重心位置が求められる(S13)。解析エリアの中心位置に最も近い黒点ドットの重心位置を座標原点(解析中心)と定め、該座標原点に1つの格子交点を一致させた理想正方格子を想定する。つまり、観測された黒点ドットによる格子像と理想正方格子像を重ね合わせる。図11はディスプレイ44に表示されるこの時の画像を示すものである(ただし、解析エリア全体のうち右上1/4の領域のみを示す。)。二値化された黒点ドット58のうち解析エリア中心位置に最も近い黒点ドット58sの重心位置Oが解析中心と定められ(S14)、該解析中心Oに1つの格子交点を一致させたX,Yの2軸方向の直線の配列で構成される理想正方格子60が定められる(S15)。ここでは曲率誤差をキャンセルした後の画像を用いているので、理想正方格子60の格子間隔dは、検査用パターンの作成時に仮想正方格子平面50に想定した正方格子の格子間隔を用いることができる。あるいは、解析エリアの中央位置付近のドット間隔を複数箇所について計測し、その平均値を格子間隔dとして用いることもできる。なお、理想正方格子60のX,Yの2軸方向は、被検物載置テーブル19(図1)のX,Y2軸方向に対応している。
【0042】
次いで、解析中心Oと解析エリア内の各黒点ドット58(解析中心O上の黒点ドット58sを除く。)との距離rをそれぞれ求める(S16)。黒点ドット58の座標を(x,y)とすると、距離rは式1で求められる。
【数1】
Figure 2005024438
【0043】
同様に、解析中心Oと解析エリア内の理想正方格子60の各格子交点62(解析中心O上の格子交点を除く。)との距離rをそれぞれ求める(S17)。格子交点62の座標を(x,y)とすると、距離rは式2で求められる。
【数2】
Figure 2005024438
【0044】
解析エリア内の全黒点ドット58および全格子交点62について距離r、rがそれぞれ求められたら、各黒点ドット58とそれに対応する格子交点62(うねり誤差が無い場合に該黒点ドット58があるべき位置の格子交点)の組合せごとに相対誤差r−rを算出し、さらに該相対誤差に基づき式3により歪曲量Dを算出する(S18)。
【数3】
Figure 2005024438
【0045】
全黒点ドット58について歪曲量Dが求まったら、式4により歪曲量Dの標準偏差σを求める(S19)。
【数4】
Figure 2005024438
【0046】
このようにして求められた歪曲量Dの標準偏差σをうねり誤差に関する鏡面精度評価尺度としてディスプレイ44に表示する(S20)。検査者は表示された歪曲量Dの標準偏差σから検査相性鏡20のうねり誤差に関する鏡面精度を評価することができる。標準偏差σに代えて、分散、P−V値、RMS値等を鏡面精度評価尺度として求めることもできる。
【0047】
なお、以上の例では、撮像された反射像のパターンの原点位置からマーク位置までの距離と、該反射像の理想的なパターンの原点位置から対応するマーク位置までの距離との相対誤差を求めたが、これに代えて、撮像された反射像のパターンのマーク位置から該反射像の理想的なパターンの対応するマーク位置までの距離(図11の例で言えば、黒点ドット58と、それに対応する格子交点62間の2次元距離)を各マーク(原点位置のマークを除く)についてそれぞれ求め、これを統計処理し、標準偏差、分散、P−V値、RMS値等を鏡面精度評価尺度として求めてディスプレイ44に表示することもできる。この場合、図11の黒点ドット58と、それに対応する格子交点62間の2次元距離dは式5により求めることができる。
【数5】
Figure 2005024438
【0048】
以上によりうねり誤差の検出処理を終了すると(S21)、1枚の検査対象鏡20について鏡面精度検査の全工程を終了する(図8ステップS5)。
【0049】
(実施の形態2)
この発明の実施の形態2を説明する。図12は実施の形態2による鏡面精度検査装置のシステム構成の外観図を示す。これは、ビデオカメラと検査用パターン表示装置の配置が実施の形態1と異なるものである。図1と共通する部分には同一の符号を用いる。図12において、鏡面精度検査装置70は、大きく分けて検査部72と処理部14で構成される。検査部72は、平板状のベース板16上に被検物位置調整装置18を介して被検物載置テーブル19を水平に装着している。被検物載置テーブル19の上には、被検物として検査対象の曲面鏡20が、使用時に表側になる面を上方に向けて載置される。図12の例では、検査対象鏡20として、長方形状の凹面鏡を検査する場合を想定している。被検物載置テーブル19の上面には、検査対象鏡20の外周縁部を載置支持して、該検査対象鏡20を該被検物載置テーブル19上の所定位置に所定の姿勢で安定に支持するための支持部材21が固定配置されている。図12の例では、支持部材21は、検査対象鏡20を、概ねその長手方向を被検物載置テーブル19のX軸方向に沿って配置し、短手方向を同Y軸方向に沿って配置した状態で、ほぼ水平に支持している。被検物位置調整装置18は、検査対象鏡20の位置を、検査用パターン作成時に想定した位置に調整するためのもので、検査対象鏡20の水平2軸(X,Y)位置、垂直(Z軸)位置、X軸中心の回転角度θx、Y軸中心の回転角度θy、Z軸中心の回転角度θzの合計6軸を調整可能に構成されている。
【0050】
ベース板16には支柱74が垂直に立設固定されている。支柱74には、昇降部材76が昇降自在にかつ任意の高さ位置に保持可能に取り付けられている。昇降部材76には、ブラケット78が、支柱74の位置を中心軸としてその左右両方向に張り出した状態で固定装着されている。ブラケット78の左右一方側の片78aには、撮像手段としてビデオカメラ80が、その光軸を検査対象鏡20の中央部に向けて傾けた状態で装着されている。ビデオカメラ80はブラケット片78aに対して左右方向に移動できるように配置されており(移動機構は図示せず)、これにより、曲率誤差のキャンセル処理を行う際に、ブラケット78を上下方向に移動させるのに伴ってビデオカメラ80をブラケット片78aに沿って左右方向に移動させることにより、ビデオカメラ80を、想定した光軸L1に沿って移動させることができる。
【0051】
ブラケット78の左右他方側の片78bには、投影手段として薄箱状の検査用パターン表示装置82が水平に装着されている。検査用パターン表示装置82はブラケット片78bに対して左右方向に移動できるように配置されており(移動機構は図示せず)、これにより、曲率誤差のキャンセル処理を行う際に、ブラケット78を上下方向に移動させるのに伴って検査用パターン表示装置82をブラケット片78bに沿って左右方向に移動させることにより、検査用パターン表示装置82を、想定した光軸L2(ビデオカメラ80の光軸L1が検査対象鏡20の鏡面で正反射された光軸)に沿って移動させることができる。
【0052】
検査用パターン表示装置82の下面(図示せず)は、検査用パターンを描画した半透明板状部材で構成されている。検査用パターン表示装置82の下面以外の面は不透明に構成されている。検査用パターン表示装置82内には、バックライト照明装置(図示せず)が収容されている。検査時には、該バックライト照明装置が点灯され、検査用パターン表示装置82の下面に検査用パターンが明るく表示される。表示された検査用パターンは検査対象鏡20に投影されて、その反射像はビデオカメラ80で撮像される。なお、処理部14の構成は実施の形態1(図1)と同じである。
【0053】
検査用パターンの作成方法について説明する。検査用パターンは、CADを用いて作成することができる。CADを用いて検査用パターンを作成するときは、図12に示す実際の検査時の配置に合わせて(すなわち、距離、角度等の配置状態を一致させて)、図13に示すように、ビデオカメラ80の撮像位置(レンズ入射瞳位置)80a、検査対象鏡20の鏡面20a、検査用パターンを配置する平面84、仮想正方格子平面86を想定する。検査対象鏡20の鏡面20aは設計データどおりの曲面を有する理想鏡面である。仮想正方格子平面86は、ビデオカメラ80の光軸L1が検査対象鏡20の鏡面20aと交わる点Aにおいて該鏡面20aの接平面を構成する水平面である。仮想正方格子平面86には検査対象鏡20の鏡面20a全体を一定の大きさの正方形で細かく分割する正方格子を想定する。正方格子はX軸方向に沿って等間隔で平行に配列された直線と、Y軸方向に沿って前記と同じ等間隔で平行に配列された直線とを直角に重ね合わせた幾何学図形で構成される。
【0054】
図12の鏡面精度検査装置70による鏡面精度検出は実施の形態1と同様に図8,図9に示す処理手順で行うことができる。ただし、検査用パターンの作成時にビデオカメラ80の光軸L1は仮想正方格子平面86に斜めに入射されることを想定しているので、図12の鏡面精度検査装置70で実際に検査対象鏡20の鏡面精度を検査するときに、ビデオカメラ80で撮像される検査用パターン(正方格子)の反射像は、検査対象鏡20に鏡面誤差がない場合でも、台形状となる。もっとも、鏡面誤差がない場合には、正方格子を構成する縦横の線は直線となる(つまり、線にゆがみが生じない)ので、該線の直線からのずれ(ゆがみ)量を検出して鏡面誤差を検査することができる。また、曲率誤差キャンセル処理は、ビデオカメラ80を光軸L1に沿って移動させ、もしくは、検査用パターン表示装置82を光軸L2に沿って平行移動させ、または、両者を移動する。
【0055】
なお、検査用パターン作成時に、図14に示すように、ビデオカメラ80の光軸L1に対し、仮想正方格子平面86を直角の姿勢に想定することにより、実際に検査対象鏡20の鏡面精度を検査するときに、ビデオカメラ80で撮像される検査用パターン(正方格子)の反射像を、検査対象鏡20に鏡面誤差がない場合に正方格子にすることができる。また、検査用パターン作成時に、検査用パターン配置平面84を光軸L2に対し直角に配置することもできる。
【0056】
前記実施の形態では、検査用パターンを構成するドットを印刷等で表示した場合について示したが、発光ダイオード等の点光源で表示することもできる。また、検査用パターンはドット以外のマークを配列して構成することもできる。また、検査用パターンは、マークでなく、線の組合せで構成される格子そのもののパターン{例えば、図6(b)に示したパターン}とすることもできる。また、前記実施の形態では、検査対象曲面鏡の鏡面が設計どおりに作られている場合に、撮像手段で撮像される検査用パターンの反射像がゆがみのない直線状のパターンとなるように、検査用パターンを作成した場合について説明したが、ゆがみのない真円状のパターンとなるように、検査用パターンを作成することもできる。図15は、真円状のパターンを配列した例を示す(いずれも、仮想格子平面上のパターン、すなわち検査対象曲面鏡の鏡面が設計どおりに作られている場合に、撮像手段で撮像される前記検査用パターンの反射像を示す。)。(a)は同心円のみからなる格子状(同心円状)パターン、(b)は同心円とその中心を通る16等分線からなる同心円・等分線複合格子パターン、(c)は該同心円・等分線複合格子パターンの各格子交点を黒点ドットで表したパターンである。また、検査用パターンを線で構成する場合は、実線(連続線)に限らず、例えば図16に示すように、点線等の不連続線(または、連続線と不連続線の組合せ)で構成することもできる。
【0057】
前記実施の形態では、撮像手段としてビデオカメラを使用した場合について説明したが、スチルカメラ(ディジタル式、銀塩写真式等)を使用することもできる。また、前記実施の形態では、撮像手段で撮像された検査用パターンの反射像をディスプレイ表示するようにしたが、印刷表示することもできる。この場合は、印刷機が画像表示手段を構成する。
【図面の簡単な説明】
【図1】この発明による鏡面精度検査装置の実施の形態1を示すシステム構成外観図である。
【図2】図1の鏡面精度検査装置のシステム構成ブロック図である。
【図3】図1の検査部12の側面図である。
【図4】図1の鏡面精度検査装置で使用する検査用パターンを作成するときに想定する各要素の配置を模式的に示す斜視図である。
【図5】図1の鏡面精度検査装置で使用する検査用パターンを作成するときに想定する各要素の配置を模式的に示す側面図である。
【図6】図5の配置による格子像の一例を示す正面図である。
【図7】鏡面を、その光軸を通る平面で切断した断面の半分を示した図で、曲率誤差とうねり誤差を説明する図である。
【図8】図1の鏡面精度検査装置による鏡面精度検査の検査手順を示すフローチャートである。
【図9】図1の処理部14によるうねり誤差の検出手順を示すフローチャートである。
【図10】図1の鏡面精度検査装置による鏡面精度検査時にビデオカメラ34で撮像された反射像の一例を示す図である。
【図11】図1の鏡面精度検査装置によるうねり誤差の検査時にディスプレイに表示される画像の一部および該画像に基づくうねり誤差算出処理の説明図である。
【図12】この発明による鏡面精度検査装置の実施の形態2を示すシステム構成外観図である。
【図13】図12の鏡面精度検査装置で使用する検査用パターンを作成するときに想定する各要素の配置を模式的に示す斜視図である。
【図14】図12の鏡面精度検査装置で使用する検査用パターンを作成するときに想定する各要素の配置を変更例を模式的に示す正面図である。
【図15】真円状のパターンを含む検査用パターン例を示す図である。
【図16】点線(または点線と実線の組合せ)で構成した検査用パターン例を示す図である。
【符号の説明】
10,70…鏡面精度検査装置、20…検査対象曲面鏡、32…ハーフミラー(光路分離手段)、34,80…ビデオカメラ(撮像手段)、38,82…検査用パターン表示装置(投影手段)、40…パソコン本体(鏡面精度演算手段)、46…テレビモニタ(画像表示手段)、44…ディスプレイ(画像表示手段)

Claims (21)

  1. 適宜の図形で構成される検査用パターンを検査対象曲面鏡で反射し、その反射像を撮像手段で撮像し、該撮像された反射像に基づき該曲面鏡の鏡面精度を検査する方法であって、
    前記検査用パターン、前記検査対象曲面鏡および前記撮像手段が予め想定した光学的位置関係またはこれと同等な位置関係にあり、かつ、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に、前記撮像手段で撮像される前記検査用パターンの反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように、前記検査用パターンが作成されている曲面鏡の鏡面精度検査方法。
  2. 検査対象曲面鏡の配置位置、撮像手段の撮像位置、検査用パターンの配置位置をそれぞれ想定して、該検査対象曲面鏡の設計データを基に、前記撮像位置で撮像される前記検査対象曲面鏡による前記検査用パターンの反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように、前記検査用パターン配置位置での該検査用パターンを光線追跡演算で求めて作成し、
    前記設計データに基づき実際に作製された検査対象曲面鏡と、撮像手段と、前記作成された検査用パターンを、前記検査用パターンの作成時に想定した各対応する位置またはこれと同等な位置に配置し、
    該検査用パターンを前記作製された検査対象曲面鏡で反射し、その反射像を前記撮像手段で撮像し、該撮像された反射像に基づき該検査対象曲面鏡の鏡面精度を検査する曲面鏡の鏡面精度検査方法。
  3. 前記撮像手段で撮像された前記検査用パターンの反射像を表示し、該表示された反射像を目視して前記検査対象曲面鏡の鏡面精度を検査する請求項1または2記載の曲面鏡の鏡面精度検査方法。
  4. 前記撮像手段で撮像された前記検査用パターンの反射像を演算処理して前記検査対象曲面鏡の鏡面精度を検査する請求項1から3のいずれかに記載の曲面鏡の鏡面精度検査方法。
  5. 前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に前記撮像手段で撮像される前記検査用パターンの反射像の大きさに対する、実際に該撮像手段で撮像される該検査用パターンの反射像の大きさの変動に基づき、該実際の反射像の鏡面誤差のうち曲率誤差成分を検出する1から4のいずれかに記載の曲面鏡の鏡面精度検査方法。
  6. 前記反射像の鏡面誤差から曲率誤差成分をキャンセルする処理を予め行い、次いで、該曲率誤差がキャンセルされた反射像を演算処理して、うねり誤差成分を演算する請求項1から5のいずれかに記載の曲面鏡の鏡面精度検査方法。
  7. 前記曲率誤差成分をキャンセルする処理が、前記撮像手段で撮像される前記検査用パターンの反射像の大きさが、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に撮像される反射像の大きさに一致するように、前記検査用パターンと前記検査対象曲面鏡との距離、または、該距離および前記撮像手段と前記検査対象曲面鏡との距離を変化させることによって行われる請求項6記載の曲面鏡の鏡面精度検査方法。
  8. 前記検査用パターンが、線またはマークを配列した図形で構成される請求項1から7のいずれかに記載の曲面鏡の鏡面精度検査方法。
  9. 前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に前記撮像手段で撮像される前記検査用パターンの反射像が、直線状パターン同士を組み合わせた格子状パターン、径の異なる複数の真円状パターンを同心円状に組み合わせた格子状パターン、真円状パターンと直線状パターンを組み合わせた格子状パターンのいずれかである請求項1から8のいずれかに記載の曲面鏡の鏡面精度検査方法。
  10. 前記格子状パターンの反射像の格子間隔を計測し、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に得られる反射像の格子間隔との違いに基づき、前記反射像の鏡面誤差に含まれる曲率誤差成分を検出する請求項9記載の曲面鏡の鏡面精度検査方法。
  11. 適宜の図形で構成される検査用パターンを検査対象曲面鏡に投影する投影手段と、
    前記検査対象曲面鏡による前記検査用パターンの反射像を撮像する撮像手段と、
    該撮像手段で撮像された前記検査用パターンの反射像を表示する画像表示手段とを具備してなり、
    前記投影手段、前記検査対象曲面鏡および前記撮像手段が予め想定した光学的位置関係またはこれと同等な位置関係にあり、かつ、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に、前記撮像手段で撮像される前記検査用パターンの反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように、前記検査用パターンが作成されている曲面鏡の鏡面精度検査装置。
  12. 適宜の図形で構成される検査用パターンを検査対象曲面鏡に投影する投影手段と、
    前記検査対象曲面鏡による前記検査用パターンの反射像を撮像する撮像手段と、
    該撮像手段で撮像された前記検査用パターンの反射像に基づいて前記検査対象曲面鏡の鏡面精度に関する演算処理をする鏡面精度演算手段とを具備してなり、
    前記投影手段、前記検査対象曲面鏡および前記撮像手段が予め想定した光学的位置関係またはこれと同等な位置関係にあり、かつ、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に、前記撮像手段で撮像される前記検査用パターンの反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように、前記検査用パターンが作成されている曲面鏡の鏡面精度検査装置。
  13. 前記鏡面精度演算手段が、前記撮像手段で撮像された反射像のパターンと、前記検査対象曲面鏡の鏡面が設計どおりに作られている場合に得られる該反射像の理想的なパターンとの誤差を求めて前記検査対象曲面鏡の鏡面精度に関する演算処理をする請求項12記載の曲面鏡の鏡面精度検査装置。
  14. 前記検査用パターンが適宜のマークを格子状に配列したマーク格子状配列パターンであり、
    前記鏡面精度演算手段が、前記撮像手段で撮像された反射像のパターンの所定位置と該反射像の理想的なパターンの対応する位置をそれぞれの原点位置として、該撮像された反射像のパターンの前記原点位置からマーク位置までの距離と、該反射像の理想的なパターンの前記原点位置から対応するマーク位置までの距離との相対誤差を、該撮像された反射像の複数のマークについてそれぞれ求め、該相対誤差を統計処理して前記検査対象曲面鏡の鏡面精度に関する演算処理をする請求項13記載の鏡面精度検査装置。
  15. 前記検査用パターンが適宜のマークを格子状に配列したマーク格子状配列パターンであり、
    前記鏡面精度演算手段が、前記撮像手段で撮像された反射像のパターンの適宜のマーク位置と該反射像の理想的なパターンの対応するマーク位置を重ね合わせたときの、該撮像された反射像のパターンの他のマークと該反射像の理想的なパターンの対応するマーク位置間の距離を、該撮像された反射像の複数のマークについてそれぞれ求め、該距離を統計処理して前記検査対象曲面鏡の鏡面精度に関する演算処理をする請求項13記載の鏡面精度検査装置。
  16. 前記撮像手段の光軸を、少なくとも該光軸が前記検査対象曲面鏡の鏡面に入射される位置において、該鏡面の法線に沿って配置し、
    前記投影手段を、前記検査対象曲面鏡による前記検査用パターンの反射像が前記撮像手段で捉えられる位置に配置してなる請求項11から15のいずれかに記載の曲面鏡の鏡面精度検査装置。
  17. 前記撮像素子の光軸の前記検査対象曲面鏡に入射する光路と、該検査対象曲面鏡で反射されて前記投影手段に至る光路とを、両光路の途中位置に配置した光路分離手段で分離してなる請求項16記載の曲面鏡の鏡面精度検査装置。
  18. 前記撮像手段の光軸を検査対象曲面鏡の法線に対し傾斜して配置し、
    前記投影手段を、前記検査対象曲面鏡による前記検査用パターンの反射像が前記撮像手段で捉えられる位置に配置してなる請求項11から15のいずれかに記載の曲面鏡の鏡面精度検査装置。
  19. 前記投影手段が、前記検査用パターンを描画した半透明板状部材に裏面側から照明装置によるバックライト照明を照射して該検査用パターンを表示し前記検査対象曲面鏡に投影する請求項11から18のいずれかに記載の曲面鏡の鏡面精度検査装置。
  20. 検査対象曲面鏡の設計データを基に、所定の撮像位置で撮像される該検査対象曲面鏡による反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように、該パターンの反射前の所定の面上でのパターンを光線追跡演算で求めて検査用パターンとして作成する曲面鏡の鏡面精度検査用パターンの作成方法。
  21. 検査対象曲面鏡の鏡面が設計どおりに作られている場合に、所定位置で見た該検査対象曲面鏡による反射像が、ゆがみのない直線状パターン、もしくは、ゆがみのない真円状パターン、または、ゆがみのない直線状パターンとゆがみのない真円状パターンとの組合せパターンとなるように作成されている曲面鏡の鏡面精度検査用パターン。
JP2003191616A 2003-07-04 2003-07-04 曲面鏡の鏡面精度検査方法、曲面鏡の鏡面精度検査装置、曲面鏡の鏡面精度検査用パターンの作成方法および曲面鏡の鏡面精度検査用パターン Pending JP2005024438A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191616A JP2005024438A (ja) 2003-07-04 2003-07-04 曲面鏡の鏡面精度検査方法、曲面鏡の鏡面精度検査装置、曲面鏡の鏡面精度検査用パターンの作成方法および曲面鏡の鏡面精度検査用パターン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191616A JP2005024438A (ja) 2003-07-04 2003-07-04 曲面鏡の鏡面精度検査方法、曲面鏡の鏡面精度検査装置、曲面鏡の鏡面精度検査用パターンの作成方法および曲面鏡の鏡面精度検査用パターン

Publications (1)

Publication Number Publication Date
JP2005024438A true JP2005024438A (ja) 2005-01-27

Family

ID=34189120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191616A Pending JP2005024438A (ja) 2003-07-04 2003-07-04 曲面鏡の鏡面精度検査方法、曲面鏡の鏡面精度検査装置、曲面鏡の鏡面精度検査用パターンの作成方法および曲面鏡の鏡面精度検査用パターン

Country Status (1)

Country Link
JP (1) JP2005024438A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008125A (ja) * 2008-06-25 2010-01-14 Toppan Printing Co Ltd ガラス基板内の気泡選別処理法
JP2010526295A (ja) * 2007-04-24 2010-07-29 株式会社ソニー・コンピュータエンタテインメント ビデオカメラとtvモニタを使用した3次元オブジェクトのスキャン
KR101484170B1 (ko) 2013-05-06 2015-01-21 주식회사 이미지넥스트 Hud 영상 평가시스템 및 그 평가방법
JP2016506542A (ja) * 2012-12-21 2016-03-03 エシロル アンテルナショナル(コンパーニュ ジェネラル ドプテーク) 眼科用レンズの光学特性の適合性を検査するための方法及び関連装置
JP2016218025A (ja) * 2015-05-26 2016-12-22 富士フイルム株式会社 検査方法及び装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526295A (ja) * 2007-04-24 2010-07-29 株式会社ソニー・コンピュータエンタテインメント ビデオカメラとtvモニタを使用した3次元オブジェクトのスキャン
JP2010008125A (ja) * 2008-06-25 2010-01-14 Toppan Printing Co Ltd ガラス基板内の気泡選別処理法
JP2016506542A (ja) * 2012-12-21 2016-03-03 エシロル アンテルナショナル(コンパーニュ ジェネラル ドプテーク) 眼科用レンズの光学特性の適合性を検査するための方法及び関連装置
KR101484170B1 (ko) 2013-05-06 2015-01-21 주식회사 이미지넥스트 Hud 영상 평가시스템 및 그 평가방법
JP2016218025A (ja) * 2015-05-26 2016-12-22 富士フイルム株式会社 検査方法及び装置

Similar Documents

Publication Publication Date Title
JP6027673B2 (ja) 鏡面反射面の形状測定
CN106705897B (zh) 曲面电子显示屏用弧形玻璃面板缺陷检测方法
JP6447055B2 (ja) 校正方法、校正装置、計測用具及びプログラム
US8111907B2 (en) Method for repeatable optical determination of object geometry dimensions and deviations
US9797833B2 (en) Method for determining the refractive power of a transparent object, and corresponding device
JP5681021B2 (ja) 表面性状測定装置
JP4768579B2 (ja) 写像性の評価方法
JP2002509259A (ja) 電子部品の三次元検査のための方法およびその装置
JP2018205025A (ja) 画像検査装置、画像検査方法、画像検査プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP2018205023A (ja) 画像検査装置、画像検査方法、画像検査装置の設定方法、画像検査プログラム、画像装置の設定検査プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
US7941913B2 (en) Component placement unit as well as a component placement device comprising such a component placement unit
US20110170767A1 (en) Three-dimensional (3d) imaging method
JP6791341B2 (ja) 校正方法、校正装置、及びプログラム
JP4743771B2 (ja) 断面データ取得方法、システム、及び断面検査方法
JPWO2008149712A1 (ja) 歪検査装置、及び歪検査方法
CN104142132A (zh) 用于确定机械部件位置的装置
JP2018205024A (ja) 画像検査装置、画像検査方法、画像検査プログラム及びコンピュータで読み取り可能な記録媒体並びに記録した機器
JP2005024438A (ja) 曲面鏡の鏡面精度検査方法、曲面鏡の鏡面精度検査装置、曲面鏡の鏡面精度検査用パターンの作成方法および曲面鏡の鏡面精度検査用パターン
US20130162816A1 (en) Device for measuring the shape of a mirror or of a specular surface
JP2001221659A (ja) 光学式スケール装置及び光学式ロータリースケール装置
US10161879B1 (en) Measurement of thickness, surface profile, and optical power of a transparent sheet
Wang et al. Easy and flexible calibration approach for deflectometry-based vr eye-tracking systems
JP6885762B2 (ja) レンズメータ
JP2012026816A (ja) 寸法測定方法および装置
CN109073371B (zh) 倾斜检测的设备及方法