JP2005024405A - Method of measuring thickness of film coating on ceramic member, its system, and method for manufacturing film coated ceramic member - Google Patents

Method of measuring thickness of film coating on ceramic member, its system, and method for manufacturing film coated ceramic member Download PDF

Info

Publication number
JP2005024405A
JP2005024405A JP2003190542A JP2003190542A JP2005024405A JP 2005024405 A JP2005024405 A JP 2005024405A JP 2003190542 A JP2003190542 A JP 2003190542A JP 2003190542 A JP2003190542 A JP 2003190542A JP 2005024405 A JP2005024405 A JP 2005024405A
Authority
JP
Japan
Prior art keywords
ceramic
film thickness
sensor
measuring
distance sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003190542A
Other languages
Japanese (ja)
Inventor
Shingo Koiwa
真悟 小岩
Keisuke Yamazaki
啓介 山崎
Motoo Yookaichiya
元男 八日市屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2003190542A priority Critical patent/JP2005024405A/en
Publication of JP2005024405A publication Critical patent/JP2005024405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nondestructive method for measuring the thickness of a ceramic film coating on a ceramic member which is formed with the ceramic film on a ceramic substrate, and to provide a device for measuring the thickness of the ceramic film capable of measuring the thickness of the film of the ceramic member without harming the film. <P>SOLUTION: The measuring device for measuring thickness of the ceramic film formed on the ceramic member comprises: a work deck for placing a work to be measured having a curved shape; a photo-distance sensor for measuring the distance from a prescribed position in the inside surface of the member to be measured placed on the work deck to the photo-distance sensor; a rotational mechanism for rotating the photo-distance sensor; a sensor elevating mechanism for elevating the distance sensor by elevating the sensor rotational mechanism; and a sensor elevated position detection sensor for detecting the elevated position of the sensor elevation mechanism. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は被膜付セラミックス部材の膜厚(被膜の厚さ)測定方法、その装置、被膜付セラミックス部材の製造方法に係わり、特に被膜形成前のセラミックス部材及び被膜形成後のセラミックス部材から光測定センサーまでの距離を測定し、その差を利用して膜厚を測定する被膜付セラミックス部材の膜厚測定方法、その装置、被膜付セラミックス部材の製造方法に関する。
【0002】
【従来の技術】
従来、ドーム形状のアルミナのようなセラミックスにイットリウムアルミニウムガーネット(YAG)被膜を形成した被膜付セラミックス部材における膜厚(膜厚とは本明細書において被膜の厚さを意味する。)の測定は、セラミックス部材を切断し、電子顕微鏡を用いて切断面の膜厚を測定することが行われている。
【0003】
(1)アルミナ基材とYAG被膜の物性値がほぼ等しいことや、アルミナ基材が透明ではないこと、非金属体であることなどから、現在一般に行われている膜厚測定技術(超音波式、渦電流式、X線を使用した方法、光の干渉を使用した方法、レーザー光を使用した方法など)ではYAG膜厚を非破壊で測定できないこと。(2)要求膜厚測定精度が極めて高いこと、(3)YAG被膜は剥れやすいこと及び他の物質に触れるなどして汚染してはならない等の理由から非接触の測定方法が要求されている。特許文献1で提案されている膜厚測定方法は、光源としてファイバーレーザーを用い、さらに、入射光を複数照射するものであり、その膜厚測定装置は高価になり、アルミナ基材と物性値のほぼ等しいYAG被膜の測定には不適当であり、さらに、ドーム形状の被測定物の測定には適さない。
【0004】
また、(4)従来の破壊検査では、1個のドーム形状部材の測定に、約2日の検査日数を要する(測定点数は25点)。さらに、(5)破壊試験のため、全数検査が不可能である。
【0005】
そこでドーム形状のアルミナのようなセラミックス基材にYAG被膜を形成した被膜付セラミックス部材の非破壊膜厚測定方法、その装置及びその場(in−site)測定で膜厚の測定が可能で生産性がよいドーム形状の被膜付セラミックス部材の製造方法が要望されていた。
【0006】
【特許文献1】
特開2003−59993号公報(段落[0049]、[0050]、図1)
【0007】
【発明が解決しようとする課題】
本発明は上述した事情を考慮してなされたもので、セラミックス基材にセラミックス被膜を形成した被膜付セラミックス部材の非破壊及び被膜を傷付けることがない被膜付セラミックス部材の膜厚測定方法を提供することを目的とする。
【0008】
また、セラミックス基材にセラミックス被膜を形成した被膜付セラミックス部材の非破壊膜厚測定及び被膜を傷付けることがない被膜付セラミックス部材の膜厚測定を可能とする被膜付セラミックス部材の膜厚測定装置を提供することを目的とする。
【0009】
さらに、その場測定で膜厚の測定が可能な膜厚測定工程を組込み、被膜付セラミックス部材の生産性が向上し、さらに、所望の膜厚の被膜付セラミックス部材を製造することができる被膜付セラミックス部材の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の1つの態様によれば、光距離センサーからセラミックス仮焼体の測定位置に照射し、この反射光を受光して測定位置から光距離センサーまでの距離を測定する第1の測定工程と、前記測定済みセラミックス仮焼体にセラミックス被膜を形成した被膜付セラミックス仮焼体の前記測定位置における前記ら光距離センサーから前記セラミックス被膜までの距離を測定する第2の測定工程を有し、前記第1の測定工程により測定された距離と第2の測定工程により測定された距離の差をセラミックス被膜の膜厚値に用いることを特徴とする被膜付セラミックス部材の膜厚測定方法が提供される。これにより、セラミックス基材にセラミックス被膜を形成した被膜付セラミックス部材の非破壊及び被膜を傷付けることがない被膜付セラミックス部材の膜厚(被膜の厚さ)測定方法が実現される。
【0011】
好適な一例では、上記距離の差に、予め破壊試験により求めた修正係数をかけて、焼成後の膜厚値とする。これにより、焼成後の膜厚値が精度よく得られる。
【0012】
また、他の好適な一例では、前記セラミックス仮焼体は、ドーム形状である。これにより、通常、測定が困難なドーム形状セラミックス焼成体の被膜の膜厚値を精度よく得られる。
【0013】
また、他の好適な一例では、前記セラミックス仮焼体は、アルミナであり、被膜はイットリウムアルミニウムガーネットである。
【0014】
また、本発明の他の態様によれば、曲面形状を有する被測定部材が載置されるワーク載置部と、このワーク載置部に載置された前記被測定部材の内表面の所定の位置から当該光距離センサーまでの距離を測定する光距離センサーと、前記光距離センサーを回転させる距離センサー回転機構と、この距離センサー回転機構を昇降させて距離センサーを昇降させるセンサー昇降機構と、このセンサー昇降機構の昇降位置を検知するセンサー昇降位置検知センサーを有することを特徴とする被膜付セラミックス部材の膜厚測定装置が提供される。これにより、セラミックス基材にセラミックス被膜を形成した被膜付セラミックス部材の非破壊膜厚測定及び被膜を傷付けることがない被膜付セラミックス部材の膜厚測定を可能とする被膜付セラミックス部材の膜厚測定装置が実現される。
【0015】
また、好適な一例では、前記被測定部材は、この被測定部材の基準位置を決定するために用いられる基準治具に取付けられて、前記膜厚測定装置に載置される。これにより、アルミナ仮焼体の位置が容易かつ高精度に調整される。
【0016】
また、好適な一例では、前記光距離センサーは、ゼロ点調整を行うゼロ点調整治具を前記膜厚測定装置に載置してゼロ点調整が行われる。これにより、容易かつ高精度にゼロ点調整が行われる。
【0017】
また、本発明の他の態様によれば、セラミックス仮焼体を製造する工程と、光距離センサーから光線をセラミックス仮焼体の所定位置に照射し、この反射光を受光して所定位置から光距離センサーまでの距離を測定する第1の測定工程と、前記測定済みセラミックス仮焼体にセラミックス被膜を形成した被膜付セラミックス仮焼体の前記測定位置における前記光距離センサーから前記セラミックス被膜までの距離を測定する第2の測定工程と、前記第1の測定工程により測定された距離と第2の測定工程により測定された距離の差からセラミックス被膜の膜厚を求める工程と、被膜付セラミックス仮焼体を焼成する工程を有することを特徴とする被膜付セラミックス部材の製造方法が提供される。これにより、その場測定で膜厚の測定が可能な膜厚測定工程を組込み、被膜付セラミックス部材の生産性が向上し、さらに、所望の膜厚の被膜付セラミックス部材を製造することができる被膜付セラミックス部材の製造方法が実現される。
【0018】
好適な一例では、前記セラミックス仮焼体は、アルミナであり、被膜はイットリウムアルミニウムガーネットである。
【0019】
【発明の実施の形態】
以下、本発明に係わる被膜付セラミックス部材の膜厚(被膜の厚さ)測定装置の一実施形態について図面を参照して説明する。
【0020】
図1に示すように、本発明に係わる被膜付セラミックス部材の膜厚測定装置1は、直方体フレーム状の基台2と、この基台2の上部に設けられ、かつ中央部に円形状の収容孔3aが設けられ、曲面形状を有する被測定部材例えばドーム形状のセラミックス仮焼体Mがダンパ支持部材3bを介して載置されるワーク載置部3と、収容孔3a内を昇降し、光距離センサー4aからセラミックス仮焼体Mの内面あるいは基準治具までの距離を測定するセンサー部4と、このセンサー部4を回転させるセンサー回転機構5と、このセンサー回転機構5と共にセンサー部4を昇降させるセンサー昇降機構6を有している。また、膜厚測定装置1には、図1及び図2に2点鎖線で示し、セラミックス仮焼体Mの基準位置を決定するために用いられる基準治具21と、光距離センサー4aのゼロ点調整に用いられ図15に示すゼロ点調整治具22が用いられる。
【0021】
さらに、図3に示すように、センサー部4は、截頂正方形状のセンサー取付基材4bと、このセンサー取付基材4bにセンサー取付部4cを介して、センサー取付基材4bの截頂部に各々対向し90°の等間隔で設けられた4個の光距離センサー4aを有している。これら4個の光距離センサー4aのうち、光距離センサー4aは光軸が垂直であって上向きであり、光距離センサー4aは光軸が垂直線と小角度の鋭角をなして上向きであり、光距離センサー4aは光軸が垂直線と大角度の鋭角をなして上向きであり、光距離センサー4aは光軸が水平である。光距離センサー4aとして例えばレーザー光距離センサーが用いられ、図1及び図2に示すように、ドーム形状のセラミックス焼結体Mの異なる位置を測定可能になっている。
【0022】
図4に示すように、光距離センサー4aは、膜厚測定装置1全体を制御するパソコン7に接続されており、各光距離センサー4aから照射され、セラミックス仮焼体Mあるいは被膜で反射されたレーザー光を受け、A/D変換手段8によりデジタル化され、セラミックス仮焼体Mあるいは被膜と各光距離センサー4aまでの距離情報としてCPU7p及び記憶手段7mを有するパソコン7に送るようになっており、デジタル化された距離情報はパソコン7で処理される。
【0023】
図5に示すように、光距離センサー4aは、通常用いられるもので、発光素子ドライバー4aに制御され、レーザー光を発振する発光素子4a、この発光素子4aの光軸上に設けられた投光レンズ4aと、上記光軸のセラミックス仮焼体Mに対する反射光軸上に設けられた結像レンズ4aと、反射光軸上のポジションセンサー4aと、このポジションセンサー4aからの位置情報を処理する上記A/D変換手段8に接続されている。また、図4に示すように、パソコン7には、入力手段、例えばキーボード9と、出力手段、例えばプリンタ10およびディスプレー11が接続されている。
【0024】
図1及び図2に示すように、上記センサー回転機構5は、センサー取付基材4bに設けられた光距離センサー4aを回転軸5aを介して回転(公転)させるセンサー回転用モータ5bと、このセンサー回転用モータ5bをセンサー昇降機構6に取付けるモータ支持部材5cと、センサー昇降機構6に取付けられ回転軸5aを受ける軸受5dと、モータ支持部材5c及び回転軸5aに設けられセンサー回転機構5の回転方向の原点を検出する原点検出センサー5eを有している。従って、センサー回転用モータ5bを回転させることにより、光距離センサー4aを回転させることができるようになっている。
【0025】
さらに、図1及び図2に示すように、センサー昇降機構6は、基台2に固定されたセンサー昇降用モータ6aと、このセンサー昇降用モータ6aにより回転されるボールネジ6bと、このボールネジ6bに螺合し昇降する昇降部材6cと、この昇降部材6cに取付けられモータ支持部材5c及び軸受5dが取付けられた昇降支持部材6dと、センサー昇降機構6の原点を検知する原点検出センサー6eを有している。従って、センサー昇降用モータ6aを回転させることにより、光距離センサー4aを昇降させることができるようになっている。
【0026】
また、図1及び図2に示すように膜厚測定時、膜厚測定装置1に載置されて用いられる基準治具21は、さらに図6乃至図10に示すように、セラミックス焼結体Mが直接載置される3個の別部材からなるワーク支持部材21aと、このワーク支持部材21aが上面外周に取付られ、リング形状をなし、かつ内周部にフランジ部21bが設けられ下面外周に120°間隔で3個の位置決めプレート21bが設けられた基準ベース部材21bと、図6に示す押さえ部材21c及び押さえネジ21dを除去して示す図7及び図9に示すように、図6の押さえ部材21cと共にセラミックス仮焼体Mを固定するワーク固定ネジ21eが設けられており、このワーク固定ネジ21eは基準ベース部材21bに立設されたネジ取付部材21fを貫通して取付けられている。従って、ワーク支持部材21aにより3点支持されたセラミックス仮焼体Mは、押さえ部材21cを介する押さえネジ21d及びワーク固定ネジ21eにより基準治具21に取付けられ、位置決めプレート21bを介して3点支持で膜厚測定装置1に載置される。
【0027】
図10のA部を拡大して示す図11(a)に示すように、基準ベース部材21bのフランジ部21bの内周面には、横ずれ検出面21b及び高さ位置ずれ検出エッジ21bが形成され、さらに、図11(b)に示すように、回転方向検出ノッチ21bが形成されている。これにより、図11(a)及び図12に示すように光距離センサー4aから照射された水平方向のレーザー光が横ずれ検出面21b、また、図12に示すように検出エッジ21b、さらに、図11(b)及び図14に示すように回転方向検出ノッチ21bで反射され、基準治具21の横ずれ、高さ位置ずれおよびセンサー部4の回転方向位置が検出されるようになっている。なお、符号21gは成膜用スラリに垂れ防止部材である。
【0028】
ゼロ点調整治具22は光距離センサー4aのゼロ点調整時、上記膜厚測定時に膜厚測定装置1に載置されて用いられる基準治具21と同様に、膜厚測定装置1に載置されて用いられる。図15に示すように、ゼロ点調整治具22は一部断面が円弧状をなし基準となるべきレーザー光反射面22aが形成されたレーザー光反射部材22aと、このレーザー光反射部材22aを支持し、図10に示す基準ベース部材21bと同様の形状を有し、内周部にフランジ部22bが設けられ、図16に示すように外周に120°間隔で3個の位置決めプレート22bが設けられた基準ベース部材22bと、レーザー光の漏れを防止し、把手22c1が設けられたカバー部材22cからなっている。従って、レーザー光反射部材22a及びカバー部材22cは、基準ベース部材22bに載置され、さらに、位置決めプレート22bを介して3点支持で膜厚測定装置1に載置されている。また、図11(a)の横ずれ検出面21b、検出エッジ21bと同様、図16のB部を拡大して示す図17(a)に示すように、フランジ部22bには横ずれ検出面22b及び高さ位置ずれ検出エッジ22bが形成されさらに、図11(b)の回転方向検出ノッチ21bと同様、図17(b)に示すように、回転方向検出ノッチ22bが形成されている。これにより、光距離センサー4aから照射された水平方向のレーザー光が横ずれ検出面22b、高さ位置ずれ検出エッジ22b及び回転方向検出ノッチ22bで反射され、ゼロ点調整治具22の横ずれ、高さ位置ずれ及びセンサー部4の回転位置が検出されるようになっている。
【0029】
次に、本発明に係わる被膜付セラミックス部材の膜厚測定方法、被膜付セラミックス部材の製造方法の一実施形態について図18に示す製造工程フロー図に沿って説明する。
【0030】
セラミックス仮焼体、例えばドーム状のアルミナ仮焼体M1を用意する(S1)。
【0031】
アルミナの原料粉、MgO、純水、アルミナボールをポットに入れ、12時間、ポットを回転させ、混合および解砕を行ってスラリを得、このスラリをスプレードライヤにて、粒径100μm程度の造粒粉とした。このアルミナ造粒粉をCIP(圧力は14.7MPa)により、成形体を作り、900℃焼成、仮焼体を得る。
【0032】
アルミナ仮焼体M1に基準点が設けられた基準治具21を取付ける(S2)。
【0033】
この基準治具21の取付けは、図7及び図9に示すように、基準ベース部材21bに取付けられたワーク支持部材21aをセラミックス仮焼体M、押さえ部材21cを介して、押さえネジ21d及びワーク固定ネジ21eにより行われる。
【0034】
膜厚測定装置1のワーク載置部3にゼロ点調整治具22を載置し、光距離センサー4aのゼロ点調整を行う(S3)。
【0035】
このゼロ点調整は、図12に示すと同様、ダンパ支持部材3bを介してワーク載置部3にゼロ点調整治具22を載置した後、センサー昇降機構6を作動させてセンサー部4を上昇させ、図17(a)に示すように距離センサー4aから水平方向にレーザー光を照射し、光距離センサー4aから照射された水平方向のレーザー光が横ずれ検出面22bで反射され、さらに、図13に示すと同様、図17(a)に示すように高さ位置ずれ検出エッジ22bで反射され、ゼロ点調整治具22の横ずれ、高さ位置ずれが認識される。さらに、これらのずれを調整し、センサー回転機構5を作動させてセンサー部4を回動させ、図14に示すと同様に、図17(b)に示すように光距離センサー4aから照射されたレーザー光は回転方向検出ノッチ22bで反射され、回転方向位置が検出される。この位置からさらに所定の角度回転させ、全ての距離センサー4aからレーザー光をレーザー光反射部材22aの反射面22aに照射させ、反射させて、ゼロ点調整を行う。これより容易かつ高精度にゼロ点調整が行われる。
【0036】
ゼロ点調整治具22をワーク載置部3から取外し、予め基準治具21が取付られたアルミナ仮焼体M1をワーク載置部3に載置し、基準治具21の位置を確認する(S4)。
【0037】
この工程では基準治具21の平面縦方向、横方向、高さ方向及び回転方向の基準(前回の位置)とのずれを確認する。
【0038】
この確認は、S3と同様に、図11(a)、図16及び図17に示すように、横ずれが横ずれ検出面21bを用いて、図19に示すように4箇所行われ、図11(a)、図17及び図18に示すように、高さ位置ずれが高さ位置ずれ検出エッジ21bを用いて、図19に示すように4箇所行われる。
【0039】
図11(b)、図20に示すように、回転方向位置検出は回転方向検出ノッチ21bを用いて行われ、その結果はディスプレー11に表示される。
【0040】
表示された各ずれ値を参照し、ずれが基準値を超える場合には、基準治具21を置直し、位置を調整する(S5)。
【0041】
これにより基準治具21に一体的に取付けられているアルミナ仮焼体M1の位置も容易かつ高精度に調整される。
【0042】
図21に示すように、光距離センサー4aを用いてアルミナ仮焼体M1の測定位置から光距離センサー4aまでの距離L1を測定する(第1の測定工程)(S6)。
【0043】
この測定は図22に示すように25点行われる。
【0044】
基準治具21が取付けられたままアルミナ仮焼体M1をワーク載置部3から取外し、YAGスラリをスプレーにより塗布して乾燥し、YAG膜付アルミナ仮焼体M2を作製する(S7)。
【0045】
基準治具21が取外されたワーク載置部3に再びゼロ点調整治具22を載置し、S3と同様にして光距離センサー4aのゼロ点調整を行う(S8)。
【0046】
基準治具21をワーク載置部3から取外し、S7において成膜されたYAG付アルミナ仮焼体M2が取付けられた基準治具21を、再びワーク載置部3に載置し、位置を確認する(S9)。
【0047】
YAG成膜は、YAGとアルミナの混合スラリ(アルミナの原料粉、YAG粉、分散媒、純水、の混合、解砕)及びYAGスラリ(YAG粉、分散剤、純水の混合、解砕)を順次スプレーにより塗布し、乾燥して行われる。
【0048】
この位置確認はS4と同様に行われる。
【0049】
S5と同様に出力された各ずれ値を参照し、ずれが基準値を超える場合には、基準治具21を置き直し、位置を調整する(S10)。
【0050】
図23に示すように、レーザー距離センサー4aを用い、第1の測定工程(S6)で測定した位置に対応するYAG膜付アルミナ仮焼体M2のYAG被膜の測定位置からレーザー距離センサー4aまでの距離L2を測定し記憶する(第2の測定工程)(S11)。
【0051】
第1の測定工程により測定された距離と第2の測定工程により測定された距離の差ΔLを演算し膜厚を求める(S12)。
【0052】
S11における第2の測定工程後に、YAG付アルミナ仮焼体M2から基準治具21を取外し、再度仮焼し、YAG付アルミナ仮焼体M2を1700〜1850℃で4時間焼成して焼成体を得る(S13)。
【0053】
この焼成により、僅かにYAG膜に収縮が生じるが、実用上距離の差をそのまま膜厚として用いても支障がない場合には、これを膜厚とし、修正をするのが好ましい場合には、予め破壊試験により求めた修正係数をかけることで、焼成後の膜厚を求めることができる。
【0054】
上記のように本実施形態によれば、従来のように本焼成後に膜厚を測定するのと異なり、セラミックス膜形成前後のセラミックス仮焼体状態での膜厚測定であるので、非破壊の膜厚測定が可能となり、また、測定時間が短縮し、さらに、光距離センサーを用いるので、被膜に非接触で測定でき、被膜を傷付けることがない。
【0055】
また、被膜付セラミックス部材の製造方法は、その製造工程中に、その場測定で膜厚の測定が可能な膜厚測定工程を組込むので、被膜付セラミックス部材の生産性が向上し、さらに、所望の膜厚の被膜付セラミックス部材を製造することができる。
【0056】
【発明の効果】
本発明に係わる被膜付セラミックス部材の膜厚測定方法によれば、セラミックス基材にセラミックス被膜を形成した被膜付セラミックス部材の非破壊及び被膜を傷付けることがない被膜付セラミックス部材の膜厚測定方法を提供することができる。
【0057】
また、本発明に係わる被膜付セラミックス部材の膜厚測定装置によれば、セラミックス基材にセラミックス被膜を形成した被膜付セラミックス部材の非破壊膜厚測定及び被膜を傷付けることがない被膜付セラミックス部材の膜厚測定を可能とする被膜付セラミックス部材の膜厚測定装置を提供することができる。
【0058】
また、本発明に係わる被膜付セラミックス部材の製造方法によれば、その場測定で膜厚の測定が可能な膜厚測定工程を組込むので、被膜付セラミックス部材の生産性が向上し、さらに、所望の膜厚の被膜付セラミックス部材を製造することができる被膜付セラミックス部材の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係わる被膜付セラミックス部材の膜厚測定装置の正面視縦断面図。
【図2】本発明に係わる被膜付セラミックス部材の膜厚測定装置の側面視縦断面図。
【図3】本発明に係わる被膜付セラミックス部材の膜厚測定装置の平面図。
【図4】本発明に係わる被膜付セラミックス部材の膜厚測定装置の用いられる制御回路の概念図。
【図5】本発明に係わる被膜付セラミックス部材の膜厚測定装置の用いられる光距離センサーの概念図。
【図6】本発明に係わる被膜付セラミックス部材の膜厚測定装置に用いられる基準治具の平面図。
【図7】本発明に係わる被膜付セラミックス部材の膜厚測定装置に用いられる基準治具の押さえ部材及び押さえを除去して示す平面図。
【図8】本発明に係わる被膜付セラミックス部材の膜厚測定装置に用いられる基準治具の側面図。
【図9】図6のX−X線に沿う断面図。
【図10】図7の基準治具に用いられるワーク支持部材の平面図。
【図11】(a)、(b)は、図10のA部の拡大図。
【図12】本発明の被膜付セラミックス部材の膜厚測定装置に用いられる光距離センサーによる横ずれ検出面方法を示す基準治具の断面図。
【図13】本発明の被膜付セラミックス部材の膜厚測定装置に用いられる光距離センサーによる高さ位置ずれ検出エッジ方法を示す基準治具の断面図。
【図14】本発明の被膜付セラミックス部材の膜厚測定装置に用いられる光距離センサーによる回転方向位置の検出方法を示す基準治具の断面図。
【図15】本発明に係わる被膜付セラミックス部材の膜厚測定装置に用いられるゼロ点調整治具の断面図。
【図16】図15の基準治具に用いられる反射部材支持部材の平面図。
【図17】(a)、(b)は、図16のB部の拡大図。
【図18】本発明に係わる被膜付セラミックス部材の製造工程フロー図。
【図19】本発明の被膜付セラミックス部材の膜厚測定装置に用いられる光距離センサーによる位置調整用測定点を示す説明図。
【図20】本発明の被膜付セラミックス部材の膜厚測定装置に用いられる光距離センサーによる位置調整用測定点を示す説明図。
【図21】本発明の被膜付セラミックス部材の膜厚測定方法によるアルミナ仮焼体までの距離測定方法の概念図。
【図22】図21における測定点の説明図。
【図23】本発明の被膜付セラミックス部材の膜厚測定方法によるYAG被膜までの距離測定方法の概念図。
【符号の説明】
1 被膜付セラミックス部材の膜厚測定装置
2 基台
3 ワーク載置部
3a 収容孔
3b ダンパ支持部材
4 センサー部
5 センサー回転機構
6 センサー昇降機構
21 基準治具
21a ワーク支持部材
22 ゼロ点調整治具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring a film thickness (film thickness) of a ceramic member with a film, an apparatus thereof, and a method for producing a ceramic member with a film, and in particular, a light measurement sensor from a ceramic member before film formation and a ceramic member after film formation. It is related with the film thickness measuring method of the ceramic member with a film | membrane which measures the distance to this, and measures a film thickness using the difference, its apparatus, and the manufacturing method of the ceramic member with a film | membrane.
[0002]
[Prior art]
Conventionally, the measurement of the film thickness (film thickness means the thickness of the coating in this specification) in a coated ceramic member in which a yttrium aluminum garnet (YAG) coating is formed on a ceramic such as dome-shaped alumina, A ceramic member is cut and the thickness of the cut surface is measured using an electron microscope.
[0003]
(1) The film thickness measurement technique (ultrasonic wave type) currently generally used because the physical properties of the alumina base and the YAG film are almost equal, the alumina base is not transparent, and is a non-metallic body. , Eddy current method, method using X-ray, method using light interference, method using laser light, etc.) cannot measure the YAG film thickness non-destructively. (2) Non-contact measurement method is required because the required film thickness measurement accuracy is extremely high, (3) the YAG film is easy to peel off and must not be contaminated by touching other substances. Yes. The film thickness measurement method proposed in Patent Document 1 uses a fiber laser as a light source, and further irradiates a plurality of incident light. The film thickness measurement apparatus becomes expensive, and the alumina base material and physical property values are It is unsuitable for the measurement of a substantially equal YAG film, and is not suitable for the measurement of a dome-shaped object to be measured.
[0004]
Moreover, (4) In the conventional destructive inspection, the measurement of one dome-shaped member requires about 2 days of inspection days (the number of measurement points is 25 points). Furthermore, (5) 100% inspection is impossible due to destructive testing.
[0005]
Therefore, nondestructive film thickness measurement method of coated ceramic member with YAG film formed on ceramic base material such as dome-shaped alumina, its equipment and in-situ measurement enables measurement of film thickness. Therefore, there has been a demand for a method for manufacturing a ceramic member with a coated dome shape.
[0006]
[Patent Document 1]
JP 2003-59993 A (paragraphs [0049] and [0050], FIG. 1)
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described circumstances, and provides a method for measuring the film thickness of a coated ceramic member that does not damage the coating-coated ceramic member in which the ceramic coating is formed on the ceramic substrate. For the purpose.
[0008]
Further, there is provided a film thickness measuring device for a coated ceramic member capable of measuring a nondestructive film thickness of a coated ceramic member having a ceramic film formed on a ceramic substrate and measuring a film thickness of the coated ceramic member without damaging the coated film. The purpose is to provide.
[0009]
Furthermore, a film thickness measurement process capable of measuring the film thickness in situ is incorporated, the productivity of the coated ceramic member is improved, and a coated ceramic member with a desired film thickness can be manufactured. It aims at providing the manufacturing method of a ceramic member.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to one aspect of the present invention, the optical distance sensor irradiates the measurement position of the ceramic calcined body, receives the reflected light, and measures the distance from the measurement position to the optical distance sensor. And a second measuring step for measuring a distance from the optical distance sensor to the ceramic film at the measurement position of the ceramic calcined body with a film in which a ceramic film is formed on the measured ceramic calcined body. A film of a ceramic member with a coating film, characterized in that a difference between the distance measured by the first measurement process and the distance measured by the second measurement process is used as a film thickness value of the ceramic film. A thickness measurement method is provided. This realizes a method for measuring the film thickness (film thickness) of the coated ceramic member that does not damage the coating-coated ceramic member in which the ceramic film is formed on the ceramic substrate.
[0011]
In a preferred example, the difference in distance is multiplied by a correction coefficient obtained in advance by a destructive test to obtain a film thickness value after firing. Thereby, the film thickness value after baking can be obtained with high accuracy.
[0012]
In another preferable example, the ceramic calcined body has a dome shape. Thereby, the film thickness value of the coating film of the dome-shaped ceramic fired body, which is usually difficult to measure, can be obtained with high accuracy.
[0013]
In another preferred example, the ceramic calcined body is alumina, and the coating is yttrium aluminum garnet.
[0014]
According to another aspect of the present invention, a workpiece placement portion on which a measured member having a curved surface is placed, and a predetermined inner surface of the measured member placed on the workpiece placement portion. An optical distance sensor that measures the distance from the position to the optical distance sensor, a distance sensor rotation mechanism that rotates the optical distance sensor, a sensor elevating mechanism that raises and lowers the distance sensor by raising and lowering the distance sensor rotation mechanism, There is provided a film thickness measuring device for a coated ceramic member having a sensor lift position detection sensor for detecting a lift position of a sensor lift mechanism. Thus, a non-destructive film thickness measurement of a coated ceramic member in which a ceramic film is formed on a ceramic substrate and a film thickness measuring device for a coated ceramic member capable of measuring the film thickness of a coated ceramic member without damaging the coated film Is realized.
[0015]
In a preferred example, the member to be measured is attached to a reference jig used for determining a reference position of the member to be measured, and is placed on the film thickness measuring device. Thereby, the position of an alumina calcined body is adjusted easily and with high precision.
[0016]
In a preferred example, the optical distance sensor performs zero point adjustment by placing a zero point adjustment jig for performing zero point adjustment on the film thickness measuring device. Thereby, the zero point adjustment is performed easily and with high accuracy.
[0017]
Further, according to another aspect of the present invention, a step of manufacturing a ceramic calcined body, and a light beam from a light distance sensor is irradiated to a predetermined position of the ceramic calcined body, and the reflected light is received and light is emitted from the predetermined position. A first measuring step for measuring a distance to the distance sensor; and a distance from the optical distance sensor to the ceramic coating at the measurement position of the ceramic calcined body with a coating in which a ceramic coating is formed on the measured ceramic calcined body. A second measuring step for measuring the thickness, a step for obtaining a film thickness of the ceramic film from a difference between the distance measured by the first measuring step and the distance measured by the second measuring step, There is provided a method for producing a coated ceramic member comprising a step of firing a body. As a result, a film thickness measurement process capable of measuring the film thickness in situ is incorporated, the productivity of the coated ceramic member is improved, and the coated ceramic member having a desired film thickness can be manufactured. The manufacturing method of a ceramic member with an attachment is implement | achieved.
[0018]
In a preferred example, the ceramic calcined body is alumina and the coating is yttrium aluminum garnet.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a film thickness (film thickness) measuring apparatus for a coated ceramic member according to the present invention will be described with reference to the drawings.
[0020]
As shown in FIG. 1, a film thickness measuring apparatus 1 for a coated ceramic member according to the present invention is provided on a rectangular parallelepiped frame-shaped base 2 and an upper portion of the base 2 and a circular housing at the center. A workpiece to be measured 3 having a hole 3a and having a curved surface, for example, a dome-shaped ceramic calcined body M placed via a damper support member 3b, and the inside of the accommodation hole 3a are moved up and down. The sensor unit 4 that measures the distance from the distance sensor 4a to the inner surface of the ceramic calcined body M or the reference jig, the sensor rotating mechanism 5 that rotates the sensor unit 4, and the sensor unit 4 together with the sensor rotating mechanism 5 moves up and down. A sensor lifting mechanism 6 is provided. In addition, the film thickness measuring device 1 is indicated by a two-dot chain line in FIGS. 1 and 2, and a reference jig 21 used for determining a reference position of the ceramic calcined body M and a zero point of the optical distance sensor 4a. A zero point adjustment jig 22 used for adjustment and shown in FIG. 15 is used.
[0021]
Further, as shown in FIG. 3, the sensor unit 4 includes a sensor mounting base 4 b having a square top shape and a sensor mounting base 4 b on the sensor mounting base 4 b via the sensor mounting base 4 c. There are four optical distance sensors 4a facing each other and provided at equal intervals of 90 °. Of these four optical distance sensors 4a, the optical distance sensor 4a 1 has an optical axis that is vertical and is upward, and the optical distance sensor 4a 2 has an optical axis that is upward with a small acute angle with the vertical line. , optical distance sensor 4a 3 is upward optical axis at an acute angle of the vertical line and a large angle, light distance sensor 4a 4 is the optical axis is horizontal. For example, a laser light distance sensor is used as the light distance sensor 4a, and as shown in FIGS. 1 and 2, different positions of the dome-shaped ceramic sintered body M can be measured.
[0022]
As shown in FIG. 4, the optical distance sensor 4a is connected to a personal computer 7 that controls the entire film thickness measuring device 1, and is irradiated from each optical distance sensor 4a and reflected by the ceramic calcined body M or the coating. The laser beam is received, digitized by the A / D conversion means 8, and sent to the personal computer 7 having the CPU 7p and the storage means 7m as distance information between the ceramic calcined body M or the coating and each optical distance sensor 4a. The digitized distance information is processed by the personal computer 7.
[0023]
As shown in FIG. 5, an optical distance sensor 4a is intended to be normally used, is controlled by the light emitting element driver 4a 5, the light emitting element 4a 6 for oscillating a laser beam, provided on the optical axis of the light emitting element 4a 6 The projected lens 4a 7 , the imaging lens 4a 8 provided on the reflected optical axis of the ceramic calcined body M with the optical axis, the position sensor 4a 9 on the reflected optical axis, and the position sensor 4a 9 Are connected to the A / D conversion means 8 for processing the position information. As shown in FIG. 4, input means such as a keyboard 9 and output means such as a printer 10 and a display 11 are connected to the personal computer 7.
[0024]
As shown in FIGS. 1 and 2, the sensor rotation mechanism 5 includes a sensor rotation motor 5b that rotates (revolves) an optical distance sensor 4a provided on the sensor mounting base 4b via a rotation shaft 5a, and a sensor rotation motor 5b. A motor support member 5c for attaching the sensor rotation motor 5b to the sensor lift mechanism 6, a bearing 5d attached to the sensor lift mechanism 6 for receiving the rotation shaft 5a, a motor support member 5c and the rotation shaft 5a provided to the sensor rotation mechanism 5 An origin detection sensor 5e that detects the origin in the rotation direction is provided. Therefore, the optical distance sensor 4a can be rotated by rotating the sensor rotating motor 5b.
[0025]
Further, as shown in FIGS. 1 and 2, the sensor elevating mechanism 6 includes a sensor elevating motor 6a fixed to the base 2, a ball screw 6b rotated by the sensor elevating motor 6a, and a ball screw 6b. An elevating member 6c that is screwed up and down, an elevating support member 6d that is attached to the elevating member 6c and to which a motor support member 5c and a bearing 5d are attached, and an origin detection sensor 6e that detects the origin of the sensor elevating mechanism 6 are provided. ing. Therefore, the optical distance sensor 4a can be raised and lowered by rotating the sensor raising / lowering motor 6a.
[0026]
Further, as shown in FIGS. 1 and 2, the reference jig 21 mounted and used on the film thickness measuring device 1 at the time of film thickness measurement further includes a ceramic sintered body M as shown in FIGS. There the work supporting member 21a consisting of three separate members which are mounted directly, the workpiece supporting member 21a is mounted on an upper surface outer periphery, a lower surface outer peripheral flange portion 21b 1 is provided without a ring shape, and the inner peripheral portion on the reference base member 21b of the three positioning plate 21b 2 are provided at 120 ° intervals, as shown in FIGS. 7 and 9 show by removing the pressing members 21c and cap screws 21d shown in FIG. 6, FIG. 6 A workpiece fixing screw 21e for fixing the ceramic calcined body M is provided together with the pressing member 21c, and the workpiece fixing screw 21e passes through a screw mounting member 21f provided upright on the reference base member 21b. Installed. Therefore, the ceramic calcined body is supported at three points by the workpiece support member 21a M is attached to the reference jig 21 by cap screws 21d and workpiece fixing screws 21e through the pressing member 21c, three points via the positioning plate 21b 2 It is mounted on the film thickness measuring device 1 with support.
[0027]
As shown in FIG. 11 (a), which is an enlarged view of the portion A in FIG. 10, the lateral displacement detection surface 21b 3 and the height displacement detection edge 21b 4 are formed on the inner peripheral surface of the flange portion 21b 1 of the reference base member 21b. Further, as shown in FIG. 11B, a rotation direction detection notch 21b 5 is formed. As a result, the horizontal laser beam emitted from the optical distance sensor 4a 4 as shown in FIGS. 11 (a) and 12 is detected as the lateral shift detection surface 21b 3 , the detection edge 21b 4 as shown in FIG. 11 (b) and FIG. 14, the light is reflected by the rotation direction detection notch 21b 5 , and the lateral deviation of the reference jig 21, the height position deviation, and the rotation direction position of the sensor unit 4 are detected. Yes. Reference numeral 21g denotes an anti-sag member in the film forming slurry.
[0028]
The zero point adjusting jig 22 is placed on the film thickness measuring device 1 in the same manner as the reference jig 21 used by being placed on the film thickness measuring device 1 when measuring the thickness of the optical distance sensor 4a. To be used. As shown in FIG. 15, and the laser beam reflecting member 22a in which a part cross-section laser beam reflecting surface 22a 1 that is to be used as a reference an arc shape is formed zero adjustment jig 22, the laser beam reflecting member 22a supporting, has the same shape as the reference base member 21b illustrated in FIG. 10, the flange portion 22b 1 is provided on the inner peripheral portion, three positioning at 120 ° intervals on the outer circumference as shown in FIG. 16 the plate 22b 2 And a cover member 22c provided with a handle 22c1 that prevents leakage of laser light. Therefore, the laser beam reflecting member 22a and the cover member 22c is placed on the reference base member 22b, and is further placed on the film thickness measuring device 1 by three-point support via a positioning plate 22b 2. Further, as shown in FIG. 17 (a), in which the portion B in FIG. 16 is enlarged, as in the lateral displacement detection surface 21b 3 and the detection edge 21b 4 in FIG. 11 (a), the lateral displacement detection surface is provided in the flange portion 22b 1. 22b 3 and a height misalignment detection edge 22b 4 are formed, and as shown in FIG. 17B, a rotation direction detection notch 22b 5 is formed as in the rotation direction detection notch 21b 5 of FIG. 11B. ing. As a result, the horizontal laser light emitted from the optical distance sensor 4 a 4 is reflected by the lateral displacement detection surface 22 b 3 , the height displacement detection edge 22 b 4 and the rotation direction detection notch 22 b 5 , and the zero point adjustment jig 22 A lateral shift, a height position shift, and a rotational position of the sensor unit 4 are detected.
[0029]
Next, an embodiment of a method for measuring a film thickness of a coated ceramic member and a method for manufacturing a coated ceramic member according to the present invention will be described with reference to a manufacturing process flowchart shown in FIG.
[0030]
A ceramic calcined body, for example, a dome-shaped alumina calcined body M1 is prepared (S1).
[0031]
Alumina raw material powder, MgO, pure water, and alumina balls are put into a pot, and the pot is rotated for 12 hours, mixed and crushed to obtain a slurry, and this slurry is made with a spray dryer to a particle size of about 100 μm. Granulated powder. The alumina granulated powder is made into a molded body by CIP (pressure is 14.7 MPa), and is fired at 900 ° C. to obtain a calcined body.
[0032]
A reference jig 21 provided with a reference point is attached to the alumina calcined body M1 (S2).
[0033]
As shown in FIGS. 7 and 9, the reference jig 21 is attached to the work supporting member 21a attached to the reference base member 21b via the ceramic calcined body M and the holding member 21c. The fixing screw 21e is used.
[0034]
The zero point adjusting jig 22 is placed on the workpiece placing portion 3 of the film thickness measuring device 1, and the zero point of the optical distance sensor 4a is adjusted (S3).
[0035]
In this zero point adjustment, as shown in FIG. 12, after the zero point adjusting jig 22 is placed on the work placing part 3 via the damper support member 3b, the sensor lifting mechanism 6 is operated to move the sensor part 4 raised, it irradiated with a laser beam in a horizontal direction from the distance sensor 4a 4 as shown in FIG. 17 (a), the horizontal direction of the laser beam emitted from the optical distance sensor 4a 4 is reflected by the lateral shift detecting surface 22b 3, Further, as shown in FIG. 13, as shown in FIG. 17A, the light is reflected by the height position deviation detection edge 22 b 4 , and the lateral deviation and height position deviation of the zero point adjustment jig 22 are recognized. Further, these deviations are adjusted, and the sensor rotating mechanism 5 is operated to rotate the sensor unit 4 and, as shown in FIG. 14, is irradiated from the optical distance sensor 4a 4 as shown in FIG. The reflected laser beam is reflected by the rotation direction detection notch 22b 5 and the position in the rotation direction is detected. This was further predetermined angular rotation from the position, is irradiated from all of distance sensor 4a the laser beam on the reflecting surface 22a 1 of the laser light reflecting member 22a, is reflected, performs zero-point adjustment. This makes the zero point adjustment easier and more accurate.
[0036]
The zero point adjusting jig 22 is removed from the work placing part 3, and the alumina calcined body M1 to which the reference jig 21 is attached in advance is placed on the work placing part 3, and the position of the reference jig 21 is confirmed ( S4).
[0037]
In this step, the deviation of the reference jig 21 from the reference (previous position) in the plane vertical direction, horizontal direction, height direction, and rotation direction is confirmed.
[0038]
As shown in FIG. 11A, FIG. 16 and FIG. 17, this confirmation is performed at four locations as shown in FIG. 19 using the lateral deviation detection surface 21b 3 as shown in FIG. a) As shown in FIGS. 17 and 18, the height position deviation is performed at four places as shown in FIG. 19 using the height position deviation detection edge 21 b 4 .
[0039]
As shown in FIGS. 11B and 20, the rotational position detection is performed using the rotational direction detection notch 21 b 5 , and the result is displayed on the display 11.
[0040]
The displayed deviation values are referred to. If the deviation exceeds the reference value, the reference jig 21 is replaced and the position is adjusted (S5).
[0041]
Thereby, the position of the alumina calcined body M1 integrally attached to the reference jig 21 is also adjusted easily and with high accuracy.
[0042]
As shown in FIG. 21, the distance L1 from the measurement position of the alumina calcined body M1 to the optical distance sensor 4a is measured using the optical distance sensor 4a (first measurement step) (S6).
[0043]
This measurement is performed at 25 points as shown in FIG.
[0044]
With the reference jig 21 attached, the alumina calcined body M1 is removed from the workpiece mounting unit 3, and YAG slurry is applied by spraying and dried to produce the YAG film-coated alumina calcined body M2 (S7).
[0045]
The zero point adjustment jig 22 is again placed on the workpiece placement unit 3 from which the reference jig 21 has been removed, and the zero point adjustment of the optical distance sensor 4a is performed in the same manner as S3 (S8).
[0046]
The reference jig 21 is removed from the workpiece placing unit 3, and the reference jig 21 to which the YAG-attached alumina calcined body M2 formed in S7 is attached is placed on the workpiece placing unit 3 again, and the position is confirmed. (S9).
[0047]
YAG film formation is a mixed slurry of YAG and alumina (mixing and crushing of alumina raw material powder, YAG powder, dispersion medium and pure water) and YAG slurry (mixing and crushing of YAG powder, dispersant and pure water). Are sequentially applied by spraying and dried.
[0048]
This position confirmation is performed in the same manner as S4.
[0049]
Each deviation value output is referred to in the same manner as in S5. If the deviation exceeds the reference value, the reference jig 21 is replaced and the position is adjusted (S10).
[0050]
As shown in FIG. 23, from the measurement position of the YAG film of the alumina calcined body M2 with YAG film corresponding to the position measured in the first measurement step (S6) using the laser distance sensor 4a to the laser distance sensor 4a. The distance L2 is measured and stored (second measurement step) (S11).
[0051]
The difference ΔL between the distance measured in the first measurement process and the distance measured in the second measurement process is calculated to obtain the film thickness (S12).
[0052]
After the second measurement step in S11, the reference jig 21 is removed from the YAG-attached alumina calcined body M2, calcined again, and the YAG-added alumina calcined body M2 is fired at 1700-1850 ° C. for 4 hours to obtain a fired body. Obtain (S13).
[0053]
This firing causes slight shrinkage of the YAG film, but if there is no problem in using the difference in distance as the film thickness in practice, it is preferable to use this as the film thickness and correct it. The film thickness after baking can be calculated | required by applying the correction coefficient previously calculated | required by the destructive test.
[0054]
As described above, according to the present embodiment, the film thickness is measured in the ceramic calcined body state before and after the ceramic film formation, unlike the conventional film thickness measurement after the main firing. Thickness measurement is possible, measurement time is shortened, and furthermore, since an optical distance sensor is used, measurement can be performed without contact with the film, and the film is not damaged.
[0055]
In addition, the manufacturing method of the coated ceramic member incorporates a film thickness measuring step capable of measuring the film thickness in-situ during the manufacturing process, so that the productivity of the coated ceramic member is improved and further desired. A coated ceramic member having a thickness of 5 mm can be produced.
[0056]
【The invention's effect】
According to the method for measuring the film thickness of a coated ceramic member according to the present invention, there is provided a method for measuring the film thickness of a coated ceramic member that does not damage the coating-coated ceramic member in which the ceramic film is formed on the ceramic substrate. Can be provided.
[0057]
Further, according to the film thickness measuring apparatus for a coated ceramic member according to the present invention, the nondestructive film thickness measurement of the coated ceramic member in which the ceramic film is formed on the ceramic substrate and the coated ceramic member that does not damage the coated film It is possible to provide a film thickness measuring device for a coated ceramic member capable of measuring a film thickness.
[0058]
In addition, according to the method for manufacturing a coated ceramic member according to the present invention, since a film thickness measuring step capable of measuring the film thickness in-situ is incorporated, the productivity of the coated ceramic member is improved and further desired. It is possible to provide a method for producing a coated ceramic member capable of producing a coated ceramic member having a thickness of 5 mm.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a film thickness measuring apparatus for a coated ceramic member according to the present invention.
FIG. 2 is a side sectional view of the film thickness measuring apparatus for a coated ceramic member according to the present invention.
FIG. 3 is a plan view of a film thickness measuring apparatus for a coated ceramic member according to the present invention.
FIG. 4 is a conceptual diagram of a control circuit used in a film thickness measuring apparatus for a coated ceramic member according to the present invention.
FIG. 5 is a conceptual diagram of an optical distance sensor used in a film thickness measuring apparatus for a coated ceramic member according to the present invention.
FIG. 6 is a plan view of a reference jig used in a film thickness measuring apparatus for a coated ceramic member according to the present invention.
FIG. 7 is a plan view showing a pressing member and a pressing member of a reference jig used in the film thickness measuring apparatus for a coated ceramic member according to the present invention.
FIG. 8 is a side view of a reference jig used in a film thickness measuring apparatus for a coated ceramic member according to the present invention.
9 is a cross-sectional view taken along line XX in FIG.
10 is a plan view of a work support member used in the reference jig shown in FIG.
11A and 11B are enlarged views of part A in FIG.
FIG. 12 is a cross-sectional view of a reference jig showing a lateral deviation detection surface method using an optical distance sensor used in the film thickness measuring apparatus for a coated ceramic member according to the present invention.
FIG. 13 is a cross-sectional view of a reference jig showing an edge position detection edge method using an optical distance sensor used in a film thickness measuring apparatus for a coated ceramic member according to the present invention.
FIG. 14 is a cross-sectional view of a reference jig showing a method of detecting a rotational position by an optical distance sensor used in a film thickness measuring apparatus for a coated ceramic member according to the present invention.
FIG. 15 is a cross-sectional view of a zero point adjusting jig used in the film thickness measuring apparatus for a coated ceramic member according to the present invention.
16 is a plan view of a reflecting member support member used in the reference jig shown in FIG.
17A and 17B are enlarged views of a portion B in FIG.
FIG. 18 is a manufacturing process flow chart of a coated ceramic member according to the present invention.
FIG. 19 is an explanatory view showing measurement points for position adjustment by an optical distance sensor used in a film thickness measuring apparatus for a coated ceramic member of the present invention.
FIG. 20 is an explanatory view showing position adjusting measurement points by an optical distance sensor used in the film thickness measuring apparatus for a coated ceramic member of the present invention.
FIG. 21 is a conceptual diagram of a method for measuring a distance to an alumina calcined body by a film thickness measuring method for a coated ceramic member according to the present invention.
22 is an explanatory diagram of measurement points in FIG. 21. FIG.
FIG. 23 is a conceptual diagram of a method for measuring a distance to a YAG film by a film thickness measuring method for a coated ceramic member according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thickness measuring apparatus 2 of coating-coated ceramic member 2 Base 3 Work placement part 3a Housing hole 3b Damper support member 4 Sensor part 5 Sensor rotation mechanism 6 Sensor lifting mechanism 21 Reference jig 21a Work support member 22 Zero point adjustment jig

Claims (9)

光距離センサーから光線をセラミックス仮焼体の測定位置に照射し、この反射光を受光して測定位置から光距離センサーまでの距離を測定する第1の測定工程と、前記測定済みセラミックス仮焼体にセラミックス被膜を形成した被膜付セラミックス仮焼体の前記測定位置における前記光距離センサーから前記セラミックス被膜までの距離を測定する第2の測定工程を有し、前記第1の測定工程により測定された距離と第2の測定工程により測定された距離の差をセラミックス被膜の膜厚値に用いることを特徴とする被膜付セラミックス部材の膜厚測定方法。A first measurement step of irradiating a measurement position of the ceramic calcined body with a light beam from the optical distance sensor, receiving the reflected light, and measuring a distance from the measurement position to the optical distance sensor; and the measured ceramic calcined body A ceramic calcined body with a coating formed thereon having a second measurement step of measuring a distance from the optical distance sensor to the ceramic coating at the measurement position, and measured by the first measurement step A method for measuring a film thickness of a coated ceramic member, wherein a difference between the distance and the distance measured in the second measuring step is used as a film thickness value of the ceramic film. 上記距離の差に、予め破壊試験により求めた修正係数をかけて、焼成後の膜厚値とすることを特徴とする請求項1に記載の被膜付セラミックス部材の膜厚測定方法。2. The method of measuring a film thickness of a coated ceramic member according to claim 1, wherein the difference in distance is multiplied by a correction coefficient obtained in advance by a destructive test to obtain a film thickness value after firing. 前記セラミックス仮焼体は、ドーム形状であることを特徴とする請求項1または2に記載の被膜付セラミックス部材の膜厚測定方法。The method according to claim 1 or 2, wherein the ceramic calcined body has a dome shape. 前記セラミックス仮焼体は、アルミナであり、被膜はイットリウムアルミニウムガーネットであることを特徴とする請求項1ないし3のいずれか1項に記載の被膜付セラミックス部材の膜厚測定方法。The method for measuring a film thickness of a coated ceramic member according to any one of claims 1 to 3, wherein the ceramic calcined body is alumina and the coating is yttrium aluminum garnet. 曲面形状を有する被測定部材が載置されるワーク載置部と、このワーク載置部に載置された前記被測定部材の内表面の所定の位置から当該光距離センサーまでの距離を測定する光距離センサーと、前記光距離センサーを回転させる距離センサー回転機構と、この距離センサー回転機構を昇降させて距離センサーを昇降させるセンサー昇降機構と、このセンサー昇降機構の昇降位置を検知するセンサー昇降位置検知センサーを有することを特徴とする被膜付セラミックス部材の膜厚測定装置。A workpiece placing portion on which a measured member having a curved surface is placed, and a distance from a predetermined position on the inner surface of the measured member placed on the workpiece placing portion to the optical distance sensor is measured. An optical distance sensor, a distance sensor rotation mechanism that rotates the optical distance sensor, a sensor elevating mechanism that elevates and lowers the distance sensor by elevating the distance sensor rotation mechanism, and a sensor elevating position that detects the elevating position of the sensor elevating mechanism An apparatus for measuring a film thickness of a coated ceramic member, comprising a detection sensor. 前記被測定部材は、この被測定部材の基準位置を決定するために用いられる基準治具に取付けられて、前記膜厚測定装置に載置されることを特徴とする請求項5に記載の被膜付セラミックス部材の膜厚測定装置。6. The coating film according to claim 5, wherein the member to be measured is attached to a reference jig used for determining a reference position of the member to be measured, and is placed on the film thickness measuring device. Equipment for measuring film thickness of attached ceramic members. 前記光距離センサーは、ゼロ点調整を行うゼロ点調整治具を前記膜厚測定装置に載置してゼロ点調整が行われることを特徴とする請求項5または6に記載の被膜付セラミックス部材の膜厚測定装置。The coated optical ceramic member according to claim 5 or 6, wherein the optical distance sensor performs zero point adjustment by placing a zero point adjusting jig for zero point adjustment on the film thickness measuring device. Film thickness measuring device. セラミックス仮焼体を製造する工程と、光距離センサーから光線をセラミックス仮焼体の測定位置に照射し、この反射光を受光して測定位置から光距離センサーまでの距離を測定する第1の測定工程と、前記測定済みセラミックス仮焼体にセラミックス被膜を形成した被膜付セラミックス仮焼体の前記測定位置における前記光距離センサーから前記セラミックス被膜までの距離を測定する第2の測定工程と、前記第1の測定工程により測定された距離と第2の測定工程により測定された距離の差からセラミックス被膜の膜厚を求める工程と、被膜付セラミックス仮焼体を焼成する工程を有することを特徴とする被膜付セラミックス部材の製造方法。A process for manufacturing a ceramic calcined body and a first measurement in which a light beam is irradiated from a light distance sensor to a measurement position of the ceramic calcined body, and the reflected light is received to measure the distance from the measurement position to the light distance sensor A second measuring step of measuring a distance from the optical distance sensor to the ceramic coating at the measurement position of the ceramic calcined body with a coating in which a ceramic coating is formed on the measured ceramic calcined body, It has the process of calculating | requiring the film thickness of a ceramic film from the difference of the distance measured by the measurement process of 1 and the distance measured by the 2nd measurement process, and the process of baking a ceramic calcined body with a film. A method for producing a coated ceramic member. 前記セラミックス仮焼体は、アルミナであり、被膜はイットリウムアルミニウムガーネットであることを特徴とする請求項8に記載の被膜付セラミックス部材の製造方法。The method for producing a coated ceramic member according to claim 8, wherein the ceramic calcined body is alumina, and the coating is yttrium aluminum garnet.
JP2003190542A 2003-07-02 2003-07-02 Method of measuring thickness of film coating on ceramic member, its system, and method for manufacturing film coated ceramic member Pending JP2005024405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190542A JP2005024405A (en) 2003-07-02 2003-07-02 Method of measuring thickness of film coating on ceramic member, its system, and method for manufacturing film coated ceramic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190542A JP2005024405A (en) 2003-07-02 2003-07-02 Method of measuring thickness of film coating on ceramic member, its system, and method for manufacturing film coated ceramic member

Publications (1)

Publication Number Publication Date
JP2005024405A true JP2005024405A (en) 2005-01-27

Family

ID=34188395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190542A Pending JP2005024405A (en) 2003-07-02 2003-07-02 Method of measuring thickness of film coating on ceramic member, its system, and method for manufacturing film coated ceramic member

Country Status (1)

Country Link
JP (1) JP2005024405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371805A (en) * 2014-08-22 2016-03-02 住友橡胶工业株式会社 Device for measuring inner circumferential surface of die
CN111307045A (en) * 2019-12-24 2020-06-19 江门市安诺特炊具制造有限公司 Method for detecting thickness of thermal spraying coating and detection equipment applying same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371805A (en) * 2014-08-22 2016-03-02 住友橡胶工业株式会社 Device for measuring inner circumferential surface of die
KR20160023547A (en) * 2014-08-22 2016-03-03 스미토모 고무 고교 가부시키가이샤 Device for measuring inner periphery of mould
JP2016045054A (en) * 2014-08-22 2016-04-04 住友ゴム工業株式会社 Metal mold inner peripheral surface measuring apparatus
KR102354541B1 (en) * 2014-08-22 2022-01-21 스미토모 고무 코교 카부시키카이샤 Device for measuring inner periphery of mould
CN111307045A (en) * 2019-12-24 2020-06-19 江门市安诺特炊具制造有限公司 Method for detecting thickness of thermal spraying coating and detection equipment applying same

Similar Documents

Publication Publication Date Title
TWI457685B (en) Offset correction methods and arrangement for positioning and inspecting substrates
TWI431704B (en) Offset correction techniques for positioning substrates
JP2007157897A (en) Positioning method of semiconductor wafer and device using the same
TWI408333B (en) Surface roughness inspection apparatus
KR100495323B1 (en) Defect inspecting device for substrate to be processed
GB2063524A (en) Method of positioning a wafer in a projection aligner
US20080208523A1 (en) Method of determining geometric parameters of a wafer
JP2009216504A (en) Dimension measuring system
WO2019067103A1 (en) Method of aligning pixelated light engines in a three dimensional printing system and corresponding three dimensional printing system
JP5532850B2 (en) Semiconductor wafer shape measuring method and shape measuring apparatus used therefor
KR101143383B1 (en) Determining the position of a semiconductor substrate on a rotation device
CN111174716A (en) Epitaxial layer thickness testing device and method
JP2011145171A (en) Shape detection device
JP2005024405A (en) Method of measuring thickness of film coating on ceramic member, its system, and method for manufacturing film coated ceramic member
WO2014142236A1 (en) Environmental scanning electron microscope
JP2019105532A (en) Workpiece detection apparatus, film formation apparatus, and workpiece detection method
CN104034284A (en) Polishing rubber disc face shape detection device for large annular polishing machine
JP6678361B2 (en) Jig and method for measuring flange distortion using portable non-contact three-dimensional coordinate measuring device
JP5470525B2 (en) Total reflection X-ray fluorescence analyzer
JP3618545B2 (en) Defect inspection method
US7397554B1 (en) Apparatus and method for examining a disk-shaped sample on an X-Y-theta stage
JP2008177206A (en) Substrate holder, surface shape measuring device and stress measuring device
JP2007299805A (en) Calibration method of detected gap value
JP2009177166A (en) Inspection device
JP4514785B2 (en) Total reflection X-ray fluorescence analyzer