JP2009216504A - Dimension measuring system - Google Patents

Dimension measuring system Download PDF

Info

Publication number
JP2009216504A
JP2009216504A JP2008059767A JP2008059767A JP2009216504A JP 2009216504 A JP2009216504 A JP 2009216504A JP 2008059767 A JP2008059767 A JP 2008059767A JP 2008059767 A JP2008059767 A JP 2008059767A JP 2009216504 A JP2009216504 A JP 2009216504A
Authority
JP
Japan
Prior art keywords
measured
measurement
diameter
light
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008059767A
Other languages
Japanese (ja)
Inventor
Kenji Yamashita
健治 山下
Kenji Hamada
賢治 浜田
Takao Wada
多加夫 和田
Toshiaki Shoji
利明 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVANCED MATERIALS PROC INST K
YAMASHITA WORKS KK
Yamashita Works Co Ltd
Advanced Materials Processing Institute Kinki Japan AMPI
Original Assignee
ADVANCED MATERIALS PROC INST K
YAMASHITA WORKS KK
Yamashita Works Co Ltd
Advanced Materials Processing Institute Kinki Japan AMPI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADVANCED MATERIALS PROC INST K, YAMASHITA WORKS KK, Yamashita Works Co Ltd, Advanced Materials Processing Institute Kinki Japan AMPI filed Critical ADVANCED MATERIALS PROC INST K
Priority to JP2008059767A priority Critical patent/JP2009216504A/en
Publication of JP2009216504A publication Critical patent/JP2009216504A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dimension measuring system capable of automatically measuring a diameter along the rotational axis center continuously and precisely for an object in a shape of rotating body and quickly completing the measurement without contact only by setting the measurement object at the measurement object dispense with inputting and teaching the measurement procedure to a control device for a measurement object in a shape of rotating body having a multistage diameter as an object to extremely reduce the load of an operator. <P>SOLUTION: In this dimension measuring system, a light projecting part 3 which projects LED parallel light R having width in the horizontal direction and a light receiving part 4 which has a line shaped light receiving element 4a are oppositely attached to the horizontal direction to a lift frame 2 which is driven in the vertical direction by a one-axis robot 1, and a measurement object W in a shape of rotating body having a multistage diameter in the passage region of the parallel light R is vertically set. By irradiating the parallel light R to the measurement object W while continuously moving the lift frame 2, the border position of the shadow S caused by the measurement object W is detected at the light receiving part 4 and the diameter of the measurement object W is continuously measured based on the detection data. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、多段径を有する丸軸状や円筒状等の回転体形状の被測定物を対象として、その回転軸心に沿う径を連続的に自動計測する寸法計測システムに関する。   The present invention relates to a dimension measuring system for continuously and automatically measuring a diameter along a rotation axis of a measurement object having a rotating shaft shape such as a round shaft or a cylinder having a multistage diameter.

従来、例えばプレス用パンチのような多段径を有する丸軸状や円筒状等の被測定物について、その寸法誤差が製品としての許容範囲に入るか否かを判定するために、径や長さをμm単位の高精度で計測する場合、専ら熟練の作業者がマイクロメーターを用いて手作業で行っていた。しかるに、このような計測作業には高度の技量が求められるため、適任の作業者を育成するのに長期間を要する上、作業者によって計測値にバラツキが生じるといった課題があった。また、計測に高度の技量を要しても、行うこと自体は単純作業の反復になるため、作業者に多大な精神的苦痛を与えるという問題もあった。   Conventionally, in order to determine whether a dimensional error is within the allowable range of a product, for example, a round shaft shape or a cylindrical shape having a multistage diameter such as a punch for press, the diameter and length are determined. Is measured with high accuracy in the unit of μm, a skilled worker is exclusively manually using a micrometer. However, since a high level of skill is required for such measurement work, there is a problem that it takes a long time to train a suitable worker, and the measurement value varies depending on the worker. In addition, even if a high level of skill is required for the measurement, since the operation itself is a repetition of simple work, there is also a problem that it causes great mental pain to the worker.

そこで、近年においては、ロボット等を利用した寸法計測の自動化が種々検討されているが、特に多品種で少量ロットの被測定物を対象とした場合、各品種毎に異なるサイズ及び形態に対応した計測手順を策定し、その計測手順を制御装置に入力・教示するのに多大な手間を要するため、作業能率と経済性の面で実現が困難であった。   Therefore, in recent years, various types of automation of dimension measurement using robots and the like have been studied, but in particular, when dealing with a large number of products to be measured and a small lot, the sizes and forms that correspond to each product type are supported. Since it takes a lot of time and effort to formulate a measurement procedure and to input and teach the measurement procedure to the control device, it has been difficult to realize in terms of work efficiency and economy.

本発明は、上述の情況に鑑み、特に多段径を有する回転体形状の被測定物を対象として、その回転軸心に沿う径を連続的に高精度で自動計測でき、且つ被測定物の種類毎に計測手順を制御装置に入力・教示する必要がない上、被測定物を計測位置に設置するだけで非接触で迅速に計測が完了し、作業者の負担を著しく軽減し得る寸法計測システムを提供することを目的としている。   In view of the above circumstances, the present invention is capable of continuously and automatically measuring the diameter along the rotation axis of a rotating object having a multistage diameter, in particular, and measuring the type of the measuring object. There is no need to input and teach the measurement procedure to the control device every time, and the measurement can be completed quickly without contact by simply placing the object to be measured at the measurement position, which can significantly reduce the burden on the operator. The purpose is to provide.

上記目的を達成するための手段を図面の参照符号を付して示せば、本発明の請求項1に係る寸法計測システムは、一軸ロボット1により上下方向に数値制御駆動する昇降枠2に、水平方向に幅を持つLED(Light Emitting Diode)の平行光Rを投射する投光部3と、この平行光Rを受光するライン状の受光素子4aを備えた受光部4とが水平方向に対向して取り付けられ、前記平行光Rの通過域に回転体形状の被測定物Wを回転軸心方向が垂直になるように設置し、前記昇降枠2を連続的に移動させながら前記平行光Rを被測定物Wに照射することにより、受光部4において被測定物Wによる陰影Sの境界位置を検出し、この検出データに基づいて被測定物Wの径を計測することを特徴としている。   If a means for achieving the above object is shown with reference numerals in the drawings, the dimension measuring system according to claim 1 of the present invention is installed horizontally on a lifting frame 2 that is numerically controlled by a uniaxial robot 1 in the vertical direction. A light projecting unit 3 that projects parallel light R of an LED (Light Emitting Diode) having a width in the direction and a light receiving unit 4 that includes a line-shaped light receiving element 4a that receives the parallel light R face each other in the horizontal direction. The rotating object-shaped measurement object W is installed in the passage area of the parallel light R so that the axis of rotation is perpendicular to the parallel light R, and the parallel light R is continuously moved while the elevating frame 2 is moved continuously. By irradiating the object to be measured W, the light receiving unit 4 detects a boundary position of the shadow S by the object to be measured W, and measures the diameter of the object to be measured W based on this detection data.

請求項2の発明は、上記請求項1の寸法計測システムにおいて、被測定物Wが多段径(D1〜Dn)を有する構成としている。   According to a second aspect of the present invention, in the dimension measuring system according to the first aspect, the workpiece W has a multi-stage diameter (D1 to Dn).

請求項3の発明は、上記請求項1又は2の寸法計測システムにおいて、被測定物Wが水平面上で回転軸心方向を垂直にして自立し得る形態を備え、該被測定物Wを計測位置(計測テーブル8上)に直立載置して前記計測を行う構成としている。   A third aspect of the present invention is the dimension measuring system according to the first or second aspect, wherein the measured object W has a form capable of self-supporting with the direction of the rotation axis being vertical on a horizontal plane, and the measured object W is positioned at the measurement position. It is set as the structure which mounts upright (on the measurement table 8), and performs the said measurement.

請求項4の発明は、上記請求項1〜3のいずれかの寸法計測システムにおいて、一軸ロボット1の頂端近傍に、下向きにレーザ光Lを出射し、その反射光によって反射面までの距離を測定するレーザ距離センサー6が付設され、被測定物Wの頂部で該レーザ光Lを反射させることより、前記径の計測に加えて、反射面までの距離から被測定物Wの軸方向長さを計測する構成としている。   According to a fourth aspect of the present invention, in the dimension measuring system according to any one of the first to third aspects, the laser beam L is emitted downward near the top end of the uniaxial robot 1, and the distance to the reflecting surface is measured by the reflected light. The laser distance sensor 6 is attached, and the laser beam L is reflected at the top of the object to be measured W, so that in addition to the measurement of the diameter, the axial length of the object to be measured W is determined from the distance to the reflecting surface. It is configured to measure.

請求項5の発明は、上記請求項4の寸法計測システムにおいて、被測定物Wが非平面状の頂部Waを有し、この被測定物Wの頂部Waに、水平な頂面7aを備えて頂部肉厚が既知の計測補助キャップ7を被せ、該計測補助キャップ7の頂面7aで前記レーザ光Lを反射させることによって当該被測定物Wの軸方向長さを計測する構成としている。   According to a fifth aspect of the present invention, in the dimension measuring system according to the fourth aspect, the workpiece W has a non-planar top portion Wa, and the top portion Wa of the workpiece W includes a horizontal top surface 7a. The measurement auxiliary cap 7 whose top thickness is known is covered, and the laser light L is reflected by the top surface 7a of the measurement auxiliary cap 7 to measure the axial length of the object W to be measured.

請求項6の発明は、上記請求項4の寸法計測システムにおいて、計測位置に、水平姿勢を維持しつつ垂直ガイド(ガイドピン11…)に沿って昇降自在で厚さが既知の補助計測板13を備えた計測補助器10を配置し、その補助計測板13を前記昇降枠2に設けた受け具14によって上位で支承すると共に、該補助計測板13の下方に非平面状の頂部Waを有する被測定物Wを設置し、計測に際して昇降枠2を下降させることにより、該補助計測板13を自重によって垂直ガイドに沿って下降させ、水平姿勢を保持しながら前記受け具14から被測定物Wの頂部Waに移載し、該補助計測板13の上面で前記レーザ光Lを反射させることによって当該被測定物Wの軸方向長さを計測する構成としている。   According to a sixth aspect of the present invention, in the dimension measuring system according to the fourth aspect, the auxiliary measuring plate 13 having a known thickness that can be moved up and down along the vertical guides (guide pins 11...) While maintaining the horizontal posture at the measurement position. The auxiliary measuring plate 13 is disposed on the upper side by the support 14 provided on the lifting frame 2 and has a non-planar top portion Wa below the auxiliary measuring plate 13. By installing the object to be measured W and lowering the elevating frame 2 at the time of measurement, the auxiliary measuring plate 13 is lowered along the vertical guide by its own weight, and the object to be measured W is held from the receiver 14 while maintaining the horizontal posture. The axial length of the workpiece W is measured by reflecting the laser beam L on the upper surface of the auxiliary measuring plate 13.

本発明の効果について図面の参照符号を付して示せば、請求項1の寸法計測システムにでは、被測定物Wを回転軸心方向が垂直になるように計測位置に設置して計測を開始すれば、自動的に昇降枠2が連続的に昇降しつつLEDの平行光Rを該被測定物Wに照射し、受光部4において被測定物Wによる陰影Sの境界位置が明暗差から検出され、この検出データに基づく演算処理で被測定物Wの径が計測される。従って、熟練を要さずに高能率で高精度の計測を行える上、計測手順を予め策定してコンピュターに入力・教示する必要がないから、特に多品種で少量ロットの被測定物Wを計測対象とする場合に、計測手順の策定とコンピュターへの入力・教示のための膨大な手間が不要となり、しかも被測定物Wは平行光Rの通過域に入るように設置すればよく、厳密な位置決めが不要であるから、作業者の負担が著しく軽減されることになる。   If the effects of the present invention are indicated with reference numerals in the drawings, the dimension measurement system according to claim 1 starts the measurement by installing the workpiece W at the measurement position so that the direction of the rotation axis is vertical. Then, the parallel frame R of the LED is automatically irradiated onto the object W while the elevating frame 2 is continuously moved up and down, and the boundary position of the shadow S by the object W is detected from the light / dark difference in the light receiving unit 4. Then, the diameter of the workpiece W is measured by a calculation process based on the detection data. Therefore, high-efficiency and high-accuracy measurement can be performed without requiring skill, and it is not necessary to pre-determine a measurement procedure and input and teach it to a computer. In the case of an object, it is not necessary to create a measurement procedure and to input and teach a computer, and it is not necessary to install the object to be measured W so that it enters the passage of parallel light R. Since positioning is not necessary, the burden on the operator is significantly reduced.

請求項2の発明によれば、多段径(D1〜Dn)を有する被測定物Wを対象として、その各段の径を連続的に高精度で容易に計測できる。   According to the second aspect of the present invention, it is possible to easily measure the diameter of each stage continuously and with high accuracy for the workpiece W having a multi-stage diameter (D1 to Dn).

請求項3の発明によれば、被測定物Wが水平面上で回転軸心方向を垂直にして自立し得る形態を備えるから、該被測定物Wを計測位置に直立に載置するだけで前記計測を容易に行える。   According to the invention of claim 3, since the object to be measured W has a form that can stand independently with the direction of the rotation axis being vertical on a horizontal plane, the object W is simply placed upright at the measurement position. Easy measurement.

請求項4の発明によれば、上記の寸法計測システムにおいて、被測定物Wの前記径の計測に加え、一軸ロボット1の頂端近傍に設けたレーザー距離センサー7により、被測定物Wの軸方向長さも同時に計測できる。   According to the invention of claim 4, in the above dimension measurement system, in addition to the measurement of the diameter of the workpiece W, the axial direction of the workpiece W is measured by the laser distance sensor 7 provided near the top end of the uniaxial robot 1. The length can be measured simultaneously.

請求項5の発明によれば、被測定物Wが非平面状の頂部Waを有する場合に、その頂部Waに計測補助キャップ7を被せることにより、当該被測定物Wの頂端位置(軸心O)がレーザー距離センサー6のレーザ光Lの光軸から多少ずれていても、該計測補助キャップ9の水平頂面9aにさえレーザ光Lが当たっておれば、支障なく該被測定物Wの軸方向長さを計測できる。   According to the fifth aspect of the present invention, when the object to be measured W has a non-planar top portion Wa, the top end position of the object to be measured W (axis O ) Is slightly deviated from the optical axis of the laser beam L of the laser distance sensor 6, as long as the laser beam L strikes even the horizontal top surface 9 a of the measurement auxiliary cap 9, the axis of the object W to be measured without any problem. The direction length can be measured.

請求項6の発明によれば、被測定物Wが非平面状の頂部Waを有する場合に、その頂部Waに上方から下降させた計測補助板13を載せることにより、当該被測定物Wの頂端位置(軸心O)がレーザー距離センサー6のレーザ光Lの光軸からずれていても、該計測補助板13の上面でレーザ光Lが反射するため、支障なく該被測定物Wの軸方向長さを計測できる。   According to invention of Claim 6, when the to-be-measured object W has a non-planar top part Wa, the top end of the to-be-measured object W is mounted by placing the measurement auxiliary plate 13 lowered from above on the top part Wa. Even if the position (axial center O) is deviated from the optical axis of the laser beam L of the laser distance sensor 6, the laser beam L is reflected from the upper surface of the measurement auxiliary plate 13, and therefore the axial direction of the object W to be measured without any trouble. The length can be measured.

以下、本発明に係る寸法計測システムの実施形態について、図面を参照して具体的に説明する。図1は本寸法計測システムに用いる計測装置の構成例、図2は本寸法計測システムによる径測定の原理、図3は本寸法計測システムによる計測状態、図4は計測値補正データを得るための多段径マスターワーク、図5は補正データの補間方法、図6は尖端状の頂部を有する被測定物の高さ計測方法、をそれぞれ示す。   Hereinafter, an embodiment of a dimension measuring system according to the present invention will be specifically described with reference to the drawings. FIG. 1 shows an example of the configuration of a measuring apparatus used in this dimension measuring system, FIG. 2 shows the principle of diameter measurement by this dimension measuring system, FIG. 3 shows a measurement state by this dimension measuring system, and FIG. FIG. 5 shows a method for interpolating correction data, and FIG. 6 shows a method for measuring the height of an object having a pointed apex.

図1において、1は上下移動用の一軸ロボット、2は該一軸ロボット1によって上下方向に数値制御駆動する昇降枠、3は該昇降枠2の正面視左側に取り付けられた投光部、4は同左側に取り付けられて投光部3と水平方向に対向配置した受光部、5は上面を水平に設定する定盤、6は該定盤5上の後部寄りに立設されて一軸ロボット1を垂直に保持する支持基枠、7は支持基枠6の頂端から前方突出するブラケット61の前端に取り付けられたレーザー距離センサー、8は定盤5上に載置された縦円筒状の計測テーブル、Wは計測テーブル8上に直立させた多段径を有する丸軸状の被測定物である。   In FIG. 1, 1 is a single-axis robot for moving up and down, 2 is a lifting frame that is numerically controlled by the single-axis robot 1 in the vertical direction, 3 is a light projecting unit that is attached to the left side of the lifting frame 2, and 4 A light receiving unit 5 mounted on the left side and disposed opposite to the light projecting unit 3 in the horizontal direction, 5 is a surface plate that sets the upper surface horizontally, and 6 is erected near the rear of the surface plate 5 to hold the uniaxial robot 1. A support base frame that is held vertically, 7 is a laser distance sensor that is attached to the front end of a bracket 61 that projects forward from the top end of the support base frame 6, and 8 is a vertical cylindrical measurement table placed on the surface plate 5, W is a round shaft-like object to be measured having a multistage diameter upright on the measurement table 8.

図2に示すように、投光部3は、LED発光素子3aより出射されたLED光を、コリメータレンズ3bによって水平方向に幅を持つ平行光Rに変換して投射するようになっている。一方、受光部4は、入射する平行光Rをテレセントリック光学系の如き受光レンズ系4bを通してCCD(電荷結合素子)の如きライン状の受光素子4aの表面に結像させ、その光情報を該受光素子4aによって電気信号に変換してコンピュターCに入力するようになっている。しかして、図示のように、平行光Rの通過域に被測定物Wが存在することにより、該平行光Rの一部が遮断されて陰影Sを生じ、この陰影Sの両側の境界位置が明暗エッジとして検出されるから、その情報を含む電気信号に基づいてコンピュターCで所要の演算処理が行われ、被測定物Wの径が高精度で計測されると共に各段における表示出力として最大値、中央値(段中央部の値)、平均値等の必要とする値が求められて表示装置Gに表示される。   As shown in FIG. 2, the light projecting unit 3 converts the LED light emitted from the LED light emitting element 3a into parallel light R having a width in the horizontal direction by the collimator lens 3b and projects the light. On the other hand, the light receiving section 4 forms an image of incident parallel light R on the surface of a linear light receiving element 4a such as a CCD (charge coupled device) through a light receiving lens system 4b such as a telecentric optical system, and the light information is received by the light receiving section 4b. It is converted into an electric signal by the element 4a and input to the computer C. Thus, as shown in the drawing, the presence of the object W to be measured in the passage region of the parallel light R causes a part of the parallel light R to be blocked to generate a shadow S, and the boundary positions on both sides of the shadow S are Since it is detected as a bright and dark edge, the computer C performs a required calculation process based on the electrical signal including the information, and the diameter of the workpiece W is measured with high accuracy, and the display output at each stage is the maximum value. Necessary values such as the median value (the value at the center of the stage) and the average value are obtained and displayed on the display device G.

因みに、このようなLED投光部及びCCD受光部を備える寸法測定器の好適な市販品として、キーエンス社製のデジタル寸法測定器LS−7000シリーズ(緑色LED使用)がある。なお、他の寸法測定器として、半導体レーザより出射されるレーザー光をモーターで回転するポリコンミラーに照射し、測定範囲をスキャンして受光素子に入力するレーザー光の明暗の時間差に基づいて外径等の寸法を計測する、レーザースキャン方式のものがあるが、高速・高精度の計測を行うにはモーター能力等より耐久性及び安定性に問題がある。   Incidentally, as a suitable commercially available dimension measuring device having such an LED light projecting unit and a CCD light receiving unit, there is a digital dimension measuring device LS-7000 series (green LED used) manufactured by Keyence Corporation. As another dimension measuring instrument, the outer diameter of the laser beam emitted from the semiconductor laser is irradiated on a rotating polygon mirror by a motor, and the measurement range is scanned and input to the light receiving element. Although there is a laser scan type that measures dimensions such as, there is a problem in durability and stability due to motor capability etc. in order to perform high-speed and high-precision measurement.

本発明の寸法計測システムでは、出射する平行光Rの幅方向が水平になる姿勢とした投光部3と受光部とを水平方向に対向配置した状態で、一軸ロボットを利用して上下方向に数値制御駆動するように設定する一方、定盤5上の計測テーブル8の上に、回転体形状の被測定物Wを回転軸心方向が垂直になるように設置することにより、昇降する投光部3から出射されるLEDの平行光Rを該被測定物Wの下端から上端までの全長にわたって照射できるようにしている。   In the dimension measuring system according to the present invention, the light projecting unit 3 and the light receiving unit, which have a posture in which the width direction of the emitted parallel light R is horizontal, are arranged in the vertical direction using a single-axis robot in a state of being opposed to each other in the horizontal direction. While setting to be numerically controlled, a light projecting that moves up and down by placing a rotating object-shaped object W on the measuring table 8 on the surface plate 5 so that the direction of the rotation axis is vertical. The parallel light R of the LED emitted from the unit 3 can be irradiated over the entire length from the lower end to the upper end of the object to be measured W.

多段径(呼び径D1〜Dn)を有する被測定物Wの各段の径を細かく高精度で計測するには、昇降枠2を連続的に上方又は下方へ移動させながら、投光部3から出射されるLEDの平行光Rを連続的に被測定物Wに照射し、その所定の短い時間間隔(通常は数10ミリ秒)で計測値をコンピュターCに取り込む。しかして、既述のように表示装置Gでは計測の目的に応じて格段の最大値、中央値、平均値等を表示するため、コンピュターCにおいて計測値の演算を行うと共に多数の計測値から表示値を求める。   In order to measure the diameter of each stage of the workpiece W having multi-stage diameters (nominal diameters D1 to Dn) with high accuracy, the projector frame 3 is moved from the light projecting unit 3 while continuously moving the elevating frame 2 upward or downward. The parallel light R of the emitted LED is continuously irradiated onto the object to be measured W, and the measurement value is taken into the computer C at a predetermined short time interval (usually several tens of milliseconds). As described above, the display device G displays the maximum value, median value, average value, etc., according to the purpose of the measurement, so that the computer C calculates the measured value and displays it from a large number of measured values. Find the value.

上記の計測中、平行光Rの照射位置が被測定物Wの異なる段部に移ったことを識別するには、例えば1段目の呼び径D1に属する第1番目の取り込み値d1と次回以降の取り込み値dnの差の絶対値が予め設定していた値Δx1を超えた時、照射位置が次の2段目の呼び径D2に属する領域に移行したものとする。その時の取り込み値dnをd2とし、同様にd2と次回以降の取り込み値dnの差が設定値Δx2を超えた時、2段目の領域から3段目の呼び径D3に属する領域に移行したものとし、以降同様にして次段の呼び径領域への移行を識別すればよい。なお、各段の呼び径間で極端な径差がない場合は、前記設定値を単一の値Δxにしても支障なく上記同様の識別を行える。また、計測における昇降枠2の移動速度は、通常1〜20mm/秒程度であるが、一定に限らず、被測定物Wの多段径の形状に応じて、例えば多段の径の移行部分がテーパー状をなす領域で低速にする等、適宜変更してもよい。   In order to identify that the irradiation position of the parallel light R has moved to a different step portion of the workpiece W during the measurement, for example, the first fetch value d1 belonging to the first stage nominal diameter D1 and the next and subsequent times. When the absolute value of the difference between the captured values dn exceeds a preset value Δx1, it is assumed that the irradiation position has shifted to a region belonging to the second nominal diameter D2. When the fetch value dn at that time is d2, and similarly, when the difference between d2 and the fetch value dn from the next time exceeds the set value Δx2, a transition is made from the second stage area to the area belonging to the third stage nominal diameter D3. In the same manner, the transition to the next nominal diameter area may be identified. If there is no extreme difference in diameter between the nominal diameters of the respective stages, the same identification as described above can be performed without any trouble even if the set value is a single value Δx. Further, the moving speed of the lifting frame 2 in the measurement is usually about 1 to 20 mm / sec. However, the moving speed is not limited to a constant value, and, for example, the transition portion of the multistage diameter is tapered according to the shape of the multistage diameter of the workpiece W. You may change suitably, such as making it low-speed in the area | region which makes a shape.

なお、この計測においては、被測定物Wを平行光Rの通過域に入るように設置すればよく、厳密な位置決めが不要であるから、作業者の負担が著しく軽減される。しかして、計測対象の被測定物Wとしては、図1,図3で例示した多段径を有するものに限らず、回転体形状であればよいが、特にその回転軸心方向を垂直にして自立し得る形態であれば、計測位置の水平面上に単に直立させて置くだけで済むから、より操作が楽になる。ただし、下端部が細くて倒れ易い形状であったり、底面が凸状で自立できない被測定物Wでも、適当な補助治具を利用して回転軸心方向を垂直に保持できれば、測定に支障はない。例えば、被測定物Wが球体であっても、図9に示すように、上面に逆円錐状の凹部15aを有する載置台15を用い、その凹部15a上に載せるだけで計測が可能となる。   In this measurement, it is only necessary to place the workpiece W so as to enter the passage region of the parallel light R, and since strict positioning is unnecessary, the burden on the operator is remarkably reduced. Thus, the workpiece W to be measured is not limited to the one having the multi-stage diameter illustrated in FIGS. 1 and 3, and may be a rotating body shape. In such a form, it is only necessary to place the apparatus upright on the horizontal plane at the measurement position, so that the operation becomes easier. However, even if the object to be measured W has a thin bottom end and is easy to fall down, or the bottom surface is convex and cannot stand on its own, if the rotation axis can be held vertically using an appropriate auxiliary jig, the measurement will be hindered. Absent. For example, even if the object to be measured W is a sphere, as shown in FIG. 9, it is possible to measure by simply using the mounting table 15 having an inverted conical recess 15a on the upper surface and placing it on the recess 15a.

ところで、このようなLEDの投光部3と受光部4による寸法計測では、同じ計測装置による計測値のバラツキは殆ど生じないが、個々の計測装置毎に固有の計測値のずれが存在する。これは、光学系のレンズ収差の僅かな違いや光学系及び装置全体の組立・取付時の歪み等による、言わば計測装置毎の癖であるが、高精度の計測を行う上で、その固有のずれ度合を予め検知しておき、そのずれ度合に応じて計測値の校正を行うことが望ましい。この校正の具体的手段として次の方法がある。   By the way, in such a dimension measurement by the light projecting unit 3 and the light receiving unit 4 of the LED, there is almost no variation in the measured value by the same measuring device, but there is a deviation of the measured value unique to each measuring device. This is due to slight differences in lens aberrations of the optical system and distortion during assembly and installation of the optical system and the entire device. It is desirable to detect the degree of deviation in advance and calibrate the measured value according to the degree of deviation. There are the following methods as specific means of this calibration.

まず、個々の計測装置に固有の計測値の揺らぎを求めるために、例えば図4に示すような多段径(呼び径D1〜D5)を有するマスターワークMを作製する。このマスターワークMは、当該計測装置での通常の径測定範囲を想定して、D1を最小測定レンジ近辺の径、D5を最大測定レンジ近辺の径とし、D2〜D4はD1とD5の間の径差を均等に分割する径とする。そして、これら呼び径D1〜D5の精密な値を信頼性の高い別途の高精度計測手段で計測しておき、これを絶対径D1s〜D5sとする。次に、本発明に用いるLEDの投光部3と受光部4を有する計測装置により、該マスターワークMの呼び径D1〜D5を測定し、これを計測径D1m〜D5mとして絶対径D1s〜D5sとの差(呼び径D1ではD1s−D1m、呼び径D2〜D5も同様)を求め、この差を補正値Δa〜Δeとする。すなわち、次のとおりである。   First, in order to obtain fluctuations in measurement values unique to individual measurement apparatuses, for example, a master work M having a multistage diameter (nominal diameters D1 to D5) as shown in FIG. 4 is produced. This master work M assumes a normal diameter measurement range in the measurement device, D1 is a diameter near the minimum measurement range, D5 is a diameter near the maximum measurement range, and D2 to D4 are between D1 and D5. Let the diameter difference be an evenly divided diameter. And the precise value of these nominal diameters D1-D5 is measured by a highly reliable separate high-precision measuring means, and these are set as absolute diameters D1s-D5s. Next, the nominal diameters D1 to D5 of the master work M are measured by the measuring device having the light projecting part 3 and the light receiving part 4 of the LED used in the present invention, and these are measured diameters D1m to D5m and absolute diameters D1s to D5s. (D1s-D1m for the nominal diameter D1 and the same for the nominal diameters D2 to D5), and this difference is used as the correction values Δa to Δe. That is, it is as follows.

呼び径・・・・・D1 D2 D3 D4 D5
絶対径・・・・・D1s D2s D3s D4s D5s
計測径・・・・・D1m D2m D3m D4m D5m
補正値・・・・・Δa Δb Δc Δd Δe
Nominal diameter D1 D2 D3 D4 D5
Absolute diameter D1s D2s D3s D4s D5s
Measurement diameter D1m D2m D3m D4m D5m
Correction value: Δa Δb Δc Δd Δe

従って、この補正値を用いて計測径を校正し、例えば計測径D1mでは補正値Δaを加えたD1sとして出力する。しかして、図5で示すように、例えば計測径DmがD2mとD3mの間に入る値であれば、補正値ΔbとΔcの間を補間して補正値Δpを求め、出力をDm+Δpとすればよい。すなわち、X=D3m−D2m、Y=Δc−Δbとして、
Δp≒Y(Dm−D2m)/X
となる。
Therefore, the measurement diameter is calibrated using this correction value, and for example, the measurement diameter D1m is output as D1s with the correction value Δa added. As shown in FIG. 5, for example, if the measured diameter Dm is a value that falls between D2m and D3m, the correction value Δp is obtained by interpolating between the correction values Δb and Δc, and the output is Dm + Δp. Good. That is, X = D3m−D2m, Y = Δc−Δb,
Δp≈Y (Dm−D2m) / X
It becomes.

なお、上記校正方法では計測径D2mとD3mとの間を内挿して補正値Δpを求めているが、前後3点以上の既知補正値を用いて最小2乗2次近似によって適正補正値を求めてもよい。また、マスターワークMの多段径の数は、例示した5以外に種々設定でき、多いほど正確な校正を行える。しかして、これらの補正値による校正方法は、被測定物Wの各呼び径領域の軸方向長さの計測値の補間にも適用できる。   In the above calibration method, the correction value Δp is obtained by interpolating between the measured diameters D2m and D3m. However, an appropriate correction value is obtained by least squares quadratic approximation using three or more known correction values before and after. May be. In addition, the number of multi-stage diameters of the master work M can be variously set in addition to the illustrated example 5. The more the master work M is, the more accurate calibration can be performed. Therefore, the calibration method using these correction values can also be applied to interpolation of measurement values of the axial length of each nominal diameter region of the workpiece W.

一方、本実施形態の寸法計測システムでは、図3に示すように、一軸ロボット1の頂端近傍に設けたレーザー距離センサー7により、被測定物Wの軸方向長さも同時に計測できる。これは、レーザー距離センサー7から下向きで若干前後に斜め方向(図3は正面視のため、垂直に示される)にレーザ光Lを出射し、被測定物Wの頂部で該レーザ光Lを反射させ、その反射光を捉えて反射面までの距離を測定し、この距離と被測定Wの設置面の既知高さとから前記軸方向長さを計測するものである。   On the other hand, in the dimension measurement system of this embodiment, as shown in FIG. 3, the axial length of the workpiece W can be measured simultaneously by the laser distance sensor 7 provided in the vicinity of the top end of the uniaxial robot 1. This is because the laser beam L is emitted from the laser distance sensor 7 in an obliquely forward and backward direction (FIG. 3 is shown vertically for the front view), and the laser beam L is reflected at the top of the object W to be measured. Then, the distance to the reflecting surface is measured by capturing the reflected light, and the axial length is measured from this distance and the known height of the installation surface of the W to be measured.

しかして、被測定物Wの頂部が軸方向に対して垂直な平坦面であれば、該平坦面のどの位置に前記レーザ光Lが当たっても軸方向長さを精密に計測できるから、既述のように該被測定物Wを設置する際に厳密な位置決めが不要となる。これに対し、図6(A)に示すように、被測定物Wが尖端状等の非平面状の頂部Waを持つ場合、レーザー距離センサー7からのレーザ光Lの照射位置が被測定物Wの軸心Oから外れると、反射位置が頂部Waよりも距離eだけ低位にずれることになり、精密を計測を行えない。しかるに、該反射位置を頂部Waに厳密に一致させることは極めて困難である。   If the top of the object to be measured W is a flat surface perpendicular to the axial direction, the axial length can be accurately measured no matter where the laser light L hits the flat surface. As described above, precise positioning is not required when the workpiece W is installed. On the other hand, as shown in FIG. 6A, when the object to be measured W has a non-planar apex Wa such as a pointed shape, the irradiation position of the laser light L from the laser distance sensor 7 is the object to be measured W. If it deviates from the axial center O, the reflection position will be shifted to a position lower than the top portion Wa by the distance e, and the precision cannot be measured. However, it is extremely difficult to make the reflection position exactly coincide with the top portion Wa.

そこで、尖端状の頂部Waを持つ被測定物Wの場合、図6(B)に示すように、その頂部Waに水平な頂面9aを備えて頂部肉厚tが既知の計測補助キャップ9を被せ、該計測補助キャップ7の頂面9aで前記レーザ光Lを反射させる。この場合、当該被測定物Wの軸心Oがレーザ光Lの光軸から多少ずれていても、該計測補助キャップ9の水平頂面9aにさえレーザ光Lが当たっておれば、支障なく該被測定物Wの軸方向長さ(高さ)を計測できるから、該被測定物Wを設置する際に厳密な位置決めが不要となる。   Therefore, in the case of the workpiece W having the tip-like top portion Wa, as shown in FIG. 6 (B), a measurement auxiliary cap 9 having a top surface 9a having a horizontal top surface 9a and a known top thickness t is provided. The laser beam L is reflected by the top surface 9 a of the measurement auxiliary cap 7. In this case, even if the axis O of the object to be measured W is slightly deviated from the optical axis of the laser beam L, the laser beam L is not affected as long as the laser beam L strikes even the horizontal top surface 9a of the measurement auxiliary cap 9. Since the axial length (height) of the workpiece W can be measured, strict positioning is not required when the workpiece W is installed.

ただし、上記の計測補助キャップ9は、内径を被測定物Wの頂部径に適合させるため、該頂部径毎に専用のものが必要になるから、多種の被測定物Wを計測対象とする場合には不向きである。そこで、これに代わる計測補助器として、厚さが既知の補助計測板を水平姿勢で昇降自在とするものを用いれば、被測定物Wの頂部径の違いに対応できる。   However, since the measurement auxiliary cap 9 adapts the inner diameter to the top diameter of the object W to be measured, a dedicated one is required for each of the top diameters. Not suitable for. Therefore, as an alternative measurement auxiliary device, if an auxiliary measurement plate having a known thickness is movable up and down in a horizontal posture, the difference in the top diameter of the workpiece W can be dealt with.

図7に例示した計測補助器10は、正方形の計測台10aの四隅に垂直なガイドピン11…が立設され、これら4本のガイドピン11…の頂部が角環状の頂部枠12に連結されると共に、これらガイドピン11…を四隅のガイド筒部13a…(図8参照)に貫通させて水平状態で昇降自在な補助計測板13を備えており、計測装置の投光部3と受光部4との間で、且つ頂部枠12の内側がレーザー距離センサー7の直下に臨むように定盤5上に設置し、その計測台10a上に非平面状の頂部Waを有する被測定物Wを設置するようになっている。一方、計測装置側の昇降枠2の中央上部には、二股状に前方へ張出する受け具14が固着されている。   In the measurement auxiliary device 10 illustrated in FIG. 7, guide pins 11, which are perpendicular to the four corners of a square measuring table 10 a, are erected, and the top portions of these four guide pins 11 are connected to a square annular top frame 12. In addition, the guide pins 11 are penetrated through the guide tube portions 13a at the four corners (see FIG. 8), and an auxiliary measurement plate 13 that is movable up and down in a horizontal state is provided. 4 and a workpiece W having a non-planar top portion Wa on a measuring table 10a, which is placed on the surface plate 5 so that the inside of the top frame 12 faces directly below the laser distance sensor 7. It is designed to be installed. On the other hand, a receiving tool 14 that projects forward in a bifurcated manner is fixed to the upper center of the lifting frame 2 on the measuring device side.

計測に際しては、まず図8の仮想線で示すように、昇降枠2の受け具14を計測補助器10の後部側のガイドピン11,11間より前方へ突入させ、該受け具14によって補助計測板13を上位で支承する。そして、そのまま昇降枠2を下降させてゆくと、該補助計測板13も自重で受け具14と共に下降するが、その途上で被測定物Wの非平面状(図では円錐状)の頂部Waに載って水平姿勢を保持して止まり、受け具14は該補助計測板13から離れて昇降枠2と一体に下降を続けることになる。そこで、レーザー距離センサー7からのレーザ光Lを水平状態で停止している補助計測板13の上面に照射して反射させることにより、当該補助計測板13の既知厚み分を減じる形で該被測定物Wの軸方向長さ(高さ)を計測できる。この場合、計測対象の被測定物Wは、ガイドピン11…の内側に配置し得る太さであれば、頂部径の制約がない。また、昇降枠2の下降は、既述の径計測に伴う動作として行えばよい。   At the time of measurement, as shown by a virtual line in FIG. 8, first, the holder 14 of the lifting frame 2 is inserted forward from between the guide pins 11, 11 on the rear side of the measurement auxiliary device 10, and the auxiliary measurement is performed by the receiver 14. The board 13 is supported at the upper level. When the elevating frame 2 is lowered as it is, the auxiliary measuring plate 13 is also lowered with the receiving member 14 by its own weight, but on the way to the non-planar (conical shape in the figure) top Wa of the object to be measured W. The holding tool 14 moves away from the auxiliary measuring plate 13 and continues to descend integrally with the lifting frame 2. Therefore, the laser beam L from the laser distance sensor 7 is irradiated and reflected on the upper surface of the auxiliary measurement plate 13 stopped in a horizontal state, thereby reducing the known thickness of the auxiliary measurement plate 13. The axial length (height) of the object W can be measured. In this case, there is no restriction on the top diameter of the workpiece W to be measured as long as it is thick enough to be arranged inside the guide pins 11. Further, the lowering of the elevating frame 2 may be performed as an operation associated with the diameter measurement described above.

なお、本発明の寸法計測システムに用いる計測装置としては、図1及び図7で例示した形態に限らず、各部の形状や大きさ、寸法比率等、細部構成については例示以外に種々設計変更可能である。   Note that the measuring device used in the dimension measuring system of the present invention is not limited to the embodiment illustrated in FIGS. 1 and 7, and various configurations can be changed in addition to the detailed configuration such as the shape, size, dimensional ratio, etc. of each part. It is.

本発明の一実施形態に係る寸法計測システムに用いる計測装置全体の斜視図である。It is a perspective view of the whole measuring device used for the dimension measuring system concerning one embodiment of the present invention. 同寸法計測システムによる径測定の原理を示す模式図である。It is a schematic diagram which shows the principle of the diameter measurement by the same dimension measurement system. 同寸法計測システムによる計測状態を示す正面図である。It is a front view which shows the measurement state by the same dimension measurement system. 計測値補正データを得るための多段径マスターワークの正面図である。It is a front view of the multistage diameter master workpiece | work for obtaining measured value correction data. 補正データの補間方法を説明する計測値−補正値の相関図である。It is a correlation diagram of a measured value-correction value for explaining an interpolation method of correction data. 非平面状の頂部を有する被測定物の高さ計測を示し、(A)は計測補助キャップ不使用時の縦断側面図、(B)計測補助キャップ使用時の縦断側面図である。The height measurement of the to-be-measured object which has a non-planar top part is shown, (A) is a vertical side view when a measurement auxiliary cap is not used, and (B) is a vertical side view when a measurement auxiliary cap is used. 計測補助器を用いた非平面状の頂部を有する被測定物の計測状態を示す計測装置全体の斜視図である。It is a perspective view of the whole measuring device which shows the measurement state of the to-be-measured object which has a non-planar top using a measurement auxiliary device. 同計測補助器の使用状態を示す要部の縦断側面図である。It is a vertical side view of the principal part which shows the use condition of the measurement auxiliary device. 球状の被測定物の設置状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the installation state of a spherical to-be-measured object.

符号の説明Explanation of symbols

1 一軸ロボット
2 昇降枠
3 投光部
3a LED発光素子
4 受光部
4a ライン状の受光素子
5 定盤
7 レーザー距離センサー
9 計測補助キャップ
9a 頂面
10 計測補助器
11 ガイドピン(垂直ガイド)
13 補助計測板
14 受け具
t 頂部肉厚
C コンピュター
L レーザー光
R LEDの平行光
W 被測定物
Wa 非平面状の頂部
DESCRIPTION OF SYMBOLS 1 Uniaxial robot 2 Elevating frame 3 Light emission part 3a LED light emitting element 4 Light receiving part 4a Line-shaped light receiving element 5 Surface plate 7 Laser distance sensor 9 Measurement auxiliary cap 9a Top surface 10 Measurement auxiliary device 11 Guide pin (vertical guide)
13 Auxiliary measuring plate 14 Receptor t Top thickness C Computer L Laser light R Parallel light of LED W Object to be measured Wa Non-planar top

Claims (6)

一軸ロボットにより上下方向に数値制御駆動する昇降枠に、水平方向に幅を持つLEDの平行光を投射する投光部と、この平行光を受光するライン状の受光素子を備えた受光部とが水平方向に対向して取り付けられ、前記平行光の通過域に回転体形状の被測定物を回転軸心方向が垂直になるように設置し、前記昇降枠を連続的に移動させながら前記平行光を被測定物に照射することにより、受光部において被測定物による陰影の境界位置を検出し、この検出データに基づいて被測定物の径を計測することを特徴とする寸法計測システム。   A light projecting unit that projects parallel light of an LED having a width in the horizontal direction on a lifting frame that is numerically controlled and driven vertically by a single-axis robot, and a light receiving unit that includes a linear light receiving element that receives the parallel light. A rotating object-shaped object to be measured is installed so that the direction of the axis of rotation is perpendicular to the parallel light passing area, and the parallel light is continuously moved while moving the lifting frame continuously. The dimension measuring system is characterized in that the position of the shadow of the object to be measured is detected in the light receiving unit by irradiating the object to be measured, and the diameter of the object to be measured is measured based on the detected data. 被測定物が多段径を有する回転体形状である請求項1に記載の寸法計測システム。   The dimension measuring system according to claim 1, wherein the object to be measured has a rotating body shape having a multistage diameter. 被測定物が水平面上で回転軸心方向を垂直にして自立し得る形態を備え、該被測定物を計測位置に直立載置して前記計測を行う請求項1又は2にに記載の寸法計測システム。   3. The dimension measurement according to claim 1, wherein the measurement object has a configuration in which the object to be measured can stand on a horizontal plane with the rotation axis direction vertical, and the measurement is performed by placing the object to be measured upright at a measurement position. system. 一軸ロボットの頂端近傍に、下向きにレーザ光を出射し、その反射光によって反射面までの距離を測定するレーザ距離センサーが付設され、被測定物の頂部で該レーザ光を反射させることより、前記径の計測に加えて、反射面までの距離から被測定物の軸方向長さを計測する請求項1〜3のいずれかに記載の寸法計測システム。   Near the top end of the uniaxial robot, a laser distance sensor that emits laser light downward and measures the distance to the reflecting surface by the reflected light is attached, and the laser light is reflected at the top of the object to be measured. The dimension measurement system according to any one of claims 1 to 3, wherein, in addition to measuring the diameter, the axial length of the object to be measured is measured from the distance to the reflecting surface. 被測定物Wが非平面状の頂部を有し、この被測定物の頂部に、水平な頂面を備えて頂部肉厚が既知の計測補助キャップを被せ、該計測補助キャップの頂面で前記レーザ光を反射させることによって当該被測定物の軸方向長さを計測する請求項4に記載の寸法計測システム。   An object to be measured W has a non-planar top, and a top of the object to be measured is covered with a measurement auxiliary cap having a horizontal top surface and a known thickness of the top, and the top of the measurement auxiliary cap The dimension measurement system according to claim 4, wherein the axial length of the object to be measured is measured by reflecting the laser beam. 計測位置に、水平姿勢を維持しつつ垂直ガイドに沿って昇降自在で厚さが既知の補助計測板を備えた計測補助器を配置し、その補助計測板を前記昇降枠に設けた受け具によって上位で支承すると共に、該補助計測板の下方に非平面状の頂部を有する被測定物を設置し、計測に際して昇降枠を下降させることにより、該補助計測板を前記受け具から被測定物の頂部に移載し、該補助計測板の上面で前記レーザ光を反射させることによって当該被測定物の軸方向長さを計測する請求項4に記載の寸法計測システム。   A measurement auxiliary device having an auxiliary measurement plate with a known thickness that can be moved up and down along the vertical guide while maintaining a horizontal posture is arranged at the measurement position, and the auxiliary measurement plate is provided by a support provided on the elevating frame. The object to be measured is supported at the upper level, and a measurement object having a non-planar top portion is installed below the auxiliary measurement plate, and the lifting frame is lowered during measurement, so that the auxiliary measurement plate is removed from the receiver. The dimension measuring system according to claim 4, wherein the length of the object to be measured is measured by transferring to the top and reflecting the laser beam on the upper surface of the auxiliary measuring plate.
JP2008059767A 2008-03-10 2008-03-10 Dimension measuring system Pending JP2009216504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008059767A JP2009216504A (en) 2008-03-10 2008-03-10 Dimension measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008059767A JP2009216504A (en) 2008-03-10 2008-03-10 Dimension measuring system

Publications (1)

Publication Number Publication Date
JP2009216504A true JP2009216504A (en) 2009-09-24

Family

ID=41188518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059767A Pending JP2009216504A (en) 2008-03-10 2008-03-10 Dimension measuring system

Country Status (1)

Country Link
JP (1) JP2009216504A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147235A (en) * 2011-01-13 2011-08-10 马鞍山钢铁股份有限公司 Device for automatically measuring outer diameter of vehicle wheel on line and measurement method thereof
CN102359770A (en) * 2011-09-19 2012-02-22 上海依赛工业有限公司 Method and special device for measuring multi-geometric dimension parameters of automotive shift fork
KR200467362Y1 (en) 2011-08-31 2013-06-11 (주)아모레퍼시픽 Device for sensing cap mounting of cosmetic case
CN104596468A (en) * 2015-02-12 2015-05-06 汪贤女 Vehicle hub detecting system and application method thereof
CN104880168A (en) * 2015-05-26 2015-09-02 浙江大学 Part aperture flexibility online measuring device
CN107218897A (en) * 2017-05-16 2017-09-29 宁波大红鹰学院 Photo-electric diameter measurement device and its measuring method
CN107796321A (en) * 2017-12-04 2018-03-13 岭南师范学院 A kind of cylinder bore diameter detection device
CN108680118A (en) * 2018-07-20 2018-10-19 郇梓堉 Round piece automatic detection device
CN110132143A (en) * 2019-06-29 2019-08-16 河南省中原华工激光工程有限公司 A kind of cylinder jacket outer circle laser detection equipment
CN112066898A (en) * 2018-01-22 2020-12-11 北京新联铁集团股份有限公司 Robot measuring device and measuring method thereof
CN114216401A (en) * 2021-12-13 2022-03-22 苏州肯美特设备集成有限公司 Diameter measuring device for semiconductor material device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373608U (en) * 1986-10-31 1988-05-17
JPH08197381A (en) * 1995-01-24 1996-08-06 Mitsubishi Heavy Ind Ltd Automatic measuring device of cutting tool
JPH091267A (en) * 1995-06-20 1997-01-07 Mitsubishi Materials Corp Can height measurement instrument
JPH11295058A (en) * 1998-04-06 1999-10-29 Fukui Shinetsu Sekiei:Kk Method and instrument for measuring tube
JP2000074651A (en) * 1998-08-27 2000-03-14 Yoshikawa Sangyo Kk Device for measuring concrete specimen and measuring method using the device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373608U (en) * 1986-10-31 1988-05-17
JPH08197381A (en) * 1995-01-24 1996-08-06 Mitsubishi Heavy Ind Ltd Automatic measuring device of cutting tool
JPH091267A (en) * 1995-06-20 1997-01-07 Mitsubishi Materials Corp Can height measurement instrument
JPH11295058A (en) * 1998-04-06 1999-10-29 Fukui Shinetsu Sekiei:Kk Method and instrument for measuring tube
JP2000074651A (en) * 1998-08-27 2000-03-14 Yoshikawa Sangyo Kk Device for measuring concrete specimen and measuring method using the device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147235A (en) * 2011-01-13 2011-08-10 马鞍山钢铁股份有限公司 Device for automatically measuring outer diameter of vehicle wheel on line and measurement method thereof
KR200467362Y1 (en) 2011-08-31 2013-06-11 (주)아모레퍼시픽 Device for sensing cap mounting of cosmetic case
CN102359770A (en) * 2011-09-19 2012-02-22 上海依赛工业有限公司 Method and special device for measuring multi-geometric dimension parameters of automotive shift fork
CN104596468A (en) * 2015-02-12 2015-05-06 汪贤女 Vehicle hub detecting system and application method thereof
CN104880168A (en) * 2015-05-26 2015-09-02 浙江大学 Part aperture flexibility online measuring device
CN107218897A (en) * 2017-05-16 2017-09-29 宁波大红鹰学院 Photo-electric diameter measurement device and its measuring method
CN107796321A (en) * 2017-12-04 2018-03-13 岭南师范学院 A kind of cylinder bore diameter detection device
CN112066898A (en) * 2018-01-22 2020-12-11 北京新联铁集团股份有限公司 Robot measuring device and measuring method thereof
CN108680118A (en) * 2018-07-20 2018-10-19 郇梓堉 Round piece automatic detection device
CN110132143A (en) * 2019-06-29 2019-08-16 河南省中原华工激光工程有限公司 A kind of cylinder jacket outer circle laser detection equipment
CN114216401A (en) * 2021-12-13 2022-03-22 苏州肯美特设备集成有限公司 Diameter measuring device for semiconductor material device
CN114216401B (en) * 2021-12-13 2024-01-05 苏州肯美特设备集成股份有限公司 Diameter measuring device for semiconductor material device

Similar Documents

Publication Publication Date Title
JP2009216504A (en) Dimension measuring system
JP4163950B2 (en) Self teaching robot
US8650939B2 (en) Surface texture measuring machine and a surface texture measuring method
CN107607059B (en) One-key type 3D contour measurement equipment and measurement calculation method thereof
CN110044293B (en) Three-dimensional reconstruction system and three-dimensional reconstruction method
US20050051523A1 (en) Laser machine tool with image sensor for registration of workhead guidance system
CN210306244U (en) Laser focus automated inspection and monitoring device
CN108010875B (en) Substrate calibration device and detection system
CN105758343B (en) The device and method of C axis centre of gyration calibration based on double standard balls
KR20030045256A (en) Method and apparatus for calibrating the marking position with chip-scale marker
US4736108A (en) Apparatus and method for testing coplanarity of semiconductor components
JP2007078635A (en) Calibration fixture, and offset calculation method of image measuring machine
JP2011220794A (en) Calibration jig and imaging apparatus calibration method using the same
JP2001249060A (en) Apparatus for detecting center of gravity and apparatus for inspecting test body
US9494414B2 (en) Tool measuring apparatus for mounting surface to cast shadow
JP2008122307A (en) Reference position calibration tool, contour measuring instrument, visual inspection device, measuring object holding device, reference position calibration method, contour measuring method, and visual inspection method
CN108022847A (en) For detecting device, the apparatus and method of the mark on substrate
CN117169118A (en) Non-contact type in-hole surface appearance detection device and method
CN212300252U (en) Image measuring instrument capable of automatically adjusting position of sample to be measured
JPH0194631A (en) Wafer prober
JP2002148001A (en) Inspection apparatus for dial gage
CN107718049A (en) A kind of testing agency of robot work position skew and detection method
US9594230B2 (en) On-axis focus sensor and method
CN111623709A (en) Image measuring instrument capable of automatically adjusting position of sample to be measured and measuring method
CN219798227U (en) Double-station image measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121010