JP2005022023A - Cutting tool made of surface coated cubic boron nitride group sintered material with hard coating layer exhibiting excellent chipping resistance in heavy cutting - Google Patents

Cutting tool made of surface coated cubic boron nitride group sintered material with hard coating layer exhibiting excellent chipping resistance in heavy cutting Download PDF

Info

Publication number
JP2005022023A
JP2005022023A JP2003189309A JP2003189309A JP2005022023A JP 2005022023 A JP2005022023 A JP 2005022023A JP 2003189309 A JP2003189309 A JP 2003189309A JP 2003189309 A JP2003189309 A JP 2003189309A JP 2005022023 A JP2005022023 A JP 2005022023A
Authority
JP
Japan
Prior art keywords
content point
hard coating
coating layer
cutting
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003189309A
Other languages
Japanese (ja)
Other versions
JP4304438B2 (en
Inventor
Keiji Nakamura
惠滋 中村
Itsuro Tajima
逸郎 田嶋
Hidemitsu Takaoka
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003189309A priority Critical patent/JP4304438B2/en
Publication of JP2005022023A publication Critical patent/JP2005022023A/en
Application granted granted Critical
Publication of JP4304438B2 publication Critical patent/JP4304438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of a surface coated cubic boron nitride group sintered material with a hard coating layer exhibiting excellent chipping resistance in heavy cutting. <P>SOLUTION: This cutting tool made of the surface coated cubic boron nitride group sintered material is formed by physical vapor deposition of the hard coating layer comprising a compound nitride of Ti, Al and Ce, in the average layer thickness of 0.5-10 μm on the surface. The hard coating layer has a component concentration distribution structure wherein Al maximum content points and Al minimum content points exist in alternate repetition at prescribed spaces along a layer thickness direction, and the content rates of Ti and Al continuously change from the Al maximum content point to the Al minimum content point and from the Al minimum content point to the Al maximum content point. Further, the Al maximum content points satisfy a specific composition formula respectively, and the spacing of the adjacent Al maximum content points and Al minimum content points is 0.01-0.1 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層がすぐれた高温強度を有し、かつ高温硬さと耐熱性にもすぐれ、したがって特に各種の鋼や鋳鉄などの切削加工を、高負荷のかかる高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆立方晶窒化硼素基焼結材料製切削工具(以下、被覆BN基工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆BN基工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップや、前記スローアウエイチップを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミルなどが知られている。
【0003】
また、被覆BN基工具として、すぐれた高温硬さおよび耐熱性を具備する反面、高温強度の低いものであるために、切削速度は高いが、切り込みや送りを著しく小さくした条件の高速表面仕上げ加工にしか用いられていなかった立方晶窒化硼素基焼結材料からなる切削工具を基体(以下、BN基基体という)とし、このBN基基体の表面に、切削工具自体の強度向上を図る目的で、
組成式:(Ti1−X Al)N(ただし、原子比で、Xは0.45〜0.65を示す)、
を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]からなる硬質被覆層を0.5〜10μmの平均層厚で物理蒸着して、各種の鋼や鋳鉄などの連続切削加工や断続切削加工を行なっても、切刃部に欠けやチッピング(微小欠け)などが発生しないようにした被覆BN基工具が知られている(例えば特許文献1参照)。
【0004】
さらに、上記の被覆BN基工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記のBN基基体を装入し、ヒータで装置内を、例えば505℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間に、例えば電流:145Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記BN基基体には、例えば−95Vのバイアス電圧を印加した条件で、前記BN基基体の表面に、上記(Ti,Al)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
【0005】
【特許文献1】
特開平8−119774号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高切り込みや高送りなどの重切削条件で行なわれる傾向にあるが、上記の従来被覆BN基工具においては、これを通常の切削加工条件で用いた場合には問題はないが、切削加工を、高負荷のかかる高切り込みや高送りなどの重切削条件で行なった場合には、特に硬質被覆層の高温強度不足が原因で切刃部にチッピング(微小割れ)が発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に鋼や鋳鉄などの重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆BN基工具を開発すべく、上記の従来被覆BN基工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来被覆BN基工具の硬質被覆層を構成する(Ti,Al)N層は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な高温硬さと耐熱性、および高温強度を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部にBN基基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有割合の高いTi−Al−Ce合金、他方側に相対的にAl含有割合の低いTi−Al−Ce合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に、外周部に沿って複数のBN基基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的でBN基基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記BN基基体の表面にTiとAlとCeの複合窒化物[以下、(Ti,Al,Ce)Nで示す]からなる硬質被覆層を形成すると、この結果の(Ti,Al,Ce)N層においては、回転テーブル上にリング状に配置された前記BN基基体が上記の一方側の相対的にAl含有割合の高いTi−Al−Ce合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最高含有点が形成され、また前記BN基基体が上記の他方側の相対的にAl含有割合の低いTi−Al−Ce合金のカソード電極に最も接近した時点で層中にAl最低含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Al最高含有点とAl最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へTiおよびAlの含有割合がそれぞれ連続的に変化する成分濃度分布構造をもつようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Ti,Al,Ce)N層において、例えば対向配置のカソード電極(蒸発源)のそれぞれの組成を調製すると共に、BN基基体が装着されている回転テーブルの回転速度を制御して、
上記Al最高含有点が、
組成式:[Ti1−(X+Z) AlCe]N(ただし、原子比で、Xは0.45〜0.65、Zは0.002〜0.10を示す)、
上記Al最低含有点が、
組成式:[Ti1−(Y+Z) AlCe]N(ただし、原子比で、Yは0.10〜0.35、Zは0.002〜0.10を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記Al最高含有点部分では、高温硬さおよび耐熱性向上効果を有するAlの含有割合が上記の従来(Ti,Al)N層におけるAlの含有割合と同等のもとなり、かつCeによる高温硬さおよび耐熱性向上効果と相俟って、前記従来(Ti,Al)N層のもつ高温硬さおよび耐熱性に比してすぐれた高温硬さと耐熱性を有し、一方上記Al最低含有点部分では、前記Al最高含有点部分に比してAl含有割合が低く、Ti含有割合の高いものとなるので、相対的にきわめて高い高温強度が確保され、この場合高Ti含有によって相対的に高温硬さと耐熱性の低いものとなるが、前記の通りCe含有によってこれの低下が抑制されるようになり、かつこれらAl最高含有点とAl最低含有点の間隔をきわめて小さくしたことから、層全体の特性として、Ceの作用で上記従来(Ti,Al)N層に比してすぐれた高温硬さと耐熱性を有することに加えて、前記従来(Ti,Al)N層より一段と高い高温強度を具備するようになり、したがって、硬質被覆層がかかる構成の(Ti,Al,Ce)N層からなる被覆BN基工具は、特に各種の鋼や鋳鉄などの切削加工を、高負荷のかかる高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、BN基基体の表面に、(Ti,Al,Ce)Nからなる硬質被覆層を0.5〜10μmの平均層厚で物理蒸着してなる被覆BN基工具において、
上記硬質被覆層が、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へTiおよびAlの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、
組成式:[Ti1−(X+Z) AlCe]N(ただし、原子比で、Xは0.45〜0.65、Zは0.002〜0.10を示す)、
上記Al最低含有点が、
組成式:[Ti1−(Y+Z) AlCe]N(ただし、原子比で、Yは0.10〜0.35、Zは0.002〜0.10を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである、
重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆BN基工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆BN基工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Al最高含有点の組成
(Ti,Al,Ce)N層において、上記の通りTiは高温強度を向上させ、Alは高温硬さおよび耐熱性を向上させ、さらにCeはAlとの共存において高温硬さと耐熱性を一段と向上させる作用を有するものであり、したがってAl成分の含有割合が上記の従来(Ti,Al)N層におけるそれと同等であり、かつCeを共存含有するAl最高含有点では上記の従来(Ti,Al)N層に比して相対的にすぐれた高温硬さおよび耐熱性を有するが、Alの含有割合を示すX値がTiとCeの合量に占める割合(原子比、以下同じ)で0.45未満では所望の高温硬さおよび耐熱性を確保することができず、一方前記X値が同じく0.65を越えて高くなると、高い高温強度を有するAl最低含有点が隣接して存在しても層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなることから、X値を0.45〜0.65と定めた。
また、Ceの含有割合を示すZ値がTiとAlの合量に占める割合が0.002未満では所望の高温硬さおよび耐熱性の向上効果が得られず、一方前記Z値が0.10を越えると高温強度が急激に低下するようになることから、Al最高含有点におけるZ値を0.002〜0.10と定めた。
【0011】
(b)Al最低含有点の組成
上記の通りAl最高含有点は相対的に高い高温硬さおよび耐熱性を有するが、反面高温強度の劣るものであるため、このAl最高含有点の高温強度不足を補う目的で、Alに比して相対的にTiの含有割合を高くして、高温強度を一段と向上せしめ、かつこれに伴なう高温硬さおよび耐熱性の低下をCe含有によって抑制したAl最低含有点を厚さ方向に交互に介在させ、高負荷のかかる重切削条件でもチッピングなどの発生が起らないようにするものであるが、Alの含有割合を示すY値がTiとCeの合量に占める割合で0.10未満になると、Al最低含有点の高温硬さおよび耐熱性が低くなり過ぎ、これが摩耗促進の原因となり、一方前記Y値が0.35を越えると、高温強度が急激に低下し、切刃部にチッピングが発生し易くなることから、Y値を0.10〜0.35と定めた。
さらに、Ceの含有割合を示すZ値を0.002〜0.10としたのは、上記のAl最高含有点におけると同じ理由によるものである。
【0012】
(c)Al最高含有点とAl最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望の高温硬さと耐熱性、さらにすぐれた高温強度を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば高温強度不足、Al最低含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0013】
(d)硬質被覆層の平均層厚
その平均層厚が0.5μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が10μmを越えると、切刃部ににチッピングが発生し易くなることから、その平均層厚を0.5〜10μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆BN基工具を実施例により具体的に説明する。
原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(以下、c−BNで示す)粉末、炭化チタン(以下、TiCで示す)粉末、窒化チタン(以下、TiNで示す)粉末、炭窒化チタン(以下、TiCNで示す)粉末、炭化タングステン(以下、WCで示す)粉末、Al粉末、Co粉末、TiとAlの金属間化合物粉末であるTiAl粉末、TiAl粉末、およびTiAl粉末、さらに組成式:TiAlNを有する複合金属窒化物粉末、硼化チタン(以下、TiBで示す)粉末、窒化アルミニウム(以下、AlNで示す)粉末、硼化アルミニウム(以下、AlBで示す)粉末、酸化アルミニウム(Alで示す)粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、100MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研摩し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正三角形)をもったWC基超硬合金製チップ本体のろう付け部(コーナー部)に、質量%で、Cu:30%、Zn:28%、Ni:2%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.15mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のチップ形状をもったBN基基体A〜Pをそれぞれ製造した。
【0015】
ついで、上記のBN基基体A〜Pのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に、外周部に沿って所定間隔をもって設けた多段回転支持板上に載置し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最低含有点形成用Ti−Al−Ce合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最高含有点形成用Ti−Al−Ce合金を前記回転テーブルを挟んで対向配置し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を410℃に加熱した後、Arガスを導入して1.5PaのArガス雰囲気とし、前記回転テーブル上で自転しながら回転するBN基基体に−800Vの直流バイアス電圧を印加して、前記BN基基体表面をArボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転するBN基基体に−25Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最低含有点形成用Ti−Al−Ce合金およびAl最高含有点形成用Ti−Al−Ce合金)とアノード電極との間に130Aの電流を流してアーク放電を発生させ、もって前記BN基基体の表面に、層厚方向に沿って表2,3に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表2,3に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTiの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表2,3に示される目標層厚の硬質被覆層を蒸着形成することにより、本発明被覆BN基工具1〜16をそれぞれ製造した。
【0016】
また、比較の目的で、上記のBN基チップ基体A〜Pの表面への硬質被覆層の形成を、図2に示される通常のアークイオンプレーティング装置を用い、カソード電極(蒸発源)として種々の成分組成をもったTi−Al合金およびTi−Al−Ce合金をそれぞれ装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを装置内に導入して2.5PaのAr雰囲気とし、この状態でBN基基体に−800Vのバイアス電圧を印加してBN基基体表面をArガスボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3.5Paの反応雰囲気とすると共に、前記BN基基体に印加するバイアス電圧を−70Vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させる条件にて行なって、前記BN基基体A〜Pのそれぞれの表面に、表4,5に示される目標組成および目標層厚を有し、かつ上記の従来被覆BN基工具を構成する硬質被覆層に相当する(Ti,Al)N層、すなわち層厚方向に沿って実質的に組成変化のない(Ti,Al)N層、および同じく層厚方向に沿って実質的に組成変化のない(Ti,Al,Ce)N層からなる硬質被覆層を蒸着形成する以外は、上記の本発明被覆BN基工具1〜16の製造条件と同じ条件で比較被覆BN基工具1〜16をそれぞれ製造した。
【0017】
つぎに、上記本発明被覆BN基工具1〜16および比較被覆BN基工具1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCr415の浸炭焼入れ丸棒(表面硬さ:HRC52)、
切削速度:145m/min.、
切り込み:0.51mm、
送り:0.08mm/rev.、
切削時間:20分、
の条件での浸炭焼入れ合金鋼の乾式連続高切り込み切削加工試験(通常の切り込み量は0.10mm)、
被削材:JIS・S25Cの高周波焼入れ丸棒(表面硬さ:HRC56)、
切削速度:140m/min.、
切り込み:0.50mm、
送り:0.07mm/rev.、
切削時間:20分、
の条件での高周波焼入れ炭素鋼の乾式連続高切り込み切削加工試験(通常の切り込み量は0.10mm)、さらに、
被削材:JIS・FC250の丸棒、
切削速度:585m/min.、
切り込み:0.21mm、
送り:0.62mm/rev.、
切削時間:30分、
の条件での鋳鉄の乾式連続高送り切削加工試験(通常の送り量は0.20mm/rev.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表2〜5に示した。
【0018】
【表1】

Figure 2005022023
【0019】
【表2】
Figure 2005022023
【0020】
【表3】
Figure 2005022023
【0021】
【表4】
Figure 2005022023
【0022】
【表5】
Figure 2005022023
【0023】
この結果得られた本発明被覆BN基工具1〜16を構成する硬質被覆層におけるAl最高含有点とAl最低含有点の組成、並びに比較被覆BN基工具1〜16の硬質被覆層の組成について、厚さ方向に沿ってTi、Al、およびCe成分の含有量をオージェ分光分析装置を用いて測定したところ、本発明被覆BN基工具1〜16の硬質被覆層では、Al最高含有点とAl最低含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へTiおよびAl成分の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有することが確認され、また硬質被覆層の平均層厚も目標層厚と実質的に同じ値を示した。
一方前記比較被覆BN基工具1〜16の硬質被覆層では厚さ方向に沿って組成変化が見られず、かつ目標組成と実質的に同じ組成および目標層厚と実質的に同じ平均層厚を示すことが確認された。
【0024】
【発明の効果】
表2〜5に示される結果から、硬質被覆層が層厚方向にAl最低含有点とAl最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTiの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有する本発明被覆BN基工具は、いずれも各種の鋼や鋳鉄などの切削加工を、高負荷のかかる高切り込みや高送りなどの重切削条件で行なった場合にも、切刃部にチッピングの発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が層厚方向に沿って実質的に組成変化のない(Ti,Al)N層または(Ti,Al,Ce)N層からなる比較被覆BN基工具においては、前記硬質被覆層が高温硬さと耐熱性を有するものの、十分な高温強度を具備するものでないために、チッピングが発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。上述のように、この発明の被覆BN基工具は、通常の条件での切削加工は勿論のこと、特に各種の鋼や鋳鉄などの切削加工を重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】この発明の被覆BN基工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】比較被覆BN基工具を構成する硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
This invention has a high temperature strength with excellent hard coating layer, and excellent high temperature hardness and heat resistance. Therefore, cutting of various types of steel, cast iron, etc., such as high cutting with high load and high feed. The present invention also relates to a surface-coated cubic boron nitride-based sintered material cutting tool (hereinafter referred to as a coated BN-based tool) that exhibits excellent chipping resistance even under heavy cutting conditions.
[0002]
[Prior art]
In general, a coated BN base tool is provided with a throwaway tip that is detachably attached to the tip of a cutting tool for turning a work material such as various types of steel and cast iron, and the throwaway tip is detachably attached. In addition, there is known a slow-away end mill that performs cutting in the same manner as a solid type end mill used for chamfering, grooving, and shoulder machining.
[0003]
Moreover, as a coated BN-based tool, it has excellent high-temperature hardness and heat resistance, but because it has low high-temperature strength, it has a high cutting speed and high-speed surface finishing under conditions where cutting and feeding are significantly reduced. For the purpose of improving the strength of the cutting tool itself on the surface of the BN base substrate, a cutting tool made of a cubic boron nitride base sintered material used only in
Composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X represents 0.45 to 0.65),
A hard coating layer composed of a composite nitride of Ti and Al satisfying the following [hereinafter referred to as (Ti, Al) N] is physically vapor-deposited with an average layer thickness of 0.5 to 10 μm, and various steels, cast irons, etc. A coated BN-based tool is known in which chipping or chipping (minute chipping) does not occur in a cutting edge portion even when continuous cutting or intermittent cutting is performed (see, for example, Patent Document 1).
[0004]
Further, the above-mentioned coated BN-based tool is, for example, the above-mentioned BN-based substrate is loaded into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, in the state heated to a temperature of 505 ° C., an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) in which a Ti—Al alloy having a predetermined composition is set, for example, under a current of 145 A, At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa, while the BN base substrate is subjected to the above-described BN base substrate on the surface of the BN base substrate under the condition that a bias voltage of, for example, −95 V is applied. It is also known that it is produced by vapor-depositing a hard coating layer composed of a (Ti, Al) N layer.
[0005]
[Patent Document 1]
JP-A-8-119774 [0006]
[Problems to be solved by the invention]
In recent years, the performance of cutting machines has been dramatically improved, while on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and as a result, cutting is performed under heavy cutting conditions such as high cutting and high feed. Although there is no problem in the above-mentioned conventional coated BN-based tool when used under normal cutting conditions, the cutting work is performed with a high cutting force or a high feed that requires a high load. When used under heavy cutting conditions, chipping (microcracking) is likely to occur at the cutting edge due to insufficient high-temperature strength of the hard coating layer. It is.
[0007]
[Means for Solving the Problems]
In view of the above, the present inventors have developed the above-described conventional coating to develop a coated BN-based tool that exhibits excellent chipping resistance with a hard coating layer particularly in heavy cutting such as steel and cast iron. As a result of conducting research by focusing on the hard coating layer constituting the BN-based tool,
(A) The (Ti, Al) N layer constituting the hard coating layer of the conventional coated BN-based tool formed using the arc ion plating apparatus shown in FIG. For example, an arc having a structure shown in FIG. 1 (a) in a schematic plan view and in FIG. 1 (b) in a schematic front view. An ion plating apparatus, that is, a rotating table for mounting a BN base substrate is provided at the center of the apparatus, and a Ti-Al-Ce alloy having a relatively high Al content ratio on one side and a relative side on the other side across the rotating table. An arc ion plating apparatus in which a Ti-Al-Ce alloy having a low Al content is disposed as a cathode electrode (evaporation source) is used, and a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus is used. At a distant position, a plurality of BN bases are mounted in a ring shape along the outer periphery, and in this state, the rotary table is rotated with the atmosphere inside the apparatus being a nitrogen atmosphere, and the thickness of the hard coating layer formed by vapor deposition An arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode on both sides while rotating the BN base substrate itself for the purpose of homogenization, and Ti and Al are formed on the surface of the BN base substrate. When a hard coating layer made of Ce composite nitride [hereinafter referred to as (Ti, Al, Ce) N] is formed, the resulting (Ti, Al, Ce) N layer is ring-shaped on the turntable. When the arranged BN-based substrate is closest to the cathode electrode (evaporation source) of the Ti—Al—Ce alloy having a relatively high Al content ratio on one side, the highest Al content point is formed in the layer. And B When the base substrate comes closest to the cathode electrode of the Ti—Al—Ce alloy having a relatively low Al content on the other side, the lowest Al content point is formed in the layer, and the rotation of the rotary table causes the layer to enter the layer. In the layer thickness direction, the Al highest content point and the Al lowest content point appear alternately with a predetermined interval, and the Al highest content point to the Al lowest content point, and the Al lowest content point to the Al highest content point. It has a component concentration distribution structure in which the content ratios of Ti and Al change continuously.
[0008]
(B) In the (Ti, Al, Ce) N layer having the repeated continuous change component concentration distribution structure of (a) above, for example, the respective compositions of the cathode electrodes (evaporation sources) arranged opposite to each other are prepared, and the BN base substrate is prepared. By controlling the rotation speed of the mounted rotary table,
The Al highest content point is
Composition formula: [Ti 1- (X + Z) Al X Ce Z ] N (wherein X is 0.45 to 0.65 and Z is 0.002 to 0.10 in atomic ratio),
The minimum Al content point is
Formula: [Ti 1- (Y + Z ) Al Y Ce Z] N ( provided that an atomic ratio, Y is 0.10 to 0.35, Z represents a 0.002 to 0.10),
And the interval in the thickness direction of the adjacent Al highest content point and Al lowest content point adjacent to each other is 0.01 to 0.1 μm,
In the Al highest content point portion, the Al content ratio having the effect of improving the high temperature hardness and heat resistance is equivalent to the Al content ratio in the conventional (Ti, Al) N layer, and the high temperature hardness due to Ce. Combined with the effect of improving heat resistance, the high temperature hardness and heat resistance superior to the high temperature hardness and heat resistance of the conventional (Ti, Al) N layer, while the above-mentioned Al minimum content point portion Therefore, since the Al content rate is low and the Ti content rate is high compared to the Al highest content point portion, a relatively very high temperature strength is ensured. However, as described above, the decrease in this is suppressed by the Ce content, and the interval between the Al highest content point and the Al lowest content point is extremely small, so that the entire layer Special In addition to having high temperature hardness and heat resistance superior to those of the conventional (Ti, Al) N layer due to the action of Ce, it has a higher high temperature strength than that of the conventional (Ti, Al) N layer. Therefore, a coated BN base tool composed of a (Ti, Al, Ce) N layer with a hard coating layer is particularly suitable for cutting various steels and cast irons. Even when performed under heavy cutting conditions such as feeding, the hard coating layer should exhibit excellent chipping resistance.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made based on the above research results. A hard coating layer made of (Ti, Al, Ce) N is physically applied to the surface of a BN base substrate with an average layer thickness of 0.5 to 10 μm. In the coated BN base tool formed by vapor deposition,
In the hard coating layer, the highest Al content point and the lowest Al content point are present alternately at predetermined intervals along the thickness direction, and the lowest Al content point, the Al content point, from the highest Al content point. A component concentration distribution structure in which the content ratios of Ti and Al continuously change from the lowest content point to the Al highest content point,
Furthermore, the above Al highest content point,
Composition formula: [Ti 1- (X + Z) Al X Ce Z ] N (wherein X is 0.45 to 0.65 and Z is 0.002 to 0.10 in atomic ratio),
The minimum Al content point is
Formula: [Ti 1- (Y + Z ) Al Y Ce Z] N ( provided that an atomic ratio, Y is 0.10 to 0.35, Z represents a 0.002 to 0.10),
And the distance between the adjacent Al highest content point and Al lowest content point adjacent to each other is 0.01 to 0.1 μm.
It is characterized by a coated BN-based tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting.
[0010]
Next, the reason why the configuration of the hard coating layer constituting the coated BN-based tool of the present invention is limited as described above.
(A) Composition of the highest Al content point (Ti, Al, Ce) In the N layer, as described above, Ti improves high temperature strength, Al improves high temperature hardness and heat resistance, and Ce coexists with Al. Has the effect of further improving the high temperature hardness and heat resistance, and therefore the Al content is the same as that in the conventional (Ti, Al) N layer, and the highest Al content point containing Ce coexisting. In the above-described conventional (Ti, Al) N layer, it has relatively high temperature hardness and heat resistance, but the ratio of the X value indicating the Al content to the total amount of Ti and Ce (atom If the ratio is less than 0.45, the desired high-temperature hardness and heat resistance cannot be ensured. On the other hand, if the X value is also higher than 0.65, the minimum Al content with high high-temperature strength is contained. The dots are adjacent Inevitable decrease in the high-temperature strength of the layer itself be Mashimashi, since such a result chipping is likely to occur, defining the X value as 0.45 to 0.65.
Further, if the Z value indicating the Ce content ratio is less than 0.002 in the total amount of Ti and Al, the desired high temperature hardness and heat resistance improvement effect cannot be obtained, while the Z value is 0.10. Since the high-temperature strength suddenly drops when exceeding the Z value, the Z value at the Al highest content point was determined to be 0.002 to 0.10.
[0011]
(B) Composition of Al minimum content point As described above, the Al maximum content point has relatively high high-temperature hardness and heat resistance, but on the other hand, it is inferior in high-temperature strength. In order to compensate for this, the Ti content is relatively higher than that of Al, the high temperature strength is further improved, and the accompanying decrease in high temperature hardness and heat resistance is suppressed by Ce content. The minimum content point is alternately interposed in the thickness direction so that chipping or the like does not occur even under heavy cutting conditions with high load, but the Y value indicating the Al content ratio is Ti and Ce. When the ratio to the total amount is less than 0.10, the high temperature hardness and heat resistance of the Al minimum content point become too low, which causes accelerated wear. On the other hand, when the Y value exceeds 0.35, the high temperature strength Suddenly decreases, and the cutting edge Since the mappings are easily generated, defining a Y value as 0.10 to 0.35.
Furthermore, the Z value indicating the Ce content ratio is set to 0.002 to 0.10 for the same reason as in the above Al highest content point.
[0012]
(C) Interval between the highest Al content point and the lowest Al content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. Heat resistance, excellent high temperature strength cannot be secured, and if the interval exceeds 0.1 μm, each point has a defect, that is, if Al is the highest content point, insufficient high temperature strength, Al minimum content point If so, high-temperature hardness and insufficient heat resistance appear locally in the layer, which makes it easier for chipping to occur on the cutting edge and promotes wear. It was determined to be 0.1 μm.
[0013]
(D) Average thickness of hard coating layer If the average layer thickness is less than 0.5 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 10 μm, Since chipping easily occurs, the average layer thickness is set to 0.5 to 10 μm.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated BN-based tool of the present invention will be specifically described with reference to examples.
As raw material powders, cubic boron nitride (hereinafter referred to as c-BN) powder, titanium carbide (hereinafter referred to as TiC) powder, titanium nitride (hereinafter referred to as “c-BN”) having an average particle diameter in the range of 0.5 to 4 μm. , TiN) powder, titanium carbonitride (hereinafter referred to as TiCN) powder, tungsten carbide (hereinafter referred to as WC) powder, Al powder, Co powder, and Ti 3 Al intermetallic compound powder Ti 3 Al powder , TiAl powder, and TiAl 3 powder, further composition formula: composite metal nitride powder having Ti 2 AlN, titanium boride (hereinafter referred to as TiB 2 ) powder, aluminum nitride (hereinafter referred to as AlN) powder, boride aluminum (hereinafter, indicated by AlB 2) powder, prepared powders (indicated by Al 2 O 3) of aluminum oxide, are blended raw material powder formulation compositions shown in Table 1, Bo After wet mixing in a mill for 80 hours and drying, the green compact was pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm at a pressure of 100 MPa. In a vacuum atmosphere, sintering was performed at a predetermined temperature in the range of 900 to 1300 ° C. for 60 minutes to obtain a pre-sintered body for a cutting edge piece, and this pre-sintered body was prepared separately, Co: 8 mass %, WC: remaining composition, diameter: 50 mm × thickness: in a state of being overlapped with a support piece made of a WC-based cemented carbide having a dimension of 2 mm, it was charged into a normal ultra-high pressure sintering apparatus, The pressure is 5 GPa, the temperature is 1200 to 1400 ° C., the holding time is 0.8 hours, and the upper and lower surfaces are polished with a diamond grindstone after sintering. , In the shape of a regular triangle with a side of 3mm using a wire electrical discharge machine Further, Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and WC with the shape of CIS standard SNGA12041 (thickness: 4.76 mm × one side length: 12.7 mm equilateral triangle) A brazing material of an Ag alloy having a composition consisting of Cu: 30%, Zn: 28%, Ni: 2%, and Ag: the remainder in the brazing portion (corner portion) of the chip body made of the base cemented carbide. After brazing and processing the outer periphery to a predetermined size, the cutting edge was subjected to honing with a width of 0.15 mm and an angle of 25 °, and further polished to obtain a chip shape conforming to ISO standard SNGA120412. BN-based substrates A to P were produced, respectively.
[0015]
Next, each of the above BN-based substrates A to P is ultrasonically cleaned in acetone and dried, and then in a radial direction from the central axis on the rotary table in the arc ion plating apparatus shown in FIG. For the formation of the lowest Al content point with various component compositions as a cathode electrode (evaporation source) on one side, placed on a multi-stage rotating support plate provided at a predetermined interval along the outer periphery at a distance Ti-Al-Ce alloy, Ti-Al-Ce alloy for forming the highest Al content point having various composition as opposed cathode electrode (evaporation source) are arranged opposite to each other with the rotary table interposed therebetween. The inside of the apparatus is heated to 410 ° C. with a heater while evacuating the interior and maintaining a vacuum of 0.5 Pa or less, and then Ar gas is introduced to form an Ar gas atmosphere of 1.5 Pa, which rotates on the rotary table. A DC bias voltage of −800 V is applied to the rotating BN base substrate, the BN base substrate surface is cleaned with Ar bombardment, and nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 3 Pa. A DC bias voltage of −25 V is applied to a BN-based substrate that rotates while rotating on the rotary table, and each cathode electrode (for forming the Ti-Al—Ce alloy for forming the lowest Al content point and for forming the highest Al content point) is applied. A current of 130 A is passed between the Ti—Al—Ce alloy) and the anode electrode to generate an arc discharge, and thus the target composition shown in Tables 2 and 3 along the layer thickness direction on the surface of the BN-based substrate. The Al minimum content point and the Al maximum content point are alternately present at the target intervals shown in Tables 2 and 3 alternately, and from the Al maximum content point to the Al minimum content point. A hard coating layer having a component concentration distribution structure in which the content ratio of Al and Ti continuously changes from the lowest Al content point to the highest Al content point and also having a target layer thickness shown in Tables 2 and 3 is deposited. By forming, the coated BN base tools 1 to 16 of the present invention were produced, respectively.
[0016]
For the purpose of comparison, the formation of the hard coating layer on the surface of the BN-based chip bases A to P is variously performed as a cathode electrode (evaporation source) using a normal arc ion plating apparatus shown in FIG. Each of the Ti-Al alloy and Ti-Al-Ce alloy having the component composition was mounted, and the interior of the apparatus was heated to 500 ° C with a heater while evacuating the apparatus and maintaining a vacuum of 0.5 Pa or less. Then, Ar gas is introduced into the apparatus to form an Ar atmosphere of 2.5 Pa, and in this state, a bias voltage of −800 V is applied to the BN base substrate to clean the surface of the BN base substrate with Ar gas bombardment, and then react in the apparatus. Nitrogen gas is introduced as a gas to make a reaction atmosphere of 3.5 Pa, and the bias voltage applied to the BN-based substrate is lowered to −70 V so that the anode and the anode are The above-mentioned conventional coated BN-based tool having the target composition and target layer thickness shown in Tables 4 and 5 on the surface of each of the BN-based substrates A to P is performed. The (Ti, Al) N layer corresponding to the hard coating layer to be formed, that is, the (Ti, Al) N layer having substantially no composition change along the layer thickness direction, and the composition substantially along the layer thickness direction. Comparative coated BN-based tools 1-16 under the same conditions as the manufacturing conditions of the above-mentioned coated BN-based tools 1-16 of the present invention, except that a hard coating layer composed of a (Ti, Al, Ce) N layer without change is deposited. Were manufactured respectively.
[0017]
Next, with the present invention coated BN base tools 1-16 and comparative coated BN base tools 1-16, this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: Carburized and hardened round bar of JIS / SCr415 (surface hardness: HRC52),
Cutting speed: 145 m / min. ,
Cutting depth: 0.51 mm,
Feed: 0.08 mm / rev. ,
Cutting time: 20 minutes,
Dry continuous high-cut cutting test of carburized and hardened alloy steel under the conditions (normal cutting depth is 0.10 mm),
Work material: JIS S25C induction hardening round bar (surface hardness: HRC56),
Cutting speed: 140 m / min. ,
Cutting depth: 0.50mm,
Feed: 0.07 mm / rev. ,
Cutting time: 20 minutes,
Dry-type continuous high-cut cutting test of induction-hardened carbon steel under the conditions of (normal cutting amount is 0.10 mm),
Work material: JIS / FC250 round bar,
Cutting speed: 585 m / min. ,
Cutting depth: 0.21 mm,
Feed: 0.62 mm / rev. ,
Cutting time: 30 minutes,
The dry continuous high-feed cutting test (normal feed amount was 0.20 mm / rev.) Of cast iron under the conditions described above was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Tables 2-5.
[0018]
[Table 1]
Figure 2005022023
[0019]
[Table 2]
Figure 2005022023
[0020]
[Table 3]
Figure 2005022023
[0021]
[Table 4]
Figure 2005022023
[0022]
[Table 5]
Figure 2005022023
[0023]
About the composition of the Al highest content point and the Al lowest content point in the hard coating layer constituting the present invention coated BN base tool 1-16 obtained as a result, and the composition of the hard coating layer of the comparative coated BN base tool 1-16, When the contents of Ti, Al, and Ce components were measured along the thickness direction using an Auger spectroscopic analysis apparatus, the highest Al content point and the lowest Al The content points are alternately and repeatedly present at substantially the same composition and interval as the target value, and Ti and Al from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point It was confirmed that each component content ratio had a component concentration distribution structure that changed continuously, and the average thickness of the hard coating layer showed substantially the same value as the target layer thickness.
On the other hand, in the hard coating layers of the comparative coating BN base tools 1 to 16, no composition change is observed along the thickness direction, and the composition is substantially the same as the target composition and the average layer thickness is substantially the same as the target layer thickness. It was confirmed to show.
[0024]
【The invention's effect】
From the results shown in Tables 2 to 5, in the hard coating layer, the lowest Al content point and the highest Al content point are repeatedly present at predetermined intervals in the thickness direction, and the lowest Al content from the highest Al content point. The present invention coated BN-based tool having a component concentration distribution structure in which the content ratio of Al and Ti continuously changes from the content point, the lowest Al content point to the highest Al content point, all of which are various steels, cast irons, etc. Even when the cutting process is performed under heavy cutting conditions such as high cutting with high load and high feed, it has excellent wear resistance without chipping at the cutting edge, but with hard coating In a comparatively coated BN-based tool comprising a (Ti, Al) N layer or a (Ti, Al, Ce) N layer whose composition does not substantially change along the layer thickness direction, the hard coating layer has a high-temperature hardness and Although it has heat resistance For not intended to include a sufficient high-temperature strength, chipping occurs and this is apparent that lead to a relatively short time service life due. As described above, the coated BN-based tool of the present invention has excellent resistance not only to cutting under normal conditions, but also when cutting various steels and cast irons under heavy cutting conditions. Since it exhibits chipping properties and exhibits excellent wear resistance over a long period of time, it can sufficiently satisfactorily cope with labor saving and energy saving of cutting work and cost reduction.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used for forming a hard coating layer constituting a coated BN-based tool of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a normal arc ion plating apparatus used for forming a hard coating layer constituting a comparative coated BN-based tool.

Claims (1)

立方晶窒化硼素基焼結材料からなる基体の表面に、TiとAlとCeの複合窒化物からなる硬質被覆層を0.5〜10μmの平均層厚で物理蒸着してなる表面被覆超硬合金製切削工具において、
上記硬質被覆層が、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へTiおよびAlの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:[Ti1−(X+Z) AlCe]N(ただし、原子比で、Xは0.45〜0.65、Zは0.002〜0.10を示す)、
上記Al最低含有点が、組成式:[Ti1−(Y+Z) AlCe]N(ただし、原子比で、Yは0.10〜0.35、Zは0.002〜0.10を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmであること、
を特徴とする重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆立方晶窒化硼素基焼結材料製切削工具。
Surface-coated cemented carbide formed by physical vapor deposition of a hard coating layer made of a composite nitride of Ti, Al, and Ce with an average layer thickness of 0.5 to 10 μm on the surface of a substrate made of a cubic boron nitride-based sintered material In cutting tool made,
In the hard coating layer, the highest Al content point and the lowest Al content point are present alternately at predetermined intervals along the thickness direction, and the lowest Al content point, the Al content point, from the highest Al content point. A component concentration distribution structure in which the content ratios of Ti and Al continuously change from the lowest content point to the Al highest content point,
Furthermore, the Al highest content point, composition formula: [Ti 1- (X + Z ) Al X Ce Z] N ( provided that an atomic ratio, X is 0.45 to 0.65, Z is from 0.002 to 0. 10),
The Al minimum content point, composition formula: [Ti 1- (Y + Z ) Al Y Ce Z] N ( provided that an atomic ratio, Y is 0.10 to 0.35, Z is a 0.002 to 0.10 Show),
And the interval between the Al highest content point and the Al lowest content point adjacent to each other is 0.01 to 0.1 μm,
A cutting tool made of a surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer that is characterized by heavy cutting.
JP2003189309A 2003-07-01 2003-07-01 Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting Expired - Fee Related JP4304438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189309A JP4304438B2 (en) 2003-07-01 2003-07-01 Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189309A JP4304438B2 (en) 2003-07-01 2003-07-01 Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting

Publications (2)

Publication Number Publication Date
JP2005022023A true JP2005022023A (en) 2005-01-27
JP4304438B2 JP4304438B2 (en) 2009-07-29

Family

ID=34187560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189309A Expired - Fee Related JP4304438B2 (en) 2003-07-01 2003-07-01 Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting

Country Status (1)

Country Link
JP (1) JP4304438B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409561B1 (en) 2022-10-14 2024-01-09 住友電気工業株式会社 Cutting tools
JP7420317B1 (en) 2022-10-14 2024-01-23 住友電気工業株式会社 Cutting tools
JP7420318B1 (en) 2022-10-14 2024-01-23 住友電気工業株式会社 Cutting tools
WO2024062613A1 (en) * 2022-09-22 2024-03-28 住友電気工業株式会社 Cutting tool
WO2024062611A1 (en) * 2022-09-22 2024-03-28 住友電気工業株式会社 Cutting tool
WO2024062612A1 (en) * 2022-09-22 2024-03-28 住友電気工業株式会社 Cutting tool
US12005508B2 (en) 2022-09-22 2024-06-11 Sumitomo Electric Industries, Ltd. Cutting tool

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062613A1 (en) * 2022-09-22 2024-03-28 住友電気工業株式会社 Cutting tool
WO2024062611A1 (en) * 2022-09-22 2024-03-28 住友電気工業株式会社 Cutting tool
WO2024062612A1 (en) * 2022-09-22 2024-03-28 住友電気工業株式会社 Cutting tool
US12005508B2 (en) 2022-09-22 2024-06-11 Sumitomo Electric Industries, Ltd. Cutting tool
JP7409561B1 (en) 2022-10-14 2024-01-09 住友電気工業株式会社 Cutting tools
JP7420317B1 (en) 2022-10-14 2024-01-23 住友電気工業株式会社 Cutting tools
JP7420318B1 (en) 2022-10-14 2024-01-23 住友電気工業株式会社 Cutting tools
WO2024079891A1 (en) * 2022-10-14 2024-04-18 住友電気工業株式会社 Cutting tool
WO2024079890A1 (en) * 2022-10-14 2024-04-18 住友電気工業株式会社 Cutting tool
WO2024079889A1 (en) * 2022-10-14 2024-04-18 住友電気工業株式会社 Cutting tool
US12005509B2 (en) 2022-10-14 2024-06-11 Sumitomo Electric Industries, Ltd. Cutting tool
US12005510B2 (en) 2022-10-14 2024-06-11 Sumitomo Electric Industries, Ltd. Cutting tool

Also Published As

Publication number Publication date
JP4304438B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4985919B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that provides excellent long-term surface accuracy in high-speed cutting of hardened steel
JP5418833B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4284503B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4883475B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4725774B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting of high hardness steel
JP4883473B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP4807575B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4304438B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP4284509B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP3700658B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance with a hard coating layer in intermittent heavy cutting
JP4883472B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4883471B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP2011051060A (en) Surface coating cutting tool
JP2008302439A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4284510B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP2005028474A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP4284506B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material that exhibits excellent chipping resistance due to hard coating layer in heavy cutting
JP4748446B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials
JP4748445B2 (en) Cutting tool made of super-high-pressure sintered material with surface-coated cubic boron nitride that exhibits excellent chipping resistance with a hard coating layer in intermittent cutting of high-hardness steel
JP3928466B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent wear resistance with a hard coating layer in high-speed cutting
JP4591815B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material with excellent wear resistance due to hard coating layer
JP4883474B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R150 Certificate of patent or registration of utility model

Ref document number: 4304438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees