JP2005021860A - Hydrogen storage material - Google Patents

Hydrogen storage material Download PDF

Info

Publication number
JP2005021860A
JP2005021860A JP2003270468A JP2003270468A JP2005021860A JP 2005021860 A JP2005021860 A JP 2005021860A JP 2003270468 A JP2003270468 A JP 2003270468A JP 2003270468 A JP2003270468 A JP 2003270468A JP 2005021860 A JP2005021860 A JP 2005021860A
Authority
JP
Japan
Prior art keywords
hydrogen
palladium
thin film
hydrogen storage
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003270468A
Other languages
Japanese (ja)
Inventor
Akihiko Koiwai
明彦 小岩井
Akio Ito
明生 伊藤
Tatsumi Hioki
辰視 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2003270468A priority Critical patent/JP2005021860A/en
Publication of JP2005021860A publication Critical patent/JP2005021860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive hydrogen storage material which does not lose the hydrogen occlusion capability on exposure to the air, and occludes hydrogen under a low hydrogen pressure. <P>SOLUTION: Part of the surface of a metal or an alloy which has a hydride phase whose heat of formation is negatively larger than -45kJ/mol.H<SB>2</SB>, is covered with palladium, thereby forming the hydrogen storage material. Even the exposure to the air causes a less degradation of hydrogen occlusion capability because the material is covered with palladium. The material can occlude hydrogen under a hydrogen pressure lower than the equilibrium hydrogen pressure of palladium. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、可逆的に水素を吸蔵・放出できる水素貯蔵材料に関する。   The present invention relates to a hydrogen storage material capable of reversibly storing and releasing hydrogen.

近年、二酸化炭素の排出による地球の温暖化等の環境問題や、石油資源の枯渇等のエネルギー問題から、クリーンな代替エネルギーとして水素エネルギーが注目されている。水素エネルギーの実用化にむけて、水素を安全に貯蔵・輸送する技術の開発が重要となる。水素を貯蔵できる水素貯蔵材料として、活性炭、フラーレン、ナノチューブ等の炭素材料や、水素吸蔵合金等の開発が進められている。なかでも、水素吸蔵合金は、水素を金属水素化物という安全な固体の形で大量に貯蔵できることから、輸送可能な新しい貯蔵媒体として期待されている。   In recent years, hydrogen energy has attracted attention as a clean alternative energy due to environmental problems such as global warming caused by carbon dioxide emissions and energy problems such as exhaustion of petroleum resources. For the practical application of hydrogen energy, it is important to develop technology for safely storing and transporting hydrogen. As hydrogen storage materials capable of storing hydrogen, development of carbon materials such as activated carbon, fullerene, and nanotubes, and hydrogen storage alloys are underway. Among these, hydrogen storage alloys are expected as a new transportable storage medium because hydrogen can be stored in large quantities in the form of a safe solid called a metal hydride.

しかしながら、水素吸蔵合金は、大気に曝されると酸化される。その結果、水素吸蔵合金の表面には、酸化物等のいわゆるバリヤー層が形成される。バリヤー層が形成された部分では、水素分子を解離させることができない。そのため、水素吸蔵合金が大気に曝された場合、その水素吸蔵能は低下する。   However, hydrogen storage alloys are oxidized when exposed to the atmosphere. As a result, a so-called barrier layer such as an oxide is formed on the surface of the hydrogen storage alloy. In the portion where the barrier layer is formed, hydrogen molecules cannot be dissociated. For this reason, when the hydrogen storage alloy is exposed to the atmosphere, its hydrogen storage capacity decreases.

水素吸蔵合金の酸化を防止し、かつ、水素吸蔵合金に水素解離機能を付与する方法として、例えば、マグネシウム薄膜の表面全体にパラジウム薄膜を成膜する方法が開示されている(例えば、非特許文献1、2参照。)。
A.Krozerら、”Hydrogen uptake by Pd-coated Mg: Absorption-decomposition isotherms and uptake kinetics ”、「Journal of the Less-Common Metals」、1990年、第160号、p.323−342 A.Krozerら、”Unusual kinetics of Hydrogen formation in Mg-Pd sandwiches, studied by Hydrogen profiling and quartz crystal microbalance measurements ”、「Journal of the Less-Common Metals」、1989年、第152号、p.295−309
As a method for preventing oxidation of the hydrogen storage alloy and imparting a hydrogen dissociation function to the hydrogen storage alloy, for example, a method of forming a palladium thin film on the entire surface of the magnesium thin film is disclosed (for example, non-patent document). 1 and 2).
A. Krozer et al., “Hydrogen uptake by Pd-coated Mg: Absorption-decomposition isotherms and uptake kinetics”, “Journal of the Less-Common Metals”, 1990, 160, p.323-342. A. Krozer et al., “Unusual kinetics of Hydrogen formation in Mg-Pd sandwiches, studied by Hydrogen profiling and quartz crystal microbalance measurements”, “Journal of the Less-Common Metals”, 1989, 152, p.295-309.

上記非特許文献1、2には、マグネシウム薄膜とパラジウム薄膜とが積層した二層からなる材料が開示されている。この材料では、水素分子は、まずパラジウム薄膜の表面に吸着して水素原子に解離する。次いで、水素原子はパラジウム薄膜内部を拡散した後、マグネシウム薄膜内部に拡散する。つまり、マグネシウムが水素化されるためには、パラジウムが水素化されることが必要となる。そのため、マグネシウムが水素化されるためには、パラジウムの平衡水素圧よりも高い水素圧力が必要となる。また、上記材料では、マグネシウム薄膜の表面全体をパラジウムで被覆するため、パラジウムの使用量が多く、コストが高い。   Non-Patent Documents 1 and 2 disclose a material composed of two layers in which a magnesium thin film and a palladium thin film are laminated. In this material, hydrogen molecules are first adsorbed on the surface of the palladium thin film and dissociated into hydrogen atoms. Next, hydrogen atoms diffuse inside the palladium thin film and then diffuse into the magnesium thin film. That is, in order for magnesium to be hydrogenated, it is necessary to hydrogenate palladium. Therefore, in order for magnesium to be hydrogenated, a hydrogen pressure higher than the equilibrium hydrogen pressure of palladium is required. Moreover, in the said material, since the whole surface of a magnesium thin film is coat | covered with palladium, the usage-amount of palladium is large and cost is high.

本発明は、このような実状に鑑みてなされたものであり、安価で、大気に曝された場合でも水素吸蔵能を失うことがなく、低い水素圧力下でも水素を吸蔵できる水素吸蔵材料を提供することを課題とする。   The present invention has been made in view of such a situation, and provides a hydrogen storage material that is inexpensive, does not lose hydrogen storage capacity even when exposed to the atmosphere, and can store hydrogen even under a low hydrogen pressure. The task is to do.

本発明の水素吸蔵材料は、水素化物生成熱が−45kJ/molH2よりも負に大きな水素化物相をもつ金属または合金の表面の一部がパラジウムで被覆されてなることを特長とする。 The hydrogen storage material of the present invention is characterized in that a part of the surface of a metal or alloy having a hydride phase whose hydride heat of generation is more negative than −45 kJ / mol H 2 is covered with palladium.

本発明の水素吸蔵材料では、所定の金属または合金(以下、適宜「金属等」と称す。)が、水素を吸蔵する役割を果たす。金属等と水素とが反応し、金属水素化物が生成される際には、水素化物生成熱(ΔH)が発生する。この水素化物生成熱(以下、適宜「ΔH」と称す。)の値により、生成された水素化物の安定性が判断される。ΔHの値が負であれば水素化物は安定であり、その負の絶対値が大きいほど水素化物の安定性は増す。すなわち、ΔHの負の絶対値が大きいということは、同一温度での平衡水素圧がより小さいことを意味する。   In the hydrogen storage material of the present invention, a predetermined metal or alloy (hereinafter referred to as “metal etc.” as appropriate) plays a role of storing hydrogen. When a metal or the like reacts with hydrogen to generate a metal hydride, heat of hydride generation (ΔH) is generated. The stability of the hydride produced is determined by the value of the heat of hydride production (hereinafter referred to as “ΔH” as appropriate). If the value of ΔH is negative, the hydride is stable, and the greater the negative absolute value, the more stable the hydride. That is, a large negative absolute value of ΔH means that the equilibrium hydrogen pressure at the same temperature is smaller.

本発明の水素吸蔵材料において、水素を吸蔵する基材となる金属等は、ΔHが−45kJ/molH2よりも負に大きな水素化物相をもつ。ここで、パラジウムの水素化物(PdH0.56)のΔHは、温度298Kにおいて−43.1kJ/molH2である。したがって、温度298KにおけるΔHが−45kJ/molH2よりも負に大きい水素化物相をもつ金属等は、同温度下で、パラジウムより低い水素圧力で水素化物を生成できることになる。なお、金属等の圧力−組成等温線が多段プラトーをもち、水素化物相が複数存在するような場合には、それら水素化物相のいずれかのΔHが上記値より負に大きければよい。 In the hydrogen storage material of the present invention, the metal or the like serving as a base material for storing hydrogen has a hydride phase whose ΔH is negatively larger than −45 kJ / mol H 2 . Here, ΔH of hydride of palladium (PdH 0.56 ) is −43.1 kJ / molH 2 at a temperature of 298K. Therefore, a metal having a hydride phase whose ΔH at a temperature of 298 K is negatively larger than −45 kJ / mol H 2 can generate a hydride at a hydrogen pressure lower than that of palladium at the same temperature. When the pressure-composition isotherm of a metal or the like has a multistage plateau and there are a plurality of hydride phases, it is only necessary that ΔH of any of the hydride phases is negatively larger than the above value.

本発明の水素吸蔵材料では、上記水素化物相をもつ金属等の表面の一部がパラジウムで被覆される。つまり、金属等の表面のパラジウムで被覆されていない残部は、表出している。よって、金属等の表面には、金属等とパラジウムとの境界が存在する。水素分子はその境界に吸着し、水素原子に解離する。その後、水素原子が金属等の内部に拡散すると考えられる。また、パラジウムの表面に吸着し、解離した水素原子は、パラジウム表面を拡散し、上記境界より金属等の内部に拡散すると考えられる。このように、パラジウム内部を水素原子が拡散する必要がないため、金属等が水素化されるために、パラジウムが水素化されることは条件とはならない。したがって、本発明の水素吸蔵材料は、パラジウムの平衡水素圧よりも低い水素圧力下でも水素を吸蔵することができる。   In the hydrogen storage material of the present invention, a part of the surface of the metal or the like having the hydride phase is coated with palladium. That is, the remainder of the surface of the metal or the like that is not covered with palladium is exposed. Therefore, a boundary between the metal or the like and palladium exists on the surface of the metal or the like. Hydrogen molecules adsorb at the boundary and dissociate into hydrogen atoms. Thereafter, it is considered that hydrogen atoms diffuse into the metal or the like. In addition, it is considered that hydrogen atoms adsorbed and dissociated on the surface of palladium diffuse on the palladium surface and diffuse into the metal or the like from the boundary. Thus, since it is not necessary for hydrogen atoms to diffuse inside the palladium, the metal or the like is hydrogenated, so that it is not a condition that the palladium is hydrogenated. Therefore, the hydrogen storage material of the present invention can store hydrogen even under a hydrogen pressure lower than the equilibrium hydrogen pressure of palladium.

また、金属等の表面の一部がパラジウムで被覆されるため、金属等は、大気に曝された場合でも酸化され難い。よって、本発明の水素吸蔵材料では、大気に曝された場合でも、水素吸蔵能の低下は少ない。さらに、本発明の水素吸蔵材料では、パラジウムによる被覆は金属等の表面の一部であるため、表面全体を被覆したものに比べてパラジウムの使用量は少ない。よって、本発明の水素吸蔵材料は比較的安価な材料となる。   In addition, since a part of the surface of the metal or the like is covered with palladium, the metal or the like is hardly oxidized even when exposed to the atmosphere. Therefore, in the hydrogen storage material of the present invention, even when exposed to the atmosphere, the decrease in hydrogen storage capacity is small. Furthermore, in the hydrogen storage material of the present invention, since the coating with palladium is a part of the surface of metal or the like, the amount of palladium used is smaller than that with which the entire surface is coated. Therefore, the hydrogen storage material of the present invention is a relatively inexpensive material.

本発明の水素吸蔵材料では、水素を吸蔵する金属または合金の表面の一部が、パラジウムで被覆されているため、大気に曝された場合でも、水素吸蔵能の低下は少ない。また、パラジウムの平衡水素圧よりも低い水素圧力下で水素を吸蔵することができる。したがって、本発明の水素吸蔵材料によれば、水素が希薄な雰囲気においても、水素を充分回収することができる。   In the hydrogen storage material of the present invention, a part of the surface of the metal or alloy that stores hydrogen is covered with palladium, so that even when exposed to the atmosphere, the decrease in hydrogen storage capacity is small. Moreover, hydrogen can be occluded under a hydrogen pressure lower than the equilibrium hydrogen pressure of palladium. Therefore, according to the hydrogen storage material of the present invention, hydrogen can be sufficiently recovered even in an atmosphere in which hydrogen is lean.

以下、本発明の水素吸蔵材料について詳細に説明する。なお、本発明の水素吸蔵材料は、下記実施形態に限定されるものではない。本発明の水素吸蔵材料は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   Hereinafter, the hydrogen storage material of the present invention will be described in detail. In addition, the hydrogen storage material of this invention is not limited to the following embodiment. The hydrogen storage material of the present invention can be implemented in various forms with modifications and improvements that can be made by those skilled in the art without departing from the scope of the present invention.

本発明の水素吸蔵材料は、水素化物生成熱が−45kJ/molH2よりも負に大きな水素化物相をもつ金属または合金の表面の一部がパラジウムで被覆されてなる。水素を吸蔵する基材となる金属または合金は、ΔHが−45kJ/molH2よりも負に大きな水素化物相をもつものであれば、その種類が特に限定されるものではない。本明細書において「金属」とは、金属単体を意味する。但し、「金属」は、製造上不可避的に混入する不純物を含んでいても構わない。金属としては、例えば、マグネシウム、チタン、バナジウム、カルシウム、ストロンチウム、バリウム、ジルコニウム、ニオブ、およびリチウム等のアルカリ金属等が挙げられる。なかでも、単位重量当たりの水素吸蔵量が大きく、比較的低温で水素を放出できるという理由から、マグネシウム、チタン、バナジウムのいずれかを用いると好適である。また、合金としては、例えば、Mg−Ni合金、Mg−Zn合金、Mg−Ca合金、Mg−Cu合金、Mg−Li合金、Mg−Al合金等のマグネシウム合金、Ti−Co合金、Ti−Fe−Ni−V合金等のチタン合金等が挙げられる。なかでも、単位重量当たりの水素吸蔵量が大きく、比較的低温で水素を放出できるという理由から、マグネシウム、チタン、バナジウムの少なくとも一種を含む合金を用いると好適である。 The hydrogen storage material of the present invention is formed by coating a part of the surface of a metal or alloy having a hydride phase whose hydride generation heat is negatively greater than −45 kJ / mol H 2 . The metal or alloy serving as a base material for storing hydrogen is not particularly limited as long as ΔH has a hydride phase negatively larger than −45 kJ / mol H 2 . In this specification, “metal” means a single metal. However, “metal” may contain impurities that are inevitably mixed in production. Examples of the metal include alkali metals such as magnesium, titanium, vanadium, calcium, strontium, barium, zirconium, niobium, and lithium. Among these, it is preferable to use magnesium, titanium, or vanadium because the hydrogen storage amount per unit weight is large and hydrogen can be released at a relatively low temperature. Examples of the alloy include Mg-Ni alloy, Mg-Zn alloy, Mg-Ca alloy, Mg-Cu alloy, Mg-Li alloy, Mg-Al alloy and other magnesium alloys, Ti-Co alloy, Ti-Fe, and the like. -Titanium alloys such as Ni-V alloy and the like. Among them, it is preferable to use an alloy containing at least one of magnesium, titanium, and vanadium because hydrogen storage amount per unit weight is large and hydrogen can be released at a relatively low temperature.

上記金属または合金の形態は、特に限定されるものではなく、粉末状、板状、薄膜状、塊状、線状等、種々の形態で実施することができる。いずれの形態であっても、金属等の表面の一部がパラジウムで被覆されていればよい。被覆の態様としては、金属等とパラジウムとの境界を多くし、金属等と水素との反応を促進させるという観点から、金属等の表面にパラジウムが分散して被覆されている態様が望ましい。また、被覆割合は、金属または合金の表面積全体の10%以上90%以下であることが望ましい。被覆割合が金属等の表面積全体の10%未満の場合には、大気中における金属等の酸化を充分に抑制することができないからである。被覆割合を20%以上とするとより好適である。また、被覆割合が金属等の表面積全体の90%を超えると、パラジウムの平衡水素圧よりも低い水素圧力下で水素を充分に吸蔵することができない。被覆割合を80%以下とするとより好適である。特に、被覆割合を50%程度とすると好適である。   The form of the metal or alloy is not particularly limited, and can be implemented in various forms such as powder, plate, thin film, lump, and line. In any form, it is sufficient that a part of the surface of metal or the like is covered with palladium. As a coating mode, a mode in which palladium is dispersed and coated on the surface of the metal or the like is desirable from the viewpoint of increasing the boundary between the metal or the like and palladium and promoting the reaction between the metal or the like and hydrogen. The covering ratio is preferably 10% or more and 90% or less of the entire surface area of the metal or alloy. This is because when the coating ratio is less than 10% of the entire surface area of the metal or the like, the oxidation of the metal or the like in the atmosphere cannot be sufficiently suppressed. It is more preferable that the coating ratio is 20% or more. Further, when the covering ratio exceeds 90% of the entire surface area of metal or the like, hydrogen cannot be sufficiently occluded under a hydrogen pressure lower than the equilibrium hydrogen pressure of palladium. It is more preferable that the coating ratio is 80% or less. In particular, it is preferable that the covering ratio is about 50%.

本発明の水素吸蔵材料の好適な態様として、金属または合金は薄膜状をなし、該金属または合金の薄膜の表面にパラジウムの薄膜が島状に分散して形成されてなる態様が挙げられる。図1に、本態様の一例である水素吸蔵材料の断面模式図を示す。図1に示すように、水素吸蔵材料1は、バナジウム薄膜2と、パラジウム薄膜3とからなる。バナジウム薄膜2は、ガラス基板4の上側表面に形成される。バナジウム薄膜2の膜厚は50nmである。パラジウム薄膜3は、バナジウム薄膜2の上側表面に島状に分散して形成される。パラジウム薄膜3の膜厚は、バナジウム薄膜2の表面全体で平均すると2nmである。   As a preferred embodiment of the hydrogen storage material of the present invention, a metal or alloy is in the form of a thin film, and a thin film of palladium is formed on the surface of the metal or alloy thin film to form an island shape. In FIG. 1, the cross-sectional schematic diagram of the hydrogen storage material which is an example of this aspect is shown. As shown in FIG. 1, the hydrogen storage material 1 includes a vanadium thin film 2 and a palladium thin film 3. The vanadium thin film 2 is formed on the upper surface of the glass substrate 4. The film thickness of the vanadium thin film 2 is 50 nm. The palladium thin film 3 is formed on the upper surface of the vanadium thin film 2 by being dispersed in an island shape. The average thickness of the palladium thin film 3 is 2 nm over the entire surface of the vanadium thin film 2.

本態様では、水素分子は、バナジウム薄膜2とパラジウム薄膜3との境界5に吸着し、水素原子に解離する。その後、水素原子がバナジウム薄膜2の内部に拡散する。また、パラジウム薄膜3の表面に吸着し、解離した水素原子は、パラジウム薄膜3の表面を拡散し、境界5よりバナジウム薄膜2の内部に拡散する。このように、本態様の水素吸蔵材料は、パラジウム薄膜3の平衡水素圧よりも低い水素圧力で水素を吸蔵することができる。また、大気に曝されても、水素吸蔵能を失わない。   In this embodiment, hydrogen molecules are adsorbed on the boundary 5 between the vanadium thin film 2 and the palladium thin film 3 and dissociated into hydrogen atoms. Thereafter, hydrogen atoms diffuse into the vanadium thin film 2. Further, hydrogen atoms adsorbed and dissociated on the surface of the palladium thin film 3 diffuse on the surface of the palladium thin film 3 and diffuse into the vanadium thin film 2 from the boundary 5. Thus, the hydrogen storage material of this aspect can store hydrogen at a hydrogen pressure lower than the equilibrium hydrogen pressure of the palladium thin film 3. Moreover, even when exposed to the atmosphere, the hydrogen storage capacity is not lost.

上記態様の場合、金属または合金の薄膜表面におけるパラジウムの薄膜の平均膜厚を5nm以下とすることが望ましい。平均膜厚が5nmを超えると、パラジウムの被覆割合が金属等の表面積全体の90%を超えるおそれがあるからである。平均膜厚を3nm以下とするとより好適である。ここで、「平均膜厚」とは、金属等の薄膜の表面に島状に形成されたパラジウム薄膜を、金属等の薄膜の表面全体に均一に形成したと仮定した場合の薄膜厚さである。本明細書では、水晶振動子膜厚計を用いて測定した値を採用する。   In the case of the above aspect, it is desirable that the average film thickness of the palladium thin film on the surface of the metal or alloy thin film is 5 nm or less. This is because if the average film thickness exceeds 5 nm, the coverage ratio of palladium may exceed 90% of the entire surface area of the metal or the like. The average film thickness is more preferably 3 nm or less. Here, the “average film thickness” is a thin film thickness on the assumption that a palladium thin film formed in an island shape on the surface of a thin film of metal or the like is uniformly formed on the entire surface of the thin film of metal or the like. . In the present specification, a value measured using a crystal oscillator thickness meter is employed.

本発明の水素吸蔵材料の製造方法は、基材となる金属等の形態に応じて、最適な方法を採用すればよい。例えば、金属等が粉末状の場合には、メカニカルグラインディング等の方法により、金属等の粒子表面の一部にパラジウムの粒子を付着させればよい。また、金属等が板状、薄膜状、塊状、線状等の場合には、溶射、めっき、真空蒸着、スパッタリング、イオンプレーティング等の種々の方法により、金属等の表面の一部にパラジウムを付着させればよい。例えば、金属等の薄膜の表面に、パラジウムの薄膜を島状に分散させて形成するには、まず、ガラス等の基板表面に、スパッタリング等により金属等の薄膜を成膜する。次に、その金属等の薄膜の表面に、スパッタリング等により、パラジウムの薄膜を島状に分散させて成膜すればよい。   What is necessary is just to employ | adopt the optimal method for the manufacturing method of the hydrogen storage material of this invention according to the form of the metal etc. which become a base material. For example, when the metal or the like is in a powder form, palladium particles may be attached to a part of the particle surface of the metal or the like by a method such as mechanical grinding. In addition, when the metal or the like is plate-like, thin-film-like, lump-like, or linear, palladium is applied to a part of the surface of the metal or the like by various methods such as thermal spraying, plating, vacuum deposition, sputtering, or ion plating. What is necessary is just to make it adhere. For example, in order to form a thin film of palladium in an island shape on the surface of a thin film of metal or the like, first, a thin film of metal or the like is formed on the surface of a substrate such as glass by sputtering or the like. Next, the palladium thin film may be dispersed in the form of islands by sputtering or the like on the surface of the metal thin film.

上記実施形態に基づいて、バナジウムの薄膜の表面にパラジウムの薄膜が島状に分散して形成された水素吸蔵材料を製造した。また、比較のため、バナジウムの薄膜の表面全体にパラジウムの薄膜が均一に形成された水素吸蔵材料を製造した。そして、両水素吸蔵材料を一旦大気に曝した後、水素化し、それらの水素吸蔵能を評価した。以下、順に説明する。   Based on the above embodiment, a hydrogen storage material was produced in which a thin palladium film was dispersed in an island shape on the surface of a thin vanadium film. For comparison, a hydrogen storage material in which a palladium thin film was uniformly formed on the entire surface of the vanadium thin film was manufactured. Then, both hydrogen storage materials were once exposed to the atmosphere, then hydrogenated, and their hydrogen storage capacity was evaluated. Hereinafter, it demonstrates in order.

(1)水素吸蔵材料の製造
(a)実施例の水素吸蔵材料
上記図1に示したように、バナジウムの薄膜の表面に、パラジウムの薄膜が島状に分散して形成された水素吸蔵材料を製造した。まず、アルゴン雰囲気にて、RF支援マグネトロンスパッタリング法により、ガラス基板(縦5mm×横35m×厚さ1mm)の表面に、バナジウムの薄膜(膜厚50nm)を成膜した。次に、バナジウムの薄膜の表面に、同法により、パラジウムの薄膜を島状に分散させて成膜した。成膜されたパラジウムの薄膜の平均膜厚を水晶振動子膜厚計で測定したところ、2nmであった。製造された水素吸蔵材料を実施例の水素吸蔵材料とした。また、ガラス基板を含めて本水素吸蔵材料を試料1とした。
(1) Manufacture of hydrogen storage material (a) Hydrogen storage material of Example As shown in FIG. 1 above, a hydrogen storage material formed by dispersing a thin palladium film in an island shape on the surface of a thin film of vanadium. Manufactured. First, a thin film (film thickness 50 nm) of vanadium was formed on the surface of a glass substrate (length 5 mm × width 35 m × thickness 1 mm) by an RF-assisted magnetron sputtering method in an argon atmosphere. Next, a palladium thin film was dispersed in the form of islands on the surface of the vanadium thin film by the same method. The average film thickness of the formed palladium thin film was measured with a quartz oscillator film thickness meter and found to be 2 nm. The produced hydrogen storage material was used as the hydrogen storage material of the example. The hydrogen storage material including the glass substrate was used as Sample 1.

(b)比較例の水素吸蔵材料
バナジウムの薄膜の表面に、パラジウムの薄膜が均一に形成された水素吸蔵材料を製造した。まず、アルゴン雰囲気にて、RF支援マグネトロンスパッタリング法により、上記同様のガラス基板の表面に、バナジウムの薄膜(膜厚50nm)を成膜した。次に、バナジウムの薄膜の表面に、同法により、パラジウムの薄膜を均一に成膜した。成膜されたパラジウムの薄膜の平均膜厚を水晶振動子膜厚計で測定したところ、20nmであった。製造された水素吸蔵材料を比較例の水素吸蔵材料とした。また、ガラス基板を含めて本水素吸蔵材料を試料2とした。
(B) Hydrogen Storage Material of Comparative Example A hydrogen storage material in which a palladium thin film was uniformly formed on the surface of a vanadium thin film was manufactured. First, a thin film of vanadium (thickness: 50 nm) was formed on the surface of a glass substrate similar to the above by RF-assisted magnetron sputtering in an argon atmosphere. Next, a palladium thin film was uniformly formed on the surface of the vanadium thin film by the same method. When the average film thickness of the formed palladium thin film was measured with a quartz oscillator film thickness meter, it was 20 nm. The produced hydrogen storage material was used as a hydrogen storage material of a comparative example. The hydrogen storage material including the glass substrate was used as Sample 2.

(c)参考例
参考例として、上記同様のガラス基板の表面に、バナジウムの薄膜(膜厚50nm)と、パラジウムの薄膜(膜厚20nm)とをそれぞれ成膜した。両薄膜の成膜は、いずれもアルゴン雰囲気にて、RF支援マグネトロンスパッタリング法により行った。製造されたバナジウムの薄膜を、ガラス基板を含めて試料3とした。同様に、パラジウムの薄膜を、ガラス基板を含めて試料4とした。
(C) Reference Example As a reference example, a vanadium thin film (film thickness 50 nm) and a palladium thin film (film thickness 20 nm) were formed on the surface of a glass substrate similar to the above. Both thin films were formed by RF-assisted magnetron sputtering in an argon atmosphere. The manufactured vanadium thin film was used as a sample 3 including a glass substrate. Similarly, a thin film of palladium was used as sample 4 including the glass substrate.

(2)水素吸蔵能の評価
(a)電気抵抗測定
上記試料1〜4を、一旦大気中に取り出した。そして、各試料における水素吸蔵材料または薄膜の表面に、4端子法による電気抵抗測定のための電極をドータイトにより取り付けた。電圧測定端子の端子間距離は、約15mmとした。電極を取り付けた各試料を、電気抵抗測定装置のチャンバに取り付けた後、ロータリポンプおよびターボ分子ポンプにより、チャンバ内を約1.33×10-4Paまで真空排気した。続いて、チャンバ内に、水素ガス(純度99.99999%)を所定の圧力となるよう導入した。チャンバ内の試料には、定電流電源を用いて定電流1mAを流した。マルチメータにより電圧測定端子間の電圧を測定し、電気抵抗を求めた。電気抵抗は、所定の水素ガス圧力下で10分間保持した後に求めた。水素ガスの圧力は、2.66×10-4Paから1.01×105Paまで順に上げていった。
(2) Evaluation of hydrogen storage capacity (a) Electrical resistance measurement The said samples 1-4 were once taken out in air | atmosphere. And the electrode for the electrical resistance measurement by a 4-terminal method was attached to the surface of the hydrogen storage material or the thin film in each sample by dotite. The distance between the voltage measurement terminals was about 15 mm. Each sample to which the electrode was attached was attached to the chamber of the electrical resistance measuring apparatus, and then the inside of the chamber was evacuated to about 1.33 × 10 −4 Pa by a rotary pump and a turbo molecular pump. Subsequently, hydrogen gas (purity 99.99999%) was introduced into the chamber so as to have a predetermined pressure. A constant current of 1 mA was applied to the sample in the chamber using a constant current power source. The voltage between the voltage measuring terminals was measured with a multimeter, and the electrical resistance was determined. The electrical resistance was determined after holding for 10 minutes under a predetermined hydrogen gas pressure. The pressure of hydrogen gas was increased in order from 2.66 × 10 −4 Pa to 1.01 × 10 5 Pa.

(b)結果
表1に、各水素ガス圧力における電気抵抗の値を示す。また、図2に、各水素ガス圧力における電気抵抗の変化率を示す。電気抵抗の変化率は、各水素ガス圧力における電気抵抗値を水素化前の初期電気抵抗値で除した値である。
(B) Results Table 1 shows the values of electrical resistance at each hydrogen gas pressure. FIG. 2 shows the rate of change in electrical resistance at each hydrogen gas pressure. The rate of change in electrical resistance is a value obtained by dividing the electrical resistance value at each hydrogen gas pressure by the initial electrical resistance value before hydrogenation.

Figure 2005021860
表1および図2に示すように、実施例の水素吸蔵材料(試料1)では、1.33×10〜1.33×102Paの水素ガス圧力で、電気抵抗値が急激に上昇した。電気抵抗値の上昇は、水素吸蔵材料が水素化されたことを示すものである。これより、実施例の水素吸蔵材料は、大気に曝されたにも関わらず、1.33×10〜1.33×102Paという極めて低い水素ガス圧力で、水素を吸蔵できることがわかる。一方、比較例の水素吸蔵材料(試料2)では、1.33×103〜1.33×104Paの水素ガス圧力で、電気抵抗値が急激に上昇した。つまり、比較例の水素吸蔵材料は、実施例の水素吸蔵材料の約100倍の水素ガス圧力でしか、水素を吸蔵できないことがわかる。なお、この水素ガス圧力は、後述するパラジウム薄膜の水素化圧力と、ほぼ同じである。
Figure 2005021860
As shown in Table 1 and FIG. 2, in the hydrogen storage material (sample 1) of the example, the electrical resistance value rapidly increased at a hydrogen gas pressure of 1.33 × 10 to 1.33 × 10 2 Pa. An increase in the electrical resistance value indicates that the hydrogen storage material has been hydrogenated. From this, it can be seen that the hydrogen storage materials of the examples can store hydrogen at a very low hydrogen gas pressure of 1.33 × 10 to 1.33 × 10 2 Pa, despite being exposed to the atmosphere. On the other hand, in the hydrogen storage material of the comparative example (sample 2), the electrical resistance value increased rapidly at a hydrogen gas pressure of 1.33 × 10 3 to 1.33 × 10 4 Pa. That is, it can be seen that the hydrogen storage material of the comparative example can only store hydrogen at a hydrogen gas pressure of about 100 times that of the hydrogen storage material of the example. This hydrogen gas pressure is substantially the same as the hydrogenation pressure of the palladium thin film described later.

参考例であるパラジウム薄膜(試料4)では、1.33×103〜6.55×103Paの水素ガス圧力で、電気抵抗値が急激に上昇した。つまり、パラジウム薄膜は、上記水素ガス圧力で水素化されることがわかる。また、参考例であるバナジウム薄膜(試料3)では、水素ガス圧力を高くしても電気抵抗の値はほとんど変わらなかった。バナジウム薄膜は、大気に曝されたことにより表面が酸化され、水素に対して不活性となったためと考えられる。 In the palladium thin film (sample 4) which is a reference example, the electrical resistance value rapidly increased at a hydrogen gas pressure of 1.33 × 10 3 to 6.55 × 10 3 Pa. That is, it can be seen that the palladium thin film is hydrogenated at the hydrogen gas pressure. Further, in the vanadium thin film (sample 3) as a reference example, the value of electric resistance hardly changed even when the hydrogen gas pressure was increased. It is considered that the vanadium thin film was oxidized by exposure to the atmosphere and became inactive against hydrogen.

以上より、本発明の水素吸蔵材料は、パラジウムが水素化される水素圧力よりも低い水素圧力で、水素を吸蔵できることが確認できた。また、本発明の水素吸蔵材料は、大気に曝されても、水素吸蔵能を失わないことが確認できた。   From the above, it was confirmed that the hydrogen storage material of the present invention can store hydrogen at a hydrogen pressure lower than the hydrogen pressure at which palladium is hydrogenated. Further, it was confirmed that the hydrogen storage material of the present invention does not lose its hydrogen storage ability even when exposed to the atmosphere.

本発明の一実施形態である水素吸蔵材料の断面模式図を示す。The cross-sectional schematic diagram of the hydrogen storage material which is one Embodiment of this invention is shown. 各水素ガス圧力における電気抵抗の変化率を示す。The rate of change in electrical resistance at each hydrogen gas pressure is shown.

符号の説明Explanation of symbols

1:水素吸蔵材料 2:バナジウム薄膜 3:パラジウム薄膜
4:ガラス基板 5:境界
1: Hydrogen storage material 2: Vanadium thin film 3: Palladium thin film 4: Glass substrate 5: Boundary

Claims (6)

水素化物生成熱が−45kJ/molH2よりも負に大きな水素化物相をもつ金属または合金の表面の一部がパラジウムで被覆されてなる水素吸蔵材料。 A hydrogen storage material in which a part of the surface of a metal or alloy having a hydride phase having a hydride generation heat negatively larger than −45 kJ / mol H 2 is coated with palladium. 前記パラジウムの被覆割合は、前記金属または合金の表面積全体の10%以上90%以下である請求項1に記載の水素吸蔵材料。   2. The hydrogen storage material according to claim 1, wherein a coverage ratio of the palladium is 10% or more and 90% or less of the entire surface area of the metal or alloy. 前記金属または合金は薄膜状をなし、
該金属または合金の薄膜の表面に前記パラジウムの薄膜が島状に分散して形成されてなる請求項1に記載の水素吸蔵材料。
The metal or alloy is in the form of a thin film,
The hydrogen storage material according to claim 1, wherein the palladium thin film is formed in an island shape on the surface of the metal or alloy thin film.
前記金属または合金の薄膜表面における前記パラジウムの薄膜の平均膜厚は5nm以下である請求項3に記載の水素吸蔵材料。   The hydrogen storage material according to claim 3, wherein an average film thickness of the palladium thin film on the surface of the metal or alloy thin film is 5 nm or less. 前記金属は、マグネシウム、チタン、バナジウムのいずれかである請求項1に記載の水素吸蔵材料。   The hydrogen storage material according to claim 1, wherein the metal is any one of magnesium, titanium, and vanadium. 前記合金は、マグネシウム、チタン、バナジウムの少なくとも一種を含む合金である請求項1に記載の水素吸蔵材料。   The hydrogen storage material according to claim 1, wherein the alloy is an alloy containing at least one of magnesium, titanium, and vanadium.
JP2003270468A 2003-07-02 2003-07-02 Hydrogen storage material Pending JP2005021860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270468A JP2005021860A (en) 2003-07-02 2003-07-02 Hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270468A JP2005021860A (en) 2003-07-02 2003-07-02 Hydrogen storage material

Publications (1)

Publication Number Publication Date
JP2005021860A true JP2005021860A (en) 2005-01-27

Family

ID=34190413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270468A Pending JP2005021860A (en) 2003-07-02 2003-07-02 Hydrogen storage material

Country Status (1)

Country Link
JP (1) JP2005021860A (en)

Similar Documents

Publication Publication Date Title
Kwon et al. Current status of self‐supported catalysts for robust and efficient water splitting for commercial electrolyzer
Zhao-Karger et al. Altered thermodynamic and kinetic properties of MgH 2 infiltrated in microporous scaffold
Ying et al. Recent advances in Ru-based electrocatalysts for oxygen evolution reaction
JP2014055110A (en) Method for producing microporous carbonaceous material
JP2010115636A (en) Microporous carbonaceous material, method of manufacturing microporous carbonaceous material, and hydrogen storage method using microporous carbonaceous material
Pick et al. Uptake rates for hydrogen by niobium and tantalum: effect of thin metallic overlayers
JP4986101B2 (en) Hydrogen storage material and method for producing the same
Fu et al. Synergism induced exceptional capacity and complete reversibility in Mg–Y thin films: enabling next generation metal hydride electrodes
Zhang et al. Hydrogen absorption properties of a non-stoichiometric Zr-based Laves alloy against gaseous impurities
US9440850B2 (en) Carbon material for hydrogen storage
Tsai et al. Carbon nanotube buckypaper/MmNi5 composite film as anode for Ni/MH batteries
JP2005021860A (en) Hydrogen storage material
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
Bagg et al. Sorption of oxygen and krypton by evaporated silver films
JP2011079689A (en) Hydrogen storage material and method of using the same
JPS61277162A (en) Energy storage apparatus and amorphous metal alloy electrodeto be used in alkaline environment
JP2003292316A (en) Metal carrying carbon material, gas storage material using the same, gas storage method using the gas storage material, and electrode material for fuel cell
JP2007050319A (en) Composite catalytic particle
JPH0959001A (en) Hydrogen-occlusion laminate material
JP4124700B2 (en) Hydrogen storage alloy and hydrogen storage material
JP2005206918A (en) Magnesium based hydrogen storage material
Johansson Synthesis and characterisation of potential hydrogen storage materials
JP4518966B2 (en) Gas hydrate generating soot, soot, soot manufacturing method, gas hydrate generating soot using method, soot using method, gas sensor, pressure sensor, and molecular sieve
JP2004026604A (en) Hydrogen storage material
JP3451320B2 (en) Hydrogen storage alloy