JP2005206918A - Magnesium based hydrogen storage material - Google Patents

Magnesium based hydrogen storage material Download PDF

Info

Publication number
JP2005206918A
JP2005206918A JP2004017185A JP2004017185A JP2005206918A JP 2005206918 A JP2005206918 A JP 2005206918A JP 2004017185 A JP2004017185 A JP 2004017185A JP 2004017185 A JP2004017185 A JP 2004017185A JP 2005206918 A JP2005206918 A JP 2005206918A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
carbon
release
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004017185A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
渡辺  弘
Masakazu Fujita
政和 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004017185A priority Critical patent/JP2005206918A/en
Publication of JP2005206918A publication Critical patent/JP2005206918A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Mg based hydrogen storage material, for solving the problem that the hydrogen storage material is expected as an application to fuel storage for a fuel fuel, but, its hydrogen storage/discharge rates are low and hydrogen storage/discharge temperatures are also high, thus its practical use therefor has been difficult, having practical hydrogen storage/discharge temperature, practical hydrogen storage/discharge rates and discharge pressure equal to or above the atmospheric pressure. <P>SOLUTION: The Mg based hydrogen storage material contains Mg and carbon, or Mg, carbon and Ni. At the time when carbon is added to Mg, the hydrogen storage/discharge quantity within practical time increases compared with the case of only Mg, and further, hydrogen dissociation pressure also lowers compacted with the case of only Mg. Further, Ni is added, thereby lowering the hydrogen discharge temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、マグネシウム(Mg)系水素吸蔵材料に関し、より具体的には、水素吸蔵・放出能力に優れ比較的低温かつ比較的高速度で水素吸蔵・放出を行えるマグネシウム系水素吸蔵材料に関する。   The present invention relates to a magnesium (Mg) -based hydrogen storage material, and more specifically to a magnesium-based hydrogen storage material that has excellent hydrogen storage / release capability and can store and release hydrogen at a relatively low temperature and relatively high speed.

近年、水素をエネルギーとして利用しようとする動きが活発になってきている。特に、燃料電池用の燃料源として水素を用いる場合、有害な排ガスを出さないため、環境に合った燃料として注目されている。
水素燃料を貯蔵する方法として、液体水素もしくは気体水素をタンク内に貯蔵する方法と、水素吸蔵合金に水素を吸蔵させて貯蔵する方法とが知られている。液体水素で貯蔵する場合、液化温度がマイナス252.8℃と言った極低温であるため、高断熱性容器を使用しないと気化(ボイルオフ)が激しく、燃料である水素がわずかながらリークし、長期間の貯蔵に難がある。また、気体水素で貯蔵する場合、気体を700気圧以上に圧縮して貯蔵する。このため超高圧に耐える容器が必要となるが、十分な安全性確保の検討が重要である。これらに代わって、水素吸蔵合金に水素を吸蔵させて貯蔵させる方法は上述した極低温や高圧力を必要としない利点があるものの、水素吸蔵量が3重量%未満と低いものであった。
In recent years, there has been an active movement to use hydrogen as energy. In particular, when hydrogen is used as a fuel source for a fuel cell, it does not emit harmful exhaust gas, and thus has attracted attention as a fuel suitable for the environment.
As a method of storing hydrogen fuel, a method of storing liquid hydrogen or gaseous hydrogen in a tank and a method of storing hydrogen in a hydrogen storage alloy are known. When stored in liquid hydrogen, the liquefaction temperature is very low, minus 252.8 ° C. Therefore, if a highly heat-insulating container is not used, vaporization (boil-off) will be severe and hydrogen as a fuel will leak slightly. There is difficulty in storage for the period. Moreover, when storing with gaseous hydrogen, gas is compressed and stored to 700 atmospheres or more. For this reason, a container that can withstand ultra-high pressure is required, but it is important to consider sufficient safety. Instead of these, the method of storing hydrogen by storing it in the hydrogen storage alloy has the advantage that the above-mentioned cryogenic temperature and high pressure are not required, but the hydrogen storage amount is as low as less than 3% by weight.

水素吸蔵量の大きな金属としてMgが知られている。Mg金属は理論的に最大7.6重量%まで水素を吸蔵することができる。しかし、Mg金属は水素吸蔵速度が遅く、温度を340℃以上に上げないと実用時間内で水素を十分には吸蔵せず、さらに水素放出においても、340℃以上の温度が必要であると言った欠点を有していた。これは、MgH2は解離しにくく、水素の拡散係数が小さいためである。Mgへの水素吸放出操作を実用時間内に収めようとすると、理論水素吸蔵量よりかなり少ない量しか利用できないことになる。
Mg金属の上述した欠点を改良する方法として、触媒元素としてI2、Ni、Cuを添加する方法、Mg金属表面にNiをメッキした方法、3A族のAl、Ga、Inを添加する方法が知られている。また、Mg金属にFe、Ni微粒子、またはC(炭素)を添加しメカニカルアロイングする方法が知られている。
Mg is known as a metal having a large hydrogen storage capacity. Mg metal can theoretically store hydrogen up to 7.6% by weight. However, Mg metal has a slow hydrogen storage rate, and unless the temperature is raised to 340 ° C. or higher, hydrogen cannot be fully stored within the practical time. Further, it is said that a temperature of 340 ° C. or higher is required for hydrogen release. Had the disadvantages. This is because MgH 2 is difficult to dissociate and the diffusion coefficient of hydrogen is small. If the operation of absorbing and releasing hydrogen into Mg is attempted within a practical time, only a considerably smaller amount than the theoretical hydrogen storage amount can be used.
Known methods for improving the above-mentioned drawbacks of Mg metal include a method of adding I 2 , Ni and Cu as catalytic elements, a method of plating Ni on the Mg metal surface, and a method of adding 3A group Al, Ga and In. It has been. In addition, a method of mechanical alloying by adding Fe, Ni fine particles, or C (carbon) to Mg metal is known.

薄膜材料を応用したMg系複合材料の他の例としてMgとPdの多層膜が特許文献1に開示されている。しかしこの複合材料は希少資源の高価なPdを使用するため実用的でない。
更に水素吸蔵以外の用途である電極材料として使用するMg−Ni−グラファイト材料が非特許文献1に記載されているが、水素吸蔵材料への言及はない。
特開2002−105576号公報 Journal of Alloys and Compounds 293-295 (1999) p653-657
As another example of the Mg-based composite material to which the thin film material is applied, a multilayer film of Mg and Pd is disclosed in Patent Document 1. However, this composite material is not practical because it uses rare Pd which is a rare resource.
Further, although Mg-Ni-graphite material used as an electrode material for purposes other than hydrogen storage is described in Non-Patent Document 1, there is no mention of hydrogen storage material.
JP 2002-105576 A Journal of Alloys and Compounds 293-295 (1999) p653-657

上述した通り、水素吸蔵材料としてのMg金属は水素吸蔵量の面では満足できる性能を有しているが、実用化できる水素吸蔵・放出速度を得られていない。また放出温度が約340℃という高温を必要とするという問題がある。この温度を高くても320℃、特に300℃未満にできれば、実用的価値の高い水素吸蔵材料として使用できる。従って、水素吸蔵量をさほど低下させることなく、比較的低温で、実用的な水素吸蔵・放出を行い得る水素吸蔵材料が要請されている。
本発明は、実用的な水素解離圧力、水素解離温度及び水素吸放出量を有し、さらには大気圧以上の放出圧力を有する、比較的低温で水素吸蔵・放出を行うことのできるMg系水素吸蔵材料及びその製造方法を提供することを目的とする。
As described above, Mg metal as a hydrogen storage material has satisfactory performance in terms of the amount of hydrogen stored, but has not obtained a hydrogen storage / release rate that can be put to practical use. Further, there is a problem that the discharge temperature requires a high temperature of about 340 ° C. If this temperature can be increased to 320 ° C., particularly less than 300 ° C., it can be used as a hydrogen storage material with high practical value. Therefore, there is a demand for a hydrogen storage material that can perform practical hydrogen storage / release at a relatively low temperature without significantly reducing the amount of hydrogen storage.
The present invention has a practical hydrogen dissociation pressure, hydrogen dissociation temperature, and hydrogen absorption / desorption amount, and further has a release pressure of atmospheric pressure or higher, and Mg-based hydrogen capable of absorbing and desorbing hydrogen at a relatively low temperature. An object is to provide an occlusion material and a method for producing the same.

本発明は、Mgと炭素を含んで成ることを特徴とする水素吸蔵材料、及びMg、炭素(C)及びニッケル(Ni)を含んで成ることを特徴とするMg系水素吸蔵材料、及びスパッタリングによるこれらの製造方法である。   The present invention relates to a hydrogen storage material characterized by comprising Mg and carbon, and a Mg-based hydrogen storage material characterized by comprising Mg, carbon (C) and nickel (Ni), and sputtering. These manufacturing methods.

以下本発明を詳細に説明する。
本発明者らは、Mg系材料から成る水素吸蔵材料の実用化への最大の障害となっている水素吸蔵・放出能を一定値以上に維持したまま、水素吸蔵・放出温度あるいは水素吸蔵・放出速度を実用レベルまで低下させることをMg金属への添加材料面及び製法面から種々検討して本発明に到達したものである。
このような特性を有する添加材料として本発明者らは炭素を見出した。Mg金属に添加された炭素は、実質的にMg金属の有する水素吸蔵能力を増加させる。つまり炭素添加により得られるMg−炭素系水素吸蔵材料の水素吸蔵量はMg金属の理論的な水素吸蔵量である7.6重量%より僅かに低下するが、活性化処理時の粒成長が抑制され、水素吸蔵・放出速度が遥かに速くなるため利用できる水素の吸蔵・放出量は増加する。更に水素放出温度を実用的なレベルまで低下させ、比較的低温での水素吸蔵・放出を可能にする。
炭素添加量は、0.3〜10重量%であることが望ましく、0.3重量%未満であると炭素添加効果が現れ難く、10重量%を超えると全体に対するMg比が減少して、水素放出量に悪影響が及ぶことがある。
The present invention will be described in detail below.
The inventors of the present invention have maintained the hydrogen storage / release capability or the hydrogen storage / release temperature while maintaining the hydrogen storage / release capability that is the greatest obstacle to the practical application of the hydrogen storage material made of Mg-based materials. Various studies have been made to reduce the speed to a practical level in terms of the material added to Mg metal and the manufacturing method, and the present invention has been achieved.
The present inventors have found carbon as an additive material having such characteristics. Carbon added to Mg metal substantially increases the hydrogen storage capacity of Mg metal. In other words, the hydrogen storage capacity of the Mg-carbon-based hydrogen storage material obtained by carbon addition is slightly lower than 7.6 wt%, which is the theoretical hydrogen storage capacity of Mg metal, but the grain growth during the activation treatment is suppressed. In addition, since the hydrogen storage / release speed is much faster, the amount of hydrogen storage / release available is increased. Furthermore, the hydrogen release temperature is lowered to a practical level, and hydrogen storage / release at a relatively low temperature is enabled.
The amount of carbon added is desirably 0.3 to 10% by weight, and if it is less than 0.3% by weight, the effect of carbon addition hardly appears, and if it exceeds 10% by weight, the Mg ratio to the whole decreases, and hydrogen May adversely affect release.

このMg−C系材料にNiを添加すると、さらに吸蔵、放出が速くなり、水素放出温度が更に低下して、より実用的な水素吸蔵材料が得られる。しかしC添加しない場合は前述の粒成長が起こり、最大吸蔵量が減少する。Niは水素解離触媒としてよく利用されており、水素吸放出速度を向上させる働きがある。特にMg2Ni合金として用いられているが、水素吸蔵量は3.6重量%と低く、Mg金属の7.6重量%と比較すると半減している。従って、加えるNi量はできる限り少ないことが望ましく、例えば1〜20重量%とする。
これらの本発明による水素吸蔵材料は、通常水素解離圧力が0.1〜0.3MPa以内、即ち大気圧以上にあり、このときの温度が少なくとも純Mgの水素解離温度340℃よりも低い320℃未満、条件によっては260℃程度まで低下し、加えて水素吸放出量が少なくとも5.5重量%以上となる。
When Ni is added to this Mg—C-based material, the occlusion and desorption are further accelerated, the hydrogen desorption temperature is further lowered, and a more practical hydrogen occlusion material can be obtained. However, when C is not added, the aforementioned grain growth occurs and the maximum occlusion amount decreases. Ni is often used as a hydrogen dissociation catalyst and has a function of improving the hydrogen absorption / release rate. Although it is especially used as an Mg 2 Ni alloy, the hydrogen storage amount is as low as 3.6% by weight, which is halved compared with 7.6% by weight of Mg metal. Therefore, it is desirable that the amount of Ni added is as small as possible, for example, 1 to 20% by weight.
These hydrogen storage materials according to the present invention usually have a hydrogen dissociation pressure of 0.1 to 0.3 MPa, that is, an atmospheric pressure or more, and the temperature at this time is at least 320 ° C. lower than the hydrogen dissociation temperature 340 ° C. of pure Mg. In some cases, the temperature is lowered to about 260 ° C., and the hydrogen absorption / release amount is at least 5.5 wt% or more.

Mgと炭素の相図は知られておらず、通常の鋳造法では製造できない。しかし化合物としてMg23、MgC2が500℃以上の反応温度で生成することが知られている。従って本発明のMg系水素吸蔵材料は、ガス雰囲気下で蒸発合成する乾式合成法や蒸着、スパッタリングなどの薄膜形成法、メカニカルアロイング(MA)などの粉末合成法により製造できる。
例えばMAは、Mg金属粉末とグラファイト等の炭素粉末の混合物をボールミルによって強く攪拌して合金、又はそれに類似する複合物を調製する方法である。しかしこの方法で調製されるMg系水素吸蔵材料はこれまで満足できる性能が得られていない。
一方スパッタリングは、Mgやグラファイトのターゲットに通電して、基板に向けて原子を照射して基板上に成膜した後、基板から剥離、所望の金属、合金あるいは複合物を得る方法であり、原子レベルで混合または積層された材料が得られる。
The phase diagram of Mg and carbon is not known and cannot be produced by normal casting methods. However, it is known that Mg 2 C 3 and MgC 2 are produced as compounds at a reaction temperature of 500 ° C. or higher. Therefore, the Mg-based hydrogen storage material of the present invention can be produced by a dry synthesis method in which vapor synthesis is performed in a gas atmosphere, a thin film formation method such as vapor deposition or sputtering, or a powder synthesis method such as mechanical alloying (MA).
For example, MA is a method in which a mixture of Mg metal powder and carbon powder such as graphite is vigorously stirred by a ball mill to prepare an alloy or a similar composite. However, Mg-based hydrogen storage materials prepared by this method have not achieved satisfactory performances so far.
Sputtering, on the other hand, is a method of energizing an Mg or graphite target, irradiating atoms toward the substrate to form a film on the substrate, and then peeling off the substrate to obtain a desired metal, alloy or composite. Materials mixed or laminated at levels are obtained.

本発明は、Mgと炭素を含んで成ることを特徴とするMg系水素吸蔵材料あるいはMg、炭素及びNiを含んで成ることを特徴とするMg系水素吸蔵材料である。
Mgと炭素を含む水素吸蔵材料は、Mg金属単独の水素吸蔵材料と比較して実用時間内での水素吸蔵・放出量、換言すると水素吸蔵・放出速度が増加する。更に水素解離圧力はMg金属の場合より上昇し、従って少なくとも大気圧以上の水素放出圧力とするための温度は純Mg金属の水素解離温度340℃よりも低い320℃未満、条件によっては260℃程度まで低下し、加えて水素吸放出量が少なくとも5.5重量%以上となる。
The present invention is an Mg-based hydrogen storage material characterized by comprising Mg and carbon, or an Mg-based hydrogen storage material characterized by comprising Mg, carbon and Ni.
The hydrogen storage material containing Mg and carbon increases the amount of hydrogen storage / release within a practical time, in other words, the hydrogen storage / release rate, compared to the hydrogen storage material of Mg metal alone. Furthermore, the hydrogen dissociation pressure is higher than that in the case of Mg metal. Therefore, the temperature for setting the hydrogen release pressure to at least atmospheric pressure is less than 320 ° C., which is lower than the hydrogen dissociation temperature of pure Mg metal, 340 ° C. In addition, the hydrogen absorption / release amount is at least 5.5 wt% or more.

Mg、炭素及びNiを含む水素吸蔵材料は、Mgと炭素を含む水素吸蔵材料と比較して水素放出量がやや低下する傾向があるものの、水素放出温度を低下させることができ、低温での操業が要請される用途においては特に有用である。
これらのMg系水素吸蔵材料は、極力微細な粒子が得られる乾式合成法が望ましく、これにより得られる材料は活性化処理温度においても結晶粒子が小さく維持でき、かつ水素吸蔵に必要な原子の規則性が確保でき水素吸蔵・放出量が増加する。
Although hydrogen storage materials containing Mg, carbon and Ni tend to have a slight decrease in hydrogen release compared to hydrogen storage materials containing Mg and carbon, they can lower the hydrogen release temperature and operate at low temperatures. This is particularly useful in applications where demands are required.
These Mg-based hydrogen storage materials are preferably dry synthesis methods that can produce as fine particles as possible, and the resulting materials can maintain small crystal particles even at the activation temperature, and the atomic rules necessary for hydrogen storage Can be secured, and the amount of hydrogen storage / release increases.

本発明方法のスパッタリングによるMg系水素吸蔵材料の製造方法を図1に示す実施形態例に基づいて説明する。
図1は、スパッタリングによるMg系水素吸蔵材料の製造に使用できるスパッタリング装置の概略正面図である。
スパッタリングチャンバー11の底壁12には、アルゴンガス導入口13と真空ポンプ(図示略)が接続された吸引口14が形成され、前記底壁12内面には長方形状の炭素ターゲット15が設置され、該ターゲット15はターゲット用電源16を介して接地されている。該底壁12に連続する左右の側壁17、18にはそれぞれ長方形状のNiターゲット19及びMgターゲット20が設置され、両ターゲット19及び20はそれぞれターゲット用電源21及び22を介して接地されている。
前記チャンバー11の中央には、正八角形の回転可能な基板ホルダー23が上下方向を向くように設置され、このホルダー23の正八角形の各辺には計8個の板状の基板24が固定され、前記ホルダー23とともに回転するように構成されている。
The manufacturing method of Mg type | system | group hydrogen storage material by sputtering of this invention method is demonstrated based on the example of embodiment shown in FIG.
FIG. 1 is a schematic front view of a sputtering apparatus that can be used for producing an Mg-based hydrogen storage material by sputtering.
A suction port 14 connected to an argon gas inlet 13 and a vacuum pump (not shown) is formed in the bottom wall 12 of the sputtering chamber 11, and a rectangular carbon target 15 is installed on the inner surface of the bottom wall 12, The target 15 is grounded via a target power supply 16. A rectangular Ni target 19 and an Mg target 20 are respectively installed on the left and right side walls 17 and 18 continuing to the bottom wall 12, and both the targets 19 and 20 are grounded via target power sources 21 and 22, respectively. .
A regular octagonal rotatable substrate holder 23 is installed in the center of the chamber 11 so as to face in the vertical direction. A total of eight plate-like substrates 24 are fixed to each side of the regular octagon of the holder 23. The holder 23 is configured to rotate.

このスパッタリングチャンバー11内を真空ポンプを使用して真空にし、その後アルゴンガス導入口13からアルゴンガスを導入し、チャンバー内を減圧下に保持する。
基板ホルダー23を回転させながら、炭素ターゲット15、Niターゲット19及びMgターゲット20に所望の組成になるようにそれぞれのターゲット用電源16、21及び22から電力を供給すると、C原子、Ni原子及びMg原子が基板24表面に照射されてMg−C−Ni合金が各基板24表面に層状に形成される。この層状合金を基板24から剥離させることにより、所望のMg系水素吸蔵材料が得られる。
The inside of the sputtering chamber 11 is evacuated using a vacuum pump, and then argon gas is introduced from the argon gas inlet 13 to keep the inside of the chamber under reduced pressure.
When electric power is supplied from the respective target power sources 16, 21, and 22 so that the carbon target 15, the Ni target 19, and the Mg target 20 have a desired composition while rotating the substrate holder 23, C atoms, Ni atoms, and Mg Atoms are irradiated onto the surface of the substrate 24, and an Mg—C—Ni alloy is formed in layers on the surface of each substrate 24. By peeling this layered alloy from the substrate 24, a desired Mg-based hydrogen storage material can be obtained.

次に本発明に係わるMg系水素吸蔵材料の製造に関する実施例を説明するが、該実施例は本発明を限定するものではない。   Next, examples relating to the production of the Mg-based hydrogen storage material according to the present invention will be described, but the examples do not limit the present invention.

[実施例1〜7]
市販のMg金属及び黒鉛板を5インチ×12インチ角、厚さ6mmに成形してそれぞれMgターゲット及びCターゲットとした。
スパッタリングチャンバー内の壁面に、対向するように前記MgターゲットとCターゲットを固定し、両ターゲットの中間のチャンバー床面に回転可能な基板ホルダーを設置し、このホルダーに、基板を保持させた。
前記チャンバー内を、ロータリーポンプ及びクライオポンプを使用して真空脱気した後、アルゴンガスを導入し、0.13〜4Pa(約1〜30mtorr)のアルゴン雰囲気とした。前記基板ホルダー10〜30回転/分で回転させながら、前記Mgターゲット及びCターゲットに0.2〜2kWで通電し同時に放電させて前記基板表面にMgとCを付着させて成膜し、基板を除去してMg系水素吸蔵合金を得た。
基板ホルダーの回転数、各ターゲットへの投入電力をかえて膜厚調整を行い、Mg中のグラファイト量を制御し、表1の実施例1〜7に示すMg−C合金を作製した。なお炭素量は試料の燃焼法により求めた。
[Examples 1-7]
Commercially available Mg metal and graphite plates were molded to 5 inches × 12 inches square and 6 mm thick to form Mg targets and C targets, respectively.
The Mg target and C target were fixed to the wall surface in the sputtering chamber so as to face each other, and a rotatable substrate holder was installed on the chamber floor between the two targets, and the substrate was held by this holder.
The chamber was evacuated using a rotary pump and a cryopump, and then argon gas was introduced to create an argon atmosphere of 0.13 to 4 Pa (about 1 to 30 mtorr). While rotating the substrate holder at 10 to 30 revolutions / minute, the Mg target and C target are energized at 0.2 to 2 kW and simultaneously discharged to deposit Mg and C on the substrate surface to form a substrate. Removal of the Mg-based hydrogen storage alloy was obtained.
The film thickness was adjusted by changing the number of rotations of the substrate holder and the input power to each target, the amount of graphite in Mg was controlled, and Mg—C alloys shown in Examples 1 to 7 in Table 1 were produced. The amount of carbon was determined by the sample combustion method.

活性化処理として、各Mg系水素吸蔵合金を真空中で430℃に加熱した後、370℃にて水素により4MPaに加圧した。この真空、加圧操作を3サイクル繰返し行った。
その後、各合金の水素吸放出量を、容積法による圧力組成等温線測定法(JIS H7201)に規定されている真空原点法を採用し、温度を変えて測定した。このときの平衡待ち時間は最大15分とした。水素放出温度は、ファントホッフ式に示される温度と圧力の関係から求め、水素解離圧が0.2MPaである際の温度として定義した。各合金について水素放出温度及び水素放出量を測定し、その結果を表1に纏めた。また実施例3のPCT曲線を図2に示した。
As activation treatment, each Mg-based hydrogen storage alloy was heated to 430 ° C. in a vacuum, and then pressurized to 4 MPa with hydrogen at 370 ° C. This vacuum and pressurization operation was repeated 3 cycles.
Thereafter, the hydrogen absorption / release amount of each alloy was measured by adopting the vacuum origin method defined in the pressure composition isotherm measurement method (JIS H7201) by the volume method, and changing the temperature. The equilibrium waiting time at this time was a maximum of 15 minutes. The hydrogen release temperature was determined from the relationship between the temperature and pressure shown in the Van Hof equation, and was defined as the temperature when the hydrogen dissociation pressure was 0.2 MPa. The hydrogen release temperature and the hydrogen release amount were measured for each alloy, and the results are summarized in Table 1. The PCT curve of Example 3 is shown in FIG.

[実施例8〜11]
Mgターゲット及びCターゲットに加えてNiターゲットを使用したこと以外は実施例1と同じ条件でMg系水素吸蔵合金を製造しかつ活性化処理を行い、表1の実施例8〜11に示すMg−グラファイト−Ni合金を作製した。
各合金について実施例1と同様にして水素放出温度及び水素放出量を測定し、その結果を表1に纏めた。Ni量はICP分析して求めた。
[Examples 8 to 11]
Except that the Ni target was used in addition to the Mg target and the C target, an Mg-based hydrogen storage alloy was produced and activated under the same conditions as in Example 1, and the Mg − shown in Examples 8 to 11 in Table 1 were used. A graphite-Ni alloy was prepared.
For each alloy, the hydrogen release temperature and the hydrogen release amount were measured in the same manner as in Example 1, and the results are summarized in Table 1. The amount of Ni was determined by ICP analysis.

更に実施例9で得られた水素放出温度が最も低かった合金について所定温度で水素吸蔵特性及び放出特性(PCT曲線)を測定した。そのPCT曲線を図3、4のグラフに示した。図3は実施例9で得られたMg−炭素−Ni合金の通常のPCT曲線を示すグラフ、図4は実施例9で得られたMg−炭素−Ni合金の大気圧放出を考慮し0.2MPa前後のプラトー圧が得られる温度域でPCT曲線を精密に測定したグラフである。   Further, for the alloy having the lowest hydrogen release temperature obtained in Example 9, the hydrogen storage characteristics and release characteristics (PCT curve) were measured at a predetermined temperature. The PCT curves are shown in the graphs of FIGS. FIG. 3 is a graph showing a normal PCT curve of the Mg-carbon-Ni alloy obtained in Example 9, and FIG. It is the graph which measured the PCT curve precisely in the temperature range in which the plateau pressure of around 2 MPa is obtained.

[比較例1]
Mgターゲットのみを使用したこと以外は実施例1と同じ条件でMg金属を作製した。
このMg金属について実施例1と同様にして水素放出温度及び水素放出量を測定したPCT曲線を図5に示した。その結果を表1に纏めた。
[Comparative Example 1]
Mg metal was produced under the same conditions as in Example 1 except that only the Mg target was used.
FIG. 5 shows a PCT curve in which the hydrogen release temperature and the hydrogen release amount of this Mg metal were measured in the same manner as in Example 1. The results are summarized in Table 1.

[比較例2]
Niターゲットを加えて、Mgターゲット及びNiターゲットを使用したこと以外は比較例1と同じ条件でMg−Ni合金を作製した。
このMg−Ni合金について実施例1と同様にして水素放出温度及び水素放出量を測定し図6に示し、その結果を表1に纏めた。
[Comparative Example 2]
An Mg—Ni alloy was produced under the same conditions as in Comparative Example 1 except that the Ni target was added and the Mg target and the Ni target were used.
For this Mg—Ni alloy, the hydrogen release temperature and the hydrogen release amount were measured in the same manner as in Example 1 and shown in FIG. 6. The results are summarized in Table 1.

Figure 2005206918
Figure 2005206918

[実施例及び比較例の考察]
比較例1でMg金属の水素放出量が5.1重量%と、理論値より大きく減少しているが、これは水素放出速度が遅く、設定した平衡待ち時間(15分)では5.1重量%の水素しか放出されなかったからである。比較例2では、Niを添加することにより水素放出温度が僅かに低下し、水素放出速度が大きくなっているが、水素吸蔵放出量がMg金属と同一で増量できていなかった。
実施例1〜7のMg−C合金では、水素放出温度がMg金属の339℃より低下し、287〜316℃の水素放出温度を有する合金が得られた。Mg金属と比較して23〜52℃低下しており、低温での水素吸蔵・放出が可能になった。
[Consideration of Examples and Comparative Examples]
In Comparative Example 1, the hydrogen release amount of Mg metal was 5.1% by weight, which was much smaller than the theoretical value, but this was a slow hydrogen release rate, and 5.1% at the set equilibrium waiting time (15 minutes). This is because only% of hydrogen was released. In Comparative Example 2, the hydrogen release temperature was slightly lowered and the hydrogen release rate was increased by adding Ni, but the hydrogen storage / release amount was the same as that of Mg metal and could not be increased.
In the Mg—C alloys of Examples 1 to 7, the hydrogen release temperature decreased from 339 ° C. of Mg metal, and an alloy having a hydrogen release temperature of 287 to 316 ° C. was obtained. Compared with Mg metal, the temperature was lowered by 23 to 52 ° C., and hydrogen storage / release at low temperatures became possible.

更に実施例1〜7のMg−C合金の水素放出量は、6.0〜6.9重量%で、Mg金属の理論吸蔵値である7.6重量%と比較しても減少量は僅かであり、前述の通り、測定時間内の水素放出量を比較すると、Mg金属(5.1重量%)より十分に大きな放出速度が得られたことが分かる。
次いで実施例8〜11のMg−C−Ni合金では、比較例1及び2と比較して水素放出温度は低く、水素放出量は増加したことが分かる。更にこのMg−C−Ni合金の水素放出量は5.7〜6.8重量%で、実施例1〜7のMg−C合金より全体的に水素放出量が少なくなっているが、水素放出温度は267〜312℃で、更に低下し実用化が可能な温度になったことが分かる。
Furthermore, the hydrogen release amount of the Mg—C alloys of Examples 1 to 7 was 6.0 to 6.9% by weight, and the decrease amount was slight even compared to 7.6% by weight which is the theoretical storage value of Mg metal. As described above, when the hydrogen release amount within the measurement time is compared, it can be seen that a release rate sufficiently higher than that of Mg metal (5.1 wt%) was obtained.
Next, in the Mg—C—Ni alloys of Examples 8 to 11, it can be seen that the hydrogen release temperature was lower than that of Comparative Examples 1 and 2, and the hydrogen release amount increased. Furthermore, the hydrogen release amount of this Mg—C—Ni alloy is 5.7 to 6.8% by weight, and the overall hydrogen release amount is smaller than that of the Mg—C alloys of Examples 1 to 7, but hydrogen release It can be seen that the temperature was 267 to 312 ° C., and the temperature was further lowered and became practical.

スパッタリングによるMg系水素吸蔵材料の製造に使用したスパッタリング装置の概略正面図。The schematic front view of the sputtering device used for manufacture of Mg type | system | group hydrogen storage material by sputtering. 実施例3で得られたMg−炭素合金のPCT曲線を示すグラフ。4 is a graph showing a PCT curve of the Mg-carbon alloy obtained in Example 3. FIG. 実施例9で得られたMg−炭素−Ni合金のPCT曲線を示すグラフ。The graph which shows the PCT curve of the Mg-carbon-Ni alloy obtained in Example 9. 実施例9で得られたMg−炭素−Ni合金の大気圧放出を考慮し0.2MPa前後のプラトー圧が得られる温度域でPCT曲線を精密に測定したグラフ。The graph which measured the PCT curve precisely in the temperature range in which the plateau pressure of about 0.2 MPa is obtained in consideration of the atmospheric pressure release of the Mg-carbon-Ni alloy obtained in Example 9. 比較例1で得られたMgのPCT曲線を示すグラフ。4 is a graph showing a PCT curve of Mg obtained in Comparative Example 1. 比較例2で得られたMg−Ni合金のPCT曲線を示すグラフ。The graph which shows the PCT curve of the Mg-Ni alloy obtained in Comparative Example 2.

符号の説明Explanation of symbols

11 スパッタリングチャンバー
13 アルゴンガス導入口
14 吸引口
15、19、20 ターゲット
23 基板ホルダー
24 基板
11 Sputtering chamber 13 Argon gas inlet 14 Suction port 15, 19, 20 Target 23 Substrate holder 24 Substrate

Claims (6)

マグネシウムと炭素を含んで成ることを特徴とするマグネシウム系水素吸蔵材料。   A magnesium-based hydrogen storage material comprising magnesium and carbon. 炭素0.3〜10重量%及びマグネシウム残部から成る請求項1記載のマグネシウム系水素吸蔵材料。   The magnesium-based hydrogen storage material according to claim 1, comprising 0.3 to 10% by weight of carbon and the balance of magnesium. マグネシウム、炭素及びニッケルを含んで成ることを特徴とするマグネシウム系水素吸蔵材料。   A magnesium-based hydrogen storage material comprising magnesium, carbon and nickel. 炭素0.3〜10重量%、ニッケル1〜20重量%及びマグネシウム残部から成る請求項3記載のマグネシウム系水素吸蔵材料。   The magnesium-based hydrogen storage material according to claim 3, comprising 0.3 to 10% by weight of carbon, 1 to 20% by weight of nickel, and the balance of magnesium. マグネシウムターゲットと炭素ターゲットを不活性ガス雰囲気中で基板表面にスパッタリングしてマグネシウムと炭素を含むマグネシウム系水素吸蔵材料を製造することを特徴とする方法。   A method for producing a magnesium-based hydrogen storage material containing magnesium and carbon by sputtering a magnesium target and a carbon target on a substrate surface in an inert gas atmosphere. マグネシウムターゲット、炭素ターゲット及びニッケルターゲットを不活性ガス雰囲気中で基板表面にスパッタリングしてマグネシウム、炭素及びニッケルを含むマグネシウム系水素吸蔵材料を製造することを特徴とする方法。   A method for producing a magnesium-based hydrogen storage material containing magnesium, carbon, and nickel by sputtering a magnesium target, a carbon target, and a nickel target on the substrate surface in an inert gas atmosphere.
JP2004017185A 2004-01-26 2004-01-26 Magnesium based hydrogen storage material Pending JP2005206918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017185A JP2005206918A (en) 2004-01-26 2004-01-26 Magnesium based hydrogen storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017185A JP2005206918A (en) 2004-01-26 2004-01-26 Magnesium based hydrogen storage material

Publications (1)

Publication Number Publication Date
JP2005206918A true JP2005206918A (en) 2005-08-04

Family

ID=34902105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017185A Pending JP2005206918A (en) 2004-01-26 2004-01-26 Magnesium based hydrogen storage material

Country Status (1)

Country Link
JP (1) JP2005206918A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357019C (en) * 2005-11-10 2007-12-26 上海大学 Method for preparing magnesium composite carbon nanometer tube hydrogen-storage material
CN100413577C (en) * 2006-11-02 2008-08-27 山东科技大学 Magnesium/petroleum coke nano hydrogen-storing material
CN102418018A (en) * 2011-11-16 2012-04-18 南京工业大学 Nano-magnesium-based hydrogen storage material and preparation method thereof
CN108188406A (en) * 2017-12-21 2018-06-22 陕西科技大学 A kind of magnesium-base nanometer composite hydrogen-storing material and preparation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100357019C (en) * 2005-11-10 2007-12-26 上海大学 Method for preparing magnesium composite carbon nanometer tube hydrogen-storage material
CN100413577C (en) * 2006-11-02 2008-08-27 山东科技大学 Magnesium/petroleum coke nano hydrogen-storing material
CN102418018A (en) * 2011-11-16 2012-04-18 南京工业大学 Nano-magnesium-based hydrogen storage material and preparation method thereof
CN108188406A (en) * 2017-12-21 2018-06-22 陕西科技大学 A kind of magnesium-base nanometer composite hydrogen-storing material and preparation method

Similar Documents

Publication Publication Date Title
JP4700062B2 (en) Non-evaporable getter alloy for hydrogen sorption
Liu et al. Synthesis of Mg@ Mg 17 Al 12 ultrafine particles with superior hydrogen storage properties by hydrogen plasma–metal reaction
Liu et al. Mg-based nanocomposites with improved hydrogen storage performances
JP4986101B2 (en) Hydrogen storage material and method for producing the same
Lv et al. Effect of Ni content on microstructural evolution and hydrogen storage properties of Mg–xNi–3La (x= 5, 10, 15, 20 at.%) alloys
CN105779848A (en) Ferrotitanium-based hydrogen storage alloy
Khrussanova et al. Hydrogen sorption properties of an Mg–Ti–V–Fe nanocomposite obtained by mechanical alloying
JP2008266781A (en) METHOD FOR MANUFACTURING Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER AND Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER OBTAINED BY THE MANUFACTURING METHOD
JP2006152376A (en) Nano transition metal particle, its production method, and hydrogen absorption composite material composited with nano transition metal particle
JP2005206918A (en) Magnesium based hydrogen storage material
JPH0382734A (en) Rare earth metal-series hydrogen storage alloy
JP4403499B2 (en) Hydrogen storage material
Zhang et al. Microstructural evolution and hydrogen storage properties of Mg1-xNbx (x= 0.17~ 0.76) alloy films via Co-Sputtering
JP4846090B2 (en) Mg-based high storage amount hydrogen storage alloy
JP2005306724A (en) Material for hydrogen storage, production method for the same, and method for storing hydrogen
Kumar et al. Tailoring the hydrogen absorption desorption's dynamics of MgMgH2 system by titanium suboxide doping
JPH0542489B2 (en)
Lototsky et al. Applications of Zr–V hydrogen getters in vacuum-plasma devices: Phase-structural and hydrogen sorption characteristics
JP2005126273A (en) Hydrogen storage material precursor and its manufacturing method
WO2004067166A1 (en) Hydrogen storage material and method for producing same
JP2009011899A (en) Hydrogen occluding material and its manufacturing method
JP3747243B2 (en) Material for reversibly storing and releasing hydrogen and hydrogen storage device filled with the material
JPS62284033A (en) Reversible hydrogen occluding and releasing material
JP4545469B2 (en) Method for supporting catalyst on hydrogen storage material and hydrogen storage material
JP2005178095A (en) Manufacturing method for mg-cu composite material and hydrogen occluding alloy