JP2005021768A - Pulverizing mill and its fine powder product - Google Patents

Pulverizing mill and its fine powder product Download PDF

Info

Publication number
JP2005021768A
JP2005021768A JP2003187997A JP2003187997A JP2005021768A JP 2005021768 A JP2005021768 A JP 2005021768A JP 2003187997 A JP2003187997 A JP 2003187997A JP 2003187997 A JP2003187997 A JP 2003187997A JP 2005021768 A JP2005021768 A JP 2005021768A
Authority
JP
Japan
Prior art keywords
stator
groove
rotor
inclined side
circle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003187997A
Other languages
Japanese (ja)
Other versions
JP4123078B2 (en
Inventor
Takatsugu Yano
喬嗣 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Turbo Kogyo Co Ltd
Original Assignee
Turbo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Turbo Kogyo Co Ltd filed Critical Turbo Kogyo Co Ltd
Priority to JP2003187997A priority Critical patent/JP4123078B2/en
Publication of JP2005021768A publication Critical patent/JP2005021768A/en
Application granted granted Critical
Publication of JP4123078B2 publication Critical patent/JP4123078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To pulverize an average particle diameter of a pulverized substance to a conventional pulverization limit particle diameter or smaller, to make pulverization power small and to enhance wearing-resistance of surfaces of a rotor and a stator in a pulverizing mill. <P>SOLUTION: A pulverization groove 8A is made as large as possible in a range that an in-groove pulverization track circle C2 of radius of curvature (r) of a circular bottom surface 8c of the cylindrical stator 8 is not popped out from an outer diameter circle 8M of the stator 8. A steep inclined side surface 8a of the pulverization groove 8A is positioned on a tangent 8T1 in a direction overlaid on the in-groove track circle c2 at inclination of 5-30° against a linear line L2. The other loose inclined side surface 8b is positioned on a tangent 8T2 in a direction leaving from the in-groove track circle c2 in a range of 30-60° against the linear line L2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、静電荷像現像用トナー、熱可塑性樹脂微粉末、粉体塗料などの微粉を得るための微粉砕機に関するものである。
【0002】
【従来の技術】
従来、数ミリの原料を数ミクロンから10数ミクロンの微粉に粉砕する、回転式の微粉砕機として、図7及び、特許文献1、2に示すような微粉砕機が知られている。
【0003】
【特許文献1】特開平05−269393号公報
【特許文献2】実用新案登録第3067835号公報
【0004】
従来例として図7に示す微粉砕機は、回転軸に支持された外側表面に母線と平行な多数の凸部を周方向に連続させた円筒状回転子と、回転子の外側に間隙を設けて装着された内側表面に母線と平行な多数の凸部を周方向に連続させた円筒状固定子との間で被粉砕物を微粉砕するものであり、固定子の各凸部は、一辺が固定子の中心に向き、他辺が前記一辺と50°前後の角度をなし、回転子の回転方向前方が漸次低くなる三角形状断面が設けられ、又、回転子の各凸部は、一辺が回転子の中心、換言すると、固定子の中心、に向き、他辺が前記一辺と50°前後の角度をなし、回転子の回転方向後方が漸次低くなる三角形状断面に設けられている。
【0005】
また、特許文献1及び2の従来例の微粉砕機においては、アーチ形の半円形天井部をもつ円筒形外箱の断面の曲率中心を中心として描いた円の一部が、外箱内面を外周とした円環と、回転子の外面を内周とする円環に突入するような断面溝が多数近接して設けられ、また回転子の外面に同様な半円形の底部を持ち、その曲率中心を中心として描いた円の一部が、前記円環に突入するようなアーチ形の断面溝を多数近接して設けている。
【0006】
前記従来例の微粉砕機は、次のような効果を奏する。
▲1▼:従来のジェット気流を利用したジェット気流式粉砕機に比較して、粉砕電力エネルギーを格段に節約できること。
▲2▼:過剰に粉砕される微粉、超微粉の発生が少なく、目的の粒度範囲の製品が得られるために製品収率が向上すること、
▲3▼:高速回転する回転子と固定子の壁面に気流に乗った粒子が衝突したり、回転子と固定子内で発生する高速渦流内でせん断作用によって粉砕されるために、粒子の形状が角が取れ 丸みを帯びるために、比表面積が小さくなり、流動性が良好となること。
▲4▼:その結果 後工程において充填性に優れ、特に静電荷像現像用トナーにおいては外添加剤の添加量が少なくなること。
【0007】
【発明が解決しようとする課題】
ところが、前記従来例には、次のような問題がある。
▲1▼:例えば、静電荷像現像用のトナーについては、最近のさらなる高画質化に伴い、トナーの要求粒子径は平均径(d50)が8ミクロンから5ミクロンを要求され、さらに狭い範囲の粒度分布が要求されてきているが、これらの従来の微粉砕機では、1回の粉砕で平均径を要求粒度まで粉砕することは不可能である。
そこで、要求粒度まで粉砕するために、何回も繰返し粉砕を行うことになるが、この様にすると、トナー粒子が熱の影響をうけて品質の劣化が生じるだけでなく、大きな電力エネルギーが必要となる。
【0008】
▲2▼:樹脂微粉末、例えば、フッ素樹脂粉末においては、従来の微粉砕機では1回の粉砕で得られる平均粒径は10数ミクロンが限界である。そこで、目的とする10ミクロン以下を得るため、前記樹脂粉末を分級機で微粉と粗粉に分級し、その粗粉を再度微粉砕機に戻す操作を何回も繰り返して粉砕している。そのため、樹脂粉末の微粉砕においても、トナーと同様の大きなエネルギーを消費してしまう。
【0009】
▲3▼:実際に従来の回転式粉砕機においても、回転子の周速は130〜160m/secまで高められており、この中で粉砕原料が衝撃や高速渦流内でせん断力を受けて粉砕されるときには、供給エネルギーの多くが熱に変換され粉砕物温度と空気温度が上昇する。
【0010】
例えば、トナーなどにおいては、トナー内に含まれる樹脂のガラス転移点の制限から、粉砕機内の温度を40から50℃以下に抑える必要があり、吸入空気温度を例えば、マイナス20℃などにして供給している。そのため、従来のままの条件で回転子の周速を高くすれば理論的には粉砕粒度はさらに細かくなるが、空転動力は周速の約3乗で増加するため、粉砕動力は極端に大きくなり、製品の温度が上昇し目的とする品質が得られない。
【0011】
現実には 周速を180m/secまで上げて、原料と入口吸入空気温度を下げて、得られる製品の温度を従来と同じにしても、粉砕粒度はほとんど細かくならない。これは 従来例を含めた現状の粉砕機の回転子と固定子の形状では、限界まで細かく粉砕された粒子は、発生する気流に乗せられて、回転子や固定子に粒子が衝突したり、渦流内でのせん断作用を効果的に受ける事が出来なくなるためである。このことは粉砕機を研究している専門家の間では良く知られている現象である。
【0012】
▲4▼:回転式微粉砕機においては、回転子が高速で回転することにより粉砕が行われる原理のために、回転子と固定子は原料粉末と激しく接触し、その結果 表面に摩耗が生じる。特に、硬く、かつ、フェライトやシリカなどの無機物が混入している、トナーや粉体塗料などの原料粉を粉砕すると、回転子と固定子で構成される粉砕室の粉砕表面の摩耗が著しく進行する。
そのため、従来は、表面に硬質クロームメッキをコーティングする方法、 タングステンカーバイトにコバルトを12 ̄17%含有した粉末を高速フレーム溶射法で溶着する方法、ニッケルクロム、シリコン、ボロン、鉄、を含有させた粉末を、溶射後加熱炉にいれて溶融密着させる方法、ニッケルクロム鋼の表面に窒化をする方法などが行われてきた。
【0013】
しかし、いずれも磁性粉(フェライト等)が混入しているトナーや無機物の混入している樹脂粉末、粉体塗料などに対しては摩耗の進行が押さえらず、摩耗の進行と供に粉砕機としての性能の低下が著しかった。 また表面にタングステンカーバイトを貼り付けたり、ステライトを溶着した後、表面形状を所望の形状に切削する方法も技術的には可能であるが、コストが飛躍的に増大し、回転式粉砕機の経済的な優位性が損なわれてくるため現実的ではなかった。
【0014】
この発明は、上記事情に鑑み、粉砕物の平均粒径を従来の粉砕限界粒子径以下に粉砕すると同時に、粉砕動力を小さくすることである。他の目的は、粉砕機内部の回転子と固定子の表面の耐摩耗性を向上させることである。
【0015】
【課題を解決するための手段】
この発明は、円筒内表面に多数の粉砕溝が形成されている固定子と、該固定子の内側に間隙を介して同心に配設され、その外表面に多数の粉砕溝が形成されている回転子と、を備えた微粉砕機において;
前記固定子の粉砕溝は、固定子の中心線に直角な断面に形成された、互いに対向する急斜側面と緩斜側面と、前記両側面に連続する円弧状底面とを有する放射状粉砕溝であり、前記放射状粉砕溝は、前記円弧状底面の曲率中心を中心として描いた溝内軌跡円が、該固定子の内径円から飛び出さない範囲内で極力大きく形成されおり、前記急斜側面は、該固定子の中心と該急斜側面の先端とを通る直線に対して、5°〜30°の傾斜で前記溝内軌跡円にかぶさる方向の接線上に位置し、
前記緩斜側面は、前記直線に対して30°〜60°の範囲で前記溝内軌跡円から遠ざかる方向の接線上に位置することを特徴とする。
【0016】
この発明は、円筒内表面に多数の粉砕溝が形成されている固定子と、該固定子の内側に間隙を介して同心に配設され、その外表面に多数の粉砕溝が形成されている回転子と、を備えた微粉砕機において;前記回転子の粉砕溝は、回転子の中心線に直角な断面に形成された、互いに対向する急斜側面と緩斜側面と、前記両側面に連続する円弧状底面とを有する放射状粉砕溝であり、前記放射状粉砕溝は、前記円弧状底面の曲率中心を中心として描いた溝内軌跡円が、該回転子の外径円から飛び出さない範囲内で極力大きく形成されおり、前記急斜側面は、該回転子の中心と該急斜側面の先端とを通る直線に対して、5°〜30°の傾斜で前記溝内軌跡円にかぶさる方向の接線上に位置し、前記緩斜側面は、前記直線に対して30°〜60°の範囲で前記溝内軌跡円から遠ざかる方向の接線上に位置することを特徴とする。
【0017】
この発明は、円筒内表面に多数の粉砕溝が形成されている固定子と、該固定子の内側に間隙を介して同心に配設され、その外表面に多数の粉砕溝が形成されている回転子と、を備えた微粉砕機において;前記固定子の粉砕溝は、固定子の中心線に直角な断面に形成された、互いに対向する急斜側面と緩斜側面と、前記両側面に連続する円弧状底面とを有する放射状粉砕溝であり、前記放射状粉砕溝は、前記円弧状底面の曲率中心を中心として描いた溝内軌跡円が、該固定子の内径円から飛び出さない範囲内で極力大きく形成されおり、前記急斜側面は、該固定子の中心と該急斜側面の先端とを通る直線に対して、5°〜30°の傾斜で前記溝内軌跡円にかぶさる方向の接線上に位置し、前記緩斜側面は、前記直線に対して30°〜60°の範囲で前記溝内軌跡円から遠ざかる方向の接線上に位置し、前記回転子の粉砕溝は、回転子の中心線に直角な断面に形成された、互いに対向する急斜側面と緩斜側面と、前記両側面に連続する円弧状底面とを有する放射状粉砕溝であり、前記放射状粉砕溝は、前記円弧状底面の曲率中心を中心として描いた溝内軌跡円が、該回転子の外径円から飛び出さない範囲内で極力大きく形成されおり、前記急斜側面は、該回転子の中心と該急斜側面の先端とを通る直線に対して、5°〜30°の傾斜で前記溝内軌跡円にかぶさる方向の接線上に位置し、前記緩斜側面は、前記直線に対して30°〜60°の範囲で前記溝内軌跡円から遠ざかる方向の接線上に位置することを特徴とする。
【0018】
この発明の間隙は、前記溝内軌跡円の半径rの、1/2から2倍の範囲内であることを特徴とする。この発明の固定子及び回転子の放射状粉砕溝のピッチは、2〜6mmの範囲内であることを特徴とする。
【0019】
この発明の回転子および固定子は、炭素を触媒とした無水クロム酸結晶水中に浸漬され、電気鍍金法により、その表面に耐摩耗性を有するクロムおよび炭化クロム合金皮膜が形成されていることを特徴とする。この発明の固定子及び回転子の表面硬度が、ビッカース硬さ(HV)900から1200であることを特徴とする。
【0020】
この発明の微粉末製品は、請求項1、2、又は、3記載の微粉砕機により生産されたことを特徴とする。この発明の微粉末製品が、粒径10μm以下の静電荷現像用トナー、熱可塑性樹脂、又は、粉体塗料であることを特徴とする。
【0021】
【発明の実施の形態】
本発明者は、前記目的を達成するため、鋭意実験研究を重ねたところ、次のような知見を得た。
高速回転する回転子の外周に粉砕原料を投入して粉砕仕事を効果的に行うためには、回転子自身が送風機のような搬送空気流を生じさせない場合には、原料の滞留時間の調整や搬送のために粉砕機とは別に送風機を必要とする。
【0022】
一方、周速が約100m/sec以上で回転する回転子の外周には 回転子が断面の円の軌跡から遠ざかる方向の側面が第一に気流に接する方向に回転する場合には、回転子と固定子の粉砕溝、即ち、底面と両側面に囲まれた空間、に高速の渦流が発生する。この渦流は、溝内軌跡円、即ち、円弧状底面の曲率半径の軌跡、を有する空間において中心部を除いて、渦なしの回転運動、いわゆる自由渦の状態が生じており、(速度)×(渦の回転半径)=(一定)、の自由渦の法則の中で粉砕原料が大きなせん断力を受けて細かく粉砕される。
【0023】
従って、粉砕チャンスを多くして細かくするためには、多数の粉砕溝を回転子と固定子に設け、その上で円弧状底面の曲率半径を極力大きくした形状として、回転子を高速で回転させることにより、大きなせん断力を粉砕原料に与えることが出来る。又、高速渦流の中でせん断作用を受けるため粒子の形状はより丸みを帯びたものとなる。
【0024】
但し、この半円径の空間内に生じる高速自由渦を壊さないためには、次の条件を具備する必要がある。
▲1▼:上記の条件である粉砕溝の溝内軌跡円が、回転子の外径円から飛び出さない範囲で極力大きくすること、
▲2▼:固定子の粉砕溝の溝内軌跡円も同様に固定子の内径円から飛び出ない範囲で極力大きくすること、
▲3▼:粉砕溝は、互いに傾斜角度の異なる急斜側面と緩斜側面を有する、放射状粉砕溝にすること。
【0025】
微粉砕機の粉砕溝は、円弧状底面と、該円弧状底面に連続する左右の側面と、から構成されているが、両側面が互いに平行であると、この空間に高速の渦流が形成されにくくなり、原料粒子に確実にせん断力が働かず、現在要求される水準の粒度まで細かくならないことと、製品中に粗粒が混入し、粒度分布範囲の狭い製品が得られず、効率の良い粉砕ができなくなる。
【0026】
そこで、固定子の粉砕溝の一方の側面、即ち、回転子の回転方向に対向する方向の側面(急斜側面)を、該側面の先端と固定子の中心とを結ぶ直線に対して5°〜30°の傾斜で前記溝内軌跡円にかぶさる方向の接線上に位置させ、他方の側面、即ち、回転子の回転方向を向いてる側面(緩斜側面)、を前記直線に対して30°〜60°の範囲で前記溝内軌跡円から遠ざかる方向の接線上に位置させ、
又、回転子の一方の側面、即ち、回転子の回転方向に対向する方向の側面(急斜側面)を、該側面の先端と回転子の中心とを結ぶ直線に対して5°〜30°の傾斜で前記溝内軌跡円にかぶさる方向の接線上に位置させ、他方の側面、即ち、回転子の回転方向を向いてる側面(緩斜側面)、を前記直線に対して30°〜60°の範囲で前記溝内軌跡円から遠ざかる方向の接線上に位置させること、により前記問題は解消する。
【0027】
固定子の内面半径R1は、回転子の外面半径R2より、溝内軌跡円の半径rの、2倍以下から1/2以上の寸法だけ大きくし、固定子と回転子との間隙を、2r(直径)〜r/2(半径の半分)にする。
【0028】
この間隙が、前記2r(直径)より大きくなると、回転子のなかで生じる1つの高速渦流内で細かくならなかった粒子が、渦流から遠心力を受けて飛び出たときに、固定子側の渦流に入り込むことなく、機外に設置された原料搬送用の送風機により生じる気流に乗って搬送されやすくなり、粉砕チャンスが少なくなり希望の粒度まで粉砕されなくなる現象が生じる。
【0029】
又、前記間隙が、前記1/2r(半径の半分)より小さくなると、粉砕原料搬送気流の流れる断面積が減少して、大きな圧力損失が生じ、送風機が大きな圧力を必要とすること、及びこの間隙が非常に狭くなるため、固定子の円筒中心と回転子の円筒中心が厳密に一致するように工作精度を高めて製作することが求められるため、非常に高価なものとなる。
【0030】
固定子と回転子表面に形成される、上記放射状粉砕溝のピッチは、2〜6mmの範囲の間隔にする。
【0031】
この自由渦の中で粉砕されて非常に細かくなった原料は、渦の中心部に行き、円筒型回転子と固定子の軸方向に搬送されていく反面、まだ細かくならない原料は、渦の外周に位置してそこから飛び出し、回転子の回転方向に搬送されながら回転速度より遅い速度で回転子の周りを移動して、隣の半円形の溝の中に発生する渦流に入り込み、再度せん断力を受ける。
【0032】
さらに大きな未粉砕粒子は 回転子の遠心力により固定子側に飛ばされ、固定子の渦流の中で同様にせん断力による粉砕作用を受けて細かくなって行く。
【0033】
回転子や固定子の表面の耐摩耗方法として、無水クロム酸結晶水の中に炭素を触媒として溶解した溶液中に被処理物を浸漬し、従来の硬質クロームメッキを施工する電気鍍金法の電極の数を増加し、微弱電流を制御することで被処理物上に強固な皮膜を生成する事が可能となった。
【0034】
この方法は、炭素の反応を利用することにより、従来母材の表面とメッキ層の間に生じる酸化皮膜の生成を阻止することが出来、母材との密着力を従来の硬質クロームメッキなどの表面硬化方法に比較してはるかに強固にする事が出来る。
【0035】
さらに、この方法によれば、100ミクロン以上の膜厚を生成しても、固定子と回転子の細かい複雑な形状に、トレースした硬化層を形成することが可能であり、また任意の厚さに制御できるが、母材との密着力を弱めず、またこの固定子と回転子の細かい複雑な形状の上に均一な厚さの硬化層を形成するためには100ミクロン以下が望ましい。
【0036】
高速回転する回転子に原料が連続して接触し、また相対する固定子にも原料が高速で衝突しても、硬化層が摩耗せずに長時間維持するためには、原材料粒子の硬度と同等またはそれ以上の硬度と組織内の強固な分子間結合力が求められるが、この処理により生成される硬化層には触媒の働きにより、炭化クロム合金(Cr+Cr23)が生成され、それが核となり結晶間の結合力が強固となり、そのために、この硬化層の表面だけでなく内部の母材との結合面近傍までHV900〜1200の硬度を維持できるものとなった。
【0037】
さらに、この硬化層を生成するために、浸漬する溶液の処理温度は60℃と極めて低いため、回転子と固定子の素材である炭素鋼や合金鋼の組織変態が生じず、熱処理や加工による残留応力が開放されて寸法が狂うことも回避できるようになった。
本発明は、上記知見に基づいてなされたものである。
【0038】
本発明の実施例を図1から図6によって説明する。
微粉砕機1の円筒形外箱1aの中心線A‐A上にあって、軸受2,2´で回転できるように支持されている回転軸3は、その端部に固定されているプーリー4に掛けられた、ベルト(図示せず)により矢印A7方向に高速回転させられている。
【0039】
この回転軸3には、キー5及びナット6を介して半径R2の回転子7が固定されている。この回転子7の外表面上には、図3、図5に示すように、中心線A−Aに平行な複数の粉砕溝7Aが、周方向に所定ピッチpで配設されている。隣り合う粉砕溝7A、7Aは、突起7dを介して連続している。
【0040】
この粉砕溝7Aは、互いに対向する急斜側面7aと緩斜側面7bと、前記側面7a、7bに連続する円弧状底面7cと、を備えた放射状粉砕溝である。この円弧状底面7cは、曲率半径rの円弧状に形成されている。この曲率半径rは、例えば、0.7mm、または1.05mmであるが、必要に応じて適宜選択される。
【0041】
この粉砕溝7Aでは、円弧状底面7cの曲率中心p1を中心として描いた円の軌跡(以下、「溝内軌跡円」という)c1が、回転子7の外径R2の円の軌跡(以下、「外径円」という)7Mから飛び出さない範囲で、この溝内軌跡円c1が極力大きく取られている。
【0042】
急斜側面7a、即ち、回転子7の回転方向A7に対向している面、は、回転子7の中心Oと該急斜側面7aの先端7pを結ぶ直線L1に対して、β=5〜30°の傾斜で溝内軌跡円c1にかぶさる方向の接線7T1上に位置している。
【0043】
緩斜側面7b、即ち、回転子7の回転方向を向いている面は前記直線L1に対して、α=30°〜60°の範囲で前記溝内軌跡円c1から遠ざかる方向の接線7T2上に位置している。
【0044】
一方、外箱1aの内側は、内径R1の固定子8となっている。この固定子8の内表面上には、図3、図5に示すように、中心線A−Aに平行な複数の粉砕溝8Aが、周方向に所定ピッチpで配設されている。隣り合う粉砕溝8A、8Aは、突起8dを介して連続している。
【0045】
この粉砕溝8Aは、互いに対向する急斜側面8aと緩斜側面8bと、前記側面8a、8bに連続する円弧状底面8cと、を備えた放射状粉砕溝である。この円弧状底面8cは、曲率半径rの円弧状に形成されている。この曲率半径rは、前記回転子7の底面7cと同一形状であるが、必ずしも同一寸法である必要はない。
【0046】
この粉砕溝8Aでは、円弧状底面8cの曲率中心p2を中心として描いた円の軌跡(以下、「溝内軌跡円」という)c2が、固定子8の内径R1の円の軌跡(以下、「内径円」という)8Mから飛び出さない範囲で、この構内軌跡円c2が極力大きく取られている。
【0047】
急斜側面8a、即ち、回転子7の回転方向A7を向いている面、は、固定子8の中心Oと該急斜側面8aの先端8pを結ぶ直線L2に対して、β=5〜30°の傾斜で溝内軌跡円c2にかぶさる方向の接線8T1上に位置している。
【0048】
緩斜側面8b、即ち、回転子7の回転方向A7に対向している面、は前記直線L2に対して、α=30°〜60°の範囲で前記溝内軌跡円c2から遠ざかる方向の接線8T2を上に位置している。
前述のように、回転子7の急傾側面7a、緩斜側面7bと固定子8の急斜側面8a、緩斜側面8bとは、互いに逆向きになっており、固定子8の急斜側面8aは、回転子7の急斜側面7aと対向し、又、回転子7の緩斜側面7bと固定子8の緩斜側面8bと対向している。
【0049】
前述のように、溝内軌跡円c1、c2が固定子8の内径円8M、回転子7の外径円7Mから各々飛び出ることのない範囲にするのは、前記溝軌跡円c1、c2が飛び出ると、放射状粉砕溝7A,8Aの中で生じる高速渦流に乱れが生じ、自由渦が形成されにくくなり、原料粒子が大きなせん断力を受ける事が出来なくなるからである。
【0050】
固定子8と回転子7の間隙Sは、下記寸法が採用される。
R1(固定子8の内径)−R2(回転子7の外径)
=r(溝内軌跡円の半径)×(2〜1/2)
【0051】
固定子8、回転子7の多数の放射状粉砕溝7A、8Aは、同じ寸法ピッチpで形成される。このピッチpは、2〜6mmの範囲で、適宜選択される。
また、原料の性質や、所望の製品粒度分布構成により、固定子8のピッチpと、回転子7のピッチpを2〜6mmの範囲で変更することにより、最適な製品が得られることもある。
【0052】
回転子7及び固定子8は、炭素を触媒とした無水クロム酸結晶水中に浸漬して、電気鍍金法により、表面に耐摩耗性を有するクロムおよび炭化クロム合金皮膜が形成されている。この固定子8および回転子7の表面硬度は、ビッカース硬さ(HV)900から1200である。
【0053】
図6において、9はスクリューフイーダ、10は冷風発生手段20、を示す。
【0054】
次に本実施例の作動について説明する。
粉体原料Mは、冷風発生装置を通過した気流22と共に微粉砕機1の入口11に入り、ここに設けられた渦巻き室11aにおいて旋回流となり、高速回転している回転子7と固定子8の間に搬送され、回転子の突起7dで加速され、かなり粗いものは打撃され細かくなる。
【0055】
一方、気流は、回転子の緩斜側面7bに沿って乱れを生じること無く流れ、該粉砕溝7Aの突起7dを乗り越えた後、急斜面7aと円弧状底面7cの作る空間に高速の自由渦F1を形成する。
前記粉体原料Mは、該粉砕溝7Aの内部でp1を中心とした空気の旋回流F1の中に入り、渦無しの旋回運動(自由渦)の作用でせん断力を受けて細かくなる。
【0056】
このとき、まだ所望の粒度にならないやや粗い粒径の原料は、旋回流F1の中で遠心力を受け、該粉砕溝7Aから出て、気流に乗り隣の粉砕溝7Aに入り同様な働きを受ける
【0057】
さらに粗い粒径の原料は、同様に旋回流F1の中で大きな遠心力を受け、該粉砕溝7Aから出て、固定子側に飛ばされ、固定子側の粉砕溝8Aの中で同様なせん断作用を受け細かくなる。
【0058】
そして、細かくなった粉体原料は、回転子7、固定子8それぞれの旋回流F1、F2の中心に入ったまま、粉砕溝7A 8Aの中を出口12に向かって流れ、出口12より機外に出る。
【0059】
粉体原料Mは、回転子7、固定子8のそれぞれの粉砕溝7A 8Aに生じる旋回流F1、F2の中で旋回すると同時に、入口11側から出口12側に向かって回転子7、固定子8の表面を転がりながら何度も接触を繰り返して粉砕されれるため、球状に近い形となって出口12から排出される。
【0060】
以上の工程において、微粉砕機1により所定の粒度、例えば、平均粒径5μm、に細かく粉砕された粉体原料(製品)は、図6の送風機17により前記入口11側から吸引される空気とともに搬送され、サイクロン13において粉体と空気に分離される。
【0061】
前記製品は、サイクロン13下の製品タンク14に捕集され、空気は集塵器(バグフィルター)15に搬送され、微小な粉塵を取り除いた空気は大気へ放出される。この送風機17の搬送風量と吸引圧力の制御は、風量計10から電気変換された信号を受けて、電動弁16の開度を調整するか、または 送風機自身の回転数を制御して必要な風量と吸引圧力に調整する。
【0062】
【実施例】
次に、本発明の粉砕実施例および耐摩耗材の実施例について説明する。
粉砕試験:
前記実施例に示す微粉砕機(図3)の粉砕試験結果を、従来例の微粉砕機(図7)のそれと比較し、表1に示す。
粉砕原料は、非磁性1成分トナー(ポリエステル系)であり、粗粉砕機で粗粉砕して所定の粒度にした後、その粗分を微粉砕機に供給した。粉砕原料供給機の原料供給量は、20kg/hに固定した。
【0063】
なお、図7において、107は回転子、107Aは粉砕溝、107a、107bは粉砕溝の側面、108は固定子、108Aは粉砕溝、108a、108bは粉砕溝の側面、Oは中心、R1は固定子108の内径、R2は回転子107の外径、αは直線L1、L2に対する傾斜角度、A7は回転方向、をそれぞれ示す。
【0064】
【表1】

Figure 2005021768
【0065】
表1から明らかなように、実施例1においては、平均径5.5μを達成し、また周速を下げた実施例2においても平均粒径6.2μとなった。
実施例3、4においては、固定子と回転子の粉砕溝のピッチ(p=4mm)を実施例1、2(p=2.9mm)より大きくしたが、これらの実施例3、4と、同じピッチ(p=4mm)の比較例1、2とを比較すると、平均粒径及び粉砕時動力において前記実施例3、4が優れていることがわかる。
前記実施例1〜4と比較例1、2の製品の10.1μm以上(体積%)を比較すると、前者が1.2%、1.2%、1.3%、5.8%、後者が32.5%、56.6%、であり、両者間において極めて大きな相違があり、実施例の粉砕効率が著しく良いことがわかる。
【0066】
耐摩耗性試験:
回転子および/または固定子の表面処理において、例えば、磁性粉55%混入ポリエステル系トナーを長期に粉砕した場合の寿命の比較試験を行った。その結果、粉砕性能が初期と全く変化しない状態を維持できる連続運転時間は、電気鍍金法により回転子/固定子表面に、硬質クロームメッキを100ミクロンの膜厚でコーテイングした場合においては、約1300〜1500時間であったものが、改良型炭化クローム合金メッキを100ミクロンの膜厚でコーテイングした場合には、10000〜11000時間となり、約7倍以上の寿命を維持した。
【0067】
【発明の効果】
この発明は、以上のように構成したので、粉砕物の平均粒径を従来の粉砕限界粒径以下に微粉砕することができると同時に、粉砕動力は逆に従来より小さくすることができる。
【0068】
又、固定子及び回転子は、炭素を触媒とした無水クロム酸結晶水中に浸漬して、電気鍍金法により表面に、耐摩耗性を有するクロムおよび炭化クロム合金皮膜を形成させたので、従来例より耐摩耗性が向上し、使用寿命を長くすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す微粉砕機の垂直断面図である。
【図2】図1のI‐I線垂直断面図である。
【図3】図1のII‐II線垂直断面図である。
【図4】図1のIII‐III線垂直断面図である。
【図5】図3における気流の流れを示すものである。
【図6】図1の微粉砕機を使用した装置全体を示す図である。
【図7】従来の機械式粉砕機の垂直断面図を示す図で、図3に対応する図である。
【符号の説明】
7 回転子
7A 放射状粉砕溝
7a 急斜側面
7b 緩斜側面
7c 円弧状底面
7d 突起
7T1 接線
7T2 接線
8 固定子
8A 放射状粉砕溝
8a 急斜側面
8b 緩斜側面
8c 円弧状底面
8d 突起
8T1 接線
8T2 接線
A−A 中心線
C1 溝内軌跡円
C2 溝内軌跡円
L1 直線
L2 直線
r 溝円軌跡円の半径
R1 固定子の内周半径
R2 回転子の外周半径
S 間隙[0001]
[Industrial application fields]
The present invention relates to a pulverizer for obtaining fine powder such as toner for developing electrostatic images, thermoplastic resin fine powder, powder paint and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a fine pulverizer as shown in FIG. 7 and Patent Documents 1 and 2 is known as a rotary fine pulverizer that pulverizes a raw material of several millimeters into a fine powder of several microns to several tens of microns.
[0003]
[Patent Document 1] Japanese Patent Laid-Open No. 05-269393
[Patent Document 2] Utility Model Registration No. 3067835
[0004]
As a conventional example, the pulverizer shown in FIG. 7 is provided with a cylindrical rotor in which a large number of convex portions parallel to the generatrix are continuously provided on the outer surface supported by the rotating shaft, and a gap is provided on the outer side of the rotor. The object to be crushed is finely pulverized with a cylindrical stator in which a large number of convex portions parallel to the bus bar are continuously provided on the inner surface mounted in the circumferential direction. Is directed to the center of the stator, the other side forms an angle of about 50 ° with the one side, and a triangular cross section is provided in which the front in the rotational direction of the rotor is gradually lowered. Is provided in a triangular cross section that faces the center of the rotor, in other words, the center of the stator, the other side forms an angle of about 50 ° with the one side, and the rear in the rotational direction of the rotor gradually decreases.
[0005]
In addition, in the conventional pulverizers of Patent Documents 1 and 2, a part of a circle drawn around the center of curvature of the cross section of the cylindrical outer box having an arch-shaped semicircular ceiling is formed on the inner surface of the outer box. A circular ring with an outer periphery and a cross-sectional groove that protrudes into an annular ring with the outer surface of the rotor as the inner periphery are provided close to each other, and the outer surface of the rotor has a similar semi-circular bottom and has a curvature. A part of a circle drawn around the center is provided with a large number of arch-shaped cross-sectional grooves that protrude into the ring.
[0006]
The conventional pulverizer of the conventional example has the following effects.
{Circle around (1)} Compared with a conventional jet airflow type pulverizer using a jet airflow, the pulverization power energy can be significantly saved.
{Circle around (2)} The generation of excessively fine powders and ultrafine powders is small, and the product yield is improved because a product having the target particle size range is obtained.
(3): Particles in the air current collide with the rotor and stator walls rotating at high speed, or crushed by shearing action in the high-speed vortex generated in the rotor and stator. Since the corner is rounded and rounded, the specific surface area becomes small and the fluidity is good.
{Circle around (4)} As a result, the filling property is excellent in the post-process, and the additive amount of the external additive is reduced particularly in the toner for developing an electrostatic image.
[0007]
[Problems to be solved by the invention]
However, the conventional example has the following problems.
(1): For example, for toners for developing electrostatic images, with the recent further increase in image quality, the required particle diameter of the toner is required to be an average diameter (d50) of 8 to 5 microns, which is in a narrower range. Although the particle size distribution has been required, it is impossible for these conventional pulverizers to pulverize the average diameter to the required particle size in one pulverization.
Therefore, in order to pulverize to the required particle size, pulverization is repeated many times. In this way, the toner particles are not only affected by heat but also deteriorated in quality, and require large electric energy. It becomes.
[0008]
{Circle around (2)} In resin fine powder, for example, fluororesin powder, the average particle size obtained by one pulverization with a conventional fine pulverizer is limited to a few tens of microns. Therefore, in order to obtain a target of 10 microns or less, the resin powder is classified into fine powder and coarse powder by a classifier, and the operation of returning the coarse powder to the fine grinder again and again is pulverized. For this reason, even in the fine pulverization of the resin powder, the same large energy as that of the toner is consumed.
[0009]
(3): Even in the conventional rotary pulverizer, the peripheral speed of the rotor is increased to 130 to 160 m / sec. In this, the pulverized raw material is crushed by impact and shearing force in a high-speed vortex When doing so, much of the supplied energy is converted to heat, raising the pulverized product temperature and the air temperature.
[0010]
For example, in the case of toner or the like, the temperature in the pulverizer needs to be suppressed to 40 to 50 ° C. or less due to the restriction of the glass transition point of the resin contained in the toner, and the intake air temperature is supplied at, for example, minus 20 ° C. is doing. For this reason, if the peripheral speed of the rotor is increased under the same conditions as in the past, the pulverization particle size will theoretically become finer. However, since the idling power increases at the third power of the peripheral speed, the pulverization power becomes extremely large. The product temperature rises and the desired quality cannot be obtained.
[0011]
In reality, even if the peripheral speed is increased to 180 m / sec, the temperature of the raw material and the inlet intake air is decreased, and the temperature of the obtained product is the same as the conventional one, the pulverized particle size is hardly reduced. This is because in the shape of the rotor and stator of the current crusher including the conventional example, the finely pulverized particles are put on the generated air current, and the particles collide with the rotor and the stator, This is because the shearing action in the vortex cannot be effectively received. This is a phenomenon that is well known among experts working on crushers.
[0012]
{Circle around (4)} In the rotary fine pulverizer, due to the principle that the pulverization is performed by rotating the rotor at a high speed, the rotor and the stator are in violent contact with the raw material powder, resulting in wear on the surface. In particular, when the raw powder such as toner and powder coating, which is hard and mixed with inorganic substances such as ferrite and silica, is pulverized, wear on the pulverized surface of the pulverization chamber composed of a rotor and a stator progresses remarkably. To do.
Therefore, conventionally, a method of coating hard chrome plating on the surface, a method of depositing a powder containing 12% to 17% of cobalt on tungsten carbide by a high-speed flame spraying method, nickel chrome, silicon, boron and iron are included. There have been carried out a method in which the powder is put into a heating furnace after thermal spraying to melt and adhere, a method of nitriding the surface of nickel chrome steel, and the like.
[0013]
However, in all cases, the progress of wear is not suppressed against toners containing magnetic powder (ferrite, etc.), resin powders containing inorganic substances, and powder paints. As the performance declined, In addition, it is technically possible to attach tungsten carbide to the surface or weld stellite, and then cut the surface shape to the desired shape. It was not realistic because the economic advantage would be lost.
[0014]
In view of the above circumstances, the present invention is to reduce the pulverization power at the same time that the average particle size of the pulverized product is pulverized to be equal to or smaller than the conventional pulverization limit particle size. Another object is to improve the wear resistance of the rotor and stator surfaces inside the grinder.
[0015]
[Means for Solving the Problems]
In the present invention, a stator in which a large number of grinding grooves are formed on the inner surface of a cylinder, and a plurality of grinding grooves are formed on the outer surface of the stator concentrically with a gap inside the stator. A pulverizer with a rotor;
The crushing groove of the stator is a radial crushing groove formed in a cross section perpendicular to the center line of the stator and having a steeply inclined side surface and a gradual inclined side surface facing each other, and an arcuate bottom surface continuous to the both side surfaces. The radial crushing groove is formed as large as possible within a range in which a locus circle in the groove drawn around the center of curvature of the arc-shaped bottom surface does not protrude from the inner diameter circle of the stator, , Located on a tangent line in a direction covering the track circle in the groove with an inclination of 5 ° to 30 ° with respect to a straight line passing through the center of the stator and the tip of the steep side surface,
The gently sloping side surface is located on a tangent line in a direction away from the locus circle in the groove in a range of 30 ° to 60 ° with respect to the straight line.
[0016]
In the present invention, a stator in which a large number of grinding grooves are formed on the inner surface of a cylinder, and a plurality of grinding grooves are formed on the outer surface of the stator concentrically with a gap inside the stator. A pulverizing groove provided on the rotor, the pulverizing groove of the rotor being formed in a cross section perpendicular to the center line of the rotor, the steeply inclined side surface and the gently inclined side surface facing each other, and the both side surfaces A radial crushing groove having a continuous arcuate bottom surface, and the radial crushing groove is a range in which a locus circle in the groove drawn around the center of curvature of the arcuate bottom surface does not protrude from the outer diameter circle of the rotor. The steeply inclined side surface is covered with the track circle in the groove at an inclination of 5 ° to 30 ° with respect to a straight line passing through the center of the rotor and the tip of the steeply inclined side surface. Located on the tangent line, and the slanted side surface is in a range of 30 ° to 60 ° with respect to the straight line. Characterized in that located on a tangential direction away from the groove track yen.
[0017]
In the present invention, a stator in which a large number of grinding grooves are formed on the inner surface of a cylinder, and a plurality of grinding grooves are formed on the outer surface of the stator concentrically with a gap inside the stator. A pulverizing groove having a rotor; and the pulverizing groove of the stator is formed in a cross section perpendicular to the center line of the stator, the steeply inclined side surface and the gently inclined side surface facing each other, and the both side surfaces A radial crushing groove having a continuous arcuate bottom surface, the radial crushing groove being within a range in which a trajectory circle in the groove drawn around the center of curvature of the arcuate bottom surface does not protrude from the inner diameter circle of the stator. The steeply inclined side surface is formed so as to cover the locus circle in the groove at an inclination of 5 ° to 30 ° with respect to a straight line passing through the center of the stator and the tip of the steeply inclined side surface. Located on the tangent line, the gentle side surface is in the range of 30 ° -60 ° with respect to the straight line The crushing groove of the rotor is located on a tangent in a direction away from the locus circle in the groove, and the pulverization groove of the rotor is formed in a cross section perpendicular to the center line of the rotor. A radial crushing groove having arcuate bottom surfaces that are continuous on both side surfaces, and the radial crushing groove has a locus circle in the groove drawn around the center of curvature of the arcuate bottom surface protruding from an outer diameter circle of the rotor. The steeply inclined side surface is formed as large as possible within a range that does not, and the locus circle in the groove has an inclination of 5 ° to 30 ° with respect to a straight line passing through the center of the rotor and the tip of the steeply inclined side surface. The gradual slope side surface is located on a tangent line in a direction away from the track circle in the groove in a range of 30 ° to 60 ° with respect to the straight line.
[0018]
The gap of the present invention is characterized in that it is within a range of 1/2 to 2 times the radius r of the locus circle in the groove. The pitch of the radial grinding grooves of the stator and the rotor of the present invention is in the range of 2 to 6 mm.
[0019]
The rotor and stator of the present invention were immersed in chromic anhydride crystal water using carbon as a catalyst, and a chromium and chromium carbide alloy film having wear resistance was formed on the surface by an electroplating method. Features. The stator and rotor of the present invention have a surface hardness of Vickers hardness (HV) 900 to 1200.
[0020]
The fine powder product of the present invention is produced by the fine pulverizer according to the first, second, or third aspect. The fine powder product of the present invention is characterized by being an electrostatic charge developing toner having a particle size of 10 μm or less, a thermoplastic resin, or a powder coating.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor has conducted extensive experimental research to achieve the above object, and has obtained the following knowledge.
In order to perform pulverization work effectively by introducing the pulverized raw material to the outer periphery of the rotor rotating at high speed, if the rotor itself does not generate a carrier air flow like a blower, A blower is required separately from the pulverizer for conveyance.
[0022]
On the other hand, on the outer periphery of the rotor rotating at a peripheral speed of about 100 m / sec or more, when the side surface in the direction in which the rotor moves away from the cross-sectional circle trajectory first rotates in the direction in contact with the airflow, A high-speed eddy current is generated in the crushing groove of the stator, that is, the space surrounded by the bottom surface and both side surfaces. This vortex flow has a vortex-free rotational motion, that is, a so-called free vortex state, except for the central portion in a space having a track circle in the groove, that is, a track of the radius of curvature of the arc-shaped bottom, In the free vortex law of (vortex rotation radius) = (constant), the pulverized raw material is subjected to a large shear force and finely pulverized.
[0023]
Therefore, in order to increase the pulverization chance and make it finer, a large number of pulverization grooves are provided in the rotor and the stator, and the rotor is rotated at a high speed by making the radius of curvature of the arc-shaped bottom surface as large as possible. Thus, a large shearing force can be applied to the pulverized raw material. Further, since the shearing action is received in the high-speed vortex, the shape of the particle becomes more rounded.
[0024]
However, in order not to break the high-speed free vortex generated in the semicircular diameter space, it is necessary to satisfy the following conditions.
(1): The above-mentioned conditions, the in-groove locus circle of the crushing groove, should be made as large as possible so long as it does not protrude from the outer diameter circle of the rotor,
(2): The locus circle in the crushing groove of the stator should be made as large as possible within the range that does not protrude from the inner diameter circle of the stator.
{Circle around (3)} The grinding grooves should be radial grinding grooves having a steep side surface and a gentle side surface with different inclination angles.
[0025]
The pulverizing groove of the pulverizer is composed of an arc-shaped bottom surface and left and right side surfaces continuous to the arc-shaped bottom surface. If both side surfaces are parallel to each other, a high-speed vortex flow is formed in this space. Efficiently, the shearing force does not act reliably on the raw material particles, the particle size does not become as fine as the currently required level, and coarse particles are mixed in the product, resulting in a product with a narrow particle size distribution range and high efficiency. It cannot be crushed.
[0026]
Therefore, one side surface of the crushing groove of the stator, that is, the side surface in the direction opposite to the rotation direction of the rotor (steeply inclined side surface) is 5 ° with respect to a straight line connecting the tip of the side surface and the center of the stator. The other side surface, that is, the side surface facing the rotation direction of the rotor (slowly inclined side surface) is 30 ° with respect to the straight line. Located on the tangential line in a direction away from the locus circle in the groove in a range of ~ 60 °,
Also, one side surface of the rotor, that is, the side surface in the direction opposite to the rotation direction of the rotor (the steeply inclined side surface) is 5 ° to 30 ° with respect to a straight line connecting the tip of the side surface and the center of the rotor. The other side surface, that is, the side surface (slowly inclined side surface) facing the rotation direction of the rotor, is positioned on a tangent line in a direction covering the track circle in the groove at an inclination of 30 ° to 60 ° with respect to the straight line. The above problem is solved by positioning it on the tangent line in the direction away from the in-groove locus circle.
[0027]
The inner surface radius R1 of the stator is larger than the outer surface radius R2 of the rotor by a dimension that is less than twice the radius r of the locus circle in the groove and more than 1/2, and the gap between the stator and the rotor is 2r. (Diameter) to r / 2 (half the radius).
[0028]
If this gap becomes larger than 2r (diameter), particles that have not become fine in one high-speed vortex generated in the rotor will jump out of the vortex due to centrifugal force and become a vortex on the stator side. Without entering, it becomes easy to be carried on the air current generated by the blower for conveying the raw material installed outside the machine, and the phenomenon that the pulverization chance is reduced and the desired particle size is not crushed occurs.
[0029]
Also, if the gap is smaller than 1 / 2r (half the radius), the cross-sectional area through which the pulverized raw material conveying airflow flows decreases, a large pressure loss occurs, and the blower requires a large pressure. Since the gap becomes very narrow, it is required to manufacture with high machining accuracy so that the cylindrical center of the stator and the cylindrical center of the rotor are exactly coincident with each other, which is very expensive.
[0030]
The pitch of the radial crushing grooves formed on the stator and rotor surfaces is set to an interval in the range of 2 to 6 mm.
[0031]
The raw material that is crushed in this free vortex and goes very fine goes to the center of the vortex and is transported in the axial direction of the cylindrical rotor and stator. It jumps out from there, moves around the rotor at a speed slower than the rotation speed while being conveyed in the rotation direction of the rotor, enters into the vortex generated in the adjacent semicircular groove, and again shears Receive.
[0032]
Larger uncrushed particles are blown to the stator side by the centrifugal force of the rotor and become finer due to the pulverization action caused by the shearing force in the vortex flow of the stator.
[0033]
Electroplating electrode that immerses the object in a solution in which carbon is dissolved in anhydrous chromic acid crystal water and applies conventional hard chrome plating as a method for wear resistance of the rotor and stator surfaces. It was possible to generate a strong film on the workpiece by controlling the weak current.
[0034]
This method can prevent the formation of an oxide film generated between the surface of the conventional base material and the plating layer by utilizing the reaction of carbon, and the adhesion force with the base material can be reduced by the conventional hard chrome plating or the like. It can be made much stronger than the surface hardening method.
[0035]
Furthermore, according to this method, even if a film thickness of 100 microns or more is generated, it is possible to form a traced cured layer in a fine and complicated shape of the stator and the rotor, and any thickness. However, in order to form a hardened layer having a uniform thickness on the fine and complicated shape of the stator and rotor, it is desirable that the thickness be 100 microns or less.
[0036]
In order to maintain the hardened layer for a long time without abrasion even if the raw material continuously contacts the rotor rotating at high speed and the raw material collides with the opposing stator at high speed, the hardness of the raw material particles and Hardness equal to or higher than that and strong intermolecular bonding force in the structure is required, but the hardened layer produced by this treatment has a chromium carbide alloy (Cr + Cr) by the action of the catalyst. 23 C 6 ), Which becomes a nucleus and strengthens the bonding force between the crystals, so that the hardness of HV900 to 1200 can be maintained not only on the surface of the hardened layer but also in the vicinity of the bonding surface with the inner base material. It was.
[0037]
Furthermore, since the treatment temperature of the solution to be immersed to produce this hardened layer is as extremely low as 60 ° C., the structural transformation of carbon steel or alloy steel, which is the material of the rotor and stator, does not occur, and heat treatment and processing It has become possible to avoid the deviation of dimensions due to the release of residual stress.
The present invention has been made based on the above findings.
[0038]
An embodiment of the present invention will be described with reference to FIGS.
A rotating shaft 3 which is on the center line AA of the cylindrical outer box 1a of the pulverizer 1 and is supported so as to be able to rotate by bearings 2 and 2 'is a pulley 4 fixed to the end thereof. The belt is rotated at high speed in the direction of arrow A7 by a belt (not shown).
[0039]
A rotor 7 having a radius R2 is fixed to the rotary shaft 3 via a key 5 and a nut 6. On the outer surface of the rotor 7, as shown in FIGS. 3 and 5, a plurality of crushing grooves 7A parallel to the center line AA are arranged at a predetermined pitch p in the circumferential direction. The adjacent crushing grooves 7A and 7A are continuous via the protrusion 7d.
[0040]
The crushing groove 7A is a radial crushing groove having a steeply inclined side surface 7a and a gentle inclined side surface 7b facing each other, and an arcuate bottom surface 7c continuous with the side surfaces 7a and 7b. The arc-shaped bottom surface 7c is formed in an arc shape having a curvature radius r. The curvature radius r is, for example, 0.7 mm or 1.05 mm, and is appropriately selected as necessary.
[0041]
In this crushing groove 7A, a circular trajectory (hereinafter referred to as “groove trajectory circle”) c1 drawn around the center of curvature p1 of the arc-shaped bottom surface 7c is a circular trajectory (hereinafter referred to as “circular trajectory circle”) of the rotor 7. This in-groove locus circle c1 is taken as large as possible within a range that does not jump out from 7M (referred to as “outer diameter circle”).
[0042]
The steeply inclined side surface 7a, that is, the surface facing the rotation direction A7 of the rotor 7 is β = 5 to the straight line L1 connecting the center O of the rotor 7 and the tip 7p of the steeply inclined side surface 7a. It is located on the tangent line 7T1 in a direction covering the locus circle c1 in the groove with an inclination of 30 °.
[0043]
The gentle side surface 7b, that is, the surface facing the rotation direction of the rotor 7 is on the tangent line 7T2 in the direction away from the in-groove locus circle c1 in the range of α = 30 ° to 60 ° with respect to the straight line L1. positioned.
[0044]
On the other hand, the inner side of the outer box 1a is a stator 8 having an inner diameter R1. On the inner surface of the stator 8, as shown in FIGS. 3 and 5, a plurality of crushing grooves 8A parallel to the center line AA are arranged at a predetermined pitch p in the circumferential direction. Adjacent crushing grooves 8A and 8A are continuous via a protrusion 8d.
[0045]
The crushing groove 8A is a radial crushing groove having a steeply inclined side surface 8a and a gentle inclined side surface 8b facing each other, and an arcuate bottom surface 8c continuous with the side surfaces 8a and 8b. The arc-shaped bottom surface 8c is formed in an arc shape having a curvature radius r. The radius of curvature r has the same shape as the bottom surface 7c of the rotor 7, but does not necessarily have the same size.
[0046]
In this crushing groove 8A, a circular trajectory (hereinafter referred to as “trajectory circle in the groove”) c2 drawn around the center of curvature p2 of the arc-shaped bottom surface 8c is a circular trajectory (hereinafter referred to as “circular trajectory circle”) of the stator 8. This local locus circle c2 is taken as large as possible within a range where it does not protrude from 8M).
[0047]
The steeply inclined side surface 8a, that is, the surface facing the rotation direction A7 of the rotor 7 is β = 5 to 30 with respect to a straight line L2 connecting the center O of the stator 8 and the tip 8p of the steeply inclined side surface 8a. It is located on the tangent line 8T1 in a direction covering the locus circle c2 in the groove with an inclination of °.
[0048]
The gentle side surface 8b, that is, the surface facing the rotation direction A7 of the rotor 7 is tangent to the straight line L2 in a direction away from the in-groove locus circle c2 within a range of α = 30 ° to 60 °. 8T2 is located above.
As described above, the steeply inclined side surface 7a and the gently inclined side surface 7b of the rotor 7 and the steeply inclined side surface 8a and the gently inclined side surface 8b of the stator 8 are opposite to each other, and the steeply inclined side surface of the stator 8 is provided. 8 a faces the steeply inclined side surface 7 a of the rotor 7, and faces the gentlely inclined side surface 7 b of the rotor 7 and the gently inclined side surface 8 b of the stator 8.
[0049]
As described above, the groove locus circles c1 and c2 protrude from the inner diameter circle 8M of the stator 8 and the outer diameter circle 7M of the rotor 7 so as not to protrude from the inner diameter circle 8M and the outer diameter circle 7M of the rotor 7, respectively. This is because the high-speed vortex generated in the radial crushing grooves 7A and 8A is disturbed, and it becomes difficult to form a free vortex, and the raw material particles cannot receive a large shearing force.
[0050]
The clearance S between the stator 8 and the rotor 7 has the following dimensions.
R1 (inner diameter of stator 8) -R2 (outer diameter of rotor 7)
= R (radius of locus circle in groove) × (2−1 / 2)
[0051]
A large number of radial crushing grooves 7A and 8A of the stator 8 and the rotor 7 are formed with the same dimensional pitch p. This pitch p is appropriately selected within a range of 2 to 6 mm.
Moreover, an optimal product may be obtained by changing the pitch p of the stator 8 and the pitch p of the rotor 7 in the range of 2 to 6 mm depending on the properties of the raw materials and the desired product particle size distribution configuration. .
[0052]
The rotor 7 and the stator 8 are dipped in anhydrous chromic acid crystal water using carbon as a catalyst, and a chromium and chromium carbide alloy film having wear resistance is formed on the surface by an electroplating method. The surface hardness of the stator 8 and the rotor 7 is Vickers hardness (HV) 900 to 1200.
[0053]
In FIG. 6, 9 indicates a screw feeder and 10 indicates a cold air generating means 20.
[0054]
Next, the operation of this embodiment will be described.
The powder raw material M enters the inlet 11 of the fine pulverizer 1 together with the air flow 22 that has passed through the cold air generator, becomes a swirl flow in the spiral chamber 11a provided here, and the rotor 7 and the stator 8 that rotate at high speed. And is accelerated by the protrusion 7d of the rotor, and a rather rough one is hit and becomes fine.
[0055]
On the other hand, the airflow flows without turbulence along the gradual slant side surface 7b of the rotor, and after climbing over the protrusion 7d of the crushing groove 7A, the high-speed free vortex F1 enters the space formed by the steep slope 7a and the arc-shaped bottom surface 7c. Form.
The powder raw material M enters the air swirl flow F1 centering on p1 inside the crushing groove 7A, and becomes finer due to the shearing force due to swirling motion (free vortex) without vortex.
[0056]
At this time, the raw material having a slightly coarse particle size that does not yet have the desired particle size is subjected to centrifugal force in the swirling flow F1, exits the crushing groove 7A, enters the crushing groove 7A adjacent to the airflow, and performs the same function. receive
[0057]
The raw material having a coarser particle diameter similarly receives a large centrifugal force in the swirl flow F1, exits from the crushing groove 7A, is blown to the stator side, and is similarly sheared in the crushing groove 8A on the stator side. The effect becomes fine.
[0058]
The fine powder raw material flows in the grinding grooves 7A and 8A toward the outlet 12 while remaining in the centers of the swirling flows F1 and F2 of the rotor 7 and the stator 8, respectively. Get out.
[0059]
The powder raw material M swirls in the swirling flows F1 and F2 generated in the respective crushing grooves 7A and 8A of the rotor 7 and the stator 8, and at the same time, the rotor 7 and the stator move from the inlet 11 side toward the outlet 12 side. Since it is pulverized by repeatedly contacting it while rolling the surface of 8, the shape is close to a spherical shape and is discharged from the outlet 12.
[0060]
In the above steps, the powder raw material (product) finely pulverized by the fine pulverizer 1 to a predetermined particle size, for example, an average particle size of 5 μm, together with the air sucked from the inlet 11 side by the blower 17 of FIG. It is conveyed and separated into powder and air in the cyclone 13.
[0061]
The product is collected in the product tank 14 under the cyclone 13, the air is conveyed to a dust collector (bag filter) 15, and the air from which fine dust has been removed is released to the atmosphere. The control of the air flow and the suction pressure of the blower 17 is performed by receiving the signal converted from the air flow meter 10 and adjusting the opening degree of the motor-operated valve 16 or by controlling the rotation speed of the blower itself. And adjust the suction pressure.
[0062]
【Example】
Next, an example of grinding according to the present invention and an example of the wear-resistant material will be described.
Grinding test:
The results of the pulverization test of the fine pulverizer (FIG. 3) shown in the above example are compared with those of the conventional pulverizer (FIG. 7) and are shown in Table 1.
The pulverized raw material was a non-magnetic one-component toner (polyester type). After roughly pulverizing with a coarse pulverizer to a predetermined particle size, the coarse content was supplied to a fine pulverizer. The raw material supply amount of the pulverized raw material supply machine was fixed at 20 kg / h.
[0063]
In FIG. 7, 107 is a rotor, 107A is a grinding groove, 107a and 107b are side surfaces of the grinding groove, 108 is a stator, 108A is a grinding groove, 108a and 108b are side surfaces of the grinding groove, O is the center, and R1 is The inner diameter of the stator 108, R2 is the outer diameter of the rotor 107, α is the inclination angle with respect to the straight lines L1 and L2, and A7 is the rotation direction.
[0064]
[Table 1]
Figure 2005021768
[0065]
As is apparent from Table 1, in Example 1, the average diameter was 5.5 μm, and in Example 2 in which the peripheral speed was lowered, the average particle diameter was 6.2 μm.
In Examples 3 and 4, the pitch between the grinding grooves of the stator and the rotor (p = 4 mm) was larger than that in Examples 1 and 2 (p = 2.9 mm). When comparing Comparative Examples 1 and 2 having the same pitch (p = 4 mm), it can be seen that Examples 3 and 4 are superior in terms of average particle diameter and pulverization power.
Comparing 10.1 μm or more (volume%) of the products of Examples 1 to 4 and Comparative Examples 1 and 2, the former is 1.2%, 1.2%, 1.3%, 5.8%, the latter Are 32.5% and 56.6%, and there is a very large difference between the two, and it can be seen that the pulverization efficiency of the examples is remarkably good.
[0066]
Abrasion resistance test:
In the surface treatment of the rotor and / or the stator, for example, a life test was conducted when a polyester toner mixed with 55% magnetic powder was pulverized for a long time. As a result, the continuous operation time during which the pulverization performance can be maintained at the same level as the initial state is about 1300 when the hard chrome plating is coated on the rotor / stator surface with a thickness of 100 microns by the electroplating method. When the improved chromium carbide alloy plating was coated with a film thickness of 100 microns, it was 10000 to 11000 hours, and the life of about 7 times or more was maintained.
[0067]
【The invention's effect】
Since the present invention is configured as described above, the average particle size of the pulverized product can be finely pulverized below the conventional pulverization limit particle size, and at the same time, the pulverization power can be made smaller than before.
[0068]
In addition, the stator and the rotor were immersed in chromic anhydride crystal water using carbon as a catalyst, and a chromium and chromium carbide alloy film having wear resistance was formed on the surface by an electroplating method. The wear resistance is further improved and the service life can be extended.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view of a pulverizer showing an embodiment of the present invention.
FIG. 2 is a vertical sectional view taken along line II in FIG.
3 is a vertical sectional view taken along line II-II in FIG.
4 is a vertical sectional view taken along line III-III in FIG.
5 shows the flow of airflow in FIG. 3. FIG.
6 is a diagram showing the entire apparatus using the fine pulverizer of FIG. 1;
FIG. 7 is a view showing a vertical sectional view of a conventional mechanical pulverizer, corresponding to FIG. 3;
[Explanation of symbols]
7 Rotor
7A Radial grinding groove
7a Steep side
7b Slope side
7c Arc bottom
7d protrusion
7T1 Tangent
7T2 Tangent
8 Stator
8A Radial crushing groove
8a Steep side
8b Slope side
8c Arc bottom
8d protrusion
8T1 Tangent
8T2 Tangent
A-A center line
C1 Circle in the groove
C2 Groove in the groove
L1 straight line
L2 straight line
r Radius of groove circle locus circle
R1 inner radius of stator
R2 Rotor outer radius
S gap

Claims (9)

中空円筒内表面に多数の粉砕溝が形成されている固定子と、該固定子の内側に間隙を介して同心に配設され、その外表面に多数の粉砕溝が形成されている回転子と、を備えた微粉砕機において;
前記固定子の粉砕溝は、固定子の中心線に直角な断面に形成された、互いに対向する急斜側面と緩斜側面と、前記両側面に連続する円弧状底面とを有する放射状粉砕溝であり、
前記放射状粉砕溝は、前記円弧状底面の曲率中心を中心として描いた溝内軌跡円が、該固定子の内径円から飛び出さない範囲内で形成されおり、
前記急斜側面は、該固定子の中心と該急斜側面の先端とを通る直線に対して、5°〜30°の傾斜で前記溝内軌跡円にかぶさる方向の接線上に位置し、
前記緩斜側面は、前記直線に対して30°〜60°の範囲で前記溝内軌跡円から遠ざかる方向の接線上に位置することを特徴とする微粉砕機。
A stator in which a large number of grinding grooves are formed on the inner surface of the hollow cylinder, and a rotor that is concentrically disposed inside the stator via a gap and has a number of grinding grooves formed on the outer surface thereof; In a pulverizer comprising:
The crushing groove of the stator is a radial crushing groove formed in a cross section perpendicular to the center line of the stator and having a steeply inclined side surface and a gradual inclined side surface facing each other, and an arcuate bottom surface continuous to the both side surfaces. Yes,
The radial crushing groove is formed so that a locus circle in the groove drawn around the center of curvature of the arc-shaped bottom surface does not protrude from the inner diameter circle of the stator,
The steeply inclined side surface is positioned on a tangent line in a direction covering the locus circle in the groove with an inclination of 5 ° to 30 ° with respect to a straight line passing through the center of the stator and the tip of the steeply inclined side surface,
The finely pulverizing machine is characterized in that the gradual inclined side surface is located on a tangential line in a direction away from the locus circle in the groove within a range of 30 ° to 60 ° with respect to the straight line.
内表面に多数の粉砕溝が形成されている固定子と、該固定子の内側に間隙を介して同心に配設され、その外表面に多数の粉砕溝が形成されている回転子と、を備えた微粉砕機において;
前記回転子の粉砕溝は、回転子の中心線に直角な断面に形成された、互いに対向する急斜側面と緩斜側面と、前記両側面に連続する円弧状底面とを有する放射状粉砕溝であり、 前記放射状粉砕溝は、前記円弧状底面の曲率中心を中心として描いた溝内軌跡円が、該回転子の外径円から飛び出さない範囲内で形成されおり、
前記急斜側面は、該回転子の中心と該急斜側面の先端とを通る直線に対して、5°〜30°の傾斜で前記溝内軌跡円にかぶさる方向の接線上に位置し、
前記緩斜側面は、前記直線に対して30°〜60°の範囲で前記溝内軌跡円から遠ざかる方向の接線上に位置することを特徴とする微粉砕機。
A stator having a large number of crushing grooves formed on the inner surface, and a rotor disposed concentrically with a gap inside the stator and having a plurality of crushing grooves formed on the outer surface thereof. In the pulverizer equipped;
The crushing groove of the rotor is a radial crushing groove formed in a cross section perpendicular to the center line of the rotor and having a steeply inclined side surface and a gradually inclined side surface facing each other, and an arcuate bottom surface continuous to the both side surfaces. The radial crushing groove is formed within a range in which a locus circle in the groove drawn around the center of curvature of the arc-shaped bottom surface does not protrude from the outer diameter circle of the rotor;
The steeply inclined side surface is located on a tangent line in a direction covering the locus circle in the groove with an inclination of 5 ° to 30 ° with respect to a straight line passing through the center of the rotor and the tip of the steeply inclined side surface,
The finely pulverizing machine is characterized in that the gradual inclined side surface is located on a tangential line in a direction away from the locus circle in the groove within a range of 30 ° to 60 ° with respect to the straight line.
内表面に多数の粉砕溝が形成されている固定子と、該固定子の内側に間隙を介して同心に配設され、その外表面に多数の粉砕溝が形成されている回転子と、を備えた微粉砕機において;
前記固定子の粉砕溝は、固定子の中心線に直角な断面に形成された、互いに対向する急斜側面と緩斜側面と、前記両側面に連続する円弧状底面とを有する放射状粉砕溝であり、前記放射状粉砕溝は、前記円弧状底面の曲率中心を中心として描いた溝内軌跡円が、該固定子の内径円から飛び出さない範囲内で形成されおり、
前記急斜側面は、該固定子の中心と該急斜側面の先端とを通る直線に対して、5°〜30°の傾斜で前記溝内軌跡円にかぶさる方向の接線上に位置し、
前記緩斜側面は、前記直線に対して30°〜60°の範囲で前記溝内軌跡円から遠ざかる方向の接線上に位置し、
前記回転子の粉砕溝は、回転子の中心線に直角な断面に形成された、互いに対向する急斜側面と緩斜側面と、前記両側面に連続する円弧状底面とを有する放射状粉砕溝であり、前記放射状粉砕溝は、前記円弧状底面の曲率中心を中心として描いた溝内軌跡円が、該回転子の外径円から飛び出さない範囲内で形成されおり、
前記急斜側面は、該回転子の中心と該急斜側面の先端とを通る直線に対して、5°〜30°の傾斜で前記溝内軌跡円にかぶさる方向の接線上に位置し、
前記緩斜側面は、前記直線に対して30°〜60°の範囲で前記溝内軌跡円から遠ざかる方向の接線上に位置することを特徴とする微粉砕機。
A stator having a large number of crushing grooves formed on the inner surface, and a rotor disposed concentrically with a gap inside the stator and having a plurality of crushing grooves formed on the outer surface thereof. In the pulverizer equipped;
The crushing groove of the stator is a radial crushing groove formed in a cross section perpendicular to the center line of the stator and having a steeply inclined side surface and a gradual inclined side surface facing each other, and an arcuate bottom surface continuous to the both side surfaces. The radial crushing groove is formed within a range in which a locus circle in the groove drawn around the center of curvature of the arc-shaped bottom surface does not protrude from the inner diameter circle of the stator,
The steeply inclined side surface is positioned on a tangent line in a direction covering the locus circle in the groove with an inclination of 5 ° to 30 ° with respect to a straight line passing through the center of the stator and the tip of the steeply inclined side surface,
The slanted side surface is located on a tangent line in a direction away from the locus circle in the groove in a range of 30 ° to 60 ° with respect to the straight line,
The crushing groove of the rotor is a radial crushing groove formed in a cross section perpendicular to the center line of the rotor and having a steeply inclined side surface and a gradually inclined side surface facing each other, and an arcuate bottom surface continuous to the both side surfaces. The radial crushing groove is formed within a range in which a locus circle in the groove drawn around the center of curvature of the arc-shaped bottom surface does not protrude from the outer diameter circle of the rotor,
The steeply inclined side surface is located on a tangent line in a direction covering the locus circle in the groove with an inclination of 5 ° to 30 ° with respect to a straight line passing through the center of the rotor and the tip of the steeply inclined side surface,
The finely pulverizing machine is characterized in that the gradual inclined side surface is located on a tangential line in a direction away from the locus circle in the groove within a range of 30 ° to 60 ° with respect to the straight line.
前記同心に配設された固定子の内接円と回転子の外接円の間隙が、前記溝内軌跡円の半径rの、1/2から2倍の範囲内であることを特徴とする請求項1、2、又は、3記載の微粉砕機。The clearance between the inscribed circle of the stator and the circumscribed circle of the rotor arranged concentrically is within a range of 1/2 to 2 times the radius r of the locus circle in the groove. Item 4. The fine pulverizer according to Item 1, 2, or 3. 固定子及び回転子の放射状粉砕溝のピッチは、2〜6mmの範囲内であることを特徴とする請求項1、2、又は、3記載の微粉砕機。4. The fine pulverizer according to claim 1, wherein the pitch of the radial pulverization grooves of the stator and the rotor is in a range of 2 to 6 mm. 前記回転子および固定子は、炭素を触媒とした無水クロム酸結晶水中に浸漬され、電気鍍金法により、その表面に耐摩耗性を有するクロムおよび炭化クロム合金皮膜が形成されていることを特徴とする請求項1、2、3、4、又は、5記載の微粉砕機。The rotor and stator are immersed in chromic anhydride crystal water using carbon as a catalyst, and a chromium and chromium carbide alloy film having wear resistance is formed on the surface by an electroplating method. The fine pulverizer according to claim 1, 2, 3, 4, or 5. 前記固定子及び回転子の表面硬度が、ビッカース硬さ(HV)900から1200であることを特徴とする請求項6記載の微粉砕機。The pulverizer according to claim 6, wherein the stator and the rotor have surface hardnesses of Vickers hardness (HV) 900 to 1200. 請求項1、2,又は、3記載の微粉砕機により生産されたことを特徴とする微粉砕機の微粉末製品。A fine powder product of a fine pulverizer produced by the fine pulverizer according to claim 1, 2, or 3. 微粉末製品が、粒径10μm以下の静電荷現像用トナー、熱可塑性樹脂、又は、粉体塗料であることを特徴とする請求項8記載の微粉砕機の微粉末製品。9. The fine powder product of a fine pulverizer according to claim 8, wherein the fine powder product is an electrostatic charge developing toner having a particle size of 10 [mu] m or less, a thermoplastic resin, or a powder paint.
JP2003187997A 2003-06-30 2003-06-30 Fine grinding machine and its fine powder product Expired - Lifetime JP4123078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187997A JP4123078B2 (en) 2003-06-30 2003-06-30 Fine grinding machine and its fine powder product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187997A JP4123078B2 (en) 2003-06-30 2003-06-30 Fine grinding machine and its fine powder product

Publications (2)

Publication Number Publication Date
JP2005021768A true JP2005021768A (en) 2005-01-27
JP4123078B2 JP4123078B2 (en) 2008-07-23

Family

ID=34186675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187997A Expired - Lifetime JP4123078B2 (en) 2003-06-30 2003-06-30 Fine grinding machine and its fine powder product

Country Status (1)

Country Link
JP (1) JP4123078B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130627A (en) * 2005-10-13 2007-05-31 Earth Technica:Kk Powder treating device and powder treating facilities
EP2103996A1 (en) 2008-03-17 2009-09-23 Ricoh Company, Ltd. Method for preparing toner, toner prepared by the method, and image forming apparatus using the toner
JP2013063432A (en) * 2005-10-13 2013-04-11 Earth Technica:Kk Powder treating device and powder treating facility
JP2013073829A (en) * 2011-09-28 2013-04-22 Sumitomo Chemical Co Ltd Production method of micro positive electrode material powder for lithium secondary battery
JP2013215666A (en) * 2012-04-06 2013-10-24 Ricoh Co Ltd Media stirrer mill and method of preparing dispersion element
EP2705907A2 (en) 2012-09-07 2014-03-12 Ricoh Company, Ltd. Toner producing apparatus and toner producing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130627A (en) * 2005-10-13 2007-05-31 Earth Technica:Kk Powder treating device and powder treating facilities
JP2013063432A (en) * 2005-10-13 2013-04-11 Earth Technica:Kk Powder treating device and powder treating facility
EP2103996A1 (en) 2008-03-17 2009-09-23 Ricoh Company, Ltd. Method for preparing toner, toner prepared by the method, and image forming apparatus using the toner
US8257900B2 (en) 2008-03-17 2012-09-04 Ricoh Company, Limited Method for preparing toner, toner prepared by the method, and image forming apparatus using the toner
JP2013073829A (en) * 2011-09-28 2013-04-22 Sumitomo Chemical Co Ltd Production method of micro positive electrode material powder for lithium secondary battery
JP2013215666A (en) * 2012-04-06 2013-10-24 Ricoh Co Ltd Media stirrer mill and method of preparing dispersion element
EP2705907A2 (en) 2012-09-07 2014-03-12 Ricoh Company, Ltd. Toner producing apparatus and toner producing method

Also Published As

Publication number Publication date
JP4123078B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
JP3139721B2 (en) Fluidized bed jet mill
JPH0216378B2 (en)
US4611765A (en) Roller mill
CN105536957A (en) Impeller, superfine mill and superfine milling system
JP4123078B2 (en) Fine grinding machine and its fine powder product
JPH05269393A (en) Fine grinding mill
JP2007167757A (en) Fine grinder
JP4805473B2 (en) Fine grinding device and powder product manufacturing system
JP2005144444A (en) Treatment apparatus for powder and treatment method for powder
JPH07155628A (en) Mechanical grinding apparatus
JP4836026B2 (en) Powder reformer
JP5269688B2 (en) Classification mechanism
CN216459295U (en) Grinding mechanism of vortex crusher
JP3900311B2 (en) Mechanical crusher
TW307700B (en) Energy-efficient grinding rolls for coal pulverizers
JP2017176956A (en) Magnetic high-hardness metal particle crushing device
JP3067835U (en) Pulverizer and finely pulverized material produced thereby
JP3748171B2 (en) Pulverizer
JP2009262003A5 (en)
US4819884A (en) Means of pneumatic comminution
JP4120981B2 (en) Mechanical crusher
JP3061423U (en) Pulverizer
JP3645084B2 (en) Fine grinding machine and fine grinding system including the same
JP2019076861A (en) Crusher
CN218573814U (en) Nozzle ring of reinforced medium-speed coal mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Ref document number: 4123078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term