JP2005021092A - Rearing tank - Google Patents

Rearing tank Download PDF

Info

Publication number
JP2005021092A
JP2005021092A JP2003191143A JP2003191143A JP2005021092A JP 2005021092 A JP2005021092 A JP 2005021092A JP 2003191143 A JP2003191143 A JP 2003191143A JP 2003191143 A JP2003191143 A JP 2003191143A JP 2005021092 A JP2005021092 A JP 2005021092A
Authority
JP
Japan
Prior art keywords
tank
temperature
air
water
breeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003191143A
Other languages
Japanese (ja)
Inventor
Takashi Kuwabara
敬史 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd filed Critical Mitsubishi Electric Engineering Co Ltd
Priority to JP2003191143A priority Critical patent/JP2005021092A/en
Publication of JP2005021092A publication Critical patent/JP2005021092A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Housing For Livestock And Birds (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rearing tank controlling both of the water temperature and air temperature in the tank. <P>SOLUTION: This rearing tank for rearing organisms provided with an underwater portion M and a terrestrial portion includes a heat exchange unit 2 set apart from a temperature regulator 1, having thermal conductivity and installed so as to make the heat exchange between the air A in the tank and the water of the underwater portion M, a blower 3 for promoting the heat exchange between the heat exchange unit 2 and the air in the tank, and control units 8, 11 and 12 functioning to control the temperature regulator 1 and the blower 3 according to the temperature of the air in the tank and the temperature of the water of the underwater portion M to simultaneously control the air temperature in the tank and the water temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、水中と陸地を含む比較的特異な環境に棲息する爬虫類、両生類、昆虫等の小動物や植物等の生体を飼育するための飼育槽に関するものである。
【0002】
【従来の技術】
従来の技術においては、ペルチェ素子により、観賞用の魚や植物を飼育するための水槽の中の水を冷却することができ、かつ、通電を逆方向に切り替えることで水槽の中の水を加温することができる温度調節機能付き水槽がある(例えば特許文献1参照)。また、照明の光量を調節することができる飼育槽がある(例えば特許文献2参照)。さらに、任意の温度制御パターンにより空気または水の温度を調節することができる制御装置がある(例えば特許文献3参照)。
【0003】
【特許文献1】
特開平8−228638号公報
【特許文献2】
特開平7−155088号公報
【特許文献3】
特開平7−20947号公報
【0004】
【発明が解決しようとする課題】
比較的特異な環境に棲息する爬虫類、両生類、昆虫等の小動物や植物等の生体を飼育するためには、飼育槽内の空気温度、水温、湿度、及び照度から構成される環境を、自然界と同一にすることが望ましい。しかし、上記のような従来の技術においては、飼育槽内を水と空気とが共存する環境にする必要がある場合に、以下のような課題があった。
【0005】
まず、飼育槽内の水または空気のいずれか一方の温度の調節を行うことは可能であったが、水と空気の両方を自動的に冷却または加温することができなかった。
【0006】
また、飼育槽内の空気温度を調節することは可能であったが、空気の湿度の調節を自動的に加湿または除湿することができなかった。
【0007】
また、年間を通しての環境の変化を自動的に調節することができなかった。
【0008】
これらの課題により、小動物や植物等の生体をその生体に適さない悪い環境にさらす危険性があった。
【0009】
この発明では、上記の課題を解決することにより、比較的特異な環境に棲息する爬虫類、両生類、昆虫等の小動物や植物を、一般家庭においても簡単に飼育することができる飼育槽を安価で得ることを目的とする。
【0010】
【課題を解決するための手段】
上記の目的に鑑み、この発明は、水中部と陸地部とが設けられるようにした生体の飼育を行うための槽に、温度調節手段との間で熱伝導性をもち上記槽内の空気および上記水中部の水との間で熱交換を行うように配された熱交換手段と、この熱交換手段と槽内の空気との熱交換を促進させる送風機と、上記槽内の空気の温度と水中部の水温に従って上記温度調節手段および送風機を制御して槽内空気温度と水温とを同時に制御する制御手段と、を備えたことを特徴とする飼育槽にある。
また、水中部と陸地部とが設けられるようにした生体の飼育を行うための槽と、温度調節可能な温度調節手段と、この温度調節手段との間で熱伝導性をもち、上記槽内の空気および上記水中部の水との間で熱交換を行うように配された熱交換手段と、回転時に上記熱交換手段と槽内の空気との熱交換を促進させる送風機と、槽内の空気の温度を検出する槽内空気温度センサと、槽内の上記水中部の水温を検出する槽内水温センサと、上記槽内空気温度センサおよび槽内水温センサからの温度と水温に従って上記温度調節手段および送風機を制御して槽内の環境を制御する制御装置と、を備え、上記制御装置が少なくとも槽内空気温度と水温とを同時に制御する温度・水温制御手段を含むことを特徴とする飼育槽にある。
【0011】
【発明の実施の形態】
実施の形態1.
図1はこの発明の一実施の形態による飼育槽の全体の概略構成を示す正面図であり、図2は図1のI−I線での断面図である。図1は図2の矢印Fからみた図である。図1、2において、槽Bの槽内側に、槽内熱交換器2を配し、槽内熱交換器2に温度調整手段であるペルチェ素子1の熱交換面の一方が槽内側の熱交換面として伝熱ブロック4を介して良好な熱伝導性を有して結合している。槽内送風機3は、回転時に熱交換器2と槽内の空気Aとの熱交換を促進する位置に配置されている。槽外熱交換器6はペルチェ素子1の槽外側の熱交換面の熱エネルギーを槽外の空気に伝達するものであり、伝熱ブロック5を介してペルチェ素子1と良好な熱伝導性を有して結合している。槽外送風機7は、回転時に槽外熱交換器6の槽外の空気への熱伝達を促進する。
【0012】
槽内空気温度センサ11は槽内の空気温度を、槽内湿度センサ13は槽内の空気湿度をそれぞれ検出できる位置に設置されている。槽内水温センサ12は、槽内に貯められた水中部Mの水温を検出できる位置に設置されている。槽内熱交換器温度センサ14は槽内熱交換器2の例えば表面に設置され表面温度を検出する。槽外空気温度センサ15は、機械室22内に槽外の空気温度を検出可能な位置に配置されている。照明装置Lは槽内の照度を調節する。
【0013】
そして図3に示すように、ペルチェ素子1、槽内送風機3、槽外送風機7、照明装置L、槽内空気温度センサ11、槽内水温センサ12、槽内湿度センサ13、槽内熱交換器温度センサ14、槽外空気温度センサ15および電源PS(図1、2には省略されている)が、図示しない配線により制御装置8に電気的に接続されている。さらに槽内には陸地部Gがあり、また小動物や植物等の生体Sがいて、断熱材21は槽Bの内部と機械室22との間の熱伝導を遮断する。
【0014】
また、コンピュータ等により構成される制御装置8は以下で説明する制御(実施の形態2も含めて)を行うために図4に示すように温度・水温制御手段101、湿度制御手段103、照度制御手段105、日時演算手段107、槽内環境の制御対象の制御目標となる設定基準値を示したテーブルである24時間プログラムおよび年間プログラムを格納したメモリ109、および基準値補正演算手段111を含む。
【0015】
以上の構成において、制御装置8は、槽内空気温度センサ11と槽内水温センサ12との検出結果に応じてペルチェ素子1に通電する直流電圧の向きを切り替えることによって、槽内を冷却または加温することができ、直流電圧の大きさを調節することにより、槽内の冷却量または加温量を調節することができる。また、必要に応じて槽内送風機3と槽外送風機7との通電を制御することにより、槽内熱交換器2と槽内の空気との熱交換と槽外熱交換器6と槽外の空気との熱交換量とを調節することができる。さらに、照明装置Lの通電を制御することにより、槽内の照度を調節することができる。
【0016】
ここで槽内熱交換器2は槽内の空気Aと水中部M内の水(M)との両方に接する形状としているため、槽内の水(M)と空気Aとの両方に熱エネルギーを伝えることを可能にしている。例えば、冷却運転において、水(M)よりも空気Aの方をより多く冷却する必要がある場合には、制御装置8が槽内送風機3を高速で回転させる運転を行うことにより、空気Aへの熱伝達を促進させる。逆に、空気よりも水の方をより多く冷却する必要がある場合には、制御装置8が槽内送風機3の回転数を低下させるか停止させることによって、空気Aへの熱伝達よりも水(M)への熱伝達を効率よく行う。
【0017】
制御装置8が槽内送風機3の回転数を適宜調節することで、槽内熱交換器2の水(M)への熱伝達量と空気Aへの熱伝達量とを微調整する構成としているため、この熱伝達量の調整により、結果的に、水(M)および空気Aの温度をそれぞれ所望の温度に保持することを可能としている。なお槽Bの材質を断熱効果の高いものにすることで、槽内が外気の影響を受けにくくすることができる。さらに槽内熱交換器温度センサ14からの温度を、槽内の空気Aの露点温度より小さくなるように冷却すれば除湿を、槽内の水を加温するようにすれば加湿を、それぞれ行うことができる。
【0018】
上記実施の形態1においては、槽内の湿度を調節する必要がない場合には、槽内湿度センサ13と槽内熱交換器温度センサ14を設けずに構成してもよい。また、照度を調節する必要がない場合には、照明装置Lを設けずに構成してもよい。
【0019】
また、上記実施の形態1においては、冷却または加温にペルチェ素子1を用いているが、圧縮機等を用いて冷却または加温を行う構成としてもよい。
【0020】
さらに、上記実施の形態1においては、槽内熱交換器を1つのみ用いて構成しているが、例えば水中部M内の熱交換量を大きくしたい場合には水専用の槽内熱交換器とペルチェ素子を上記槽内熱交換器2とペルチェ素子1とは別に設けてもよいし、例えば空気Aの熱交換量を大きくしたい場合には空気専用の槽内熱交換器とペルチェ素子を上記槽内熱交換器2とペルチェ素子1とは別に設けてもよい。また、構成部品が少し多くなるが、水中部Mの熱交換器と空気Aの熱交換器を別体に設けて、それぞれの熱交換器で水中部Mと空気Aの温度を調節するようにしてもよい。また、ペルチェ素子、槽内外の送風機、あるいは槽内外の熱交換器の数を増やしたり、形状を大きくするなどすれば、熱交換量を大きくすることが可能である。また、陸地部Gは槽Bに予め固定されたものでも良いし、形状の異なるものをオプションで容易に使用者が任意に選択して配置可能にしたり、使用者が適宜加工したり、作成できるようにしてもよい。
【0021】
このようにこの実施の形態1では、飼育槽において、温度調整手段と、熱交換器と、送風機と、槽内の水温を検出する槽内水温センサと、槽内の空気温度を検出する槽内空気温度センサと、制御装置とを備え、槽内の水温と空気温度を制御するように構成したので、爬虫類や昆虫等を飼育することができると共に、両生類や魚類をも同時に飼育することができるという効果がある。また、飼育槽内の1つの熱交換器を槽内の水と空気との両方に接するように配置したので、水温と空気温度を制御する飼育槽を、簡単な構成で実現できるという効果がある。さらに、湿度センサを備え、槽内の空気の湿度を制御するように構成したので、棲息する湿度環境に制限のある生体を飼育するための飼育槽を、より簡単な構成で実現できるという効果がある。さらに、照明装置を備え、制御装置により照度を制御するように構成したので、槽内の環境をより自然環境に近い状態にすることができるという効果がある。
【0022】
実施の形態2.
実施の形態2の飼育槽を図5に基づいて説明する。図5は実施の形態2における制御装置8の特徴的な制御の部分を示す動作フローチャートである。なお全体的な構成は図1〜3に示すものと同様である。また、実施の形態1では制御装置8において図4の温度・水温制御手段101、湿度制御手段103および照度制御手段105により制御が行われるが、実施の形態2ではさらに日時演算手段107、槽内環境の制御対象である槽内空気温度、水温、槽内空気湿度および照度のうちの少なくとも2つ以上の制御対象の単位時間ごとの制御目標値である設定基準値を示したテーブルである24時間プログラムおよび年間プログラムを格納したメモリ109、およびこの設定基準値を月日および時間に従って補正演算する基準値補正演算手段111を使用して上記各制御を行う。
【0023】
実施の形態1の飼育槽において、予めX月1日Z時0分の設定基準値が制御装置8内の記憶手段109内の24時間プログラムおよび年間プログラム(特に図示せず)として記憶されている。ここでXは1から12までの任意の整数、Zは0から23までの任意の整数である。設定基準値は、空気温度設定基準値Tas0、水温設定基準値Tws0、空気湿度設定基準値Has0、照度設定基準値Lis0のうちの少なくとも2つ以上であり、これらはいずれもXとZの関数である。
【0024】
まずステップ1のように、制御装置8は各温度センサ11,12,14,15、湿度センサ13の検出値を入力し、槽内空気温度ta、槽内空気湿度ha、槽内水温tw、槽外空気温度、槽内熱交換器表面温度teとして認識する(ステップS1)。
【0025】
次にステップ2では、現在の日時を演算し、X1月Y1日Z1時W1分として認識する(ステップS2)。
【0026】
次にステップ3では、X1月1日Z1時0分、すなわちX=X1、Z=Z1における空気温度設定基準値、水温設定基準値、空気湿度設定基準値、照度設定基準値を、それぞれ記憶手段109から読み出し、Tas00、Tws00、Has00、Lis00として認識する。同様に、X1月1日(Z1+1)時0分の各設定基準値を読み出し、Tas01、Tws01、Has01、Lis01として、(X1+1)月1日Z1時0分の各設定基準値を読み出し、Tas02、Tws02、Has02、Lis02として、それぞれ認識する(ステップS3)。
【0027】
続いてステップ4では、ステップ2で記憶手段109からX1とZ1の値から読み出した空気温度設定基準値Tas00、Tas01、Tas02、水温設定基準値Tws00、Tws01、Tws02、空気湿度設定基準値Has00、Has01、Has02、照度設定基準値Lis00、Lis01、Lis02に対し、Y1、Z1の値に応じた補正演算を行い、空気温度設定値Tas、水温設定値Tws、空気湿度設定値Has、照度設定値Lisを現在の設定値として確定する。補正演算は、例えばTasについては、次式のように行うことができるが、1例であるため、他の式を用いて演算することも可能である(ステップS4)。
【0028】

Figure 2005021092
【0029】
ステップ5ではステップ1で検出した槽内空気温度ta、槽内空気湿度ha、槽内水温tw、槽外空気温度to、槽内熱交換器表面温度teの値から、ステップ4で確定した空気温度設定値Tas、水温設定値Tws、空気湿度設定値Has、照度設定値Lisに対し、ペルチェ素子1の出力電圧と、槽内送風機3の回転数と、照明装置Lの出力照度を演算する(ステップS5)。
【0030】
最後に、ステップ6、ステップ7、ステップ8にて、ステップ5での演算結果の出力処理を行う(ステップS6〜S8)。
【0031】
以上のステップ1からステップ8までを1サイクルとして、例えば1秒に1サイクルの周期で一連の処理を行うことにより、槽内の空気温度、水温、湿度、照度を、常に最適な状態に維持することが可能である。
【0032】
各設定基準値は、記憶手段109に予め記憶してもよいし、飼育者が詳細に設定して記憶手段109に記憶するようにしてもよい。飼育者が簡単に選択できるような設定手段を設けて、例えば地域や国、あるいは小動物の種類を選択するようにすれば、わずらわしい設定を行うことなく、容易に特異な環境に棲息する小動物を飼育できる。または飼育者が各設定基準値を詳細に設定することができるような設定手段を設けて、あらゆる槽内環境を実現できるようにしてもよい。
【0033】
なお、この実施の形態2ではペルチェ素子を用いた場合のペルチェ素子の出力電圧を算出し出力しているが、例えばペルチェ素子の代わりに圧縮機を用いた場合には、その回転数を算出し出力するようにしてもよい。
【0034】
このように、この実施の形態2では、飼育槽において、制御装置8は日時演算手段を有し、槽内の空気温度、水温、湿度、照度のうち、少なくとも2つ以上の制御対象を、予め設定された24時間プログラム等により、単位時間ごとの目標値に従って制御するように構成したので、飼育者が不在であっても槽内環境を自動調節することができ、また、予め設定された年間プログラムにより単位期間ごとの目標値に従って制御するように構成したので、飼育槽内の水温、空気温度、湿度、照度のうち少なくとも2つ以上の自動調節を1年を通して行うことができるため、例えば冬眠など、自然環境で年間の限られた期間でしか起こらない生態を模擬的に観察できるという効果がある。さらに制御装置に予め記憶された複数個の年間プログラムを有するように構成したので、飼育槽内の水温、空気温度、湿度、照度のうち、少なくとも2つ以上の自動調節を、煩わしいプログラム設定を行うことなく、簡単に行うことができるという効果がある。
【0035】
このように飼育槽において、温度調節手段と、熱交換器と、槽内の水温を検出する水温センサと、槽内の空気温度を検出する空気温度センサと、制御装置とを備え、槽内の水温と空気温度を制御するように構成したので、爬虫類や昆虫等を飼育することができると共に、両生類や魚類をも同時に飼育することができる。
【0036】
また、飼育槽内の1つの熱交換器を槽内の水と空気との両方に接するように配置したので水温と空気温度を制御する飼育槽を簡単な構成で実現できる。
【0037】
また、槽内の熱交換器の温度を検出する熱交換器温度センサと、空気の湿度を検出する湿度センサとを備え、槽内の空気の湿度を制御するように構成したので、棲息する湿度環境に制限のある生体を飼育するための飼育槽を、より簡単な構成で実現できる。
【0038】
また、温度調節手段としてペルチェ素子を用いたので、空気温度と水温とを制御する飼育槽を、小型化できる。
【0039】
また、照明装置を備え、制御装置により照度を制御するように構成したので、槽内の環境をより自然環境に近い状態にすることができる。
【0040】
また、制御装置に日時演算手段を設けて、槽内の空気温度、水温、湿度、照度のうち、少なくとも2つ以上の制御対象を、24時間プログラムおよび年間プログラムにより、単位時間ごとの目標値に従って制御するように構成したので、飼育者が不在であっても槽内環境を自動調節し、またこの自動調節を1年を通して行うため、例えば冬眠など、自然環境で年間の限られた期間でしか起こらない生態を模擬的に観察できる。
【0041】
また、制御装置に予め記憶された複数個の年間プログラムを有するように構成したので、飼育槽内の空気温度、水温、湿度、照度のうち、少なくとも2つ以上の自動調節を、煩わしいプログラム設定を行うことなく、簡単に行うことができる。
【0042】
【発明の効果】
以上のようにこの発明によれば、水中部と陸地部とが設けられるようにした生体の飼育を行うための槽に、温度調節手段との間で熱伝導性をもち上記槽内の空気および上記水中部の水との間で熱交換を行うように配された熱交換手段と、この熱交換手段と槽内の空気との熱交換を促進させる送風機と、上記槽内の空気の温度と水中部の水温に従って上記温度調節手段および送風機を制御して槽内空気温度と水温とを同時に制御する制御手段と、を備えたことを特徴とする飼育槽とした。また、特に水中部と陸地部とが設けられるようにした生体の飼育を行うための槽と、温度調節可能な温度調節手段と、この温度調節手段との間で熱伝導性をもち、上記槽内の空気および上記水中部の水との間で熱交換を行うように配された熱交換手段と、回転時に上記熱交換手段と槽内の空気との熱交換を促進させる送風機と、槽内の空気の温度を検出する槽内空気温度センサと、槽内の上記水中部の水温を検出する槽内水温センサと、上記槽内空気温度センサおよび槽内水温センサからの温度と水温に従って上記温度調節手段および送風機を制御して槽内の環境を制御する制御装置と、を備え、上記制御装置が少なくとも槽内空気温度と水温とを同時に制御する温度・水温制御手段により構成した。これにより、飼育槽内の熱交換器を槽内の水と空気との両方に接するように配置したので水温と空気温度を制御することができ、ひいては比較的特異な環境に棲息する爬虫類、両生類、昆虫等の小動物や植物を、一般家庭においても簡単に飼育することができる飼育槽を安価で得ることができる。
【図面の簡単な説明】
【図1】この発明による飼育槽の全体の概略構成を示す正面図である。
【図2】図1のI−I線での断面図である。
【図3】この発明による飼育槽における制御構成を示す図である。
【図4】この発明による飼育槽の制御装置の機能ブロック図である。
【図5】この発明の実施の形態2における制御装置の特徴的な制御の部分を示す動作フローチャートである。
【符号の説明】
1 ペルチェ素子(温度調整手段)、2 槽内熱交換器、3 槽内送風機、4 伝熱ブロック、5 伝熱ブロック、6 槽外熱交換器、7 槽外送風機、8 制御装置、11 槽内空気温度センサ、12 槽内水温センサ、13 槽内湿度センサ、14 槽内熱交換器温度センサ、15 槽外空気温度センサ、21 断熱材、22 機械室、A 空気、B 槽、G 陸地部、L 照明装置、M 水中部、S 生体。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a breeding tank for raising small animals such as reptiles, amphibians, insects, and plants such as plants that live in a relatively unique environment including water and land.
[0002]
[Prior art]
In the conventional technology, the water in the aquarium for breeding ornamental fish and plants can be cooled by the Peltier element, and the water in the aquarium is heated by switching the energization in the reverse direction. There is a water tank with a temperature control function that can be performed (see, for example, Patent Document 1). In addition, there is a breeding tank that can adjust the amount of illumination (see, for example, Patent Document 2). Furthermore, there is a control device that can adjust the temperature of air or water by an arbitrary temperature control pattern (see, for example, Patent Document 3).
[0003]
[Patent Document 1]
JP-A-8-228638 [Patent Document 2]
Japanese Patent Laid-Open No. 7-1555088 [Patent Document 3]
Japanese Patent Laid-Open No. 7-20947
[Problems to be solved by the invention]
In order to breed small animals such as reptiles, amphibians, insects and plants living in a relatively peculiar environment, the environment composed of the air temperature, water temperature, humidity, and illuminance in the breeding tank must be defined as the natural world. It is desirable to be the same. However, the conventional techniques as described above have the following problems when it is necessary to create an environment where water and air coexist in the breeding tank.
[0005]
First, although it was possible to adjust the temperature of either water or air in the breeding tank, both water and air could not be cooled or heated automatically.
[0006]
In addition, although it was possible to adjust the air temperature in the breeding tank, it was not possible to automatically humidify or dehumidify the air humidity.
[0007]
In addition, environmental changes throughout the year could not be automatically adjusted.
[0008]
Due to these problems, there is a risk of exposing living bodies such as small animals and plants to a bad environment that is not suitable for the living body.
[0009]
In this invention, by solving the above-mentioned problems, it is possible to obtain an inexpensive breeding tank that can easily breed small animals and plants such as reptiles, amphibians, insects, etc. that live in a relatively unique environment even in general households. For the purpose.
[0010]
[Means for Solving the Problems]
In view of the above object, the present invention provides a tank for breeding a living body in which an underwater part and a land part are provided, and has thermal conductivity between the temperature adjusting means and air in the tank. Heat exchange means arranged to exchange heat with water in the underwater part, a blower for promoting heat exchange between the heat exchange means and the air in the tank, and the temperature of the air in the tank There is provided a breeding tank comprising control means for controlling the temperature in the tank and the water temperature at the same time by controlling the temperature adjusting means and the blower in accordance with the water temperature of the submerged portion.
In addition, a tank for breeding a living body provided with an underwater part and a land part, a temperature control means capable of temperature adjustment, and a thermal conductivity between the temperature control means, Heat exchange means arranged to exchange heat between the air and the water in the underwater part, a blower for promoting heat exchange between the heat exchange means and the air in the tank during rotation, In-tank air temperature sensor for detecting the temperature of the air, in-tank water temperature sensor for detecting the water temperature of the submerged portion in the tank, and the temperature adjustment according to the temperature and water temperature from the in-tank air temperature sensor and the in-tank water temperature sensor A control device for controlling the environment in the tank by controlling the means and the blower, and the control device includes a temperature / water temperature control means for simultaneously controlling at least the air temperature and the water temperature in the tank. In the tank.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a front view showing an overall schematic configuration of a breeding tank according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line II of FIG. FIG. 1 is a diagram viewed from an arrow F in FIG. 1 and 2, an in-tank heat exchanger 2 is arranged inside the tank B, and one of the heat exchange surfaces of the Peltier element 1 that is a temperature adjusting means is in the inside of the tank. As a surface, it has good thermal conductivity through the heat transfer block 4 and is bonded. The blower 3 in the tank is disposed at a position that promotes heat exchange between the heat exchanger 2 and the air A in the tank at the time of rotation. The outside heat exchanger 6 transmits heat energy of the heat exchange surface outside the tank of the Peltier element 1 to the air outside the tank, and has good thermal conductivity with the Peltier element 1 via the heat transfer block 5. Are combined. The outside air blower 7 promotes heat transfer to the air outside the outside of the outside heat exchanger 6 during rotation.
[0012]
The tank air temperature sensor 11 is installed at a position where the tank air temperature can be detected, and the tank humidity sensor 13 is installed at a position where the tank humidity can be detected. The tank water temperature sensor 12 is installed at a position where the water temperature of the underwater part M stored in the tank can be detected. The tank heat exchanger temperature sensor 14 is installed, for example, on the surface of the tank heat exchanger 2 and detects the surface temperature. The outside air temperature sensor 15 is disposed in the machine room 22 at a position where the outside air temperature can be detected. The illuminating device L adjusts the illuminance in the tank.
[0013]
And as shown in FIG. 3, the Peltier device 1, the fan 3 in a tank, the fan 7 outside a tank, the illuminating device L, the air temperature sensor 11 in a tank, the water temperature sensor 12 in a tank, the humidity sensor 13 in a tank, the heat exchanger in a tank The temperature sensor 14, the outside-air temperature sensor 15, and the power source PS (omitted in FIGS. 1 and 2) are electrically connected to the control device 8 through wiring not shown. Further, there is a land portion G in the tank, and there is a living body S such as a small animal or a plant, and the heat insulating material 21 blocks heat conduction between the inside of the tank B and the machine room 22.
[0014]
Further, the control device 8 constituted by a computer or the like performs temperature / water temperature control means 101, humidity control means 103, illuminance control as shown in FIG. Means 105, date and time calculation means 107, a memory 109 storing a 24-hour program and an annual program, which are tables indicating set reference values that are control targets of the object to be controlled in the tank environment, and reference value correction calculation means 111 are included.
[0015]
In the above configuration, the control device 8 cools or adds the inside of the tank by switching the direction of the DC voltage applied to the Peltier element 1 according to the detection results of the tank air temperature sensor 11 and the tank water temperature sensor 12. The amount of cooling or heating in the tank can be adjusted by adjusting the magnitude of the DC voltage. In addition, by controlling energization between the in-tank blower 3 and the out-of-tank blower 7 as necessary, heat exchange between the in-tank heat exchanger 2 and the air in the tank, the outboard heat exchanger 6 and the outside of the tank. The amount of heat exchange with the air can be adjusted. Furthermore, the illuminance in the tank can be adjusted by controlling the energization of the lighting device L.
[0016]
Here, since the heat exchanger 2 in the tank is in contact with both the air A in the tank and the water (M) in the submerged part M, the heat energy is applied to both the water (M) in the tank and the air A. It is possible to communicate. For example, in the cooling operation, when it is necessary to cool the air A more than the water (M), the control device 8 performs an operation of rotating the in-tank blower 3 at a high speed, so that the air A can be obtained. Promotes heat transfer. Conversely, when it is necessary to cool more water than air, the control device 8 reduces or stops the rotational speed of the in-tank blower 3, thereby reducing the water rather than transferring heat to the air A. Heat transfer to (M) is performed efficiently.
[0017]
The control device 8 is configured to finely adjust the heat transfer amount to the water (M) and the heat transfer amount to the air A of the heat exchanger 2 in the tank by appropriately adjusting the rotation speed of the fan 3 in the tank. Therefore, by adjusting the amount of heat transfer, as a result, the temperatures of water (M) and air A can be maintained at desired temperatures, respectively. In addition, the inside of a tank can be made hard to receive the influence of external air by making the material of the tank B into a thing with a high heat insulation effect. Further, dehumidification is performed if the temperature from the heat exchanger temperature sensor 14 in the tank is cooled to be lower than the dew point temperature of the air A in the tank, and humidification is performed if the water in the tank is heated. be able to.
[0018]
In the said Embodiment 1, when it is not necessary to adjust the humidity in a tank, you may comprise without providing the humidity sensor 13 in a tank and the heat exchanger temperature sensor 14 in a tank. Moreover, when it is not necessary to adjust illumination intensity, you may comprise without providing the illuminating device L. FIG.
[0019]
In the first embodiment, the Peltier element 1 is used for cooling or warming. However, the cooling or warming may be performed using a compressor or the like.
[0020]
Furthermore, in the said Embodiment 1, although comprised using only one heat exchanger in a tank, for example, when wanting to enlarge the heat exchange amount in the underwater part M, the heat exchanger in a tank only for water And the Peltier element may be provided separately from the in-vessel heat exchanger 2 and the Peltier element 1, and, for example, when it is desired to increase the heat exchange amount of the air A, the in-vessel heat exchanger and the Peltier element are The in-bath heat exchanger 2 and the Peltier element 1 may be provided separately. Although the number of components is slightly increased, the heat exchanger for the underwater part M and the heat exchanger for the air A are provided separately, and the temperatures of the underwater part M and the air A are adjusted by the respective heat exchangers. May be. In addition, the amount of heat exchange can be increased by increasing the number of Peltier elements, fans inside and outside the tank, or heat exchangers inside and outside the tank, or increasing the shape. Further, the land portion G may be fixed in advance to the tank B, and can be arbitrarily selected and arranged by the user as an option, or can be appropriately processed or created by the user. You may do it.
[0021]
As described above, in the first embodiment, in the breeding tank, the temperature adjusting means, the heat exchanger, the blower, the tank water temperature sensor that detects the water temperature in the tank, and the tank temperature that detects the air temperature in the tank. Since it is equipped with an air temperature sensor and a control device and is configured to control the water temperature and air temperature in the tank, it is possible to breed reptiles and insects, as well as amphibians and fish at the same time There is an effect. In addition, since one heat exchanger in the breeding tank is arranged so as to be in contact with both water and air in the tank, there is an effect that a breeding tank for controlling the water temperature and the air temperature can be realized with a simple configuration. . Furthermore, since the humidity sensor is provided to control the humidity of the air in the tank, there is an effect that it is possible to realize a breeding tank for breeding a living body having restrictions on the inhabiting humidity environment with a simpler configuration. is there. Furthermore, since the illuminating device is provided and the illuminance is controlled by the control device, the environment in the tank can be brought closer to the natural environment.
[0022]
Embodiment 2. FIG.
The breeding tank of Embodiment 2 is demonstrated based on FIG. FIG. 5 is an operation flowchart showing a characteristic control portion of the control device 8 according to the second embodiment. The overall configuration is the same as that shown in FIGS. In the first embodiment, the control device 8 controls the temperature / water temperature control means 101, the humidity control means 103, and the illuminance control means 105 in FIG. 24 hours, which is a table showing set reference values that are control target values per unit time of at least two or more control objects among the air temperature, water temperature, air humidity and illuminance in the tank that are environmental control objects Each of the above-described controls is performed using a memory 109 storing a program and an annual program, and a reference value correction calculation means 111 that corrects the set reference value according to the date and time.
[0023]
In the breeding tank of the first embodiment, the set reference value for X month 1 day Z time 0 minute is stored in advance as a 24-hour program and an annual program (not shown) in the storage means 109 in the control device 8. . Here, X is an arbitrary integer from 1 to 12, and Z is an arbitrary integer from 0 to 23. The setting reference value is at least two of the air temperature setting reference value Tas0, the water temperature setting reference value Tws0, the air humidity setting reference value Has0, and the illuminance setting reference value Lis0, both of which are functions of X and Z. is there.
[0024]
First, as in step 1, the control device 8 inputs the detection values of the temperature sensors 11, 12, 14, 15 and the humidity sensor 13, the tank air temperature ta, the tank air humidity ha, the tank water temperature tw, Recognized as an outside air temperature and a tank heat exchanger surface temperature te (step S1).
[0025]
Next, in step 2, the current date and time are calculated and recognized as X1 month Y1 day Z1 hour W1 minute (step S2).
[0026]
Next, in step 3, the air temperature setting reference value, the water temperature setting reference value, the air humidity setting reference value, and the illuminance setting reference value at X1 on the first day of X1 January, that is, X = X1, Z = Z1, are stored. 109, and recognized as Tas00, Tws00, Has00, and Lis00. Similarly, each setting reference value for 0 minutes at X1 January (Z1 + 1) is read, and each setting reference value for Z1: 0 at (X1 + 1) month 1 is read as Tas01, Tws01, Has01, and Lis01. Recognize as Tws02, Has02, and Lis02, respectively (step S3).
[0027]
Subsequently, in step 4, the air temperature setting reference values Tas00, Tas01, Tas02, the water temperature setting reference values Tws00, Tws01, Tws02, and the air humidity setting reference values Has00, Has01 read from the values of X1 and Z1 from the storage means 109 in step 2. , Has02, illuminance setting reference values Lis00, Lis01, and Lis02 are corrected according to the values of Y1 and Z1, and the air temperature setting value Tas, the water temperature setting value Tws, the air humidity setting value Has, and the illuminance setting value Lis are obtained. Confirm as the current set value. The correction calculation can be performed, for example, with respect to Tas as in the following equation, but is an example, and can be calculated using another equation (step S4).
[0028]
Figure 2005021092
[0029]
In step 5, the air temperature determined in step 4 from the values of the air temperature ta, the air humidity ha in the tank, the water temperature tw in the tank, the air temperature to the outside of the tank, and the surface temperature te of the heat exchanger in the tank detected in step 1. With respect to the set value Tas, the water temperature set value Tws, the air humidity set value Has, and the illuminance set value Lis, the output voltage of the Peltier element 1, the rotational speed of the blower 3 in the tank, and the output illuminance of the illumination device L are calculated (step) S5).
[0030]
Finally, in Step 6, Step 7, and Step 8, the calculation result output process in Step 5 is performed (Steps S6 to S8).
[0031]
The above steps 1 to 8 are set as one cycle, and for example, by performing a series of processes at a cycle of 1 cycle per second, the air temperature, water temperature, humidity, and illuminance in the tank are always maintained in an optimal state. It is possible.
[0032]
Each setting reference value may be stored in advance in the storage unit 109, or may be set in detail by the breeder and stored in the storage unit 109. By providing a setting means that can be easily selected by the breeder, for example, selecting a region, country, or type of small animal, it is possible to easily breed small animals that live in a specific environment without making troublesome settings. it can. Alternatively, a setting unit that allows the breeder to set each setting reference value in detail may be provided so that any in-tank environment can be realized.
[0033]
In the second embodiment, the output voltage of the Peltier element when the Peltier element is used is calculated and output. For example, when a compressor is used instead of the Peltier element, the rotation speed is calculated. You may make it output.
[0034]
Thus, in this Embodiment 2, in the breeding tank, the control device 8 has a date / time calculating means, and at least two or more control objects among the air temperature, water temperature, humidity, and illuminance in the tank are previously stored. Since it is configured to control according to the target value for each unit time according to the set 24-hour program, etc., the environment in the tank can be automatically adjusted even when the breeder is absent, and a preset year Since the program is configured to control according to the target value for each unit period, it is possible to perform automatic adjustment of at least two of the water temperature, air temperature, humidity, and illuminance in the breeding tank throughout the year. This has the effect of simulating the ecology that occurs only in a limited period of the year in the natural environment. Furthermore, since it is configured to have a plurality of annual programs stored in the control device in advance, at least two or more automatic adjustments among the water temperature, air temperature, humidity, and illuminance in the breeding tank are performed, and troublesome program setting is performed. There is an effect that it can be easily performed.
[0035]
Thus, the breeding tank includes a temperature adjusting means, a heat exchanger, a water temperature sensor for detecting the water temperature in the tank, an air temperature sensor for detecting the air temperature in the tank, and a control device. Since the water temperature and the air temperature are controlled, reptiles and insects can be raised, and amphibians and fish can be raised at the same time.
[0036]
Moreover, since one heat exchanger in the breeding tank is disposed so as to be in contact with both water and air in the tank, a breeding tank that controls the water temperature and the air temperature can be realized with a simple configuration.
[0037]
Moreover, since it comprised the heat exchanger temperature sensor which detects the temperature of the heat exchanger in a tank, and the humidity sensor which detects the humidity of air, and it was comprised so that the humidity of the air in a tank might be controlled, the inhabiting humidity A breeding tank for breeding a living body with limited environment can be realized with a simpler configuration.
[0038]
In addition, since the Peltier element is used as the temperature adjusting means, the breeding tank for controlling the air temperature and the water temperature can be reduced in size.
[0039]
Moreover, since the illumination device is provided and the illuminance is controlled by the control device, the environment in the tank can be made closer to the natural environment.
[0040]
Moreover, the control device is provided with a date and time calculating means, and at least two or more control objects among the air temperature, water temperature, humidity, and illuminance in the tank are set according to a target value for each unit time by a 24-hour program and an annual program. Because it is configured to control, the environment in the tank is automatically adjusted even when the breeder is absent, and this automatic adjustment is performed throughout the year. For example, in a natural environment such as hibernation, it is limited to a limited period of the year. Simulate the ecology that does not happen.
[0041]
In addition, since it is configured to have a plurality of annual programs stored in advance in the control device, at least two or more automatic adjustments among the air temperature, water temperature, humidity, and illuminance in the breeding tank can be performed. It can be done easily without doing it.
[0042]
【The invention's effect】
As described above, according to the present invention, a tank for breeding a living body provided with an underwater part and a land part has thermal conductivity with temperature control means, and the air in the tank and Heat exchange means arranged to exchange heat with water in the underwater part, a blower for promoting heat exchange between the heat exchange means and the air in the tank, and the temperature of the air in the tank A breeding tank comprising the control means for controlling the temperature of the air and the temperature of the tank at the same time by controlling the temperature adjusting means and the blower according to the water temperature of the submerged part. Further, in particular, a tank for breeding a living body in which an underwater part and a land part are provided, a temperature control means capable of temperature adjustment, and a heat conductivity between the temperature control means, the tank Heat exchange means arranged to exchange heat between the air inside and the water in the underwater part, a blower for promoting heat exchange between the heat exchange means and the air in the tank during rotation, The temperature of the air in the tank detects the temperature of the water in the tank, the water temperature sensor in the tank detects the water temperature of the water in the tank, and the temperature according to the temperature and water temperature from the air temperature sensor in the tank and the water temperature sensor in the tank And a control device for controlling the environment in the tank by controlling the adjusting means and the blower, and the control device is configured by temperature / water temperature control means for simultaneously controlling at least the air temperature in the tank and the water temperature. As a result, the heat exchanger in the breeding tank is placed in contact with both the water and air in the tank, so that the water temperature and air temperature can be controlled, and as a result, reptiles and amphibians that live in a relatively unique environment. In addition, a breeding tank that can easily breed small animals such as insects and plants even in ordinary households can be obtained at low cost.
[Brief description of the drawings]
FIG. 1 is a front view showing an overall schematic configuration of a breeding tank according to the present invention.
FIG. 2 is a cross-sectional view taken along the line II of FIG.
FIG. 3 is a diagram showing a control configuration in a breeding tank according to the present invention.
FIG. 4 is a functional block diagram of a control device for a breeding tank according to the present invention.
FIG. 5 is an operation flowchart showing a characteristic control portion of a control device according to Embodiment 2 of the present invention;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Peltier element (temperature adjustment means), 2 heat exchanger in a tank, 3 fan in a tank, 4 heat transfer block, 5 heat transfer block, 6 heat exchanger outside a tank, 7 fan outside a tank, 8 control apparatus, 11 in a tank Air temperature sensor, 12 Water temperature sensor in the tank, 13 Humidity sensor in the tank, 14 Heat exchanger temperature sensor in the tank, 15 Air temperature sensor outside the tank, 21 Heat insulation material, 22 Machine room, A air, B tank, G Land part, L lighting device, M underwater part, S living body.

Claims (7)

水中部と陸地部とが設けられるようにした生体の飼育を行うための槽に、温度調節手段との間で熱伝導性をもち上記槽内の空気および上記水中部の水との間で熱交換を行うように配された熱交換手段と、この熱交換手段と槽内の空気との熱交換を促進させる送風機と、上記槽内の空気の温度と水中部の水温に従って上記温度調節手段および送風機を制御して槽内空気温度と水温とを同時に制御する制御手段と、を備えたことを特徴とする飼育槽。A tank for breeding a living body provided with an underwater part and a land part has heat conductivity with the temperature control means, and heat between the air in the tank and the water in the underwater part. A heat exchanging means arranged to perform exchange, a blower for promoting heat exchange between the heat exchanging means and the air in the tank, the temperature adjusting means according to the temperature of the air in the tank and the temperature of the submerged portion, and A breeding tank comprising: control means for controlling a blower to simultaneously control the air temperature and water temperature in the tank. 水中部と陸地部とが設けられるようにした生体の飼育を行うための槽と、
温度調節可能な温度調節手段と、
この温度調節手段との間で熱伝導性をもち、上記槽内の空気および上記水中部の水との間で熱交換を行うように配された熱交換手段と、
回転時に上記熱交換手段と槽内の空気との熱交換を促進させる送風機と、
槽内の空気の温度を検出する槽内空気温度センサと、
槽内の上記水中部の水温を検出する槽内水温センサと、
上記槽内空気温度センサおよび槽内水温センサからの温度と水温に従って上記温度調節手段および送風機を制御して槽内の環境を制御する制御装置と、
を備え、上記制御装置が少なくとも槽内空気温度と水温とを同時に制御する温度・水温制御手段を含むことを特徴とする飼育槽。
A tank for breeding a living body in which an underwater part and a land part are provided;
Temperature control means capable of temperature adjustment;
Heat exchange means that has thermal conductivity with the temperature adjusting means, and is arranged to exchange heat between the air in the tank and the water in the underwater part,
A blower that promotes heat exchange between the heat exchange means and the air in the tank during rotation;
A tank air temperature sensor for detecting the temperature of the air in the tank;
A tank water temperature sensor for detecting the water temperature of the underwater part in the tank;
A control device for controlling the environment in the tank by controlling the temperature adjusting means and the blower according to the temperature and water temperature from the tank air temperature sensor and the tank water temperature sensor;
And the control device includes a temperature / water temperature control means for simultaneously controlling at least the air temperature and the water temperature in the tank.
上記熱交換手段の温度を検出する熱交換器温度センサと、槽内の空気の湿度を検出する槽内湿度センサとを備え、上記制御装置が上記熱交換器温度センサおよび槽内湿度センサからの温度と湿度も考慮して槽内空気湿度を制御する湿度制御手段を含むことを特徴とする請求項2に記載の飼育槽。A heat exchanger temperature sensor for detecting the temperature of the heat exchange means, and a tank humidity sensor for detecting the humidity of the air in the tank, and the control device from the heat exchanger temperature sensor and the tank humidity sensor The breeding tank according to claim 2, further comprising humidity control means for controlling the air humidity in the tank in consideration of temperature and humidity. 上記温度調節手段としてペルチェ素子を用いたことを特徴とする請求項1ないし3のいずれか1項に記載の飼育槽。4. The breeding tank according to claim 1, wherein a Peltier element is used as the temperature adjusting means. 照明装置をさらに備え、上記制御装置が上記照明装置を制御することにより槽内の照度を制御する照度制御手段を含むことを特徴とする請求項2ないし4のいずれか1項に記載の飼育槽。The breeding tank according to any one of claims 2 to 4, further comprising an illuminating device, wherein the control device includes illuminance control means for controlling the illuminance in the tub by controlling the illuminating device. . 上記制御装置が、月日および時間を示す日時演算手段と、槽内空気温度、水温、槽内空気湿度および照度のうちの少なくとも2つ以上の制御対象の単位時間ごとの制御目標値である設定基準値を示す24時間プログラムおよび年間プログラムを格納した記憶手段と、上記日時演算手段からの月日および時間に従って上記24時間プログラムおよび年間プログラムから得られる設定基準値を補正演算する基準値補正演算手段と、を含み、補正演算して得られた設定値に従って上記各制御を行うことを特徴とする請求項2ないし5のいずれか1項に記載の飼育槽。A setting in which the control device is a control target value for each unit time of at least two or more control objects among the date and time calculation means indicating the date and time, and the tank air temperature, water temperature, tank air humidity and illuminance Storage means for storing a 24-hour program and an annual program indicating a reference value, and a reference value correction calculation means for correcting and calculating a set reference value obtained from the 24-hour program and the annual program according to the date and time from the date and time calculation means The breeding tank according to any one of claims 2 to 5, wherein each control is performed according to a set value obtained by performing a correction operation. 上記熱交換手段が、上記温度調節手段との間で熱伝導性をもち、上記槽内の空気と上記水中部の水との両方に接するようにして配された熱交換器からなることを特徴とする請求項1ないし6のいずれか1項に記載の飼育槽。The heat exchanging means comprises a heat exchanger having thermal conductivity with the temperature adjusting means and arranged so as to be in contact with both the air in the tank and the water in the underwater part. The breeding tank according to any one of claims 1 to 6.
JP2003191143A 2003-07-03 2003-07-03 Rearing tank Pending JP2005021092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003191143A JP2005021092A (en) 2003-07-03 2003-07-03 Rearing tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003191143A JP2005021092A (en) 2003-07-03 2003-07-03 Rearing tank

Publications (1)

Publication Number Publication Date
JP2005021092A true JP2005021092A (en) 2005-01-27

Family

ID=34188843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191143A Pending JP2005021092A (en) 2003-07-03 2003-07-03 Rearing tank

Country Status (1)

Country Link
JP (1) JP2005021092A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187625A (en) * 2009-02-20 2010-09-02 Iwasaki Electric Co Ltd Illuminator for cultivation
CN103270960A (en) * 2013-06-06 2013-09-04 苏州新区枫桥净化设备厂 Multifunctional experimental animal cage
JP2015060846A (en) * 2013-09-17 2015-03-30 独立行政法人国立高等専門学校機構 Cooling unit
WO2019017505A1 (en) * 2017-07-18 2019-01-24 주식회사 오토일렉스 Pet incubator
CN110192543A (en) * 2019-04-22 2019-09-03 嵊州陌桑高科股份有限公司 A kind of centralized supply air system that double culturing chambers are blown simultaneously

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187625A (en) * 2009-02-20 2010-09-02 Iwasaki Electric Co Ltd Illuminator for cultivation
CN103270960A (en) * 2013-06-06 2013-09-04 苏州新区枫桥净化设备厂 Multifunctional experimental animal cage
JP2015060846A (en) * 2013-09-17 2015-03-30 独立行政法人国立高等専門学校機構 Cooling unit
WO2019017505A1 (en) * 2017-07-18 2019-01-24 주식회사 오토일렉스 Pet incubator
CN110192543A (en) * 2019-04-22 2019-09-03 嵊州陌桑高科股份有限公司 A kind of centralized supply air system that double culturing chambers are blown simultaneously
CN110192543B (en) * 2019-04-22 2021-06-15 嵊州陌桑高科股份有限公司 Centralized air supply system with double breeding rooms for supplying air simultaneously

Similar Documents

Publication Publication Date Title
EP1908809A1 (en) Assembly of a horticultural facility and a livestock-breeding facility
TW201622556A (en) Cultivating box for plants and cultivating method used by the cultivating box
CN103392627B (en) Intelligent bird egg living embryo incubation system
JP2004129621A (en) Apparatus for automatic growing of vegetable
CN106444940A (en) Full-automatic intelligent culture control system of multilayered laminated chicken coop
JP2005021092A (en) Rearing tank
CN105010234A (en) Turtle culturing tank
JP2022509162A (en) Control method of air conditioner, control device and air conditioner
CN112673991A (en) Biological culture environment temperature control method, device and system and air conditioner
CN108040920B (en) Incubator
Fairchild Environmental factors to control when brooding chicks
Moon et al. Evaluation of thermal performance through development of an unglazed transpired collector control system in experimental pig barns
JP7081124B2 (en) Control device and agricultural house
Shittu et al. Development of an automatic bird-egg incubator
WO2017134913A1 (en) Control device and agricultural greenhouse
JP2006329584A (en) Total enthalpy hot-air exchanger and its operation control method
JP4234413B2 (en) Drive control device for blower
JP2003289747A (en) Method for controlling water temperature of culture tank and culture tank system therefor
JP2016121841A (en) Air conditioning system and plant factory
Fredrick et al. Design and implementation of a remotely monitored smart egg incubator
RU2411723C1 (en) System to control microclimate in apiary beehives
Olasunkanmi et al. Development of a GSM based DC powered bird egg incubator
JPH01159557A (en) Housfhold air circulation device
JP2662200B2 (en) Plant cultivation equipment
JP2004236584A (en) Device for regulating environment for living thing