JP2005020027A - Process for producing gallium nitride based compound semiconductor - Google Patents
Process for producing gallium nitride based compound semiconductor Download PDFInfo
- Publication number
- JP2005020027A JP2005020027A JP2004287065A JP2004287065A JP2005020027A JP 2005020027 A JP2005020027 A JP 2005020027A JP 2004287065 A JP2004287065 A JP 2004287065A JP 2004287065 A JP2004287065 A JP 2004287065A JP 2005020027 A JP2005020027 A JP 2005020027A
- Authority
- JP
- Japan
- Prior art keywords
- gallium nitride
- compound semiconductor
- layer
- substrate
- nitride compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
Description
本発明は、一般式Alx Gay In1-x-y N(0 ≦x ≦1,0 ≦y ≦1,0 ≦x+y ≦1)の窒化ガリウム系化合物半導体とその製造方法に関する。特に、基板上に横方向エピタキシャル成長(ELO)を用いた方法に関する。 The present invention relates to the general formula Al x Ga y In 1-xy N (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ x + y ≦ 1) The gallium nitride-based compound semiconductor and a manufacturing method thereof. In particular, it relates to a method using lateral epitaxial growth (ELO) on a substrate.
窒化ガリウム系化合物半導体は、発光スペクトルが紫外から赤色の広範囲に渡る直接遷移型の半導体であり、発光ダイオード(LED) やレーザダイオード(LD)等の発光素子に応用されている。この窒化ガリウム系化合物半導体では、通常、サファイア上に形成している。 Gallium nitride compound semiconductors are direct-transition semiconductors whose emission spectrum covers a wide range from ultraviolet to red, and are applied to light-emitting elements such as light-emitting diodes (LEDs) and laser diodes (LDs). The gallium nitride compound semiconductor is usually formed on sapphire.
しかしながら、上記従来技術では、サファイア基板上に窒化ガリウム系化合物半導体を形成すると、サファイアと窒化ガリウム系化合物半導体との熱膨張係数差により、半導体層にクラック、そりが発生し、ミスフットにより転位が発生し、このため素子特性が良くないという問題がある。 However, in the above prior art, when a gallium nitride compound semiconductor is formed on a sapphire substrate, cracks and warpage occur in the semiconductor layer due to a difference in thermal expansion coefficient between sapphire and the gallium nitride compound semiconductor, and dislocation occurs due to a misfoot. For this reason, there is a problem that device characteristics are not good.
従って、本発明の目的は、上記課題に鑑み、クラック、転位のない窒化ガリウム系半導体層を形成することで、素子特性を向上させると共に、効率のよい製造方法を実現することである。 Accordingly, an object of the present invention is to realize an efficient manufacturing method while improving element characteristics by forming a gallium nitride-based semiconductor layer free from cracks and dislocations in view of the above problems.
上記の課題を解決するために、請求項1に記載の手段は、基板の露出部が散在するように、その基板上に第1の窒化ガリウム系化合物半導体を、ストライプ状又は格子状等の島状態に形成し、その後、島状態の第1の窒化ガリウム系化合物半導体を核として成長するが、基板の露出部を核としてはエピタキシャル成長せず且つ基板の露出部とは化学的に接合していない第2の窒化ガリウム系化合物半導体を成長させ、基板の露出面上は横方向成長により形成することを特徴とする窒化ガリウム系化合物半導体の製造方法である。 In order to solve the above-mentioned problem, the means according to claim 1 is characterized in that the first gallium nitride-based compound semiconductor is formed on the substrate such as stripes or lattices so that the exposed portions of the substrate are scattered. After that, the first gallium nitride compound semiconductor in the island state is grown as a nucleus, but the substrate is not epitaxially grown with the exposed portion of the substrate as a nucleus, and is not chemically bonded to the exposed portion of the substrate. A method for producing a gallium nitride compound semiconductor is characterized in that a second gallium nitride compound semiconductor is grown and formed on the exposed surface of the substrate by lateral growth.
尚、ここでいう横方向とは、基板の面方向を意味する。これにより、第2の窒化ガリウム系化合物半導体は、基板の露出部には成長せず、第1の窒化ガリウム系化合物半導体上に3次元的、即、面方向にも成長し、基板の上方向では一様に成長される。この結果、基板と窒化ガリウム系化合物半導体との間のミスフィットに基づく転位は縦方向に成長し、横方向へは成長しない。よって、基板の露出部上の第2の窒化ガリウム系化合物半導体の縦方向の貫通転位はなくなり、第1の窒化ガリウム系化合物半導体の上の部分だけ縦方向の貫通転位が残る。この結果、第2の窒化ガリウム系化合物半導体の縦方向の貫通転位の面密度が極めて減少する。従って、第2の窒化ガリウム系化合物半導体の結晶性が向上する。また、基板の露出部とその上の第2の窒化ガリウム系化合物半導体とは化学的に接合していないので、第2の窒化ガリウム系化合物半導体のそりが防止されると共に応力歪みがその半導体に入ることが抑制される。 Here, the lateral direction means the surface direction of the substrate. As a result, the second gallium nitride compound semiconductor does not grow on the exposed portion of the substrate, but grows three-dimensionally on the first gallium nitride compound semiconductor in the plane direction. Then it grows uniformly. As a result, dislocations based on misfit between the substrate and the gallium nitride compound semiconductor grow in the vertical direction and do not grow in the horizontal direction. Therefore, the threading dislocations in the vertical direction of the second gallium nitride compound semiconductor on the exposed portion of the substrate disappear, and the threading dislocations in the vertical direction remain only in the portion above the first gallium nitride compound semiconductor. As a result, the surface density of the threading dislocations in the vertical direction of the second gallium nitride compound semiconductor is extremely reduced. Accordingly, the crystallinity of the second gallium nitride compound semiconductor is improved. Further, since the exposed portion of the substrate and the second gallium nitride compound semiconductor thereabove are not chemically bonded, warpage of the second gallium nitride compound semiconductor is prevented and stress strain is applied to the semiconductor. Entering is suppressed.
請求項2の発明は、基板を、サファイア、シリコン、又は、炭化珪素としたことであり、そられの基板上で得られる第2の窒化ガリウム系化合物半導体の結晶性を向上させることができる。 The invention of claim 2 is that the substrate is sapphire, silicon, or silicon carbide, and the crystallinity of the second gallium nitride compound semiconductor obtained on the substrate can be improved.
請求項3の発明は、基板はシリコンであり、島状態に形成される第1の窒化ガリウム系化合物半導体は、アルミニウムを含む窒化ガリウム系化合物半導体であり、第2の窒化ガリウム系化合物半導体はアルミニウムを含まない窒化ガリウム系化合物半導体であることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体の製造方法である。
アルミニウムを含む窒化ガリウム系化合物半導体はシリコン上にエピタキシャル成長するが、アルミニウムを含まない窒化ガリウム系化合物半導体はシリコン上にエピタキシャル成長しない。よって、シリコン基板上に島状態の第1の窒化ガリウム系化合物半導体を形成し、その後、その第1の窒化ガリウム系化合物半導体上にはエピタキシャル成長するが、シリコン基板の露出部にはエピタキシャル成長しない第2の窒化ガリウム系化合物半導体を形成することができる。これにより、シリコン基板の露出部上は、第1の窒化ガリウム系化合物半導体を核として、第2の窒化ガリウム系化合物半導体が横方向にエピタキシャル成長することになり、結晶性の高い窒化ガリウム系化合物半導体を得ることができる。
In the invention of claim 3, the substrate is silicon, the first gallium nitride compound semiconductor formed in an island state is a gallium nitride compound semiconductor containing aluminum, and the second gallium nitride compound semiconductor is aluminum. The method for producing a gallium nitride compound semiconductor according to claim 1, wherein the gallium nitride compound semiconductor does not contain gallium nitride.
A gallium nitride compound semiconductor containing aluminum is epitaxially grown on silicon, but a gallium nitride compound semiconductor containing no aluminum is not epitaxially grown on silicon. Accordingly, the island-shaped first gallium nitride compound semiconductor is formed on the silicon substrate, and then epitaxially grown on the first gallium nitride compound semiconductor, but not epitaxially grown on the exposed portion of the silicon substrate. The gallium nitride compound semiconductor can be formed. As a result, the second gallium nitride compound semiconductor is epitaxially grown in the lateral direction on the exposed portion of the silicon substrate with the first gallium nitride compound semiconductor as a nucleus, and the gallium nitride compound semiconductor having high crystallinity. Can be obtained.
以下、本発明を具体的な実施例に基づいて説明する。
(第1実施例)
図1は、本発明の第1実施例に係わる窒化ガリウム系化合物半導体の断面構成を示した模式図である。シリコン基板1の上には膜厚約1000ÅのAl0.15Ga0.85N 層(第1の窒化ガリウム系化合物半導体)2がストライプ状(図1(b))又は格子状(図1(c))に形成されている。又、シリコン基板1上の層2を除いた露出領域A及び層2の上面領域Bには膜厚約10μmのGaN 層(第2の窒化ガリウム系化合物半導体)3が形成されている。
Hereinafter, the present invention will be described based on specific examples.
(First embodiment)
FIG. 1 is a schematic diagram showing a cross-sectional structure of a gallium nitride compound semiconductor according to the first embodiment of the present invention. On the silicon substrate 1, an Al 0.15 Ga 0.85 N layer (first gallium nitride compound semiconductor) 2 having a thickness of about 1000 mm is formed in a stripe shape (FIG. 1B) or a lattice shape (FIG. 1C). Is formed. A GaN layer (second gallium nitride compound semiconductor) 3 having a thickness of about 10 μm is formed in the exposed region A excluding the layer 2 on the silicon substrate 1 and the upper surface region B of the layer 2.
次に、このGaN 系化合物半導体の製造方法について説明する。
この半導体は、スパッタリング法及び有機金属気相成長法(以下「MOVPE 」と略す)により製造された。MOVPE で用いられたガスは、アンモニア(NH3) 、キャリアガス(H2,N2) 、トリメチルガリウム(Ga(CH3)3)(以下「TMG 」と記す)、トリメチルアルミニウム(Al(CH3)3)(以下「TMA 」と記す)である。
Next, a method for manufacturing this GaN-based compound semiconductor will be described.
This semiconductor was manufactured by sputtering and metal organic vapor phase epitaxy (hereinafter abbreviated as “MOVPE”). The gases used in MOVPE are ammonia (NH 3 ), carrier gas (H 2 , N 2 ), trimethyl gallium (Ga (CH 3 ) 3 ) (hereinafter referred to as “TMG”), trimethyl aluminum (Al (CH 3 3 ) (hereinafter referred to as “TMA”).
まず、フッ酸系溶液(HF:H2O=1:1)を用いて洗浄した (111)面、 (100)面、又は、(110) 面を主面としたn−シリコン基板1をMOVPE装置の反応室に載置されたサセプタに装着する。次に、常圧でH2を流速2 liter/分で約10分間反応室に流しながら温度1150℃で基板1をベーキングした。 First, an n-silicon substrate 1 having a (111) plane, a (100) plane, or a (110) plane as a principal plane cleaned with a hydrofluoric acid solution (HF: H 2 O = 1: 1) is converted into MOVPE. It is attached to a susceptor placed in the reaction chamber of the apparatus. Next, the substrate 1 was baked at a temperature of 1150 ° C. while flowing H 2 at normal pressure at a flow rate of 2 liter / min for about 10 minutes in the reaction chamber.
この後、基板1の温度を1150℃に保持し、N2又はH2を10liter/分、NH3 を10liter/分、TMG を1.0 ×10-4モル/分、トリメチルアルミニウム(Al(CH3)3)(以下「TMA 」と記す)を1.0 ×10-5モル/分、H2ガスにより0.86ppm に希釈されたシランを20×10-8モル/分で供給し、膜厚約1000Å、Si濃度1.0 ×1018/cm3のAl0.15Ga0.85N 層2を形成した。 Thereafter, the temperature of the substrate 1 is maintained at 1150 ° C., N 2 or H 2 is 10 liter / min, NH 3 is 10 liter / min, TMG is 1.0 × 10 −4 mol / min, trimethylaluminum (Al (CH 3 ) 3 ) (hereinafter referred to as “TMA”) is supplied at 1.0 × 10 −5 mol / min and silane diluted to 0.86 ppm with H 2 gas at 20 × 10 −8 mol / min. An Al 0.15 Ga 0.85 N layer 2 having a concentration of 1.0 × 10 18 / cm 3 was formed.
次に、この層2の上に、一様に、SiO2層をスパッタリングにより膜厚約2000Åに形成し、レジストを塗布して、フォトリソグラフィによりSiO2層を所定形状にエッチングした。次に、この所定形状のSiO2層をマスクとして、Al0.15Ga0.85N 層2をドライエッチングした。このようにして、層2の上部領域Bの幅bが約5μm、基板1の露出領域Aの間隔aが約5μmのストライプ状(図1(b))又は格子状(図1(c))に形成した。 Next, an SiO 2 layer was uniformly formed on the layer 2 to a thickness of about 2000 mm by sputtering, a resist was applied, and the SiO 2 layer was etched into a predetermined shape by photolithography. Next, the Al 0.15 Ga 0.85 N layer 2 was dry etched using the SiO 2 layer having the predetermined shape as a mask. In this way, a stripe shape (FIG. 1 (b)) or a lattice shape (FIG. 1 (c)) in which the width b of the upper region B of the layer 2 is about 5 μm and the distance a between the exposed regions A of the substrate 1 is about 5 μm. Formed.
次に、MOVPE 法により基板1の温度を1100℃にしてN2又はH2を20liter/分、NH3 を10liter/分、TMG を1.0 ×10-4モル/分、H2ガスにより0.86ppm に希釈されたシランを20×10-8モル/分で供給して、膜厚約10μmのGaN 層3をエピタキシャル成長させた。このとき、GaN は、Al0.15Ga0.85N 層2の上に、このAl0.15Ga0.85N を核として、エピタキシャル成長する。しかし、シリコン基板1の露出領域Aの上には、GaN はエピタキシャル成長しない。そして、シリコン基板1の露出領域Aでは、Al0.15Ga0.85N 層2上に成長したGaN を核として、GaN が横方向、即ち、シリコン基板1の面方向に沿ってエピタキシャル成長する。このGaN 層3は、Al0.15Ga0.85N 層2の上部領域Bにだけ縦方向に転位が生じ、シリコン基板1の露出領域Aでは、横方向のエピタキシャル成長であるために、転位は生じない。シリコン基板1の露出領域Aの面積をAl0.15Ga0.85N 層2の上部領域Bの面積に比べて大きくすることで、広い面積に渡って結晶性の良好なGaN 層3を形成することができる。また、シリコン基板1とその上のGaN は化学的に結合していないために、GaN 層3のそり、応力歪みを極めて大きく減少させることができる。 Next, the temperature of the substrate 1 is set to 1100 ° C. by the MOVPE method, N 2 or H 2 is 20 liter / min, NH 3 is 10 liter / min, TMG is 1.0 × 10 −4 mol / min, and H 2 gas is 0.86 ppm. Diluted silane was supplied at 20 × 10 −8 mol / min to epitaxially grow a GaN layer 3 having a thickness of about 10 μm. At this time, GaN is epitaxially grown on the Al 0.15 Ga 0.85 N layer 2 using the Al 0.15 Ga 0.85 N as a nucleus. However, GaN does not grow epitaxially on the exposed region A of the silicon substrate 1. In the exposed region A of the silicon substrate 1, GaN grows epitaxially in the lateral direction, that is, along the surface direction of the silicon substrate 1 with GaN grown on the Al 0.15 Ga 0.85 N layer 2 as a nucleus. In the GaN layer 3, dislocation occurs in the vertical direction only in the upper region B of the Al 0.15 Ga 0.85 N layer 2, and in the exposed region A of the silicon substrate 1, dislocation does not occur because of lateral epitaxial growth. By making the area of the exposed region A of the silicon substrate 1 larger than the area of the upper region B of the Al 0.15 Ga 0.85 N layer 2, the GaN layer 3 having good crystallinity can be formed over a wide area. . Further, since the silicon substrate 1 and the GaN on the silicon substrate 1 are not chemically bonded, warpage and stress strain of the GaN layer 3 can be greatly reduced.
尚、上記実施例において、ストライプ状又は格子状に形成されたシリコン基板1の露出領域Aの幅aを約5μmとしたが、露出領域Aの幅aが10μmを超えると横方向の成長に長時間必要となり、シリコン基板1の露出領域Aの幅aが1μm未満になると、良好なGaN 膜の形成が困難となるので、望ましくは1〜10μmの範囲が良い。また、Al0.15Ga0.85N 層2の上部領域Bの幅bを5μmとしたが、Al0.15Ga0.85N 層2の上部領域Bの幅bが10μmを超えると転位発生の確率が増大し、上部領域Bの幅bが1μm未満になると横方向の成長のための核形成が良好でできず、したがって、結晶性の良い横方向のエピタキシャル成長が困難となる。よって、望ましくは1〜10μmの範囲が良い。また、層3の結晶性の観点から、シリコン基板1の露出領域Aの幅aのAl0.15Ga0.85N 層2の上部領域Bの幅bに対する割合a/bは1〜10が望ましい。 In the above embodiment, the width “a” of the exposed region A of the silicon substrate 1 formed in a stripe shape or a lattice shape is about 5 μm. However, if the width “a” of the exposed region A exceeds 10 μm, the lateral growth is long. Time is required, and if the width a of the exposed region A of the silicon substrate 1 is less than 1 μm, it becomes difficult to form a good GaN film. Therefore, the range of 1 to 10 μm is desirable. The width b of the upper region B of the Al 0.15 Ga 0.85 N layer 2 is 5 μm. However, if the width b of the upper region B of the Al 0.15 Ga 0.85 N layer 2 exceeds 10 μm, the probability of dislocation generation increases. If the width b of the region B is less than 1 μm, nucleation for lateral growth cannot be performed well, and therefore lateral epitaxial growth with good crystallinity becomes difficult. Therefore, the range of 1 to 10 μm is desirable. Further, from the viewpoint of the crystallinity of the layer 3, the ratio a / b of the width a of the exposed region A of the silicon substrate 1 to the width b of the upper region B of the Al 0.15 Ga 0.85 N layer 2 is preferably 1 to 10.
尚、上記実施例では、シリコン基板を用いたが、他の導電性基板、サファイア基板、炭化珪素等を用いることができる。導電性基板を用いた場合には、基板の裏面と基板上に形成された素子層の最上層とに電極を形成して、基板面に垂直に電流を流すことができ、発光ダイオード、レーザ等における電流供給効率が向上する。
本実施例では、層2の組成をAl0.15Ga0.85N としたが、任意組成比の一般式Alx Gay In1-x-y N(0 ≦x ≦1,0 ≦y ≦1,0 ≦x+y ≦1)の窒化ガリウム系化合物半導体を用いることができる。シリコン基板1上にエピタキシャル成長させるには、Alx Ga1-x N(0 <x ≦1)(AlN を含む) が望ましい。また、層3は、任意組成比の一般式Alx Gay In1-x-y N(0 ≦x ≦1,0 ≦y ≦1,0 ≦x+y ≦1)の窒化ガリウム系化合物半導体を用いることができ、層2と同一組成比であっても、異なる組成比であっても良いが、基板に対してエピタキシャル成長しない組成比とする必要がある。
又、本実施例では、層2の膜厚を約1000Åとしたが、層2は厚いとクラックが多くなり、薄いと層2を核として層3が成長しない。よって、層2の厚さは、500 Å〜2000Åが望ましい。
In the above embodiment, a silicon substrate is used, but other conductive substrates, sapphire substrates, silicon carbide, and the like can be used. In the case of using a conductive substrate, electrodes can be formed on the back surface of the substrate and the uppermost layer of the element layer formed on the substrate so that a current can flow perpendicularly to the substrate surface. Current supply efficiency is improved.
In this example, the composition of the layer 2 was Al 0.15 Ga 0.85 N, but the general formula Al x Ga y In 1-xy N (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ x A gallium nitride compound semiconductor of + y ≦ 1) can be used. In order to perform epitaxial growth on the silicon substrate 1, Al x Ga 1-x N (0 <x ≦ 1) (including AlN) is desirable. The layer 3 uses general formula Al x Ga y In 1-xy N (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ x + y ≦ 1) The gallium nitride-based compound semiconductor of any composition ratio The composition ratio may be the same as that of the layer 2 or may be a different composition ratio. However, it is necessary to set the composition ratio so as not to epitaxially grow with respect to the substrate.
In this embodiment, the thickness of the layer 2 is about 1000 mm. However, if the layer 2 is thick, cracks increase. If the layer 2 is thin, the layer 3 does not grow using the layer 2 as a nucleus. Therefore, the thickness of the layer 2 is desirably 500 mm to 2000 mm.
(第2実施例)
上述の第1実施例では、第1の窒化ガリウム系化合物半導体として、Al0.15Ga0.85N 層2を1層だけ設けられている。本実施例では、第1の窒化ガリウム系化合物半導体として、Al0.15Ga0.85N 層21とその上のGaN 層22の2層で形成したことを特徴とする。
(Second embodiment)
In the first embodiment described above, only one Al 0.15 Ga 0.85 N layer 2 is provided as the first gallium nitride compound semiconductor. The present embodiment is characterized in that the first gallium nitride compound semiconductor is formed of two layers of an Al 0.15 Ga 0.85 N layer 21 and a GaN layer 22 thereon.
図2は、本発明の第2実施例に係わる窒化ガリウム系化合物半導体の断面構成を示した模式図である。シリコン基板1の上には膜厚約1000ÅのAl0.15Ga0.85N 層21が形成され、この層21上に、膜厚約1000ÅのGaN 層22が形成されている。層21と層22とで第1の窒化ガリウム系化合物半導体が構成される。これらの層21と層22層は、第1実施例と同様にストライプ状又は格子状に形成されている。層22及びシリコン基板1の露出領域A上には、膜厚約10μmのGaN 層3が形成されている。 FIG. 2 is a schematic diagram showing a cross-sectional structure of a gallium nitride compound semiconductor according to the second embodiment of the present invention. An Al 0.15 Ga 0.85 N layer 21 having a thickness of about 1000 mm is formed on the silicon substrate 1, and a GaN layer 22 having a thickness of about 1000 mm is formed on the layer 21. The layer 21 and the layer 22 constitute a first gallium nitride compound semiconductor. These layers 21 and 22 are formed in a stripe shape or a lattice shape as in the first embodiment. A GaN layer 3 having a thickness of about 10 μm is formed on the layer 22 and the exposed region A of the silicon substrate 1.
この第2実施例の窒化ガリウム系化合物半導体は、第1実施例において、層21、層22をシリコン基板1上に一様に形成した後、所定パターンのSiO2層をマスクにして、層21、層22をドライエッチングで図1(b)又は(c)に示すように、ストライプ状又は格子状にする。その後のGaN 層3の形成は第1実施例と同一である。 In the gallium nitride compound semiconductor of the second embodiment, the layer 21 and the layer 22 are uniformly formed on the silicon substrate 1 in the first embodiment, and then the SiO 2 layer having a predetermined pattern is used as a mask. As shown in FIG. 1B or 1C, the layer 22 is formed into a stripe shape or a lattice shape by dry etching. Subsequent formation of the GaN layer 3 is the same as in the first embodiment.
膜厚約10μmのGaN 層3の成長過程は以下の通りである。GaN は、GaN 層22の上部領域BのGaN を核として、面に垂直方向に成長する。そして、シリコン基板1の露出領域Aでは、層22の露出領域B上に成長したGaN を核として、GaN が横方向にエピタキシャル成長する。このようにして、本実施例では、GaN がGaN を核として縦方向にも横方向にもエピタキシャル成長するので、第1実施例よりも、さらに、結晶性の高いGaN が得られる。 The growth process of the GaN layer 3 having a thickness of about 10 μm is as follows. GaN grows in a direction perpendicular to the surface with GaN in the upper region B of the GaN layer 22 as a nucleus. In the exposed region A of the silicon substrate 1, GaN grows epitaxially in the lateral direction with GaN grown on the exposed region B of the layer 22 as a nucleus. Thus, in this embodiment, GaN epitaxially grows in the vertical and horizontal directions with GaN as the nucleus, so that GaN having higher crystallinity than that in the first embodiment can be obtained.
尚、本実施例において、層22と層3とをGaN としたが、層22と層3とを同一組成比の一般式Alx Gay In1-x-y N(0 ≦x ≦1,0 ≦y ≦1,0 ≦x+y ≦1)の窒化ガリウム系化合物半導体としても良い。但し、層3は基板に対してエピタキシャル成長しない組成比とする必要がある。基板にシリコンを用いた場合には、Alが含まれない窒化ガリウム系化合物半導体を用いるのが良い。勿論、層22と層3との組成比を変化させても良い。 In the present embodiment has the GaN and a layer 22 and the layer 3, typically a layer 22 and the layer 3 having the same composition ratio formula Al x Ga y In 1-xy N (0 ≦ x ≦ 1,0 ≦ A gallium nitride compound semiconductor of y ≦ 1,0 ≦ x + y ≦ 1) may be used. However, the layer 3 needs to have a composition ratio that does not grow epitaxially with respect to the substrate. When silicon is used for the substrate, a gallium nitride compound semiconductor that does not contain Al is preferably used. Of course, the composition ratio between the layer 22 and the layer 3 may be changed.
上記の全実施例において、シリコン基板1又は、シリコン基板1から層2又は層22までの部分Cを研磨又はエッチングにより除去することにより、無転位のGaN 基板を得ることができる。上記の全実施例において、層3にGaN を用いたが、任意組成比のInGaN を用いても良い。また、層3の上に、他の材料の半導体層を形成しても良い。特に、窒化ガリウム系化合物半導体をさらに成長させることで、発光ダイオード、レーザ等の特性の良好な素子を得ることができる。
また、上記の全実施例において、基板1と層2、又は層22の間に、任意組成比のAlGaN のバッファ層や AlGaInNのバッファ層を設けても良い。このバッファ層は層2、層22の単結晶成長温度よりも低温で形成されるアモルファス状又は微結晶の混在したアモルファス等の結晶構造をしたものである。
In all the above embodiments, the dislocation-free GaN substrate can be obtained by removing the silicon substrate 1 or the portion C from the silicon substrate 1 to the layer 2 or the layer 22 by polishing or etching. In all the above embodiments, GaN is used for the layer 3, but InGaN having an arbitrary composition ratio may be used. Further, a semiconductor layer of another material may be formed on the layer 3. In particular, by further growing a gallium nitride-based compound semiconductor, an element having good characteristics such as a light emitting diode and a laser can be obtained.
In all the embodiments described above, an AlGaN buffer layer or an AlGaInN buffer layer having an arbitrary composition ratio may be provided between the substrate 1 and the layer 2 or the layer 22. This buffer layer has a crystal structure such as an amorphous form formed at a temperature lower than the single crystal growth temperature of the layers 2 and 22 or an amorphous structure in which microcrystals are mixed.
素子層としてSQW又はMQW等の量子構造を有した発光ダイオード、レーザを形成することができる。
上記の全実施例において、MOVPE 法は常圧雰囲気中で行われたが、減圧成長下で行っても良い。また、常圧、減圧の組み合わせで行なって良い。
本発明で得られたGaN 系化合物半導体は、LEDやLDの発光素子に利用可能であると共に受光素子及び電子ディバイスにも利用することができる。
As the element layer, a light emitting diode or laser having a quantum structure such as SQW or MQW can be formed.
In all the above examples, the MOVPE method was performed in a normal pressure atmosphere, but may be performed under reduced pressure growth. Moreover, you may carry out by the combination of a normal pressure and pressure reduction.
The GaN-based compound semiconductor obtained in the present invention can be used for a light emitting device such as an LED or LD, and can also be used for a light receiving device and an electronic device.
本発明は、素子特性を向上させる半導体を提供できる。 The present invention can provide a semiconductor with improved device characteristics.
1 シリコン基板
2 Al0.15Ga0.85N 層(第1の窒化ガリウム系化合物半導体)
3 GaN 層(第2の窒化ガリウム系化合物半導体)
21 Al0.15Ga0.85N 層(第1の窒化ガリウム系化合物半導体)
22 GaN 層(第1の窒化ガリウム系化合物半導体)
1 Silicon substrate 2 Al 0.15 Ga 0.85 N layer (first gallium nitride compound semiconductor)
3 GaN layer (second gallium nitride compound semiconductor)
21 Al 0.15 Ga 0.85 N layer (first gallium nitride compound semiconductor)
22 GaN layer (first gallium nitride compound semiconductor)
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004287065A JP4172444B2 (en) | 2004-09-30 | 2004-09-30 | Method for producing gallium nitride compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004287065A JP4172444B2 (en) | 2004-09-30 | 2004-09-30 | Method for producing gallium nitride compound semiconductor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28987099A Division JP4055304B2 (en) | 1999-10-12 | 1999-10-12 | Method for producing gallium nitride compound semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005020027A true JP2005020027A (en) | 2005-01-20 |
JP4172444B2 JP4172444B2 (en) | 2008-10-29 |
Family
ID=34191845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004287065A Expired - Fee Related JP4172444B2 (en) | 2004-09-30 | 2004-09-30 | Method for producing gallium nitride compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4172444B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100397651C (en) * | 2006-01-26 | 2008-06-25 | 中国科学院上海微系统与信息技术研究所 | Graphic substrate material for gallium nitride epitaxial growth |
US9583577B2 (en) | 2015-03-13 | 2017-02-28 | Kabushiki Kaisha Toshiba | Semiconductor device and manufacturing method thereof |
US10354766B2 (en) | 2013-04-10 | 2019-07-16 | Areva Np | Methods for simulating the flow of a fluid in a vessel of a nuclear reactor and for calculating the mechanical deformation of assemblies of a nuclear reactor core, and associated computer program products |
US10354767B2 (en) | 2013-04-10 | 2019-07-16 | Areva Np | Methods for simulating the flow of a fluid in a vessel of a nuclear reactor and for calculating the mechanical deformation of assemblies of a nuclear reactor core, and associated computer program products |
-
2004
- 2004-09-30 JP JP2004287065A patent/JP4172444B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100397651C (en) * | 2006-01-26 | 2008-06-25 | 中国科学院上海微系统与信息技术研究所 | Graphic substrate material for gallium nitride epitaxial growth |
US10354766B2 (en) | 2013-04-10 | 2019-07-16 | Areva Np | Methods for simulating the flow of a fluid in a vessel of a nuclear reactor and for calculating the mechanical deformation of assemblies of a nuclear reactor core, and associated computer program products |
US10354767B2 (en) | 2013-04-10 | 2019-07-16 | Areva Np | Methods for simulating the flow of a fluid in a vessel of a nuclear reactor and for calculating the mechanical deformation of assemblies of a nuclear reactor core, and associated computer program products |
US9583577B2 (en) | 2015-03-13 | 2017-02-28 | Kabushiki Kaisha Toshiba | Semiconductor device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4172444B2 (en) | 2008-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3036495B2 (en) | Method for manufacturing gallium nitride-based compound semiconductor | |
JP4055304B2 (en) | Method for producing gallium nitride compound semiconductor | |
US7176497B2 (en) | Group III nitride compound semiconductor | |
JP3587081B2 (en) | Method of manufacturing group III nitride semiconductor and group III nitride semiconductor light emitting device | |
JP5187610B2 (en) | Nitride semiconductor wafer or nitride semiconductor device and manufacturing method thereof | |
JP3620269B2 (en) | GaN-based semiconductor device manufacturing method | |
JPH11135832A (en) | Gallium nitride group compound semiconductor and manufacture therefor | |
WO2003072856A1 (en) | Process for producing group iii nitride compound semiconductor | |
JP2001185493A (en) | Method of manufacturing group iii nitride-based compound semiconductor, and group iii nitride based compound semiconductor device | |
JP4734786B2 (en) | Gallium nitride compound semiconductor substrate and manufacturing method thereof | |
JP3744155B2 (en) | Method for manufacturing gallium nitride compound semiconductor substrate | |
JP4406999B2 (en) | Group III nitride compound semiconductor manufacturing method and group III nitride compound semiconductor device | |
JP2000223417A (en) | Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device | |
US7619261B2 (en) | Method for manufacturing gallium nitride compound semiconductor | |
JP3841537B2 (en) | Gallium nitride compound semiconductor and manufacturing method thereof | |
KR20060112685A (en) | Group iii nitride semiconductor multilayer structure | |
JP4055303B2 (en) | Gallium nitride compound semiconductor and semiconductor device | |
JP4140595B2 (en) | Gallium nitride compound semiconductor | |
JP2001345281A (en) | Method of manufacturing nitride-based iii group compound semiconductor and nitride-based iii group compound semiconductor element | |
JP4172444B2 (en) | Method for producing gallium nitride compound semiconductor | |
JP2001345282A (en) | Method of manufacturing nitride-based iii group compound semiconductor and nitride-based iii group compound semiconductor element | |
JP4055763B2 (en) | Gallium nitride compound semiconductor and semiconductor substrate | |
JP4016566B2 (en) | Group III nitride compound semiconductor manufacturing method and group III nitride compound semiconductor device | |
JP2005060227A (en) | Gallium nitride-based compound semiconductor and semiconductor substrate | |
JP2007134742A (en) | Nitride semiconductor structure, method of producing the same, and light-emitting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080722 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080804 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110822 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |