JP2005019700A - Method of manufacturing attracting and fixing apparatus - Google Patents

Method of manufacturing attracting and fixing apparatus Download PDF

Info

Publication number
JP2005019700A
JP2005019700A JP2003182772A JP2003182772A JP2005019700A JP 2005019700 A JP2005019700 A JP 2005019700A JP 2003182772 A JP2003182772 A JP 2003182772A JP 2003182772 A JP2003182772 A JP 2003182772A JP 2005019700 A JP2005019700 A JP 2005019700A
Authority
JP
Japan
Prior art keywords
sample
plate
adsorption
manufacturing
electrostatic chuck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003182772A
Other languages
Japanese (ja)
Inventor
Kazunori Endo
和則 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2003182772A priority Critical patent/JP2005019700A/en
Publication of JP2005019700A publication Critical patent/JP2005019700A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an attracting and fixing apparatus wherein fixing, straightening, carrying, etc. can be performed without occurring of a bad condition such as occurrence of particles, and wherein the sticking quantity of the particles to a flat sample is extremely small. <P>SOLUTION: In the method of manufacturing the attracting and fixing apparatus, sandblasting work is performed to the upper surface of a dielectric 31 to form a recessed and projecting surface consisting of projecting parts 34 and recess parts 33. Next, the top surfaces and side surfaces of the projecting parts 34 and the bottom surfaces 35 of the recessed parts 33 are simultaneously mirror-polished by a polishing method using abrasive grains and a brush to obtain an electrostatic chuck, where both of the top surfaces 24 and the side surfaces 25 of projecting parts 15 and the bottom surfaces 27 of recessed parts 26 are sufficiently mirror-polished. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、吸着固定装置の製造方法に関し、更に詳しくは、IC、LSI、VLSI等の半導体装置の製造ライン等において好適に用いられ、シリコンウエハ等の板状試料を、パーティクルの発生等の不具合が生じることなしに固定、矯正、搬送等を行うことが可能な吸着固定装置の製造方法に関するものである。
【0002】
【従来の技術】
従来、IC、LSI、VLSI等の半導体装置の製造ラインをはじめ、液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)等の表示装置の製造ライン、ハイブリッドIC等の組み立てライン等においては、シリコンウエハ、ガラス基板、プリント基板等の板状試料の固定、矯正、搬送等を行う際に、この板状試料を静電チャック方式や真空チャック方式により吸着して固定する吸着固定装置が用いられている。
従来より用いられている吸着固定装置としては、例えば、板状試料を吸着固定する基体の上面を吸着固定面とし、この吸着固定面にサンドブラスト法等により突起または溝を形成して凹凸面となし、この凹凸面の凸部の頂面及び側面と、該凹凸面の凹部の底面とを共に研磨して前記凸部の頂面を板状試料の保持面とするとともに、この凹凸面の凹部をヘリウム(He)等の冷却ガスの供給路とした構造の吸着固定装置が知られている。
このような吸着固定装置にあっては、板状試料を吸着固定面から離脱させるためのリフトピンが、この板状試料の周辺部に対応する前記基体の裏面の位置に設けられている。
【0003】
ところで、このような吸着固定装置にあっては、板状試料を基体の吸着固定面から離脱させるためにリフトピンを上昇させると、図6に示すように、リフトピンの上昇に伴って板状試料1に撓み等の部分的な変形が生じるために、板状試料1は吸着固定装置2の吸着固定面である凹凸面3に対して平行を保つことができなくなる。その結果、板状試料1の裏面が研磨されていない凹凸面3の凹部底面に接触し擦れることによって、パーティクルが発生することとなる。
そこで、実際の吸着固定装置2では、この凹凸面3の凸部の頂面及び側面と凹部の底面とを共に研磨し、吸着固定面に固定される板状試料との接触面を滑らかにし、吸着固定面と板状試料との間の摩擦を小さくすることにより、板状試料をリフトピンで離脱する際のパーティクルの発生を防止している(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2003−86664号公報
【0005】
【発明が解決しようとする課題】
ところで、上述した従来の半導体装置においては、より高性能のものをより低価格で供給する様求められており、その製造ラインにおいても同様、シリコンウエハ等の製造歩留まりを向上させることで、製造コストのさらなる低減が求められている。
そのため、シリコンウエハ等の製造歩留まりを向上させるために、従来にまして、シリコンウエハ等の板状試料にパーティクルを付着させないことが求められている。
【0006】
そこで、上記の更なる要求に応えるために、本発明者等が鋭意検討を行った結果、次の様な問題点があることが分かった。
すなわち、従来の吸着固定装置は、吸着固定面にサンドブラスト等により突起または溝を形成して凹凸面とし、この凹凸面を砥粒とバフ材または砥粒と超音波を用いて研磨したものであるから、この凹凸面の凸部側面と凹部底面との境界近傍部分が必ずしも充分に研磨されず、したがって、シリコンウエハ等の板状試料に多くのパーティクルが付着する虞がある。
【0007】
本発明は、上記の課題を解決するためになされたものであって、パーティクルの発生等の不具合が生じることなしに、固定、矯正、搬送等を行うことができ、しかも、板状試料へのパーティクルの付着量が極めて少ない吸着固定装置の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者等は、鋭利検討した結果、基体の吸着固定面である凹凸面の凸部の頂面及び側面と前記凹凸面の凹部の底面とを、充分に効率よく鏡面研磨することにより、板状試料をリフトピン等を用いて吸着固定面から離脱する際に、板状試料の裏面と吸着固定面の凸部の頂面及び側面とが接触したり、あるいは、この板状試料の部分的な変形によりその裏面が吸着固定面の凹部底面に接触したりした場合においても、パーティクルの発生を防止することができることを見いだした。
【0009】
すなわち、本発明の請求項1記載の吸着固定装置の製造方法は、基体の一主面が板状試料を吸着固定する吸着固定面とされ、該吸着固定面には突起または溝が形成されて凹凸面とされ、該凹凸面の凸部の頂面が前記板状試料の保持面とされた吸着固定装置の製造方法であって、基体の一主面に突起または溝を形成して凹凸面とする工程と、該凹凸面を砥粒と刷子を用いて研磨する工程とを備えたことを特徴とする。
【0010】
この吸着固定装置の製造方法では、凹凸面を砥粒と刷子を用いて研磨することにより、前記凹凸面の凸部の頂面及び側面と凹部の底面は勿論のこと、前記凸部側面と前記凹部底面との境界近傍部分も充分に研磨される。これにより、板状試料の吸着固定面全域が充分に鏡面研磨され、この吸着固定面に吸着固定される板状試料との接触が滑らかになり、吸着固定面と板状試料との間の摩擦が小さい吸着固定装置が得られる。
【0011】
よって、この製造方法により製造された吸着固定装置は、吸着固定面に固定した板状試料を、リフトピン等を用いて前記吸着固定面から離脱する際に、板状試料の裏面と吸着固定面の凸部の頂面及び側面とが接触したり、あるいは、この板状試料の部分的な変形によりその裏面が吸着固定面の凹部底面に接触したりした場合においてもパーティクルが発生する虞が無い。
【0012】
請求項2記載の吸着固定装置の製造方法は、請求項1記載の吸着固定装置の製造方法において、前記刷子は、繊維を板状体に複数本植毛してなり、前記繊維の植毛面からの長さは5mm以上であることを特徴とする。
この吸着固定装置の製造方法では、前記刷子を、繊維を板状体に複数本植毛し、前記繊維の植毛面からの長さを5mm以上としたことにより、前記凸部側面と前記凹部底面との境界近傍部分も効率よく研磨される。
【0013】
【発明の実施の形態】
本発明の吸着固定装置の製造方法の一実施の形態について説明する。ここでは、プラズマ発生用の高周波電極が一体化された形式の静電チャックを例にとり説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
【0014】
本実施形態に係る製造方法により製造される静電チャックは、基体の一主面が板状試料を吸着固定する吸着固定面とされ、該吸着固定面には突起または溝が形成されて凹凸面とされ、該凹凸面の凸部の頂面が前記板状試料の保持面とされている。
ここでは、理解を容易にするために、まず、本実施形態の吸着固定装置の製造方法により得られた静電チャックについて説明し、次いで、本実施形態の吸着固定装置の製造方法について説明する。
【0015】
図1は本発明の一実施形態の静電チャックを示す平面図、図2は図1の断面図であり、この図2では、静電チャックの構成に対する理解を容易にするためにプラズマ処理装置の構成を加えてある。
図に示すように、静電チャック11は、平板状の誘電体13内に静電吸着用内部電極14及びプラズマ発生用の高周波電極18が内蔵されている。
【0016】
誘電体13の上面には、ヘリウム(He)等の冷却ガスが漏れないように0.3mmの幅で後述する凸部15、15、…と同じ高さの周縁壁13aが形成され、さらに、この内側が吸着面(吸着固定面)13bとされ、この吸着面13b内は凹凸面とされ、多数の凸部15、15、…が立設されている。
【0017】
凸部15、15、…は、図3及び図4に示すように、各頂面24が板状試料1を保持する保持面とされ、これらの頂面24、24、…の合計面積の前記吸着面13bに対する面積比は0.3%〜30%の範囲とされている。ここで、面積比を0.3%以上と限定するのは、必要な吸着力を確保するためであり、また、30%以下と限定するのは、吸着面13bに存在するゴミを付着させ難くし、しかも電圧印加中止後の板状試料1の脱離性を確保するためである。
【0018】
そして、この凸部15の頂面24及び側面25の表面粗さRa、及び凸部15、15…の周囲に形成された凹部26の底面27の表面粗さRaが、それぞれ0.25S以下となるように、板状試料1を吸着する吸着面13b全域が鏡面研磨されている。
【0019】
誘電体13には、これを貫通する冷却ガス導入孔16が形成され、この冷却ガス導入孔16、16を介して誘電体13上面と板状試料1下面との間の隙間にヘリウム(He)等の冷却ガスが供給される。
また、静電吸着用の内部電極14には直流電源回路17が接続され、プラズマ発生用の高周波電極18には高周波電源回路19が接続されている。また、静電チャック11上方には、アースされた対向電極20が該静電チャック11の上面と対向するように配置されている。
【0020】
この静電チャック11では、誘電体13上に板状試料1を載置し、静電吸着用の内部電極14に直流電圧を印加することで静電力が生じ、この静電力により板状試料1を誘電体13上に、具体的には凸部15、15、…の頂面24、24、…及び周縁壁13aの上面に吸着させるようになっている。また、高周波電源回路19によって高周波を印加することにより、対向電極20との間に活性なラジカル21が発生し、この活性なラジカル21が板状試料1の表面のSi酸化膜等をエッチングするようになっている。
【0021】
次に、本実施形態の静電チャックの製造方法について図5に基づき説明する。
本実施形態に係る静電チャックは、吸着面13b内に形成される凹凸面の研磨以外は、従来からの公知の方法に従って製造される。
凸部15、15、…の形成は、例えば、砥石加工、レーザ彫刻等の機械加工、あるいはサンドブラスト加工等を用いて行うことができる。また、凹凸面の研磨、すなわち、凸部15の頂面24及び側面25と、凹部底面26の研磨は、砥粒と刷子を用いた研磨により効率的に行うことができる。
【0022】
上記の刷子としては、例えば、各種の獣毛、植物繊維、合成繊維等の繊維を板状体に多数植毛したものが好適に用いられ、繊維の形状や本数等に特に制限はないが、植毛される各種繊維の長さは植毛面からの長さが5mm以上あるものが好ましい。植毛面からの長さが5mm未満であると、吸着面13bである凹凸面の凸部15の頂面24及び側面25と、この凹凸面の凹部26の底面27とを効率よく鏡面研磨することができない。
【0023】
以下、吸着面13b内に凸部15、15…を形成する方法としてサンドブラスト加工を、また、凹凸面を研磨する方法として砥粒と刷子を用いた研磨法を、図3及び図5に基づき説明する。
【0024】
まず、図5(a)に示すように、誘電体31の上面、すなわち板状試料1を吸着する吸着面31bを研磨加工して、例えば、表面粗さRaが0.25S以下の平坦面とし、この平滑となった吸着面31bを洗浄する。この洗浄は、例えば、アセトン、イソプロピルアルコール、トルエン等の有機溶剤で脱脂を行い、その後、例えば、温水で洗浄する。
【0025】
次いで、この吸着面31bに所定のパターン形状のマスク32を形成する。このマスク32のパターン形状は、図1に示す凸部15、15、…のパターン形状と同一とする。このマスク32としては、感光性樹脂や板状マスクが好適に用いられる。この方法は常法に従う。
【0026】
ここで、凹部26の底面(溝部)27の溝幅は、0.1mm〜10mm、好ましくは0.5mm〜5.0mmとなるようにする。
この溝幅が0.1mm未満であると、凹凸面の凸部15の側面25と、凹凸面の凹部26の底面27とを研磨することが困難となる他、シール性が低下してヘリウム(He)等の冷却ガスが反応容器内に漏出する虞が生じるので好ましくなく、また、この溝幅が10mmを越えると、板状試料1へのパーティクル付着量が増加する他、均熱性が低下して板状試料1に温度差が生じるので好ましくない。
【0027】
次いで、図5(b)に示すように、サンドブラスト加工を行い、マスク32によって覆われていない部分に凹部33、33、…を形成する。その結果として、マスク32によって覆われている部分が残って凸部34、34、…となり、これらの凸部34、34間が凹部33の底面35となる。
【0028】
このサンドブラスト加工に使用される砥粒としては、アルミナ、炭化珪素、ガラスビーズ等が好ましく、砥粒の粒径は、300メッシュアンダー(300メッシュを通過したもの)、かつ、1500メッシュオーバー(1500メッシュを通過しないもの)程度とすることが好ましい。
その後、マスク32を除去する。この際、マスク32が感光性樹脂からなる場合には、塩化メチレン等の剥離液を用いる。
【0029】
次いで、凸部34、34、…の頂面及び側面と、凹部33の底面35とを、砥粒と刷子を用いた研磨法により、表面粗さRaが0.25S以下となるよう同時に鏡面研磨し、図5(c)に示すように、凸部15、15、…の頂面24及び側面25と、凹部26の底面27が共に充分に鏡面研磨された静電チャックを得る。
【0030】
上記の砥粒としては、例えば、サンドブラスト加工に用いた砥粒と同一のものを使用することができるが、砥粒の粒径としては、800メッシュアンダー(800メッシュを通過したもの)、かつ、1500メッシュオーバー(1500メッシュを通過しないもの)程度とすることが好ましい。
【0031】
この砥粒と刷子を用いた研磨に際しては、段階を踏む毎に、より微小な砥粒を用いて多段階に研磨することが好ましく、例えば800メッシュの砥粒→1000メッシュの砥粒→1500メッシュの砥粒という具合に、段階を踏んで多段階に研磨するのが好ましい。
その他の研磨条件については、定法のバフ研磨法等に従ってよく、例えば、前記の砥粒を含む研摩剤スラリーを被研摩面に注ぎながら、刷子を用いて研磨する方法等が用いられる。
研磨後、吸着面13bを洗浄する。この洗浄は、例えば、アセトン等の有機溶剤で行い、脱脂する。この脱脂後には、例えば、温水で洗浄する。
【0032】
また、吸着面13b内に形成される凸部15、15、…の高さHは、1μm〜30μmとなるようにする。その理由は、凸部15の高さHが1μm未満であると、ヘリウム(He)等の冷却ガスを板状試料1の下面に流動させることが困難となり、また、パーティクルの付着防止に対して有効でなく、板状試料1に浮きが生じて吸着力が低下し、板状試料1の面内温度の均一性を向上させることが困難になるからである。また、凸部15の高さHが30μmを越えると、凹部26の底面27における吸着力が低下し、吸着面13b全体としての吸着力が低下するからである。
【0033】
さらに、凸部15、15、…は、図3及び図4に示すように、先端部が根元よりも小さい形状に形成され、凸部15周縁が、断面形状が丸みを帯びた(曲線状)ように形成され、凸部15の頂面24の面積が、この凸部15の底部の水平方向の面積の20〜80%となるように研磨する。このように凸部15周縁が形成されていると、板状試料1の裏面を傷つけることがなく、また、板状試料1との摩擦が小さくなるので好ましい。
【0034】
この静電チャックの製造方法にあっては、凸部15、15、…の各頂面24の合計面積の吸着面13bに対する面積比率が大きい(例えば20%以上)静電チャック、即ち、凹部26の溝幅が小さい(例えば5mm以下)静電チャックであっても、凹部33の底面35及びこの底面35と凸部34の側面25との境界部をも容易に研磨することができる。しかも、凸部34の頂面及び側面と、凹部33の底面35とを同時に研磨することができるので、研磨コストを低減することができ、もって、パーティクル発生の原因が少なく、半導体ウエハ等の板状試料1の製品歩留まりを改善し得る静電チャックを安価に提供することができる。
【0035】
また、この静電チャックの製造方法にあっては、板状試料1へのパーティクルの付着量が少なく、大きな静電吸着力を備えた静電チャックを製造することができる。
すなわち、この静電チャックの製造方法では、凸部34の頂面は勿論のこと、凸部34の側面と凹部33の底面35を共に効率よく充分に研磨することができ、板状試料1の吸着面13b全域を研磨することができる。したがって、板状試料1へのパーティクル付着を大幅に低減することができる静電チャックを製造することができる。
【0036】
さらに、静電チャックの吸着面13bに形成された多数の凸部15の頂面24の合計面積の吸着面13b全面に対する面積比率が大きな静電チャック、例えば20%〜30%の静電チャックとすることができ、したがって、充分な静電吸着力でもって板状試料1を吸着面13bに静電吸着することができる静電チャックを得ることができる。
【0037】
次いで、上記の静電チャックの評価を行った。
ここで実施例とした静電チャックは、上記の製造方法により作製されたもので、凸部15の頂面24の合計面積の吸着面13bに対する面積比は15%、凹部26底面27の溝幅は2.0mm、凸部15の高さHは10μmであり、凸部15の頂面24及び側面25、及び凹部26底面27の表面粗さRaはいずれも0.25Sであった。また、凸部15の頂面24の面積は、凸部15の底部の水平方向の面積の70%であった。なお、刷子としては、多数の豚毛が植毛された、植毛面からの長さが10mmのものを用いた。
【0038】
この静電チャックを用いて、凹部(溝部)26、26、…に2.6×10Pa(20torr)のヘリウム(He)ガスを流しながら、板状試料1を吸着させ、該静電チャックの静電吸着力、吸着時間、脱離時間を、室温(25℃)下で測定した。ここでは、板状試料1として、8インチのシリコン(Si)ウエハを用いた。これらの測定結果を表1に示す。
【0039】
ここで、吸着時間とは、1000Vの直流電圧を印加したときに静電吸着力が100gf/cm、すなわち、約9800Paになるまでの時間であり、脱離時間とは、1000Vの直流電圧を1分間印加した後に印加を停止し、その時点から静電吸着力が10gf/cm、すなわち、約980Paになるまでの時間である。
【0040】
この静電チャックを用いて、1000Vの直流電圧を印加し、8インチSiウエハを1分間吸着させた後、脱離させ、次いで、新たなSiウエハを同様に吸着・脱離させる処理を繰り返し、10回目、50回目、100回目それぞれのウエハ裏面の付着パーティクル数を測定した。これらの測定結果を表2に示す。
【0041】
一方、凸部34の側面と、凹部33の底面35とを鏡面研磨しない静電チャックを作製し、比較例1とした。
すなわち、誘電体31の上面、すなわち板状試料1を吸着する吸着面31bを研磨加工して表面粗さRaが0.25Sの平坦面とし、この平滑となった吸着面31bを上記の実施例に準じて洗浄した。
次いで、この吸着面31b上に、実施例に準じてマスク32を形成し、サンドブラスト加工を行い、マスク32を除去し、その後、吸着面31bを洗浄した。
【0042】
このようにして作製された静電チャックについて、実施例に準じて静電吸着力、吸着時間、脱離時間を、室温(25℃)下で測定した。また、実施例に準じて、ウエハ裏面の付着パーティクル数を測定した。これらの測定結果を表1及び表2に示す。
【0043】
また、炭化珪素の砥粒を含む研磨材スラリーを被研磨面に注ぎながらバフ材を用いて研磨した他は実施例と同様の静電チャックを作製し、比較例2とした。 このようにして作製された静電チャックについて、実施例に準じて静電吸着力、吸着時間、脱離時間を、室温(25℃)下で測定した。また、実施例に準じて、ウエハ裏面の付着パーティクル数を測定した。これらの測定結果を表1及び表2に示す。
【0044】
【表1】

Figure 2005019700
【0045】
【表2】
Figure 2005019700
【0046】
表1及び表2によれば、実施例、比較例1、2それぞれの静電吸着特性は同一であるものの、ウエハ裏面の付着パーティクル数は実施例の静電チャックが遥かに優れている。
すなわち、実施例の静電チャックでは、凸部15の頂面24、凸部15の側面25と凹部26の底面27は勿論のこと、凸部15側面25と凹部26底面27との境界近傍部分も充分に研磨されているので、ウエハを吸着・脱離させる処理が10回目、50回目、100回目と回を追うごとに付着パーティクル数が減少している。このことは、ウエハ裏面が吸着面13bの凹部26底面27に接触したりした場合であっても、パーティクルが新たに発生することがないためと考えられる。
【0047】
これに対し、比較例1の静電チャックでは、凸部15の側面25と凹部26の底面27とが共に研磨されていないため、ウエハを吸着・脱離させる処理が10回目、50回目、100回目と回を追うごとに付着パーティクル数が増加している。このことは、ウエハ裏面が吸着面13bの凹部26底面27に接触した場合、パーティクルが新たに発生しているためと考えられる。
また、比較例2の静電チャックでは、凸部15の側面25と凹部26の底面27との境界近傍部分が充分に研磨されていないため、ウエハを吸着・脱離させる処理が10回目、50回目、100回目と回を追うごとに付着パーティクル数は減少するものの、実施例の静電チャックより多くのパーティクルが付着し、パーティクル数の減少も緩やかである。このことは、ウエハを吸着・脱離させる処理が10回目、50回目、100回目と回を追うごとに新たなパーティクルが発生しているためと考えられる。
【0048】
以上説明した様に、本実施形態の吸着固定装置の製造方法によれば、凸部34の頂面及び側面と、凹部33の底面35は勿論のこと、凸部34側面と凹部33底面35との境界近傍部分も充分に研磨することができる。したがって、Siウエハ等の板状試料1への付着パーティクル数が極めて少なく、吸着面13bと板状試料1との間の摩擦が小さい静電チャックの製造方法を提供することができる。
しかも、凸部34の頂面及び側面と、凹部33の底面35とを同時に研磨することができるので、研磨コストを低減することができる。
【0049】
以上、本発明の吸着固定装置の製造方法の一実施形態について図面に基づき説明してきたが、具体的な構成は本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で設計の変更等が可能である。
例えば、本実施形態では、吸着固定装置として、プラズマ発生用の高周波電極が一体化された形式の静電チャックを例にとり説明したが、上記の形式以外の静電チャックや、真空チャック等の他の形式の吸着固定装置に適用可能であることはもちろんである。
【0050】
【発明の効果】
以上説明したように、本発明の吸着固定装置の製造方法によれば、凹凸面を砥粒と刷子を用いて研磨するので、前記凹凸面の凸部の頂面及び側面と凹部の底面は勿論のこと、前記凸部側面と前記凹部底面との境界近傍部分も充分に研磨することができ、板状試料の吸着固定面全域を充分に鏡面研磨することができる。したがって、この吸着固定面に吸着固定される板状試料との接触が滑らかになり、吸着固定面と板状試料との間の摩擦が小さい吸着固定装置を容易に作製することができる。
【0051】
よって、この製造方法により製造された吸着固定装置は、吸着固定面に固定した板状試料を、リフトピン等を用いて前記吸着固定面から離脱する際に、板状試料の裏面と吸着固定面の凸部の頂面及び側面とが接触したり、あるいは、この板状試料の部分的な変形によりその裏面が吸着固定面の凹部底面に接触したりした場合においても、板状試料へのパーティクルの付着量が極めて少ない。
【0052】
また、前記刷子を、繊維を板状体に複数本植毛し、前記繊維の植毛面からの長さを5mm以上とすれば、前記凸部側面と前記凹部底面との境界近傍部分も効率よく研磨することができ、板状試料の吸着固定面全域を充分に鏡面研磨することができる。
【0053】
以上により、パーティクルの発生等の不具合が生じることなしに、固定、矯正、搬送等を行うことができ、しかも、板状試料へのパーティクルの付着量が極めて少ない吸着固定装置の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の静電チャックを示す平面図である。
【図2】本発明の一実施形態の静電チャックを示す断面図である。
【図3】本発明の一実施形態の静電チャックの凹凸面の構造を示す平面図である。
【図4】本発明の一実施形態の静電チャックの凹凸面の構造を示す断面図である。
【図5】本発明の一実施形態の静電チャックの製造方法を示す過程図である。
【図6】従来の静電チャックの問題点を示す説明図である。
【符号の説明】
1 板状試料
11 静電チャック
13 誘電体
13a 周縁壁
13b 吸着面
14 静電吸着用内部電極
15 凸部
16 冷却ガス導入孔
17 直流電源回路
18 プラズマ発生用の高周波電極
19 高周波電源回路
20 対向電極
21 ラジカル
24 頂面
25 側面
26 凹部
27 底面(溝部)
31 誘電体
31b 吸着面
32 マスク
33 凹部
34 凸部
35 底面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing an adsorption / fixing device, and more particularly, is preferably used in a manufacturing line of a semiconductor device such as an IC, LSI, VLSI, etc. The present invention relates to a method of manufacturing a suction fixing device that can perform fixing, correction, conveyance, and the like without occurrence of the above.
[0002]
[Prior art]
Conventionally, in production lines of semiconductor devices such as IC, LSI, VLSI, liquid crystal display (LCD), plasma display (PDP), and other display devices, as well as assembly lines such as hybrid ICs, silicon wafers, glass At the time of fixing, correcting, transporting or the like of a plate-like sample such as a substrate or a printed board, an adsorption fixing device is used that adsorbs and fixes the plate-like sample by an electrostatic chuck method or a vacuum chuck method.
Conventionally, as an adsorption fixing device, for example, the upper surface of a substrate for adsorbing and fixing a plate-like sample is used as an adsorption fixing surface, and a projection or a groove is formed on the adsorption fixing surface by a sandblast method or the like to form an uneven surface. The top surface and the side surface of the convex portion of the concave and convex surface and the bottom surface of the concave portion of the concave and convex surface are polished together to make the top surface of the convex portion a holding surface for the plate-like sample, and the concave portion of the concave and convex surface is formed. 2. Description of the Related Art An adsorption / fixing device having a structure for supplying a cooling gas such as helium (He) is known.
In such an adsorbing and fixing device, lift pins for detaching the plate-like sample from the adsorbing and fixing surface are provided at the position of the back surface of the substrate corresponding to the peripheral portion of the plate-like sample.
[0003]
By the way, in such an adsorbing and fixing apparatus, when the lift pin is raised in order to remove the plate-like sample from the adsorbing and fixing surface of the substrate, as shown in FIG. Therefore, the plate-like sample 1 cannot keep parallel to the concavo-convex surface 3 which is the suction fixing surface of the suction fixing device 2. As a result, particles are generated when the back surface of the plate-like sample 1 comes into contact with and rubs against the bottom surface of the concave surface of the uneven surface 3 that is not polished.
Therefore, in the actual adsorption fixing device 2, the top surface and the side surface of the convex portion of the uneven surface 3 and the bottom surface of the concave portion are polished together to smooth the contact surface with the plate-like sample fixed to the adsorption fixing surface, By reducing the friction between the adsorption fixing surface and the plate-like sample, generation of particles when the plate-like sample is detached with a lift pin is prevented (for example, see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2003-86664
[Problems to be solved by the invention]
By the way, in the conventional semiconductor device described above, there is a demand for supplying a higher performance device at a lower price. Similarly, in the production line, by improving the production yield of silicon wafers, the production cost is increased. Further reduction is required.
For this reason, in order to improve the production yield of silicon wafers and the like, it has been required to prevent particles from adhering to plate-like samples such as silicon wafers.
[0006]
Therefore, as a result of intensive studies by the present inventors in order to meet the above-described further demands, it has been found that there are the following problems.
In other words, the conventional suction fixing device is formed by forming protrusions or grooves on the suction fixing surface by sandblasting or the like to form an uneven surface, and polishing this uneven surface using abrasive grains and buffing material or abrasive grains and ultrasonic waves. Therefore, the portion in the vicinity of the boundary between the convex side surface and the concave bottom surface of the concave / convex surface is not necessarily polished sufficiently, so that many particles may adhere to a plate-like sample such as a silicon wafer.
[0007]
The present invention has been made to solve the above-described problems, and can be fixed, corrected, transported, etc. without causing problems such as generation of particles. It is an object of the present invention to provide a method for manufacturing an adsorption / fixing device in which the amount of adhering particles is extremely small.
[0008]
[Means for Solving the Problems]
As a result of a sharp study, the present inventors have mirror-polished the top surface and the side surface of the convex portion of the concave-convex surface, which is the adsorption fixing surface of the substrate, and the bottom surface of the concave portion of the concave-convex surface sufficiently efficiently. When the sample is removed from the adsorption fixing surface using a lift pin or the like, the back surface of the plate sample and the top and side surfaces of the convex portion of the adsorption fixation surface come into contact with each other, or a partial sample of the plate sample It has been found that the generation of particles can be prevented even when the rear surface of the adhesive contacts the bottom surface of the concave portion of the suction fixing surface due to deformation.
[0009]
That is, in the method for manufacturing an adsorption fixing device according to claim 1 of the present invention, one main surface of the substrate is an adsorption fixing surface for adsorbing and fixing a plate-like sample, and a protrusion or a groove is formed on the adsorption fixing surface. A method of manufacturing an adsorption / fixing device in which a concavo-convex surface is formed, and a top surface of a convex portion of the concavo-convex surface serves as a holding surface of the plate-like sample, and a concavo-convex surface is formed by forming protrusions or grooves on one main surface of a substrate. And a step of polishing the concavo-convex surface with abrasive grains and a brush.
[0010]
In the manufacturing method of the suction fixing device, the uneven surface is polished by using abrasive grains and a brush, so that the top surface and the side surface of the convex portion of the uneven surface and the bottom surface of the concave portion, as well as the side surface of the convex portion and the The portion near the boundary with the bottom of the recess is also sufficiently polished. As a result, the entire area of the adsorption fixing surface of the plate-like sample is sufficiently mirror-polished, and the contact with the plate-like sample adsorbed and fixed to this adsorption fixing surface becomes smooth, and the friction between the adsorption fixing surface and the plate-like sample is smooth. Can be obtained.
[0011]
Therefore, when the plate-like sample fixed to the suction fixing surface is detached from the suction fixing surface by using a lift pin or the like, the suction fixing device manufactured by this manufacturing method is provided with the back surface of the plate-like sample and the suction fixing surface. There is no possibility that particles are generated even when the top surface and the side surface of the convex portion are in contact with each other, or when the back surface thereof is in contact with the bottom surface of the concave portion of the suction fixing surface due to partial deformation of the plate-like sample.
[0012]
The manufacturing method of the suction fixing device according to claim 2 is the manufacturing method of the suction fixing device according to claim 1, wherein the brush is formed by flocking a plurality of fibers in a plate-like body, The length is 5 mm or more.
In the method for manufacturing the suction fixing device, the brush has a plurality of fibers implanted in a plate-like body, and the length of the fibers from the flocked surface is 5 mm or more. The vicinity of the boundary is also efficiently polished.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the method for manufacturing the suction fixing device of the present invention will be described. Here, a description will be given by taking as an example an electrostatic chuck in which a high-frequency electrode for generating plasma is integrated.
Note that this embodiment is specifically described in order to better understand the gist of the invention, and does not limit the present invention unless otherwise specified.
[0014]
In the electrostatic chuck manufactured by the manufacturing method according to the present embodiment, one main surface of the substrate is an adsorption fixing surface that adsorbs and fixes a plate-like sample, and a projection or a groove is formed on the adsorption fixing surface to form an uneven surface. The top surface of the convex portion of the concavo-convex surface is the holding surface for the plate-like sample.
Here, for easy understanding, the electrostatic chuck obtained by the manufacturing method of the suction fixing device of the present embodiment will be described first, and then the manufacturing method of the suction fixing device of the present embodiment will be described.
[0015]
1 is a plan view showing an electrostatic chuck according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of FIG. 1. In FIG. 2, a plasma processing apparatus is provided to facilitate understanding of the configuration of the electrostatic chuck. The configuration of is added.
As shown in the figure, the electrostatic chuck 11 includes an internal electrode 14 for electrostatic adsorption and a high-frequency electrode 18 for generating plasma in a flat dielectric 13.
[0016]
On the upper surface of the dielectric 13, a peripheral wall 13 a having a width of 0.3 mm and the same height as later-described convex portions 15, 15,... Is formed so that a cooling gas such as helium (He) does not leak. The inside is an adsorption surface (adsorption fixing surface) 13b, the inside of the adsorption surface 13b is an uneven surface, and a large number of convex portions 15, 15,.
[0017]
As shown in FIG. 3 and FIG. 4, the convex portions 15, 15,... Are used as holding surfaces for holding the plate-like sample 1, and the total area of the top surfaces 24, 24,. The area ratio with respect to the suction surface 13b is in the range of 0.3% to 30%. Here, the area ratio is limited to 0.3% or more in order to secure a necessary suction force, and the reason why the area ratio is limited to 30% or less is difficult to attach dust existing on the suction surface 13b. Moreover, this is to ensure the detachability of the plate-like sample 1 after the voltage application is stopped.
[0018]
The surface roughness Ra of the top surface 24 and the side surface 25 of the convex portion 15 and the surface roughness Ra of the bottom surface 27 of the concave portion 26 formed around the convex portions 15, 15,. Thus, the entire adsorption surface 13b that adsorbs the plate-like sample 1 is mirror-polished.
[0019]
The dielectric 13 is formed with a cooling gas introduction hole 16 penetrating therethrough, and helium (He) is inserted into the gap between the upper surface of the dielectric 13 and the lower surface of the plate-like sample 1 through the cooling gas introduction holes 16 and 16. A cooling gas such as is supplied.
A DC power supply circuit 17 is connected to the internal electrode 14 for electrostatic attraction, and a high frequency power supply circuit 19 is connected to the high frequency electrode 18 for plasma generation. A grounded counter electrode 20 is disposed above the electrostatic chuck 11 so as to face the upper surface of the electrostatic chuck 11.
[0020]
In the electrostatic chuck 11, the plate-like sample 1 is placed on the dielectric 13, and an electrostatic force is generated by applying a DC voltage to the internal electrode 14 for electrostatic adsorption. Are adsorbed on the dielectric 13, specifically on the top surfaces 24, 24,... Of the convex portions 15, 15,. Further, when a high frequency is applied by the high frequency power supply circuit 19, an active radical 21 is generated between the counter electrode 20, and this active radical 21 etches the Si oxide film or the like on the surface of the plate-like sample 1. It has become.
[0021]
Next, the manufacturing method of the electrostatic chuck of this embodiment will be described with reference to FIG.
The electrostatic chuck according to the present embodiment is manufactured according to a conventionally known method except for polishing the uneven surface formed in the attracting surface 13b.
The convex portions 15, 15,... Can be formed using, for example, grindstone machining, mechanical machining such as laser engraving, or sandblasting. Polishing of the concavo-convex surface, that is, polishing of the top surface 24 and the side surface 25 of the convex portion 15 and the bottom surface of the concave portion 26 can be efficiently performed by polishing using abrasive grains and a brush.
[0022]
As the above-mentioned brush, for example, a variety of animal hair, plant fibers, synthetic fibers and the like in which a large number of fibers are planted are preferably used, and the shape and number of the fibers are not particularly limited. The length of the various fibers is preferably 5 mm or more from the flocked surface. When the length from the flocked surface is less than 5 mm, the top surface 24 and the side surface 25 of the convex portion 15 of the concave-convex surface that is the adsorption surface 13b and the bottom surface 27 of the concave portion 26 of this concave-convex surface are efficiently mirror-polished. I can't.
[0023]
Hereinafter, a sandblasting process will be described as a method for forming the convex portions 15, 15... In the suction surface 13 b, and a polishing method using abrasive grains and a brush as a method for polishing the uneven surface will be described with reference to FIGS. 3 and 5. To do.
[0024]
First, as shown in FIG. 5 (a), the upper surface of the dielectric 31, that is, the adsorption surface 31b that adsorbs the plate-like sample 1 is polished to form a flat surface with a surface roughness Ra of 0.25S or less, for example. Then, the smoothed suction surface 31b is washed. In this cleaning, for example, degreasing is performed with an organic solvent such as acetone, isopropyl alcohol, and toluene, and then cleaning is performed with, for example, warm water.
[0025]
Next, a mask 32 having a predetermined pattern shape is formed on the suction surface 31b. The pattern shape of the mask 32 is the same as the pattern shape of the convex portions 15, 15,... Shown in FIG. As the mask 32, a photosensitive resin or a plate mask is preferably used. This method follows conventional methods.
[0026]
Here, the groove width of the bottom surface (groove part) 27 of the recess 26 is 0.1 mm to 10 mm, preferably 0.5 mm to 5.0 mm.
If the groove width is less than 0.1 mm, it becomes difficult to polish the side surface 25 of the convex portion 15 of the concave and convex surface and the bottom surface 27 of the concave portion 26 of the concave and convex surface. This is not preferable because a cooling gas such as He) may leak into the reaction vessel. If the groove width exceeds 10 mm, the amount of particles adhering to the plate-like sample 1 is increased and the heat uniformity is reduced. This is not preferable because a temperature difference occurs in the plate-like sample 1.
[0027]
Next, as shown in FIG. 5B, sandblasting is performed to form recesses 33, 33,... In portions not covered by the mask 32. As a result, the portion covered with the mask 32 remains and becomes convex portions 34, 34,..., And the space between these convex portions 34, 34 becomes the bottom surface 35 of the concave portion 33.
[0028]
Abrasive grains used in this sandblasting process are preferably alumina, silicon carbide, glass beads, etc. The grain size of the abrasive grains is 300 mesh under (300 mesh passed) and 1500 mesh over (1500 mesh). It is preferable to set it to a level that does not pass through.
Thereafter, the mask 32 is removed. At this time, when the mask 32 is made of a photosensitive resin, a stripping solution such as methylene chloride is used.
[0029]
Next, the top and side surfaces of the convex portions 34, 34,... And the bottom surface 35 of the concave portion 33 are simultaneously mirror-polished by a polishing method using abrasive grains and a brush so that the surface roughness Ra is 0.25S or less. Then, as shown in FIG. 5C, an electrostatic chuck is obtained in which the top surface 24 and the side surface 25 of the convex portions 15, 15,... And the bottom surface 27 of the concave portion 26 are sufficiently mirror-polished.
[0030]
As said abrasive grain, the same thing as the abrasive grain used for sandblasting can be used, for example, as a grain size of an abrasive grain, 800 mesh under (thing which passed 800 mesh), and It is preferably about 1500 mesh over (one that does not pass 1500 mesh).
[0031]
At the time of polishing using the abrasive grains and the brush, it is preferable that polishing is performed in multiple stages using finer abrasive grains each time a step is taken. For example, 800 mesh abrasive grains → 1000 mesh abrasive grains → 1500 mesh It is preferable to perform multi-step polishing in steps such as the above-mentioned abrasive grains.
Other polishing conditions may be in accordance with a conventional buff polishing method, for example, a method of polishing with a brush while pouring the abrasive slurry containing the abrasive grains onto the surface to be polished.
After polishing, the suction surface 13b is cleaned. This cleaning is performed with an organic solvent such as acetone and degreased. After this degreasing, for example, it is washed with warm water.
[0032]
Further, the height H of the convex portions 15, 15,... Formed in the suction surface 13b is set to 1 μm to 30 μm. The reason is that if the height H of the convex portion 15 is less than 1 μm, it becomes difficult to flow a cooling gas such as helium (He) to the lower surface of the plate-like sample 1, and also prevents particle adhesion. This is because it is not effective, and the plate-like sample 1 is floated to reduce the adsorbing power, making it difficult to improve the uniformity of the in-plane temperature of the plate-like sample 1. In addition, if the height H of the convex portion 15 exceeds 30 μm, the suction force on the bottom surface 27 of the concave portion 26 is reduced, and the suction force as the entire suction surface 13b is reduced.
[0033]
Further, as shown in FIG. 3 and FIG. 4, the protrusions 15, 15,... Are formed in a shape whose tip is smaller than the base, and the periphery of the protrusion 15 is rounded (curved). Polishing is performed so that the area of the top surface 24 of the protrusion 15 is 20 to 80% of the area of the bottom of the protrusion 15 in the horizontal direction. Thus, it is preferable that the peripheral edge of the convex portion 15 is formed because the back surface of the plate sample 1 is not damaged and the friction with the plate sample 1 is reduced.
[0034]
In this method for manufacturing an electrostatic chuck, the electrostatic chuck having a large area ratio (for example, 20% or more) of the total area of the top surfaces 24 of the convex portions 15, 15,. Even with an electrostatic chuck having a small groove width (for example, 5 mm or less), the bottom surface 35 of the concave portion 33 and the boundary portion between the bottom surface 35 and the side surface 25 of the convex portion 34 can be easily polished. In addition, since the top surface and the side surface of the convex portion 34 and the bottom surface 35 of the concave portion 33 can be simultaneously polished, the polishing cost can be reduced, and the cause of the generation of particles is small. An electrostatic chuck that can improve the product yield of the sample 1 can be provided at a low cost.
[0035]
Further, in this method for manufacturing an electrostatic chuck, an electrostatic chuck having a large electrostatic attraction force can be manufactured with a small amount of particles adhering to the plate-like sample 1.
That is, in this electrostatic chuck manufacturing method, not only the top surface of the convex portion 34 but also the side surface of the convex portion 34 and the bottom surface 35 of the concave portion 33 can both be efficiently and sufficiently polished. The entire adsorption surface 13b can be polished. Therefore, it is possible to manufacture an electrostatic chuck that can greatly reduce particle adhesion to the plate-like sample 1.
[0036]
Furthermore, an electrostatic chuck having a large area ratio of the total area of the top surfaces 24 of the many protrusions 15 formed on the adsorption surface 13b of the electrostatic chuck to the entire adsorption surface 13b, for example, an electrostatic chuck of 20% to 30%. Therefore, an electrostatic chuck capable of electrostatically attracting the plate-like sample 1 to the attracting surface 13b with a sufficient electrostatic attraction force can be obtained.
[0037]
Next, the above electrostatic chuck was evaluated.
The electrostatic chuck in this example is manufactured by the above-described manufacturing method, and the area ratio of the total area of the top surface 24 of the convex portion 15 to the attracting surface 13b is 15%, and the groove width of the bottom surface 27 of the concave portion 26. Was 2.0 mm, the height H of the convex portion 15 was 10 μm, and the surface roughness Ra of the top surface 24 and side surface 25 of the convex portion 15 and the bottom surface 27 of the concave portion 26 was 0.25S. Moreover, the area of the top surface 24 of the convex part 15 was 70% of the area of the bottom part of the convex part 15 in the horizontal direction. In addition, as the brush, one having a length of 10 mm from the flocked surface in which a large number of pig hairs were flocked was used.
[0038]
Using this electrostatic chuck, the plate-like sample 1 is adsorbed while flowing 2.6 × 10 3 Pa (20 torr) helium (He) gas into the recesses (grooves) 26, 26,. Were measured at room temperature (25 ° C.). Here, an 8-inch silicon (Si) wafer was used as the plate-like sample 1. These measurement results are shown in Table 1.
[0039]
Here, the adsorption time is a time until the electrostatic adsorption force becomes 100 gf / cm 2 , that is, about 9800 Pa when a DC voltage of 1000 V is applied, and the desorption time is a DC voltage of 1000 V. This is the time from when application is stopped after application for 1 minute until the electrostatic attraction force reaches 10 gf / cm 2 , that is, about 980 Pa.
[0040]
Using this electrostatic chuck, a DC voltage of 1000 V was applied, the 8-inch Si wafer was adsorbed for 1 minute, then desorbed, and then a new Si wafer was similarly adsorbed and desorbed repeatedly. The number of adhered particles on the back surface of each of the 10th, 50th, and 100th wafers was measured. These measurement results are shown in Table 2.
[0041]
On the other hand, an electrostatic chuck in which the side surface of the convex portion 34 and the bottom surface 35 of the concave portion 33 are not mirror-polished is manufactured and used as Comparative Example 1.
That is, the upper surface of the dielectric 31, that is, the adsorption surface 31 b that adsorbs the plate-like sample 1 is polished to form a flat surface with a surface roughness Ra of 0.25 S, and the smooth adsorption surface 31 b is used in the above embodiment. Washed according to
Next, a mask 32 was formed on the suction surface 31b according to the example, sandblasting was performed, the mask 32 was removed, and then the suction surface 31b was washed.
[0042]
The electrostatic chuck produced in this manner was measured for electrostatic attraction force, adsorption time, and desorption time at room temperature (25 ° C.) according to the examples. Further, according to the example, the number of adhered particles on the back surface of the wafer was measured. These measurement results are shown in Tables 1 and 2.
[0043]
In addition, an electrostatic chuck similar to that of the example was manufactured except that an abrasive slurry containing silicon carbide abrasive grains was poured onto the surface to be polished while being polished using a buff material, and Comparative Example 2 was obtained. The electrostatic chuck produced in this manner was measured for electrostatic attraction force, adsorption time, and desorption time at room temperature (25 ° C.) according to the examples. Further, according to the example, the number of adhered particles on the back surface of the wafer was measured. These measurement results are shown in Tables 1 and 2.
[0044]
[Table 1]
Figure 2005019700
[0045]
[Table 2]
Figure 2005019700
[0046]
According to Tables 1 and 2, although the electrostatic adsorption characteristics of the Example and Comparative Examples 1 and 2 are the same, the number of adhered particles on the back surface of the wafer is far superior to the electrostatic chuck of the Example.
That is, in the electrostatic chuck of the embodiment, not only the top surface 24 of the convex portion 15, the side surface 25 of the convex portion 15 and the bottom surface 27 of the concave portion 26, but also the portion near the boundary between the side surface 25 of the convex portion 15 and the bottom surface 27 of the concave portion 26. Since the wafer is sufficiently polished, the number of adhering particles decreases every time the process of adsorbing / desorbing the wafer is repeated for the 10th, 50th, and 100th times. This is presumably because no new particles are generated even when the back surface of the wafer contacts the bottom surface 27 of the recess 26 of the suction surface 13b.
[0047]
On the other hand, in the electrostatic chuck of Comparative Example 1, since the side surface 25 of the convex portion 15 and the bottom surface 27 of the concave portion 26 are not polished, the processes for attracting and desorbing the wafer are the 10th, 50th, and 100th. The number of adhering particles increases with each time. This is considered to be because particles are newly generated when the back surface of the wafer contacts the bottom surface 27 of the recess 26 of the suction surface 13b.
Further, in the electrostatic chuck of Comparative Example 2, the vicinity of the boundary between the side surface 25 of the convex portion 15 and the bottom surface 27 of the concave portion 26 is not sufficiently polished. Although the number of adhering particles decreases each time after the first and 100th times, more particles adhere than the electrostatic chuck of the example, and the decrease in the number of particles is also gradual. This is considered to be because new particles are generated every time the process of adsorbing / desorbing the wafer follows the 10th, 50th, and 100th times.
[0048]
As described above, according to the manufacturing method of the suction fixing device of the present embodiment, not only the top surface and side surface of the convex portion 34 and the bottom surface 35 of the concave portion 33, but also the side surface of the convex portion 34 and the bottom surface 35 of the concave portion 33. The portion near the boundary can be sufficiently polished. Therefore, it is possible to provide an electrostatic chuck manufacturing method in which the number of particles adhering to the plate-like sample 1 such as a Si wafer is extremely small and the friction between the suction surface 13b and the plate-like sample 1 is small.
In addition, since the top surface and the side surface of the convex portion 34 and the bottom surface 35 of the concave portion 33 can be polished at the same time, the polishing cost can be reduced.
[0049]
As mentioned above, although one Embodiment of the manufacturing method of the adsorption fixing device of this invention has been demonstrated based on drawing, a concrete structure is not limited to this embodiment, It designs in the range which does not deviate from the summary of this invention. Can be changed.
For example, in the present embodiment, an electrostatic chuck of a type in which a high-frequency electrode for generating plasma is integrated is described as an example of the adsorption fixing device, but other types of electrostatic chucks, vacuum chucks, and the like other than the above types have been described. Of course, the present invention can be applied to an adsorption fixing device of the following type.
[0050]
【The invention's effect】
As explained above, according to the manufacturing method of the suction fixing device of the present invention, the uneven surface is polished by using abrasive grains and a brush, so the top surface and the side surface of the uneven surface and the bottom surface of the recessed portion are of course. In addition, the portion in the vicinity of the boundary between the side surface of the convex portion and the bottom surface of the concave portion can be sufficiently polished, and the entire area of the adsorption fixing surface of the plate-like sample can be sufficiently mirror-polished. Therefore, the contact with the plate-like sample adsorbed and fixed to this adsorption-fixing surface becomes smooth, and an adsorption-fixing device with a small friction between the adsorption-fixed surface and the plate-like sample can be easily produced.
[0051]
Therefore, when the plate-like sample fixed to the suction fixing surface is detached from the suction fixing surface by using a lift pin or the like, the suction fixing device manufactured by this manufacturing method is provided with the back surface of the plate-like sample and the suction fixing surface. Even when the top surface and side surface of the convex portion are in contact with each other, or when the back surface of the plate sample is in contact with the bottom surface of the concave portion of the adsorption fixing surface due to partial deformation of the plate sample, Very little adhesion.
[0052]
Further, if the brush is planted with a plurality of fibers in a plate-like body and the length of the fiber from the planted surface is 5 mm or more, the vicinity of the boundary between the convex side surface and the concave bottom surface is also efficiently polished. Therefore, the entire surface of the adsorption and fixing surface of the plate-like sample can be sufficiently mirror-polished.
[0053]
As described above, there is provided a method for manufacturing an adsorption fixing device that can perform fixing, correction, conveyance, etc. without causing problems such as generation of particles, and that has a very small amount of particles adhering to a plate-like sample. be able to.
[Brief description of the drawings]
FIG. 1 is a plan view showing an electrostatic chuck according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an electrostatic chuck according to an embodiment of the present invention.
FIG. 3 is a plan view showing the structure of an uneven surface of the electrostatic chuck according to the embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a structure of an uneven surface of an electrostatic chuck according to an embodiment of the present invention.
FIG. 5 is a process diagram illustrating a method for manufacturing an electrostatic chuck according to an embodiment of the present invention.
FIG. 6 is an explanatory view showing problems of a conventional electrostatic chuck.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plate-shaped sample 11 Electrostatic chuck 13 Dielectric material 13a Peripheral wall 13b Adsorption surface 14 Electrostatic adsorption internal electrode 15 Convex part 16 Cooling gas introduction hole 17 DC power supply circuit 18 High frequency electrode 19 for plasma generation High frequency power supply circuit 20 Counter electrode 21 Radical 24 Top surface 25 Side surface 26 Recessed portion 27 Bottom surface (groove)
31 Dielectric 31b Adsorption surface 32 Mask 33 Concave portion 34 Convex portion 35 Bottom surface

Claims (2)

基体の一主面が板状試料を吸着固定する吸着固定面とされ、該吸着固定面には突起または溝が形成されて凹凸面とされ、該凹凸面の凸部の頂面が前記板状試料の保持面とされた吸着固定装置の製造方法であって、
基体の一主面に突起または溝を形成して凹凸面とする工程と、該凹凸面を砥粒と刷子を用いて研磨する工程とを備えたことを特徴とする吸着固定装置の製造方法。
One main surface of the substrate is an adsorption fixing surface for adsorbing and fixing a plate-like sample, and a projection or groove is formed on the adsorption fixing surface to form an irregular surface, and the top surface of the convex portion of the irregular surface is the plate shape. A method of manufacturing an adsorption / fixation device as a sample holding surface,
A method of manufacturing a suction fixing device, comprising: a step of forming protrusions or grooves on one main surface of a substrate to form an uneven surface; and a step of polishing the uneven surface using abrasive grains and a brush.
前記刷子は、繊維を板状体に複数本植毛してなり、前記繊維の植毛面からの長さは5mm以上であることを特徴とする請求項1記載の吸着固定装置の製造方法。2. The method for manufacturing an adsorption fixing device according to claim 1, wherein the brush is formed by flocking a plurality of fibers in a plate-like body, and the length of the fibers from the flocked surface is 5 mm or more.
JP2003182772A 2003-06-26 2003-06-26 Method of manufacturing attracting and fixing apparatus Pending JP2005019700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182772A JP2005019700A (en) 2003-06-26 2003-06-26 Method of manufacturing attracting and fixing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182772A JP2005019700A (en) 2003-06-26 2003-06-26 Method of manufacturing attracting and fixing apparatus

Publications (1)

Publication Number Publication Date
JP2005019700A true JP2005019700A (en) 2005-01-20

Family

ID=34183069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182772A Pending JP2005019700A (en) 2003-06-26 2003-06-26 Method of manufacturing attracting and fixing apparatus

Country Status (1)

Country Link
JP (1) JP2005019700A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173596A (en) * 2005-12-22 2007-07-05 Ngk Insulators Ltd Electrostatic chuck
KR100989752B1 (en) 2007-03-30 2010-10-26 어플라이드 머티어리얼스, 인코포레이티드 Wafer transfer blade
JP2010262985A (en) * 2009-04-30 2010-11-18 Shin-Etsu Chemical Co Ltd Method of manufacturing surface-roughened substrate
JP2013102076A (en) * 2011-11-09 2013-05-23 Tokyo Electron Ltd Substrate mounting system, substrate processing apparatus, electrostatic chuck and substrate cooling method
JP2014027207A (en) * 2012-07-30 2014-02-06 Hitachi Chemical Co Ltd Dielectric body and electrostatic chuck using the same
CN104325365A (en) * 2014-09-01 2015-02-04 上海华力微电子有限公司 Method for quickly grinding electrostatic chuck
KR20150101391A (en) * 2014-02-26 2015-09-03 도쿄엘렉트론가부시키가이샤 Electrostatic chuck, placing table, plasma processing apparatus, and method of manufacturing electrostatic chuck
CN104325365B (en) * 2014-09-01 2017-01-04 上海华力微电子有限公司 A kind of method of quick polishing electrostatic chuck
JP2019009358A (en) * 2017-06-27 2019-01-17 日本特殊陶業株式会社 Substrate holding device and manufacturing method thereof
CN110385232A (en) * 2019-07-19 2019-10-29 深圳市沅鸿机械有限公司 A kind of capping device containing dipping machine that automatic absorbing type is fixed
JP2020006501A (en) * 2018-06-27 2020-01-16 日本特殊陶業株式会社 Manufacturing method of electrostatic chuck

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173596A (en) * 2005-12-22 2007-07-05 Ngk Insulators Ltd Electrostatic chuck
KR100989752B1 (en) 2007-03-30 2010-10-26 어플라이드 머티어리얼스, 인코포레이티드 Wafer transfer blade
JP2010262985A (en) * 2009-04-30 2010-11-18 Shin-Etsu Chemical Co Ltd Method of manufacturing surface-roughened substrate
JP2013102076A (en) * 2011-11-09 2013-05-23 Tokyo Electron Ltd Substrate mounting system, substrate processing apparatus, electrostatic chuck and substrate cooling method
JP2014027207A (en) * 2012-07-30 2014-02-06 Hitachi Chemical Co Ltd Dielectric body and electrostatic chuck using the same
TWI667730B (en) * 2014-02-26 2019-08-01 日商東京威力科創股份有限公司 Electrostatic chuck, mounting table, plasma processing device, and manufacturing method of electrostatic chuck
KR102353796B1 (en) * 2014-02-26 2022-01-19 도쿄엘렉트론가부시키가이샤 Electrostatic chuck, placing table, plasma processing apparatus, and method of manufacturing electrostatic chuck
KR20150101391A (en) * 2014-02-26 2015-09-03 도쿄엘렉트론가부시키가이샤 Electrostatic chuck, placing table, plasma processing apparatus, and method of manufacturing electrostatic chuck
JP2015162490A (en) * 2014-02-26 2015-09-07 東京エレクトロン株式会社 Electrostatic chuck, mounting table, plasma processing apparatus, and method of manufacturing electrostatic chuck
US10074552B2 (en) 2014-02-26 2018-09-11 Tokyo Electron Limited Method of manufacturing electrostatic chuck having dot structure on surface thereof
CN104325365B (en) * 2014-09-01 2017-01-04 上海华力微电子有限公司 A kind of method of quick polishing electrostatic chuck
CN104325365A (en) * 2014-09-01 2015-02-04 上海华力微电子有限公司 Method for quickly grinding electrostatic chuck
JP2019009358A (en) * 2017-06-27 2019-01-17 日本特殊陶業株式会社 Substrate holding device and manufacturing method thereof
JP2020006501A (en) * 2018-06-27 2020-01-16 日本特殊陶業株式会社 Manufacturing method of electrostatic chuck
CN110385232A (en) * 2019-07-19 2019-10-29 深圳市沅鸿机械有限公司 A kind of capping device containing dipping machine that automatic absorbing type is fixed
CN110385232B (en) * 2019-07-19 2023-04-28 深圳市沅鸿机械有限公司 Automatic fixed impregnating machine upper cover device of absorption formula

Similar Documents

Publication Publication Date Title
JP4094262B2 (en) Adsorption fixing device and manufacturing method thereof
JP3859937B2 (en) Electrostatic chuck
CN108705422B (en) Vacuum adsorption pad and substrate holding device
TWI360529B (en) Methods of finishing quartz glass surfaces and com
US7646581B2 (en) Electrostatic chuck
JP2009060035A (en) Electrostatic chuck member, its manufacturing method, and electrostatic chuck apparatus
CN108803255B (en) Substrate backside texturing
TWI746645B (en) Semiconductor device manufacturing method and semiconductor manufacturing device
JP4444843B2 (en) Electrostatic chuck
US20160358768A1 (en) Method for fabricating semiconductor device
JP2014027207A (en) Dielectric body and electrostatic chuck using the same
TW200913044A (en) Method for reworking a wafer and apparatus for reworking a wafer
JP4236292B2 (en) Wafer adsorption apparatus and method for manufacturing the same
JP2005019700A (en) Method of manufacturing attracting and fixing apparatus
JP2004063669A (en) Semiconductor manufacturing device cleaning wafer and method for manufacturing the same and cleaning method using the same
JP2018006573A (en) Electrostatic chuck, manufacturing method thereof and reproduction method for electrostatic chuck
JP2018014515A (en) Electrostatic chuck and manufacturing method therefor, and generation method for electrostatic chuck
JP2009117440A (en) Cleaning wafer
US9457450B2 (en) Pad conditioning tool
KR102338223B1 (en) electrostatic chuck device
JP2007194556A (en) Method for manufacturing semiconductor wafer
WO2020170514A1 (en) Electrostatic chuck device
JP4439135B2 (en) Electrostatic chuck
JPH0547906A (en) Plane object holding means and equipment using the same
JPH04206930A (en) Chuck for polishing semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924