JP2005018835A - Buffer member for external storage device - Google Patents

Buffer member for external storage device Download PDF

Info

Publication number
JP2005018835A
JP2005018835A JP2003178718A JP2003178718A JP2005018835A JP 2005018835 A JP2005018835 A JP 2005018835A JP 2003178718 A JP2003178718 A JP 2003178718A JP 2003178718 A JP2003178718 A JP 2003178718A JP 2005018835 A JP2005018835 A JP 2005018835A
Authority
JP
Japan
Prior art keywords
buffer member
storage device
external storage
thickness
hard disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003178718A
Other languages
Japanese (ja)
Inventor
Yosuke Nakamura
洋祐 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2003178718A priority Critical patent/JP2005018835A/en
Publication of JP2005018835A publication Critical patent/JP2005018835A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a buffer member which is used for an external memory device, such as a hard disk device, can be easily attached and positioned without fixation with a double coated tape or the like, makes it possible to obtain a vibration attenuation characteristic meeting the external memory devices varying in resonance frequencies without depending on an increase in thickness and has an excellent impact buffer characteristic in spite of a thin thickness. <P>SOLUTION: The buffer member has a covering section 12 covering the respective marginal side portions at an upper surface 3a and base surface 3b continuous with a longitudinal side face 3c of a casing 3 of the external memory device 2 and is formed with a projection collection section 16 tightly-packed with a number of small projections 15 in the covering section 12. The resonance frequency can therefore be easily changed by changing the shape, size, etc., of the small projections 15 without changing the thickness of the buffer member 11. The buffer member 11 meeting the external memory device 2 varying in resonance frequencies can thus be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えばノートブックタイプのパーソナルコンピュータのような情報処理装置の格納部に収容するハードディスク装置などの外部記憶装置を、衝撃や振動から保護する緩衝部材に関する。
【0002】
【従来の技術】
例えば図11で示すように、情報処理装置としてのノートブックタイプのパーソナルコンピュータ(以下「ノートPC」と略記する)1には、ディスク状記憶媒体を収容する外部記憶装置としてのハードディスク装置2が格納されている。
このハードディスク装置2は、広面部としての上面3aと底面3bを略長方形とした薄板状の筐体3を備えている。上面3aと底面3bには、矩形状とした弾性材でなるシート状緩衝部材4が、例えば図示せぬ両面テープなどで固定されている。そして、シート状緩衝部材4は、図12で示すように、ハードディスク装置2がノートPC1の格納部1aに格納されて蓋1bで閉塞されると、その隙間に挟み込まれた状態で配置されることになり、振動や衝撃からハードディスク装置2を保護する機能を担っている。このシート状緩衝部材4に関する先行技術の例が、特願2002−379283号(特許文献1)明細書に記載されている。
【0003】
【特許文献1】
特願2002−379283号
【0004】
【発明が解決しようとする課題】
ところで、ハードディスク装置2は大容量化が進み、回転速度も高速化し、内乱振動を起こす共振周波数も変化してきている。また、ノートPC1のように、例えば自動車や電車の乗車中に使用する場合のように、必ずしも静止環境下だけで使用される訳ではない携帯型の情報処理装置にあっては、外乱振動や衝撃からもハードディスク装置2を守る必要がある。
【0005】
しかしながら、シート状緩衝部材4は、ハードディスク装置2の上面3a,底面3bの四隅に個別に両面テープで固定するため、取付け作業性が悪く、固定位置の位置決めが困難で、もし固定位置がずれれば当初予定している振動減衰特性が得られないという問題がある。そして特に、磁気ディスク2aと対向する上面3a,底面3bの中央寄りの部分にシート状緩衝部材4を取付けてしまうと、シート状緩衝部材4の押圧により上面3aと底面3bと磁気ディスク2aとの隙間が狭くなって、精緻な動作が要求される磁気ヘッド2bの動作に悪影響を及ぼすおそれもある。さらに、シート状緩衝部材4では広面部全面が圧縮されるため、衝撃の加速度が大きくなってくると、シート状緩衝部材4の全体が硬くなるので、衝撃の緩衝効果が著しく劣ってしまう。また、ノートPC1は薄肉化が進んでいるため、ハードディスク装置4とその格納部1aとのスペースも1mm〜2mm程度と狭いものとなってきているのに対し、従来の緩衝部材では厚肉化しなければ緩衝効果を向上できず構造的な限界がある。そして、肉厚を変化させることでしか振動減衰特性を変えられないため、共振周波数が異なるハードディスク装置2ごとに最適な振動減衰特性を有するシート状緩衝部材4を適用することは困難である。
【0006】
そこで、本発明は、ハードディスク装置などの外部記憶装置に用いられる緩衝部材であって、両面テープ等で固定することなく簡単な取付け、位置合わせが可能で、緩衝部材の厚肉化に依存せずに、共振周波数の異なる外部記憶装置に応じた振動減衰特性を得ることができ、厚さが薄くても衝撃を緩衝する衝撃緩衝特性に優れた緩衝部材を得ることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成すべく本発明は、筐体にディスク状記録媒体を収容する外部記憶装置と、この外部記憶装置を収容する情報処理装置の格納部との隙間に介在して、格納部と外部記憶装置との間を伝達する振動を減衰し、衝撃を緩衝する弾性材でなる緩衝部材について、外部記憶装置の筐体の長手側面と連続する上面と底面における各縁側部分を覆う被覆部を有し、該被覆部に多数の小突起が密集する突起集合部を形成したことを特徴とする緩衝部材を提供する。
【0008】
本発明の緩衝部材は、外部記憶装置の筐体の長手側面と連続する上面と底面における各縁側部分を覆う被覆部を有しているため、外部記憶装置の縁側部分に必ず位置し、位置ずれによる振動減衰特性の変化が問題にならない。そして、外部記憶装置上面の中央部分にまで緩衝部材が及ぶことがないので、外部記憶装置の内部にある磁気ディスク等の面が過度に押圧されることがない。さらに本発明の緩衝部材は、被覆部に多数の小突起が密集する突起集合部を形成したため、小突起の形状、大きさ等を変えることで緩衝部材の厚さを変えることなく容易に共振周波数を変化させることができ、共振周波数の異なる外部記憶装置に応じた緩衝部材を得ることができる。また、突起集合部を形成したため、小突起が外部記憶装置の格納部と接し、緩衝部材の全面が格納部と接するものではないので、緩衝部材の全体が硬くなることはない。そして、振動減衰効果が著しく低下することはなく、衝撃から外部記憶装置を効果的に保護することができる。さらに、振動減衰特性が緩衝部材の厚さに影響されないため、外部記憶装置とその格納部との隙間の大きさが予め決まっているような情報処理装置に対しても適用することができる。
【0009】
そして、本発明の緩衝部材を外部記憶装置の筐体の長手側面から該筐体の上面と底面における各縁側部分を連続して覆う被覆部を有するものであれば、外部記憶装置の側面に緩衝部材を嵌めこむだけで取付けることができ、取付け作業性が良く、位置決めが容易で、設計通りの振動減衰特性を得ることができる。さらに、該筐体の長手側面に連続する該筐体の短手側面の各縁側部分を覆う被覆部を有するものであれば、外部記憶装置の長手方向に沿う振動に対しても振動減衰効果を発揮する緩衝部材となる。
【0010】
また本発明は、突起集合部が、5個/cm〜25個/cmの多数の小突起を設けたものである。突起集合部が、5個/cm〜25個/cmの多数の小突起を設けたものであるため、緩衝部材の厚さを変えずに共振周波数を変化させることができ、外部記憶装置の種類に応じた最適の振動減衰特性を有する緩衝部材を得ることができる。
【0011】
小突起の高さが0.25mm〜1.5mmであれば、外部記憶装置を安定的に保持できる程度の剛性を保ちつつ、効果的に衝撃を緩衝することができる。小突起の高さを緩衝部材の厚さに対する割合で表せば、0.2〜0.8とするのが好ましく、より好ましくは0.4〜0.6とする。緩衝部材の厚さを一定とした場合に、小突起を支持する部分が薄くなりすぎると小突起が高くなり、小突起を支持する部分が厚くなりすぎると小突起が低くなるため、0.2〜0.8の範囲内とすれば安定的に保持された小突起が振動を受けて適度に伸縮するので、振動減衰効果が十分に得られるからである。
【0012】
【発明の実施の形態】
以下図面を参照しつつ本発明の緩衝部材について説明する。以下に説明する実施形態は、本発明の緩衝部材をノートPCに搭載されるハードディスク装置に適用した例であるが、光ディスク装置などの外部記憶装置に対しても適用でき、また、これらの外部記憶装置を用いた卓上パソコンやカーオーディオ装置などのような他の情報処理装置に対しても適用できる。なお、従来技術と同一のものについては、同じ符号を付して重複説明を省略する。
【0013】
本発明の緩衝部材11,11をハードディスク装置2に取付ける状態を図1に示す。ハードディスク装置2の右側に位置する緩衝部材11は、ハードディスク装置2の筐体3の右側長手側面3cと連続する上面3aと底面3bにおける各縁側部分を覆う上底面被覆部12,12と、該右側長手側面3cと連続する前側短手側面3dと後側短手側面3eにおける各縁側部分を覆う短手側面被覆部13,13と、当該右側長手側面3cを覆う長手側面被覆部14とが一体として形成されている。そして、上底面被覆部12,12には、多数の小突起15が密集する突起集合部16,16,16,16を有している。ハードディスク装置2の左側に位置する緩衝部材11もまた、これと同じ構造である。
【0014】
図2は、図1のSA−SA線断面図であるが、図2で示すように、突起集合部16は、複数の小突起15が平板状の支持部17上から突出した形状に形成されている。突起集合部16のうち、小突起15の高さt1と平板状の支持部17の厚さt2は次のように規定される。まず、小突起15の高さt1と支持部17の厚さt2との和がちょうどハードディスク装置2とその格納部1aとの隙間の大きさに合致する程度の大きさであることが好ましい。ハードディスク装置2とその格納部1aとの間に遊びがあったり、緩衝部材が押圧されて甚だしく縮んだ状態で取り付けたりすれば、緩衝部材11の振動減衰特性を十分に発揮することができないからである。そして、小突起15の高さt1は、0.25mm〜1.5mmであることが好ましい。1.5mmを超えると、ハードディスク装置2を安定的に保持する程度の剛性が得られず、外部からの強い衝撃を緩衝することができない。また、0.25mmより小さいと、小突起15による振動減衰効果がほとんど得られない。そして、小突起15の高さt1と支持部17の厚さt2とを比で示すと、20:80〜80:20が好ましく、さらに好ましくは40:60〜60:40であり、50:50はこの範囲に含まれる。小突起15が高すぎると成形が難しく、また、支持部17が厚すぎると、小突起15による振動減衰効果がほとんど得られないからである。そして、50:50に近い範囲では剛性と振動吸収力の調和を図ることができる点で好ましい。なお、小突起15の高さt1と支持部17の厚さt2との比が20:80ということは、この部位において、緩衝部材11の厚さ(t1+t2)に対して小突起15の高さ(t1)の割合が0.2であることを意味する。小突起15の幅は、その形状によっても変化するが、小突起15と支持部17との境界面の平均径が0.5mm〜3mmが好ましく、1mm〜2mmとなることがさらに好ましい。小突起15の高さと相俟って、成形がし易く、所望の振動減衰特性を得やすいからであり、小突起15の径が0.5mmより小さいと形成が困難であり、3mmを超えると、所定個数の小突起15を設けることが困難になるからである。そして、1mm〜2mmであれば振動減衰性能が好ましい。
【0015】
小突起15の個数も、それを構成する弾性体の硬度などによって適宜決定されるが、硬度ショアA10〜70の弾性体を用いた場合、小突起15をもつ突起集合部16の突起密度は、5個/cm〜25個/cmであり、緩衝部材11の片面で30個〜150個の小突起15を形成していることが好ましい。突起数が5個/cm未満だとハードディスク装置2の自重で小突起15が潰れてしまうからであり、25個/cmを超えると小突起15同士がぶつかりあう大きさとなってしまい、小突起15が独立して個々の突起形状を保つスペースを確保できなくなるからである。
【0016】
小突起15の形状は、図1では円柱の上に半球が載った形状となっているが、この形状に限らず、半球状、ドーム状、円柱状、角柱状、円錐状、角錐状、これらの組合せなど、種々の形状とすることができる。図3に小突起15の形状の一例を示す。
【0017】
そして、小突起15の形状や個数、大きさを調整することによって、共振周波数を変えることが可能である。例えば、小突起15の個数を増やすと共振周波数もそれに伴って増加していくので、厚みが制限されている薄型のノートPC1に搭載されるハードディスク装置2用の緩衝部材11として特に有効である。
【0018】
緩衝部材11には、硬度ショアA10〜70の弾性体を用いており、寸法制度、耐熱性、機械的強度、耐久性、信頼性、防振特性、制御特性などの要求性能に応じて、熱可塑性エラストマー、熱硬化性ゴム等から選択して用いることができる。硬度がショアA10より低いと、緩衝部材11を型から取出す際に突起形状を形成することが困難であり、ショアA70より高いと、要求する振動減衰効果が得られず衝撃を緩衝することができない。緩衝部材11には、熱可塑性エラストマーとして、スチレン系エラストマー、オレフィン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー等を利用できる。また、熱硬化性ゴムとしては、天然ゴム、ブタジエンゴム、イソプレンゴム、スチレンブタジエン共重合ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、アクリルゴム、フッ素ゴム、ウレタンゴム、シリコーンゴム等を用いることができる。以上のような緩衝部材11にあっては、コンプレッション成形等によって作製することができる。
【0019】
以上示した緩衝部材11をハードディスク装置2に2個取付けノートPC1の格納部1aに収納すれば、ハードディスク装置2の磁気ディスク2aの回転によって生じる内乱振動も、ノートPC1の外部から伝わる外乱振動も、緩衝部材11の特に個々の小突起15が押圧変形することによって緩和、吸収される。そのため優れた衝撃緩衝、振動減衰特性を発揮する。
【0020】
本発明の他の実施形態としては、例えば、図4で示した形状の緩衝部材21とすることも可能である。図4で示した緩衝部材21は、図1等で示した緩衝部材11と比較すると、短手側面被覆部13,13を有していない点で異なる。短手側面の縁側部分にまで端子が配置された外部記憶装置であって短手側面を覆うことが困難な場合や、長手方向での緩衝部材の薄さが要求される場合に有効に用いられる。また、図5(A)〜図5(C)で示した形状の緩衝部材31は、図1で示した緩衝部材11でいう短手側面被覆部13,13を有していないだけでなく、上底面被覆部32が、突起15を設けた突起集合部16の部分と同一となっており、また、長手側面被覆部34も長手側面全体を覆う形状とはなっていない。
さらにこの緩衝部材31は、ハードディスク装置2の筐体に設けられたネジ孔を塞ぐ円柱状の凸部38,38が長手側面被覆部34から突出している。そして、この凸部38,38は、緩衝部材31と同一の素材にて形成されている。この他にも、図1で示した緩衝部材11の長手側面被覆部14や、短手側面被覆部13に小突起35を形成した緩衝部材(図示せず)とすれば、ハードディスク装置2の上下面に垂直な方向の振動を特に減衰させる必要がある場合に有効に用いられるし、上底面被覆部12全体を突起集合部とした緩衝部材(図示せず)とすることも可能である。
【0021】
【実施例】
本発明を実施例にしたがって具体的に示すが、本発明はこれらの実施例に限定されるものではない。
【0022】
実施例1; ショアA硬度30であるエステル系の熱硬化性ゴムを用い、小突起(15)径、小突起(15)数、小突起(15)の高さ、小突起(15)形状、支持部(17)の厚さをそれぞれ変えた2.5インチハードディスク装置(2)用の本発明の緩衝部材(11)をコンプレッション成形機にて成形して作製した。この場合の条件を、表1、図6〜図10に示した。図6には表1で示した試料2Aの緩衝部材(11)の外観を示した。図6において、L1は7mm、L2は18mm、L3は96mm、L4は9.5mmであり、L1×L2で形成される平面にて突起集合部(16)が形成される。また、L5は小突起(15)の高さと支持部(17)の厚さの和である。なお、図6には、試料2Aを示したが、小突起(15)以外の部分であるL1〜L4の大きさは、各試料とも同じである。次に、これらの緩衝部材(11)を2.5インチハードディスク装置(2)に装着し、ノートPC(1)に収納して共振周波数を測定した。この場合の2.5インチハードディスク装置(2)と格納部(1a)の隙間は、緩衝部材(11)と同じ大きさとした。得られた共振周波数も併せて表1に示した。
【0023】
比較例1; ショアA硬度30であるエステル系の熱硬化性ゴムを用い、従来型のシート状緩衝部材(4)を作製した。このシート状緩衝部材(4)の大きさは、試料5A,5Bでは実施例1で作製した緩衝部材(11)のL1,L2と同じ大きさの縦×横を有し、厚さは、支持部の厚さとして表1に示した。試料5C,5Dでは、試料5A,5Bよりも広い12mm×12mmの縦×横とした。これらのシート状緩衝部材(4)は、実施例1で用いたハードディスク装置(2)の上面(3a)および底面(3b)の四隅にそれぞれ4個ずつ両面テープで接着し、実施例1と同様にして共振周波数を測定した。得られた共振周波数を表1に示した。
【0024】
比較例2; 実施例1で作製した緩衝部材(11)に対して、小突起(15)を持たない以外は同じ構造の緩衝部材を作製した。ただし、小突起(15)がないため、緩衝部材の厚さを、支持部の厚さとして表1に示した。この緩衝部材をハードディスク装置(2)に装着して実施例1と同様にして共振周波数を測定した。得られた共振周波数も併せて表1に示した。
【0025】
【表1】

Figure 2005018835
【0026】
共振周波数は、高いほど緩衝部材のバネ定数が高い。緩衝部材の厚さが1mmである試料5A、6A(比較例)は、共振周波数が高くなっている。一方、緩衝部材の厚さがこの比較例と同じであっても、試料1A(本発明)では211Hzと低く、試料3Cでは1000Hzと高い値になった。このように、本発明の緩衝部材(11)では、緩衝部材(11)の厚さが同じであっても、小突起(15)径や小突起(15)数を調節することで、共振周波数が低い値から高い値までの設計が可能である。また、厚さが同じであっても、本発明の緩衝部材(11)ではシート状緩衝部材(4)では得られない低い共振周波数を得ることができる。
【0027】
また、比較例となるシート状緩衝部材(4)では、その厚さを変えずに接触面積を拡げても共振周波数はほとんど変化がなかった。これらの結果から、共振周波数を所定の値まで低くするためには、シート状緩衝部材(4)を用いる場合は、磁気ディスク(2a)が収納されている面上まで接触面積を広げる必要があると考えられる。一方、本発明の緩衝部材(11)では、接触面積を変えることなく、共振周波数を低くすることができる。
【0028】
【発明の効果】
本発明の緩衝部材によれば、小突起形状、個数、大きさなどを調節することで共振周波数を変化させることができので、緩衝部材を厚肉化させることなく外部記憶装置の種類に応じた振動減衰特性が得られる。そして、薄い厚さであっても衝撃を緩衝する襲撃緩衝特性に優れている。また、取付け、位置決めが簡単で、常に所定の振動減衰特性を発揮することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による緩衝部材のハードディスク装置への取付け状態を示す外観斜視図。
【図2】図1のSA−SA断面図である。
【図3】図3(A)〜図3(C)の何れも本発明の緩衝部材の種々の小突起形状を示す外観斜視図である。
【図4】本発明の別の実施形態による緩衝部材の外観斜視図である。
【図5】本発明のさらに別の実施形態による緩衝部材であり、図5(A)はその平面図、図5(B)はその正面図、図5(C)はその左側面図である。
【図6】本発明の一実施形態による緩衝部材であり、図6(A)はその平面図、図6(B)はその正面図である。
【図7】本発明の一実施形態による緩衝部材の突起集合部を示す部分拡大図であり、図7(A)はその平面図、図7(B)はその正面図である。
【図8】本発明の一実施形態による緩衝部材の突起集合部を示す部分拡大図であり、図8(A)はその平面図、図8(B)はその正面図である。
【図9】本発明の一実施形態による緩衝部材の突起集合部を示す部分拡大図であり、図9(A)はその平面図、図9(B)はその正面図である。
【図10】本発明の一実施形態による緩衝部材の突起集合部を示す部分拡大図であり、図10(A)はその平面図、図10(B)はその正面図である。
【図11】一従来例によるシート状緩衝部材の取付状態を示すハードディスク装置とノートブックタイプのパーソナルコンピュータの外観斜視図である。
【図12】図11のハードディスク装置を格納部に収納した状態を模式的に示す内部説明図である。
【符号の説明】
1 パーソナルコンピュータ(情報処理装置)
1a 格納部
1b 蓋
2 ハードディスク装置(外部記憶装置)
2a 磁気ディスク
2b 磁気ヘッド
3 筐体
3a 上面
3b 底面
3c 右側長手側面
3d 前側短手側面
3e 後側短手側面
4 シート状緩衝部材
11,21,31 緩衝部材
12,32 上底面被覆部
13 短手側面被覆部
14,34 長手側面被覆部
15 小突起
16 突起集合部
17 支持部
38 凸部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a buffer member that protects an external storage device such as a hard disk device housed in a storage unit of an information processing device such as a notebook-type personal computer from shocks and vibrations.
[0002]
[Prior art]
For example, as shown in FIG. 11, a notebook type personal computer (hereinafter abbreviated as “notebook PC”) 1 as an information processing apparatus stores a hard disk device 2 as an external storage device that accommodates a disk-shaped storage medium. Has been.
The hard disk device 2 includes a thin plate-like casing 3 having a top surface 3a and a bottom surface 3b as a wide surface portion that are substantially rectangular. A sheet-like cushioning member 4 made of a rectangular elastic material is fixed to the upper surface 3a and the bottom surface 3b with, for example, a double-sided tape (not shown). Then, as shown in FIG. 12, when the hard disk device 2 is stored in the storage unit 1a of the notebook PC 1 and closed by the lid 1b, the sheet-like buffer member 4 is disposed in a state of being sandwiched in the gap. Thus, the hard disk device 2 is protected from vibrations and shocks. An example of prior art relating to the sheet-like buffer member 4 is described in Japanese Patent Application No. 2002-379283 (Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Application No. 2002-379283 [0004]
[Problems to be solved by the invention]
By the way, the capacity of the hard disk device 2 has been increased, the rotational speed has been increased, and the resonance frequency causing internal vibration has also changed. In addition, in a portable information processing apparatus that is not necessarily used only in a stationary environment, such as when used in a car or a train, such as a notebook PC 1, disturbance vibration and shock Therefore, it is necessary to protect the hard disk device 2.
[0005]
However, since the sheet-like buffer member 4 is individually fixed to the four corners of the top surface 3a and the bottom surface 3b of the hard disk device 2 with double-sided tape, the mounting workability is poor, the positioning of the fixing position is difficult, and the fixing position is shifted. In other words, there is a problem that the initially expected vibration damping characteristics cannot be obtained. In particular, if the sheet-like cushioning member 4 is attached to the portions near the center of the upper surface 3a and the bottom surface 3b facing the magnetic disk 2a, the upper surface 3a, the bottom surface 3b, and the magnetic disk 2a are pressed by the sheet-like cushioning member 4. There is a possibility that the gap becomes narrow and adversely affects the operation of the magnetic head 2b that requires precise operation. Further, since the entire surface of the wide surface portion is compressed in the sheet-like cushioning member 4, if the acceleration of impact increases, the entire sheet-like cushioning member 4 becomes hard, so that the impact cushioning effect is remarkably deteriorated. Further, since the notebook PC 1 is becoming thinner, the space between the hard disk device 4 and the storage unit 1a has become narrower to about 1 mm to 2 mm, whereas the conventional buffer member must be thickened. Therefore, the buffer effect cannot be improved and there is a structural limit. Since the vibration damping characteristic can be changed only by changing the wall thickness, it is difficult to apply the sheet-like buffer member 4 having the optimal vibration damping characteristic for each hard disk device 2 having a different resonance frequency.
[0006]
Therefore, the present invention is a buffer member used in an external storage device such as a hard disk device, and can be easily mounted and aligned without being fixed with a double-sided tape, etc., and does not depend on the thickening of the buffer member. Another object of the present invention is to obtain a shock absorbing member that can obtain vibration damping characteristics according to external storage devices having different resonance frequencies, and that has excellent shock absorbing characteristics for buffering shocks even when the thickness is small.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a storage unit and an external unit interposed in a gap between an external storage device that houses a disc-shaped recording medium in a housing and a storage unit of an information processing device that houses the external storage device. A cushioning member made of an elastic material that dampens vibrations transmitted to and from the storage device and cushions the impact, and has a covering portion that covers each edge side portion on the top and bottom surfaces that are continuous with the longitudinal side surface of the housing of the external storage device. In addition, the present invention provides a cushioning member characterized in that a projection assembly portion in which a large number of small projections are densely formed is formed on the covering portion.
[0008]
Since the buffer member of the present invention has a covering portion that covers each edge side portion on the top surface and the bottom surface that is continuous with the long side surface of the housing of the external storage device, the buffer member is always located on the edge side portion of the external storage device, and is misaligned. The change of vibration damping characteristics due to is not a problem. Since the buffer member does not reach the central portion of the upper surface of the external storage device, the surface of the magnetic disk or the like inside the external storage device is not excessively pressed. Furthermore, since the cushioning member of the present invention has a projection assembly portion in which a large number of small projections are densely formed in the covering portion, it is possible to easily change the resonance frequency without changing the thickness of the cushioning member by changing the shape, size, etc. of the small projections. The buffer member according to the external memory | storage device from which resonance frequency differs can be obtained. Further, since the protrusion assembly portion is formed, the small protrusions are in contact with the storage portion of the external storage device, and the entire surface of the buffer member is not in contact with the storage portion, so that the entire buffer member is not hardened. In addition, the vibration damping effect is not significantly reduced, and the external storage device can be effectively protected from an impact. Furthermore, since the vibration damping characteristic is not affected by the thickness of the buffer member, the present invention can be applied to an information processing apparatus in which the size of the gap between the external storage device and the storage unit is determined in advance.
[0009]
If the buffer member of the present invention has a covering portion that continuously covers the edge side portions of the top surface and bottom surface of the housing from the longitudinal side surface of the housing of the external storage device, the buffer member is buffered on the side surface of the external storage device. It can be attached simply by fitting the member, the attachment workability is good, the positioning is easy, and the vibration damping characteristic as designed can be obtained. Furthermore, if it has a covering portion that covers each edge side portion of the short side surface of the housing that is continuous with the long side surface of the housing, it also has a vibration damping effect against vibration along the longitudinal direction of the external storage device. It becomes the buffer member which exhibits.
[0010]
Further, in the present invention, a large number of small protrusions having a protrusion assembly portion of 5 pieces / cm 2 to 25 pieces / cm 2 are provided. Since the protrusion assembly portion is provided with a large number of small protrusions of 5 pieces / cm 2 to 25 pieces / cm 2 , the resonance frequency can be changed without changing the thickness of the buffer member. Thus, it is possible to obtain a shock absorbing member having optimum vibration damping characteristics according to the type of the above.
[0011]
If the height of the small protrusion is 0.25 mm to 1.5 mm, the impact can be effectively buffered while maintaining rigidity enough to stably hold the external storage device. If the height of the small protrusion is expressed as a ratio to the thickness of the buffer member, it is preferably 0.2 to 0.8, and more preferably 0.4 to 0.6. When the thickness of the buffer member is constant, the small protrusion becomes high if the portion supporting the small protrusion becomes too thin, and the small protrusion becomes low if the portion supporting the small protrusion becomes too thick. This is because the small protrusion stably held expands and contracts moderately when receiving vibration within a range of ˜0.8, so that a sufficient vibration damping effect can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The cushioning member of the present invention will be described below with reference to the drawings. The embodiment described below is an example in which the buffer member of the present invention is applied to a hard disk device mounted on a notebook PC, but can also be applied to an external storage device such as an optical disk device. The present invention can also be applied to other information processing devices such as a desktop personal computer or a car audio device using the device. In addition, about the same thing as a prior art, the same code | symbol is attached | subjected and duplication description is abbreviate | omitted.
[0013]
FIG. 1 shows a state in which the buffer members 11 and 11 of the present invention are attached to the hard disk device 2. The shock-absorbing member 11 located on the right side of the hard disk device 2 includes upper and lower covering portions 12 and 12 that cover respective edge portions of the upper surface 3a and the bottom surface 3b continuous with the right long side surface 3c of the housing 3 of the hard disk device 2, and the right side The short side surface covering portions 13 and 13 covering the respective edge portions of the front short side surface 3d and the rear short side surface 3e continuous with the long side surface 3c and the long side surface covering portion 14 covering the right long side surface 3c are integrated. Is formed. The upper bottom surface covering portions 12 and 12 have protrusion assembly portions 16, 16, 16, and 16 where a large number of small protrusions 15 are densely packed. The buffer member 11 located on the left side of the hard disk device 2 also has the same structure.
[0014]
FIG. 2 is a cross-sectional view taken along the line SA-SA in FIG. 1. As shown in FIG. 2, the protrusion assembly portion 16 is formed in a shape in which a plurality of small protrusions 15 protrude from the flat support portion 17. ing. Of the projection assembly 16, the height t1 of the small projection 15 and the thickness t2 of the flat support 17 are defined as follows. First, it is preferable that the sum of the height t1 of the small protrusion 15 and the thickness t2 of the support portion 17 is just such that it matches the size of the gap between the hard disk device 2 and the storage portion 1a. If there is play between the hard disk device 2 and the storage portion 1a, or if the shock absorbing member is pressed and attached in a considerably contracted state, the vibration damping characteristics of the shock absorbing member 11 cannot be fully exhibited. is there. And it is preferable that height t1 of the small protrusion 15 is 0.25 mm-1.5 mm. If it exceeds 1.5 mm, the rigidity sufficient to stably hold the hard disk device 2 cannot be obtained, and a strong impact from the outside cannot be buffered. On the other hand, if it is smaller than 0.25 mm, the vibration damping effect by the small protrusion 15 is hardly obtained. The ratio of the height t1 of the small protrusion 15 and the thickness t2 of the support portion 17 is preferably 20:80 to 80:20, more preferably 40:60 to 60:40, and 50:50. Is included in this range. This is because if the small protrusion 15 is too high, molding is difficult, and if the support portion 17 is too thick, the vibration damping effect by the small protrusion 15 is hardly obtained. And in the range close to 50:50, it is preferable at the point which can aim at harmony of rigidity and vibration absorption power. Note that the ratio of the height t1 of the small protrusion 15 to the thickness t2 of the support portion 17 is 20:80. In this part, the height of the small protrusion 15 with respect to the thickness of the buffer member 11 (t1 + t2). It means that the ratio of (t1) is 0.2. Although the width | variety of the small protrusion 15 changes also with the shape, 0.5 mm-3 mm are preferable and, as for the average diameter of the interface of the small protrusion 15 and the support part 17, it is more preferable that it is 1 mm-2 mm. This is because, in combination with the height of the small protrusion 15, it is easy to mold and easily obtain a desired vibration damping characteristic. When the diameter of the small protrusion 15 is smaller than 0.5 mm, formation is difficult, and when it exceeds 3 mm. This is because it is difficult to provide a predetermined number of small protrusions 15. And if it is 1 mm-2 mm, vibration damping performance is preferable.
[0015]
The number of small protrusions 15 is also appropriately determined depending on the hardness of the elastic body constituting the protrusions, but when an elastic body having a hardness shore A10 to 70 is used, the protrusion density of the protrusion assembly portion 16 having the small protrusions 15 is It is preferably 5 pieces / cm 2 to 25 pieces / cm 2 , and 30 to 150 small protrusions 15 are preferably formed on one side of the buffer member 11. This is because if the number of protrusions is less than 5 / cm 2 , the small protrusions 15 will be crushed by the weight of the hard disk device 2, and if it exceeds 25 / cm 2 , the small protrusions 15 will collide with each other. This is because it is impossible to secure a space for the protrusions 15 to maintain the individual protrusion shapes independently.
[0016]
In FIG. 1, the shape of the small protrusion 15 is a shape in which a hemisphere is placed on a cylinder. However, the shape of the small protrusion 15 is not limited to this shape, but a hemisphere, a dome, a cylinder, a prism, a cone, a pyramid, Various shapes such as a combination of these can be used. FIG. 3 shows an example of the shape of the small protrusion 15.
[0017]
The resonance frequency can be changed by adjusting the shape, number and size of the small protrusions 15. For example, when the number of the small protrusions 15 is increased, the resonance frequency is increased accordingly, which is particularly effective as the buffer member 11 for the hard disk device 2 mounted on the thin notebook PC 1 whose thickness is limited.
[0018]
The buffer member 11 is made of an elastic body having a hardness of Shore A10 to 70. Depending on the required performance such as dimensional system, heat resistance, mechanical strength, durability, reliability, anti-vibration characteristics, and control characteristics, A plastic elastomer, a thermosetting rubber, etc. can be selected and used. If the hardness is lower than Shore A10, it is difficult to form a protrusion shape when the buffer member 11 is taken out of the mold, and if it is higher than Shore A70, the required vibration damping effect cannot be obtained and the shock cannot be buffered. . For the buffer member 11, a styrene-based elastomer, an olefin-based thermoplastic elastomer, a polyester-based thermoplastic elastomer, a polyurethane-based thermoplastic elastomer, a polyamide-based thermoplastic elastomer, a vinyl chloride-based thermoplastic elastomer, or the like can be used as the thermoplastic elastomer. In addition, as thermosetting rubber, natural rubber, butadiene rubber, isoprene rubber, styrene butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, Halogenated butyl rubber, acrylic rubber, fluorine rubber, urethane rubber, silicone rubber, or the like can be used. The buffer member 11 as described above can be manufactured by compression molding or the like.
[0019]
If the two buffer members 11 shown above are attached to the hard disk device 2 and stored in the storage unit 1a of the notebook PC 1, both the disturbance vibration caused by the rotation of the magnetic disk 2a of the hard disk device 2 and the disturbance vibration transmitted from the outside of the notebook PC 1 can be obtained. In particular, the individual small protrusions 15 of the buffer member 11 are relaxed and absorbed by pressing deformation. Therefore, it exhibits excellent shock absorbing and vibration damping characteristics.
[0020]
As other embodiment of this invention, it is also possible to set it as the buffer member 21 of the shape shown, for example in FIG. The buffer member 21 shown in FIG. 4 is different from the buffer member 11 shown in FIG. 1 and the like in that the short side surface covering portions 13 and 13 are not provided. It is an external storage device in which terminals are arranged up to the edge side part of the short side, and it is effectively used when it is difficult to cover the short side or when the buffer member is thin in the longitudinal direction . Further, the buffer member 31 having the shape shown in FIGS. 5A to 5C does not have the short side surface covering portions 13 and 13 referred to as the buffer member 11 shown in FIG. The upper bottom surface covering portion 32 is the same as the portion of the protrusion assembly portion 16 provided with the protrusions 15, and the long side surface covering portion 34 is not shaped to cover the entire long side surface.
Further, in the buffer member 31, cylindrical convex portions 38, 38 that block screw holes provided in the housing of the hard disk device 2 protrude from the long side surface covering portion 34. The convex portions 38 are formed of the same material as that of the buffer member 31. In addition to this, if the buffer member (not shown) in which the small protrusion 35 is formed on the long side surface covering portion 14 of the shock absorbing member 11 shown in FIG. It is effectively used when vibration in a direction perpendicular to the lower surface needs to be particularly damped, and a buffer member (not shown) having the entire upper bottom surface covering portion 12 as a protrusion assembly portion can be used.
[0021]
【Example】
The present invention will be specifically described according to examples, but the present invention is not limited to these examples.
[0022]
Example 1 Using an ester-based thermosetting rubber having a Shore A hardness of 30, the diameter of the small protrusions (15), the number of small protrusions (15), the height of the small protrusions (15), the shape of the small protrusions (15), The shock-absorbing member (11) of the present invention for the 2.5-inch hard disk device (2), in which the thickness of the support portion (17) was changed, was produced by molding with a compression molding machine. The conditions in this case are shown in Table 1 and FIGS. FIG. 6 shows the appearance of the buffer member (11) of the sample 2A shown in Table 1. In FIG. 6, L1 is 7 mm, L2 is 18 mm, L3 is 96 mm, and L4 is 9.5 mm, and the protrusion assembly portion (16) is formed on a plane formed by L1 × L2. L5 is the sum of the height of the small protrusion (15) and the thickness of the support portion (17). In addition, although the sample 2A was shown in FIG. 6, the magnitude | sizes of L1-L4 which are parts other than the small protrusion (15) are the same also with each sample. Next, these buffer members (11) were mounted on a 2.5-inch hard disk device (2), housed in a notebook PC (1), and the resonance frequency was measured. In this case, the gap between the 2.5-inch hard disk device (2) and the storage unit (1a) is the same as that of the buffer member (11). The obtained resonance frequency is also shown in Table 1.
[0023]
Comparative Example 1 A conventional sheet-like cushioning member (4) was prepared using an ester-based thermosetting rubber having a Shore A hardness of 30. The size of the sheet-like cushioning member (4) is the same as that of L1 and L2 of the cushioning member (11) produced in Example 1 in the samples 5A and 5B, and the thickness is supported. The thickness of the part is shown in Table 1. Samples 5C and 5D were 12 mm × 12 mm longer and wider than Samples 5A and 5B. Four of these sheet-like cushioning members (4) are adhered to each of the four corners of the top surface (3a) and bottom surface (3b) of the hard disk device (2) used in Example 1, and the same as in Example 1. The resonance frequency was measured. The obtained resonance frequencies are shown in Table 1.
[0024]
Comparative Example 2 A buffer member having the same structure as the buffer member (11) manufactured in Example 1 was prepared except that the small protrusion (15) was not provided. However, since there is no small protrusion (15), the thickness of the buffer member is shown in Table 1 as the thickness of the support portion. The buffer member was attached to the hard disk device (2), and the resonance frequency was measured in the same manner as in Example 1. The obtained resonance frequencies are also shown in Table 1.
[0025]
[Table 1]
Figure 2005018835
[0026]
The higher the resonance frequency, the higher the spring constant of the buffer member. The samples 5A and 6A (comparative example) in which the thickness of the buffer member is 1 mm have a high resonance frequency. On the other hand, even if the thickness of the buffer member was the same as that of this comparative example, the sample 1A (invention) had a low value of 211 Hz and the sample 3C had a high value of 1000 Hz. Thus, in the buffer member (11) of the present invention, even if the buffer member (11) has the same thickness, the resonance frequency can be adjusted by adjusting the diameter of the small protrusions (15) and the number of small protrusions (15). It is possible to design from a low value to a high value. Moreover, even if the thickness is the same, the buffer member (11) of the present invention can provide a low resonance frequency that cannot be obtained by the sheet-like buffer member (4).
[0027]
Moreover, in the sheet-like buffer member (4) as a comparative example, the resonance frequency hardly changed even when the contact area was expanded without changing the thickness. From these results, in order to lower the resonance frequency to a predetermined value, when the sheet-like buffer member (4) is used, it is necessary to expand the contact area to the surface on which the magnetic disk (2a) is accommodated. it is conceivable that. On the other hand, in the buffer member (11) of the present invention, the resonance frequency can be lowered without changing the contact area.
[0028]
【The invention's effect】
According to the buffer member of the present invention, the resonance frequency can be changed by adjusting the shape, number, size, etc. of the small protrusions, so that the buffer member can be adapted to the type of external storage device without increasing the thickness of the buffer member. Vibration damping characteristics can be obtained. And even if it is thin thickness, it is excellent in the attack buffer characteristic which buffers an impact. In addition, mounting and positioning are simple, and a predetermined vibration damping characteristic can always be exhibited.
[Brief description of the drawings]
FIG. 1 is an external perspective view showing a mounting state of a buffer member to a hard disk device according to an embodiment of the present invention.
2 is a cross-sectional view taken along the line SA-SA in FIG.
3 (A) to 3 (C) are external perspective views showing various small protrusion shapes of the buffer member of the present invention.
FIG. 4 is an external perspective view of a buffer member according to another embodiment of the present invention.
5A and 5B show a buffer member according to still another embodiment of the present invention. FIG. 5A is a plan view thereof, FIG. 5B is a front view thereof, and FIG. 5C is a left side view thereof. .
6A and 6B show a buffer member according to an embodiment of the present invention, in which FIG. 6A is a plan view and FIG. 6B is a front view thereof.
FIG. 7 is a partially enlarged view showing a protrusion assembly portion of the buffer member according to the embodiment of the present invention, FIG. 7 (A) is a plan view thereof, and FIG. 7 (B) is a front view thereof.
FIGS. 8A and 8B are partially enlarged views showing a protrusion assembly portion of the buffer member according to the embodiment of the present invention, FIG. 8A being a plan view thereof, and FIG. 8B being a front view thereof.
FIGS. 9A and 9B are partially enlarged views showing a protrusion assembly portion of the buffer member according to the embodiment of the present invention, FIG. 9A being a plan view thereof, and FIG. 9B being a front view thereof.
FIGS. 10A and 10B are partially enlarged views showing a protrusion assembly portion of the buffer member according to the embodiment of the present invention, FIG. 10A being a plan view and FIG. 10B being a front view thereof.
FIG. 11 is an external perspective view of a hard disk device and a notebook type personal computer showing a mounting state of a sheet-like cushioning member according to a conventional example.
12 is an internal explanatory view schematically showing a state in which the hard disk device of FIG. 11 is housed in a storage unit.
[Explanation of symbols]
1 Personal computer (information processing equipment)
1a Storage unit 1b Lid 2 Hard disk device (external storage device)
2a Magnetic disk 2b Magnetic head 3 Housing 3a Upper surface 3b Bottom surface 3c Right long side surface 3d Front short side surface 3e Rear short side surface 4 Sheet-like buffer members 11, 21, 31 Buffer members 12, 32 Upper bottom surface covering portion 13 Short Side surface covering portions 14, 34 Long side surface covering portion 15 Small protrusion 16 Protrusion assembly portion 17 Support portion 38 Convex portion

Claims (3)

筐体にディスク状記録媒体を収容する外部記憶装置と、この外部記憶装置を収容する情報処理装置の格納部との隙間に介在して、格納部と外部記憶装置との間を伝達する振動を減衰し、衝撃を緩衝する弾性材でなる緩衝部材において、
外部記憶装置の筐体の長手側面と連続する上面と底面における各縁側部分を覆う被覆部を有し、該被覆部に多数の小突起が密集する突起集合部を形成したことを特徴とする緩衝部材。
The vibration transmitted between the storage unit and the external storage device is interposed in a gap between the external storage device that stores the disk-shaped recording medium in the housing and the storage unit of the information processing device that stores the external storage device. In the cushioning member made of an elastic material that attenuates and cushions the impact,
A buffer having a covering portion that covers each edge side portion of the upper surface and the bottom surface that is continuous with the longitudinal side surface of the housing of the external storage device, and a protrusion assembly portion in which a large number of small protrusions are densely formed on the covering portion Element.
突起集合部が、5個/cm〜25個/cmの多数の小突起を設けたものである請求項1記載の緩衝部材。The shock-absorbing member according to claim 1, wherein the protrusion assembly portion is provided with a large number of small protrusions of 5 pieces / cm 2 to 25 pieces / cm 2 . 小突起の高さが0.25mm〜1.5mmである請求項2記載の緩衝部材。The cushioning member according to claim 2, wherein the height of the small protrusion is 0.25 mm to 1.5 mm.
JP2003178718A 2003-06-23 2003-06-23 Buffer member for external storage device Withdrawn JP2005018835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178718A JP2005018835A (en) 2003-06-23 2003-06-23 Buffer member for external storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178718A JP2005018835A (en) 2003-06-23 2003-06-23 Buffer member for external storage device

Publications (1)

Publication Number Publication Date
JP2005018835A true JP2005018835A (en) 2005-01-20

Family

ID=34180248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178718A Withdrawn JP2005018835A (en) 2003-06-23 2003-06-23 Buffer member for external storage device

Country Status (1)

Country Link
JP (1) JP2005018835A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294043A (en) * 2006-04-26 2007-11-08 Toshiba Corp Electronic device and disk drive device
JP2008095706A (en) * 2006-10-05 2008-04-24 Yamauchi Corp Damper and portable electronic equipment
JP2008223799A (en) * 2007-03-08 2008-09-25 Yamauchi Corp Damper and optical disc device
JP2008282505A (en) * 2007-05-14 2008-11-20 Lenovo Singapore Pte Ltd Buffer method for magnetic disk device, shock buffer method, and electronic equipment
JP2009272018A (en) * 2008-05-09 2009-11-19 Fujitsu Ten Ltd Device for mounting electronic device
US7710717B2 (en) * 2005-07-18 2010-05-04 Samsung Electronics Co., Ltd. Buffer for disk drive and disk drive assembly having the same
JP2015195069A (en) * 2014-03-31 2015-11-05 富士通株式会社 Storage device, manufacturing method of storage device, and measuring method of the same
JP2016164565A (en) * 2012-02-17 2016-09-08 カシオ計算機株式会社 Buffer structure and electronic device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710717B2 (en) * 2005-07-18 2010-05-04 Samsung Electronics Co., Ltd. Buffer for disk drive and disk drive assembly having the same
JP2007294043A (en) * 2006-04-26 2007-11-08 Toshiba Corp Electronic device and disk drive device
JP2008095706A (en) * 2006-10-05 2008-04-24 Yamauchi Corp Damper and portable electronic equipment
JP2008223799A (en) * 2007-03-08 2008-09-25 Yamauchi Corp Damper and optical disc device
JP4679538B2 (en) * 2007-03-08 2011-04-27 ヤマウチ株式会社 Damper and optical disk device
JP2008282505A (en) * 2007-05-14 2008-11-20 Lenovo Singapore Pte Ltd Buffer method for magnetic disk device, shock buffer method, and electronic equipment
JP4558760B2 (en) * 2007-05-14 2010-10-06 レノボ・シンガポール・プライベート・リミテッド Buffer member of magnetic disk device, shock buffering method, and electronic apparatus
JP2009272018A (en) * 2008-05-09 2009-11-19 Fujitsu Ten Ltd Device for mounting electronic device
JP2016164565A (en) * 2012-02-17 2016-09-08 カシオ計算機株式会社 Buffer structure and electronic device
JP2015195069A (en) * 2014-03-31 2015-11-05 富士通株式会社 Storage device, manufacturing method of storage device, and measuring method of the same

Similar Documents

Publication Publication Date Title
US7486509B2 (en) Bracket for disk drive
AU2009317232B2 (en) Hard disc drive counter-vibration system
JPH10222972A (en) Storage device and impact resistant accommodation container to be used therefor
US6633481B2 (en) Media drive vibration attenuation system and method
US7710717B2 (en) Buffer for disk drive and disk drive assembly having the same
JP5076790B2 (en) Shock protection device
JP2005018835A (en) Buffer member for external storage device
US6445587B1 (en) Disk drive vibration/shock attenuation system and method
US8702073B2 (en) Shock absorber capable of damping vibration
JP4193463B2 (en) Information storage device
JP4376567B2 (en) Buffer member for external storage device
JP2001355670A (en) Dynamic damper and optical disk device
US6778352B2 (en) Disk drive shock absorption mechanism
WO2009104283A1 (en) Damping device of electronic device
JP4169148B2 (en) Buffer member mounting structure
JPS63138588A (en) Data memory device
KR100594288B1 (en) Shock-absorbing member and hard disc drive therewith
KR100634418B1 (en) Bracket for disk drive
JP2006046593A (en) Dynamic vibration absorber and optical disc device
JP2009272009A (en) Recording and reproducing device
JPH0863952A (en) Vibration proof supporting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905