JP2005015921A - Plating method, and plating device utilized therefor - Google Patents

Plating method, and plating device utilized therefor Download PDF

Info

Publication number
JP2005015921A
JP2005015921A JP2004187496A JP2004187496A JP2005015921A JP 2005015921 A JP2005015921 A JP 2005015921A JP 2004187496 A JP2004187496 A JP 2004187496A JP 2004187496 A JP2004187496 A JP 2004187496A JP 2005015921 A JP2005015921 A JP 2005015921A
Authority
JP
Japan
Prior art keywords
plating
plated
current
product
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004187496A
Other languages
Japanese (ja)
Inventor
Sang Hoon Han
尚勳 韓
Jun Eui Lee
俊義 李
Dou Ri
度雨 李
Young Cheol Choi
永哲 崔
Tae Seog Um
泰錫 嚴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2005015921A publication Critical patent/JP2005015921A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/16Apparatus for electrolytic coating of small objects in bulk
    • C25D17/28Apparatus for electrolytic coating of small objects in bulk with means for moving the objects individually through the apparatus during treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating method where the generation of defects caused by the interruption of the plating can be prevented, and to provide plating equipment utilized therefor. <P>SOLUTION: The plating method comprises: a stage where the product to be plated is introduced into a plating liquid charged to a plating tank; a stage (120) where a first application current for plating to the product to be plated is applied to perform plating to the product to be plated; a stage (130) where, on the interruption of the plating, a second application current with a current quantity smaller than that of the first application current is applied to the anode, so that, during the interruption of the plating, the generation in the defects of the plating in the product to be plated is prevented; and a stage (140) where, after the dissolution of the interruption in the plating, the second application current is converted into the first application current, and the plating is continued to the product to be plated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、集積回路素子に対するメッキに係り、特に瞬間停止などのようなエラーによるメッキ中断によって、メッキされていた被メッキ製品の所望しない不良の発生を防止できる集積回路素子のメッキ方法及びそれに利用されるメッキ装備に関する。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to plating on an integrated circuit element, and more particularly to a method for plating an integrated circuit element capable of preventing the occurrence of an undesired defect in a plated product due to plating interruption due to an error such as a momentary stop. Related to plating equipment.

半導体素子のような集積回路素子の組立工程中ではリードなどをメッキする工程が行われている。メッキ工程は主に電気メッキ方法でなされており、リードに錫をメッキする過程で行われている。電気メッキ方法を採用しているメッキ工程は特許文献1に開示されたように、被メッキ製品に合金をメッキするのに主に利用されている。   During the assembly process of an integrated circuit element such as a semiconductor element, a process of plating leads and the like is performed. The plating process is mainly performed by an electroplating method, and is performed in the process of plating tin on the lead. A plating process employing an electroplating method is mainly used for plating an alloy on a product to be plated, as disclosed in Patent Document 1.

半導体素子のメッキ工程は、半導体素子を大量に組立てようとする要求に応じて大量連続メッキ工程で行われている。すなわち、パッケージング工程が行われた半導体素子製品を移動チェーンベルトなどに吊り下げて連続的に移動させ、半導体素子製品のリードに錫などをメッキする工程が行われる。このようなメッキ工程のためのメッキ装備は、実質的にメッキ工程が行われる多数のメッキ槽が一列に配置され、半導体素子製品がチェーンベルトによりメッキ槽を連続的に経るようにして連続的なメッキ工程が行われうるように構成されている。   The plating process of semiconductor elements is performed in a large-scale continuous plating process in response to a request for assembling a large number of semiconductor elements. That is, a process of suspending the semiconductor element product subjected to the packaging process on a moving chain belt or the like and continuously moving the semiconductor element product and plating the lead of the semiconductor element product with tin or the like is performed. The plating equipment for such a plating process has a large number of plating tanks that are substantially subjected to the plating process arranged in a row, and the semiconductor element product is continuously passed through the plating tank by a chain belt. It is comprised so that a plating process can be performed.

メッキ装備にはメッキ槽のみならず、メッキ槽の前段方向に前処理のための多数の溶液槽が一列に構成され、例えば、化学的デフラッシュ工程、リンス工程、ディスケール工程、活性化工程などのための溶液槽が一列に構成され、それぞれの溶液槽間にはリンスのための溶液槽がさらに具備される。そして、メッキ槽の後段方向にはリンス工程及び中和工程のための溶液槽及び乾燥部などが具備される。このような様々な溶液槽及びメッキ槽は一列に配置され、チェーンベルトによって半導体素子製品がこれらに連続的に移送されて全体メッキ工程が行われる。   The plating equipment includes not only a plating tank but also a number of pre-treatment solution tanks arranged in a row in the front direction of the plating tank, such as a chemical deflash process, a rinse process, a descaling process, an activation process, etc. The solution tanks are arranged in a row, and a solution tank for rinsing is further provided between the solution tanks. In the subsequent direction of the plating tank, a solution tank and a drying unit for the rinsing process and the neutralization process are provided. Such various solution tanks and plating tanks are arranged in a row, and a semiconductor element product is continuously transferred to them by a chain belt to perform the entire plating process.

ところが、このように一連の連続工程でメッキ工程が行われる時、メッキ装備のエラーにより予想外にメッキ工程が中断されて、メッキが進行している製品またはリードへのメッキが中断される場合が発生しうる。このような場合、チェーンベルトによる製品またはリードの移送が中断されて、メッキ槽に位置する製品には過メッキなどが発生する恐れがある。このような過メッキなどの発生を防止する目的で、電気メッキ方式を採択しているメッキ装備の大半は、メッキ装備の緊急稼動中断時に、すなわちチェーンベルト移送が中断される場合、メッキ槽のアノードへの電流供給を中断するように装備が構成されている。   However, when the plating process is performed in a series of continuous processes as described above, the plating process may be unexpectedly interrupted due to an error in the plating equipment, and the plating on the product or lead in which plating is in progress may be interrupted. Can occur. In such a case, the transfer of the product or the lead by the chain belt is interrupted, and there is a possibility that overplating or the like occurs in the product located in the plating tank. In order to prevent the occurrence of such overplating, most of the plating equipment that adopts the electroplating method is the anode of the plating tank when the emergency operation of the plating equipment is interrupted, that is, when the chain belt transfer is interrupted. The equipment is configured to interrupt the current supply to the.

ところが、このような電流供給の中断は予期できないメッキ不良の要因として作用する可能性がある。例えば無鉛メッキの場合、錫のメッキのためにメッキ槽に供給されるメッキ溶液にはビスマスが供給されている。ところが、このようなビスマスは金属に対する置換性が強く、アノードに対する電流供給が中断される場合、ビスマスが製品のリードにくっつき、メッキ進行中であったリードが黒く酸化される問題が発生する可能性がある。メッキ槽間に位置する製品のリードも大気中に露出することによって、酸化による不良が発生する。   However, such interruption of the current supply may act as a cause of unexpected plating failure. For example, in the case of lead-free plating, bismuth is supplied to a plating solution supplied to a plating tank for tin plating. However, such bismuth is highly replaceable to metal, and when the current supply to the anode is interrupted, bismuth may stick to the product lead and the lead that was in the process of plating may be oxidized black. There is. The product leads located between the plating tanks are also exposed to the atmosphere, so that defects due to oxidation occur.

実質的に、メッキ工程でメッキ槽に位置する製品はリードフレーム基準で約30フレーム程度であるが、このような所望しない不良が発生すると、30フレームを全て手作業で回収して再メッキ作業を行わねばならない。このような再メッキ作業の工程ではリードなどに不要にメッキされた部分及び酸化された部分などを全て剥がし、さらにリンス、再メッキなどを伴うので、全体メッキ収率に多大な悪影響を及ぼす。   In practice, the products that are located in the plating tank in the plating process are about 30 frames on a lead frame basis. If such an undesirable defect occurs, all 30 frames are manually collected and re-plated. Must be done. In such a re-plating operation process, all of the unnecessarily plated portions and oxidized portions on the lead and the like are peeled off and further rinsed, re-plated, etc., and this has a great adverse effect on the overall plating yield.

したがって、メッキ装備の瞬間的な稼動中断、またはエラーによる稼動中断が発生しても、メッキが進行していた製品またはリードに所望しないメッキまたは酸化などのような不良が発生するのを効果的に防止できる方法が要求されている。   Therefore, even if the plating equipment is interrupted momentarily or due to an error, it is effective to cause defects such as undesired plating or oxidation on the products or leads on which plating has progressed. There is a need for a method that can be prevented.

大韓民国特許出願公開第2001−0015412号明細書Korean Patent Application Publication No. 2001-0015412 Specification

本発明が解決しようとする技術的課題は、メッキ装備の瞬間的な稼動中断またはエラーによる稼動中断が発生しても、メッキが進行していた製品またはリードに所望しないメッキまたは酸化などのような不良が発生することを効果的に防止できるメッキ方法及びそれに利用されるメッキ装備を提供するところにある。   The technical problem to be solved by the present invention is that, for example, undesired plating or oxidation is applied to a product or lead in which plating has progressed even if an instantaneous interruption of operation of the plating equipment or an interruption of operation due to an error occurs. The present invention provides a plating method capable of effectively preventing the occurrence of defects and a plating equipment used therefor.

前記の技術的課題を達成するための本発明の一手段によれば、メッキ中断による不良の発生を防止するメッキ方法を提供する。
前記メッキ方法は、メッキ槽に入れられたメッキ液に被メッキ製品を導入する段階と、前記メッキ液に漬けられたアノードに前記被メッキ製品へのメッキのための第1印加電流を印加して前記被メッキ製品にメッキを進める段階と、前記メッキが中断される時に前記第1印加電流より少ない電流量の第2印加電流を前記アノードに印加することにより、前記メッキ中断の間、前記被メッキ製品のメッキ不良の発生を防止する段階と、前記メッキ中断が解消された後で前記第2印加電流を前記第1印加電流に転換して前記被メッキ製品にメッキを続行する段階と、を含む。
According to one means of the present invention for achieving the above technical problem, there is provided a plating method for preventing occurrence of defects due to plating interruption.
The plating method includes introducing a product to be plated into a plating solution placed in a plating tank, and applying a first applied current for plating the product to be plated to an anode immersed in the plating solution. A step of plating the product to be plated, and applying a second applied current having a current amount smaller than the first applied current to the anode when the plating is interrupted, so that the plating is interrupted during the plating interruption. Preventing the occurrence of plating defects in the product, and continuing the plating on the product to be plated by converting the second applied current to the first applied current after the interruption of plating is resolved. .

ここで、前記第2印加電流は前記第1印加電流に比べて5%から40%の電流量である。
前記メッキ液は錫及びビスマスを含有し、前記メッキによって前記被メッキ製品に錫:ビスマスメッキ層が形成される。
前記の技術的課題を達成するための本発明の一手段によれば、メッキ中断による不良の発生を防止するメッキ方法に使われるメッキ装備を提供する。
Here, the second applied current has a current amount of 5% to 40% compared to the first applied current.
The plating solution contains tin and bismuth, and a tin: bismuth plating layer is formed on the product to be plated by the plating.
According to one means of the present invention for achieving the above technical problem, there is provided a plating equipment used in a plating method for preventing occurrence of defects due to interruption of plating.

前記メッキ装備は、メッキ液が入れられる一連の複数の主メッキ槽と、前記主メッキ槽の前記メッキ液に漬けられたアノードと、前記主メッキ槽間を連結し、前記メッキ液が流れる補助メッキ槽と、前記アノードに対応するカソードであって前記主メッキ槽及び前記補助メッキ槽に被メッキ製品を順次に移送する移送手段と、前記アノードに前記被メッキ製品へのメッキのための第1印加電流を選択的に印加し、前記メッキが中断される時に前記アノードに前記第1印加電流より少ない電流量の第2印加電流を選択的に印加する電源と、を備える。   The plating equipment includes a series of a plurality of main plating tanks into which a plating solution is placed, an anode immersed in the plating solution in the main plating vessel, and an auxiliary plating through which the plating solution flows. A tank corresponding to the anode, a transfer means for sequentially transferring the product to be plated to the main plating tank and the auxiliary plating tank, and a first application for plating the product to be plated to the anode. A power source for selectively applying a current and selectively applying a second applied current having a smaller current amount than the first applied current to the anode when the plating is interrupted.

ここで、前記メッキ装備は前記補助メッキ槽内を通過する前記カソードとしての移送手段に対応して前記補助メッキ槽内に設置され、前記電源に連結される補助アノードをさらに備える。前記補助アノードは前記電源に連結された前記アノードに連結されて前記電源に連結される。
または、前記補助メッキ槽を通過するカソードとしての前記移送手段に対応して前記アノードは前記補助メッキ槽内に延びる。
Here, the plating equipment further includes an auxiliary anode installed in the auxiliary plating tank corresponding to the transfer means as the cathode passing through the auxiliary plating tank and connected to the power source. The auxiliary anode is connected to the anode connected to the power source and connected to the power source.
Alternatively, the anode extends into the auxiliary plating tank corresponding to the transfer means as a cathode passing through the auxiliary plating tank.

前記メッキ装備は、前記補助メッキ槽内に流れ込む前記メッキ液を感知するために前記補助メッキ槽に設置されるセンサーをさらに備える。
前記電源は前記第1印加電流から前記第2印加電流に転換する時、前記第1印加電流の5%から40%の電流量で前記第2印加電流を印加する。
このようなメッキ装備を使用する方法は、前記メッキ装備に前記移送手段で被メッキ製品を順次に供給し続けて前記被メッキ製品を前記主メッキ槽及び前記補助メッキ槽に通過させる段階と、前記電源から前記アノードに前記被メッキ製品へのメッキのための第1印加電流を印加して前記被メッキ製品にメッキを進める段階と、前記メッキが中断される時に前記電源から前記第1印加電流より少ない電流量の第2印加電流を前記アノードに印加することにより、前記メッキ中断の間、前記被メッキ製品のメッキ不良の発生を防止する段階と、前記メッキ中断が解消された後、前記電源によって前記第2印加電流を前記第1印加電流に転換して前記被メッキ製品にメッキを続行する段階と、を含む。
The plating equipment further includes a sensor installed in the auxiliary plating tank to sense the plating solution flowing into the auxiliary plating tank.
When the power source switches from the first applied current to the second applied current, the power source applies the second applied current in a current amount of 5% to 40% of the first applied current.
The method of using such plating equipment includes the step of continuously supplying the products to be plated to the plating equipment by the transfer means and passing the products to be plated through the main plating tank and the auxiliary plating tank, Applying a first applied current for plating to the product to be plated from a power source to the anode to advance the plating to the product to be plated, and from the first applied current from the power source when the plating is interrupted By applying a second applied current of a small amount of current to the anode, during the plating interruption, preventing the occurrence of defective plating of the product to be plated, and after the plating interruption is eliminated, Converting the second applied current to the first applied current and continuing to plate the product to be plated.

ここで、前記メッキ装備は前記補助メッキ槽内に設置される補助アノードをさらに備え、前記電源から前記第2印加電流は前記補助アノード及び前記アノードに共に印加される。この時、前記電源から前記第1印加電流は前記補助アノード及び前記アノードに共に印加される。
本発明の他の一手段によれば、メッキ液が入れられた少なくとも1つのメッキ槽に少なくとも1つの被メッキ製品を浸す段階と、前記メッキ液に漬けられた少なくとも1つのアノードに少なくとも1つの前記被メッキ製品へのメッキのための電流を印加する段階と、前記メッキが中断される時に少なくとも1つのアノードに印加される前記メッキ電流を減少させる段階と、前記メッキ中断が解消された後、前記メッキ電流を以前の量に転換して被メッキ製品へのメッキを続行する段階と、を含むメッキ方法を提示する。この時、前記メッキ電流は元の値の5%から40%の電流量まで減少できる。
Here, the plating equipment further includes an auxiliary anode installed in the auxiliary plating tank, and the second applied current from the power source is applied to both the auxiliary anode and the anode. At this time, the first applied current from the power source is applied to both the auxiliary anode and the anode.
According to another means of the present invention, at least one product to be plated is immersed in at least one plating tank containing a plating solution, and at least one of the anodes immersed in the plating solution. Applying a current for plating to a product to be plated, reducing the plating current applied to at least one anode when the plating is interrupted, and after the plating interruption is eliminated, A plating method is provided that includes converting the plating current to a previous amount and continuing to plate the product to be plated. At this time, the plating current can be reduced from 5% to 40% of the original value.

また、本発明の他の一手段によれば、メッキ液が入れられる一連の複数の主メッキ槽と、前記主メッキ槽の前記メッキ液に漬けられたアノードと、前記主メッキ槽間を連結し、前記メッキ液が流れる補助メッキ槽と、前記アノードに対応するカソードであって前記主メッキ槽及び前記補助メッキ槽に被メッキ製品を順次に移送する移送手段と、前記アノードに前記被メッキ製品へのメッキのための電流を印加し、前記メッキが中断される時に前記電流を減少させる電源とを備えるメッキ装備を提示する。   According to another means of the present invention, a series of a plurality of main plating tanks into which a plating solution is put, an anode immersed in the plating solution of the main plating tank, and the main plating tank are connected. An auxiliary plating tank through which the plating solution flows, a cathode corresponding to the anode, a transfer means for sequentially transferring the product to be plated to the main plating tank and the auxiliary plating tank, and the anode to the product to be plated. And a power source for reducing the current when the plating is interrupted.

本発明の他の一手段によれば、少なくとも1つの被メッキ製品をメッキするためのメッキ液が入れられた少なくとも1つのメッキ槽と、前記被メッキ製品へのメッキのために前記メッキ液に第1印加電流を印加し、前記メッキが中断される時に前記第1印加電流より少ない電流量の第2印加電流を選択的に印加する電源と、を備えるメッキ装備を提示する。   According to another means of the present invention, at least one plating tank in which a plating solution for plating at least one product to be plated is placed, and the plating solution for plating on the product to be plated And a power supply that selectively applies a second applied current having a smaller current amount than the first applied current when the plating is interrupted.

本発明の他の一手段によれば、メッキのためのメッキ液が入れられた少なくとも1つのメッキ槽を通過する少なくとも1つの被メッキ製品をメッキする段階と、前記メッキが中断される間、前記メッキのための第1電流を減少させて第2電流に転換する段階と、を含むメッキ方法を提示する。
この時、前記第2電流は前記メッキを引き起こさない程度に十分に低く、前記メッキ液の成分の置換または析出を引き起こさない程に高いものでありうる。
According to another means of the present invention, the step of plating at least one product to be plated that passes through at least one plating tank containing a plating solution for plating, and while the plating is interrupted, Reducing the first current for plating and converting it to a second current.
At this time, the second current may be low enough not to cause the plating and high enough not to cause substitution or deposition of the components of the plating solution.

本発明の他の一手段によれば、少なくとも1つの主メッキ槽と、メッキされる少なくとも1つの被メッキ製品がメッキ液外部の環境に露出しないようにするために、前記メッキ液が何れか1つの前記主メッキ槽から流れるように前記主メッキ槽に連結される少なくとも1つの補助メッキ槽と、を備えるメッキ装備を提示する。   According to another means of the present invention, in order to prevent at least one main plating tank and at least one product to be plated from being exposed to the environment outside the plating solution, any one of the plating solutions is used. A plating equipment comprising: at least one auxiliary plating tank connected to the main plating tank so as to flow from one main plating tank.

本発明によれば、メッキ装備の瞬間的な稼動中断またはエラーによる稼動中断が発生しても、メッキが進行していた製品またはリードに所望しないメッキまたは酸化などのような不良が発生するのを効果的に防止できる。   According to the present invention, even if the operation of the plating equipment is instantaneously interrupted or the operation is interrupted due to an error, defects such as undesired plating or oxidation occur in the product or lead on which the plating has progressed. It can be effectively prevented.

本発明によれば、メッキ工程がエラー発生などにより瞬間停止または中断されても、メッキ中であった被メッキ製品、例えばリードフレームのメッキ不良の発生を効果的に防止できる。これにより、再処理作業の要求が減って生産率及び設備稼動率を向上できる。   According to the present invention, even when the plating process is momentarily stopped or interrupted due to the occurrence of an error or the like, it is possible to effectively prevent the occurrence of defective plating of a product to be plated, for example, a lead frame, which was being plated. Thereby, the request | requirement of a reprocessing work reduces and it can improve a production rate and an equipment operation rate.

以下、図面を参照して本発明の実施例を詳細に説明する。しかし、本発明の実施例は様々な他の形態に変形することができ、本発明の範囲が後述する実施例により限定されるものと解釈されてはならない。本発明の実施例は当業者に本発明をさらに完全に説明するために提供されるものである。
本発明の実施例では、多数のメッキ槽が一連に配置され、チェーンベルトのような移送手段で被メッキ製品が移送され、メッキを実施するメッキ装備でエラーなどによる装備の瞬間的な稼動中断または被メッキ製品の移送中断などが発生する時、メッキ槽のメッキ液にアノードを通じて印加されていた電流を減少させるものの、最小の電流量で電流を印加して、所望しない金属置換反応が発生することを効果的に防止する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the embodiments of the present invention can be modified in various other forms, and the scope of the present invention should not be construed as being limited by the embodiments described below. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.
In the embodiment of the present invention, a large number of plating tanks are arranged in series, the product to be plated is transferred by a transfer means such as a chain belt, and the equipment is instantaneously interrupted due to an error or the like in the plating equipment for performing plating. When transfer of the product to be plated is interrupted, the current applied to the plating solution in the plating tank through the anode is reduced, but an undesired metal substitution reaction occurs when the current is applied with the minimum amount of current. Effectively prevent.

また、瞬間的な稼動中断などが発生しても、チェーンベルトなどにより移送されるメッキ中であった被メッキ製品に酸化などが発生することを効果的に防止するために、メッキ槽間にも最小限にメッキ液が提供されて被メッキ製品が実質的なメッキ工程でメッキ液に浸った状態で維持されるようにする。そのために、メッキ槽間に補助メッキ槽を導入して補助メッキ槽にもメッキ液が提供されるようにメッキ装備を構成する。この時、補助メッキ槽にも補助アノードを導入して、瞬間停止または瞬間的な稼動中断時に金属置換反応を防止する程度の最小電流を補助アノードを通じてメッキ液に印加する。   In addition, even if an instantaneous operation interruption occurs, in order to effectively prevent oxidation etc. from occurring on the product to be plated that was transferred by the chain belt, A plating solution is provided at a minimum so that the product to be plated is maintained in the plating solution in a substantial plating process. For this purpose, an auxiliary plating tank is introduced between the plating tanks, and the plating equipment is configured so that the plating solution is also provided to the auxiliary plating tank. At this time, the auxiliary anode is also introduced into the auxiliary plating tank, and a minimum current is applied to the plating solution through the auxiliary anode so as to prevent the metal substitution reaction when instantaneous stop or instantaneous interruption of operation.

このような本発明の実施例によれば、メッキ装備または移送チェーンベルトの所望しない瞬間的な稼動中断またはメッキ中断が発生しても、所望しない金属置換反応と被メッキ製品の大気中への露出による酸化とを効果的に防止できる。これにより、所望しないメッキ中断によって、過多メッキまたは所望しない金属の置換反応、酸化などのような不良がメッキ中である被メッキ製品に発生することを効果的に防止できる。   According to such an embodiment of the present invention, even if an undesired momentary operation interruption or plating interruption of the plating equipment or the transfer chain belt occurs, an undesirable metal substitution reaction and exposure of the product to be plated to the atmosphere. It is possible to effectively prevent oxidation due to. Thereby, it is possible to effectively prevent occurrence of defects such as excessive plating, undesired metal substitution reaction, oxidation, etc. in the product to be plated due to undesired interruption of plating.

図1は、本発明の一実施例によるメッキ方法を説明するために概略的に示すフロー図である。図2から図6Bは、本発明の一実施例によるメッキ方法に利用されるメッキ装備を概略的に示す図である。
図1を参照すれば、本発明の一実施例によるメッキ方法では、メッキ工程が所望しないエラーなどで瞬間的に中断される時、メッキ槽に位置してメッキ中であった被メッキ製品、すなわち集積回路素子のリードへの過多なメッキの進行を防止し、このように所望しない金属置換現象の発生を防止するために、メッキ槽のメッキ液に印加する電流を、メッキのために印加する電流に比べて少量に転換させる。
FIG. 1 is a flow diagram schematically illustrating a plating method according to an embodiment of the present invention. 2 to 6B are diagrams schematically illustrating plating equipment used in a plating method according to an embodiment of the present invention.
Referring to FIG. 1, in a plating method according to an embodiment of the present invention, when a plating process is momentarily interrupted due to an undesired error or the like, a product to be plated which is located in a plating tank and is being plated, In order to prevent excessive plating from progressing to the leads of the integrated circuit element and to prevent the occurrence of such an undesirable metal substitution phenomenon, the current applied to the plating solution in the plating bath is the current applied for plating. Compared to a small amount.

無鉛メッキである錫:ビスマスメッキ工程を例に挙げて説明すれば、メッキ装備のエラーなどによりメッキが中断される場合、メッキ槽に位置する被メッキ製品へのメッキのための電流の印加は一旦中断される。引き続きメッキのための電流を供給する場合、チェーンベルトなどのような移送手段によって移送された被メッキ製品がある位置で停止し続けてメッキ液に漬けられた状態で維持されると、被メッキ製品に継続的にメッキ反応が行われるために、被メッキ製品には要求される厚さ以上にメッキ層がメッキされる。これを防止するためにはメッキのために印加された印加電流の供給を中断せねばならない。   For example, if the plating process is interrupted due to a plating equipment error, etc., the application of current for plating to the product to be plated is temporarily applied. Interrupted. When the current for plating is continuously supplied, the product to be plated, which has been transferred by a transfer means such as a chain belt, stops at a certain position and is kept immersed in the plating solution. Since the plating reaction is continuously performed, the plating layer is plated more than the required thickness for the product to be plated. In order to prevent this, the supply of the applied current applied for plating must be interrupted.

ところが、このようなメッキのための印加電流の供給中断時にメッキ液内に存在するビスマス原子は、自発的に他の金属と置換して析出する傾向を示す。これにより、被メッキ製品やメッキ槽内の他の金属部品などにビスマスが置換析出し、所望しない不良が発生する可能性がある。
これを防止するために、本発明の実施例ではメッキ工程が瞬間停止する時、メッキ槽のメッキ液に印加されたメッキのための第1印加電流を相対的に小さい第2印加電流に転換し、メッキ工程が瞬間的に中断されている間、メッキ液に第2印加電流を印加し続ける。すなわち、メッキ液を介して被メッキ製品(すなわちカソード)とアノードとを通じて、メッキ液にビスマス原子が置換析出することを防止するために第2印加電流を印加し続ける。
However, the bismuth atoms present in the plating solution when the supply of the applied current for plating is interrupted tend to spontaneously substitute for other metals and precipitate. As a result, bismuth may be substituted and deposited on the product to be plated or other metal parts in the plating tank, which may cause an undesirable defect.
In order to prevent this, in the embodiment of the present invention, when the plating process stops instantaneously, the first applied current for plating applied to the plating solution in the plating tank is converted into a relatively small second applied current. While the plating process is momentarily interrupted, the second applied current is continuously applied to the plating solution. That is, the second applied current is continuously applied to prevent the bismuth atoms from being deposited on the plating solution through the plating solution through the product to be plated (that is, the cathode) and the anode.

第2印加電流はメッキを誘導する程の高い電流量ではなく、ただ、メッキ液に含まれた金属元素のうち置換析出傾向の強い金属元素、すなわちビスマスが置換析出しないように誘導する程度の電流量であれば十分である。例えば、メッキのための第1印加電流が約75Aから100Aであれば、金属置換析出を防止する第2印加電流は約5Aから30A程度でありうる。すなわち、第2印加電流は第1印加電流に比べて約5%から40%程度でありうる。望ましくは、第2印加電流は第1印加電流が75Aである時、約15A程度に印加されることが望ましい。   The second applied current is not high enough to induce plating. However, the second applied current is merely a current that induces a metal element included in the plating solution that has a strong tendency to substitutional precipitation, that is, bismuth not to be substitutionally deposited. The amount is sufficient. For example, if the first applied current for plating is about 75A to 100A, the second applied current for preventing metal displacement deposition may be about 5A to 30A. That is, the second applied current may be about 5% to 40% compared to the first applied current. Preferably, the second applied current is applied to about 15A when the first applied current is 75A.

メッキ槽が配置され、メッキ槽の前後に多数の多様な目的の溶液槽が配置されて構成されるメッキ装備において、被メッキ製品が順次に移送されメッキされる実際の量産工程を例に挙げて本発明の実施例をさらに具体的に説明する。
図1と共に図2及び図3を参照する。図2は、本発明の一実施例によるメッキ方法に利用されるメッキ装備を概略的に示す図であり、図3は、本発明の一実施例によるメッキ装備を構成するメッキ槽及び補助メッキ槽を概略的に示す平面図である。
An example of an actual mass production process in which a plating tank is arranged and a product to be plated is sequentially transferred and plated in a plating equipment in which a large number of various purpose solution tanks are arranged before and after the plating tank. Examples of the present invention will be described more specifically.
2 and 3 are referred to together with FIG. FIG. 2 is a view schematically showing plating equipment used in a plating method according to an embodiment of the present invention, and FIG. 3 is a plating tank and auxiliary plating tank constituting the plating equipment according to an embodiment of the present invention. It is a top view which shows roughly.

メッキ装備には、図2に概略的に示すように、多数のメッキ槽300が一連に配置され、このようなメッキ槽300の前後に多様な工程が行われる溶液槽250が配置される。このようなメッキ槽300及び溶液槽250に被メッキ製品、すなわち、半導体素子がパッケージングされたリードフレームがチェーンベルトのような移送手段によって順次に、そして継続的に移送され、メッキ槽300でメッキが行われる。   As schematically shown in FIG. 2, a large number of plating tanks 300 are arranged in series in the plating equipment, and a solution tank 250 in which various processes are performed is arranged before and after the plating tank 300. A product to be plated, that is, a lead frame in which a semiconductor element is packaged, is sequentially and continuously transferred to the plating tank 300 and the solution tank 250 by a transfer means such as a chain belt. Is done.

被メッキ製品は装着部210でチェーンベルトにかけられてメッキ装備に投入される。チェーンベルトの移送によって被メッキ製品はまず化学的デフラッシュ工程を経て、リンス及び高圧リンスを経た後、ディスケールされる。次いで、リンス工程を経て、活性化工程を経た後、すなわち、活性剤が含まれた溶液に漬けられた後、前処理溶液槽270でプレディップ工程を経る。ターンホイールはチェーンベルトの移送方向を変える役割をする。プレディップ工程を経てメッキ槽300に移送されてメッキされた後、中和工程及び高温リンス、エアー噴射及び乾燥工程を経て脱着部230で引き出される。この時、実質的なメッキ工程はメッキ槽300を被メッキ製品が経る時に行われると理解されうる。   The product to be plated is put on the chain belt at the mounting portion 210 and is put into the plating equipment. By the transfer of the chain belt, the product to be plated is first subjected to a chemical deflash process, followed by rinsing and high-pressure rinsing and then descaling. Next, after a rinsing step and an activation step, that is, after being immersed in a solution containing an activator, a pre-dip step is performed in the pretreatment solution tank 270. The turn wheel serves to change the transport direction of the chain belt. After being transferred to the plating tank 300 through the pre-dip process and plated, it is pulled out by the desorption part 230 through a neutralization process, a high-temperature rinse, an air injection and a drying process. At this time, it can be understood that the substantial plating process is performed when the product to be plated passes through the plating tank 300.

図3に示すように、図2に提示されたメッキ段階を行うメッキ槽300は主メッキ槽310、320、330、340と補助メッキ槽400とを含んで構成されうる。補助メッキ槽400は主メッキ槽310、320、330、340間を連結する連結部350を貫通して導入され、主メッキ槽310、320、330、340間の部位にもメッキ液が流通するように許容する役割をする。すなわち、チェーンベルト500に垂れてメッキ液に漬けられたままに移送される被メッキ製品が主メッキ槽310、320、330、340間の部位でメッキ液から離脱して大気中に露出しないようにするために、補助メッキ槽400にもメッキ液が提供されるように補助メッキ槽400と主メッキ槽310、320、330、340とは相互流通して連結される。これにより、主メッキ槽310、320、330、340に提供されたメッキ液は補助メッキ槽400に流れ込むことができる。   As shown in FIG. 3, the plating tank 300 for performing the plating process shown in FIG. 2 may include main plating tanks 310, 320, 330, and 340 and an auxiliary plating tank 400. The auxiliary plating tank 400 is introduced through a connecting portion 350 that connects the main plating tanks 310, 320, 330, and 340, so that the plating solution also flows through the portion between the main plating tanks 310, 320, 330, and 340. To play an acceptable role. That is, the product to be plated that is dropped on the chain belt 500 and is immersed in the plating solution is separated from the plating solution between the main plating tanks 310, 320, 330, and 340 and is not exposed to the atmosphere. Therefore, the auxiliary plating tank 400 and the main plating tanks 310, 320, 330, and 340 are connected to each other so that the plating solution is also provided to the auxiliary plating tank 400. Accordingly, the plating solution provided to the main plating tanks 310, 320, 330, and 340 can flow into the auxiliary plating tank 400.

このように主メッキ槽310、320、330、340及び補助メッキ槽400を導入した後(図1の110)、被メッキ製品を連続的に移送してメッキを行う(図1の120)。この時、メッキ反応のためには電源600を通じて、主メッキ槽310、320、330、340内に導入されたアノード700とチェーンベルト500に吊られた被メッキ製品とにはメッキのための電流が印加される。このような印加電流として、メッキ反応を誘導するために約75Aから100Aの高電流が整流器などを含む電源600によって印加される。   After introducing the main plating tanks 310, 320, 330, and 340 and the auxiliary plating tank 400 in this way (110 in FIG. 1), the product to be plated is continuously transferred to perform plating (120 in FIG. 1). At this time, a current for plating is supplied to the anode 700 introduced into the main plating tanks 310, 320, 330, and 340 and the product to be plated suspended from the chain belt 500 through the power source 600 for the plating reaction. Applied. As such an applied current, a high current of about 75 A to 100 A is applied by a power source 600 including a rectifier to induce a plating reaction.

図3ではこのようなメッキ電流の印加を概略的に示した。主メッキ槽310、320、330、340のそれぞれに4個ずつ板状に導入されるアノード700のそれぞれには共にメッキ電流が印加される(図1の130)。そして、チェーンベルト500に電源600が接触して、チェーンベルト500に電気的に連結されチェーンベルト500に垂れている被メッキ製品、すなわちリードフレームはカソードの役割をする。   FIG. 3 schematically shows the application of such a plating current. A plating current is applied to each of the anodes 700 introduced into the main plating tanks 310, 320, 330, and 340 in a plate shape (130 in FIG. 1). The power source 600 contacts the chain belt 500, and the product to be plated, that is, the lead frame that is electrically connected to the chain belt 500 and hangs down on the chain belt 500, serves as a cathode.

印加されるメッキ電流によって、メッキ液内に含まれた金属元素は被メッキ製品にメッキされる。無鉛錫メッキの場合、メッキ液は錫元素とビスマス元素とを含有しており、このような印加されるメッキ電流によって錫及びビスマスが一定割合で被メッキ製品にメッキされてメッキ層を形成する。
ところが、このようなメッキ工程中に様々な種類のエラーなどによりメッキ工程が瞬間停止または中断される場合が発生する可能性がある。このような瞬間停止などでチェーンベルト500の移送は中断されるので、被メッキ製品はメッキ液に浸けられたままで中断期間の間止まり続ける。
The metal element contained in the plating solution is plated on the product to be plated by the applied plating current. In the case of lead-free tin plating, the plating solution contains a tin element and a bismuth element, and tin and bismuth are plated on the product to be plated at a constant rate by such an applied plating current to form a plating layer.
However, there is a possibility that the plating process may be momentarily stopped or interrupted due to various types of errors during the plating process. Since the transfer of the chain belt 500 is interrupted by such a momentary stop or the like, the product to be plated remains immersed in the plating solution and continues to be stopped during the interruption period.

このような場合、被メッキ製品が引き続きメッキ電流供給下でメッキ液中にあれば、被メッキ製品に過多なメッキが発生する可能性がある。このような過多メッキ不良は排除されねばならないので、メッキ工程の瞬間停止または中断が発生する場合、電源600はメッキ電流の供給を中断し、アノード700と、チェーンベルト500を通した被メッキ製品、すなわち、カソードとにメッキ電流である第1印加電流より小さい第2印加電流を印加する(図1の130)。   In such a case, if the product to be plated is still in the plating solution under the supply of plating current, excessive plating may occur in the product to be plated. Since such excessive plating defects must be eliminated, when an instantaneous stop or interruption of the plating process occurs, the power source 600 interrupts the supply of the plating current, and the product to be plated through the anode 700 and the chain belt 500, That is, a second applied current smaller than the first applied current, which is a plating current, is applied to the cathode (130 in FIG. 1).

このような第1印加電流から第2印加電流への電源供給の転換は、メッキ装備を全体的に制御する制御部(図示せず)で設定されたプログラムによって、メッキ工程で瞬間的に中断が発生する場合に自動的に行われる。第2印加電流は第1印加電流に比べて約5%から40%程度少ない電流量で印加される。すなわち、第1印加電流が75Aから100Aである場合、第2印加電流は約5Aから30A程度に印加される。望ましくは、第1印加電流が75Aである時に第2印加電流は15Aでありうる。   Such a change in power supply from the first applied current to the second applied current is instantaneously interrupted in the plating process by a program set by a control unit (not shown) that controls the overall plating equipment. It happens automatically when it occurs. The second applied current is applied with a current amount that is about 5% to 40% smaller than the first applied current. That is, when the first applied current is 75A to 100A, the second applied current is applied to about 5A to 30A. Preferably, the second applied current may be 15A when the first applied current is 75A.

このようにメッキ液に印加されるメッキのための第1印加電流をこれより小さい第2印加電流に転換することは、2つの大きい目的をなすためである。
第1に、メッキ液内に漬けられている被メッキ製品のメッキ反応が活性化されることを防止して、継続的にメッキ反応が大きく行われてメッキ層の厚さが過多に増加することを防止するためである。メッキ電流の電流量はメッキ反応によるメッキ量を決定する1つの要素として作用するので、このような電流量を減らすことによって被メッキ製品にメッキ反応が進行することを実質的に防止できる。
The conversion of the first applied current for plating applied to the plating solution to the second applied current smaller than this is for two large purposes.
First, the plating reaction of the product to be plated immersed in the plating solution is prevented from being activated, and the plating reaction is continuously performed to increase the thickness of the plating layer excessively. It is for preventing. Since the current amount of the plating current acts as one element for determining the plating amount by the plating reaction, it is possible to substantially prevent the plating reaction from proceeding to the product to be plated by reducing the current amount.

第2に、無鉛錫メッキの場合でのように、メッキ液内にビスマスのように金属に対して置換傾向の強い金属元素が含まれる場合、第1印加電流の供給を中断すると、ビスマス原子がアノード700または被メッキ製品に置換析出する。これはメッキ工程で所望しない現象であるので、不良と理解されうる。ところが、本発明の実施例でのように、メッキに要求される電流量の第1印加電流に比べて少ない電流量の第2印加電流をアノード700などを通じて印加すれば、ビスマス原子の置換析出が防止される。   Secondly, as in the case of lead-free tin plating, when the plating solution contains a metal element having a strong substitution tendency with respect to a metal such as bismuth, if the supply of the first applied current is interrupted, the bismuth atoms are changed. Displacement deposition is performed on the anode 700 or the product to be plated. Since this is an undesirable phenomenon in the plating process, it can be understood as a defect. However, as in the embodiment of the present invention, when a second applied current having a smaller current amount than the first applied current required for plating is applied through the anode 700 or the like, substitution deposition of bismuth atoms is caused. Is prevented.

ところが、図3に示すように主メッキ槽310、320、330、340内に設置されたアノード700は補助メッキ槽400に延びた状態ではない。したがって、メッキ工程が停止した状態で補助メッキ槽400の位置、すなわち、主メッキ槽310、320、330、340間の連結部350に位置する被メッキ製品には多少の所望しない現象が発生する可能性がある。例えば、Sn:Biメッキ液を利用する場合、メッキ層のSn:Biの組成比が変動する。これはメッキ層の特性面において所望しない現象である。   However, as shown in FIG. 3, the anode 700 installed in the main plating tanks 310, 320, 330, and 340 does not extend to the auxiliary plating tank 400. Therefore, some undesired phenomenon may occur in the product to be plated located at the position of the auxiliary plating tank 400, that is, the connecting part 350 between the main plating tanks 310, 320, 330, and 340 when the plating process is stopped. There is sex. For example, when an Sn: Bi plating solution is used, the Sn: Bi composition ratio of the plating layer varies. This is an undesirable phenomenon in the characteristics of the plating layer.

このようなメッキ層の組成変動を防止するために、図4、図5A及び図5Bに示すように、補助メッキ槽400内に板状の補助アノード750を導入する。図4は、本発明の一実施例によるメッキ装備を構成する主メッキ槽310、320、330、340及び補助メッキ槽400に設置された電極の状態を概略的に示す平面図である。図5Aは、本発明の一実施例による主メッキ槽310、320、330、340での電流印加状態を概略的に示す模式図であり、図5Bは、本発明の一実施例による補助メッキ槽400での電流印加状態を概略的に示す模式図である。   In order to prevent such composition variation of the plating layer, a plate-like auxiliary anode 750 is introduced into the auxiliary plating tank 400 as shown in FIGS. 4, 5A and 5B. FIG. 4 is a plan view schematically showing the state of electrodes installed in the main plating tanks 310, 320, 330, and 340 and the auxiliary plating tank 400 constituting the plating equipment according to an embodiment of the present invention. FIG. 5A is a schematic view schematically illustrating a current application state in the main plating tanks 310, 320, 330, and 340 according to an embodiment of the present invention, and FIG. 5B is an auxiliary plating tank according to an embodiment of the present invention. 4 is a schematic diagram schematically showing a current application state at 400. FIG.

図4を参照すれば、補助メッキ槽400は、例えば第1主メッキ槽310と第2主メッキ槽320とを連結するように連結部350を貫通して導入される。実質的に第1主メッキ槽310の領域は第1主メッキ槽310内に導入されるメッキ液隔壁311までであるので、第1主メッキ槽310内に提供されるメッキ液はメッキ液隔壁311内に入れられた状態になる。メッキ液隔壁311はその外側空間にメッキ液の排出のためのドレイン(図示せず)が設置される。   Referring to FIG. 4, the auxiliary plating tank 400 is introduced through the connecting part 350 so as to connect the first main plating tank 310 and the second main plating tank 320, for example. Since the region of the first main plating tank 310 is substantially up to the plating liquid partition 311 introduced into the first main plating tank 310, the plating liquid provided in the first main plating tank 310 is the plating liquid partition 311. It will be put in the state. The plating liquid partition 311 is provided with a drain (not shown) for discharging the plating liquid in an outer space thereof.

したがって、補助メッキ槽400はこのような第1主メッキ槽310の実質的な領域、すなわちメッキ液が入れられた領域に至るように導入され、第1主メッキ槽310に入れられたメッキ液が補助メッキ槽400内に流れ込むようにする。したがって、図5A及び図5Bに示すようにチェーンベルト500の移送中断などのようなメッキ工程の瞬間的な中断が発生する時、補助メッキ槽400内に位置して、その位置で止まる被メッキ製品550は補助メッキ槽400内に流れ込んだメッキ液390に浸けられた状態に維持される。   Accordingly, the auxiliary plating tank 400 is introduced so as to reach a substantial area of the first main plating tank 310, that is, an area where the plating liquid is placed, and the plating liquid put in the first main plating tank 310 is introduced. It flows into the auxiliary plating tank 400. Therefore, as shown in FIGS. 5A and 5B, when an instantaneous interruption of the plating process such as interruption of the transfer of the chain belt 500 occurs, the product to be plated is located in the auxiliary plating tank 400 and stops at that position. 550 is maintained in a state immersed in the plating solution 390 flowing into the auxiliary plating tank 400.

この時、補助メッキ槽400には補助アノード750が導入される。補助アノード750は補助メッキ槽400の長さに対等な程度の長さを有する板状に導入されうる。このような補助アノード750は補助メッキ槽400内に止まっている被メッキ製品550にビスマス元素などのような金属置換析出特性の強い金属元素がくっつく不良が発生することを防止するために導入される。したがって、補助アノード750は第1主メッキ槽310などに導入される主アノード700と共通連結されて電源600に連結されうる。これにより、メッキ工程が瞬間停止または中断される場合、主アノード700と共に補助アノード750にも金属元素の置換析出を防止する第2印加電流が印加される。   At this time, the auxiliary anode 750 is introduced into the auxiliary plating tank 400. The auxiliary anode 750 may be introduced in a plate shape having a length comparable to the length of the auxiliary plating tank 400. Such an auxiliary anode 750 is introduced in order to prevent a defective metal product such as a bismuth element, which has a strong metal displacement precipitation characteristic, from sticking to the product to be plated 550 remaining in the auxiliary plating tank 400. . Accordingly, the auxiliary anode 750 may be connected to the power source 600 in common with the main anode 700 introduced into the first main plating tank 310 and the like. As a result, when the plating process is momentarily stopped or interrupted, the second applied current that prevents substitution deposition of metal elements is applied to the auxiliary anode 750 as well as the main anode 700.

もちろん、このような補助アノード750の役割を主アノード700が兼備できるように、主アノード700を補助メッキ槽400内に、補助メッキ槽400が延びる長さまで延長してもよい。
補助メッキ槽400に補助アノード750を導入することによって、ビスマスの置換析出が防止され、メッキ中断によって被メッキ製品のメッキ層の組成比が変動することを効果的に防止できる。
Of course, the main anode 700 may be extended in the auxiliary plating tank 400 to a length in which the auxiliary plating tank 400 extends so that the main anode 700 can also serve as the auxiliary anode 750.
By introducing the auxiliary anode 750 into the auxiliary plating tank 400, substitutional deposition of bismuth is prevented, and it is possible to effectively prevent the composition ratio of the plating layer of the product to be plated from fluctuating due to the interruption of plating.

一方、図5Bに示すように補助メッキ槽400内にもメッキ液390が流れ込むことによって、被メッキ製品550は図2に示す一連のメッキ工程の間、引き続きメッキ液390内に浸けられた状態で維持されて移送されうる。したがって、メッキ中断などが発生する場合にも被メッキ製品550が大気中に露出する可能性はなくなる。したがって、メッキ中であった被メッキ製品550が大気中に露出して酸化される不良が効果的に防止されうる。   On the other hand, as shown in FIG. 5B, the plating solution 390 flows into the auxiliary plating tank 400, so that the product to be plated 550 is continuously immersed in the plating solution 390 during the series of plating steps shown in FIG. Can be maintained and transported. Therefore, there is no possibility that the product to be plated 550 is exposed to the atmosphere even when the plating is interrupted. Therefore, it is possible to effectively prevent the product to be plated 550 that was being plated from being exposed to the atmosphere and oxidized.

さらに、補助メッキ槽400の導入は、例えば4個の相互分離された主メッキ槽310、320、330、340を相互連結させてメッキ液390を流通させることによって、結果的に1つの大型メッキ槽300を導入した場合と対等なメッキ効果を具現できる。すなわち、メッキの均一性をさらに高めうる。
補助メッキ槽400が導入されていない場合、主メッキ槽310、320、330、340間ではメッキが中断される効果が発生する。補助メッキ槽400を導入した場合、メッキ工程が中断されない正常状態で補助アノード750を通じてメッキ電流である第1印加電流を印加できるので、被メッキ製品550には移送中に連続的にメッキ反応が続けられる。これは設備の特性上、主メッキ槽310、320、330、340が分離されるしかないことに起因して発生する不利な面を克服できることを意味する。
Furthermore, the introduction of the auxiliary plating tank 400 is achieved by, for example, interconnecting four mutually separated main plating tanks 310, 320, 330, and 340 to distribute the plating solution 390, resulting in one large plating tank. A plating effect equivalent to the case of introducing 300 can be realized. That is, the uniformity of plating can be further improved.
When the auxiliary plating tank 400 is not introduced, an effect that the plating is interrupted occurs between the main plating tanks 310, 320, 330, and 340. When the auxiliary plating tank 400 is introduced, since the first applied current, which is a plating current, can be applied through the auxiliary anode 750 in a normal state where the plating process is not interrupted, the plating reaction continues to the product to be plated 550 during the transfer. It is done. This means that the disadvantages caused by the fact that the main plating tanks 310, 320, 330, and 340 can only be separated due to the characteristics of the equipment can be overcome.

実際、個々の主メッキ槽310、320、330、340は約1.5m程度に非常に長いので、全体のメッキ槽300の長さは6m以上になる。これを単一メッキ槽で構成することは実質的に非常に難しい。しかし、補助メッキ槽400を導入することによって、分離された主メッキ槽310、320、330、340としても実際には単一メッキ槽を導入した場合と対等なメッキ効果を具現できる。   In fact, the individual main plating tanks 310, 320, 330, and 340 are very long to about 1.5 m, so that the entire plating tank 300 has a length of 6 m or more. It is practically very difficult to configure this with a single plating tank. However, by introducing the auxiliary plating tank 400, the separated main plating tanks 310, 320, 330, and 340 can actually realize a plating effect equivalent to that when a single plating tank is introduced.

一方、補助メッキ槽400は図6A及び6Bに示すように構成されうる。図6A及び図6Bは、本発明の一実施例によるメッキ装備を構成する補助メッキ槽を概略的に示す斜視図及び側面図である。
図6A及び図6Bを参照すれば、補助メッキ槽400は板状の2つの壁410が底板420に立てられた形態に構成されうる。底板420には支持のための脚430が取付けられ、立てられた2つの壁410は支持部460によって底板420に支持されうる。ある1つの壁410には穴440が導入され、このような穴440にはメッキ液の存否を感知するセンサー470が導入される。このようなメッキ液の感知はメッキ液の適切な供給のために必須で要求される。
Meanwhile, the auxiliary plating bath 400 may be configured as shown in FIGS. 6A and 6B. 6A and 6B are a perspective view and a side view schematically showing an auxiliary plating tank constituting the plating equipment according to an embodiment of the present invention.
Referring to FIGS. 6A and 6B, the auxiliary plating tank 400 may be configured such that two plate-like walls 410 are erected on the bottom plate 420. Legs 430 for support are attached to the bottom plate 420, and the two standing walls 410 can be supported on the bottom plate 420 by the support portion 460. A hole 440 is introduced into one wall 410, and a sensor 470 that detects the presence or absence of a plating solution is introduced into the hole 440. Such sensing of the plating solution is essential for proper supply of the plating solution.

補助メッキ槽400の壁の長さは、補助メッキ槽400が図3または図4に示すように主メッキ槽310、320間に導入される時、補助メッキ槽400が少なくとも主メッキ槽310、320に入れられたメッキ液に至る程度の長さを有さねばならない。すなわち、メッキ液隔壁(図4の311)を過ぎるか、メッキ液隔壁につき合わせるように補助メッキ槽400が導入されることを許容できる程度の長さに補助メッキ槽400の壁410が構成されるのが望ましい。   The wall length of the auxiliary plating tank 400 is such that when the auxiliary plating tank 400 is introduced between the main plating tanks 310 and 320 as shown in FIG. 3 or 4, the auxiliary plating tank 400 is at least the main plating tanks 310 and 320. It must have a length enough to reach the plating solution put in. That is, the wall 410 of the auxiliary plating tank 400 is configured to have a length that allows the auxiliary plating tank 400 to pass through the plating liquid partition (311 in FIG. 4) or to match the plating liquid partition. Is desirable.

また、図1を参照すれば、メッキの瞬間的な中断または停止が解消されると、第2印加電流をメッキ電流である第1印加電流に転換して主アノード700または補助アノード750に印加してメッキ工程をさらに続ける(図1の140)。このような場合、今まで説明したようにメッキの瞬間的な中断または停止期間の間、被メッキ製品に過多メッキや金属置換析出または酸化などのようなメッキ不良が効果的に防止されうるので、メッキ工程の瞬間的な中断時にメッキ液内に留まっていた被メッキ製品を再処理する必要はなくなる。実際に2分程度のメッキの中断時にも被メッキ製品にメッキ不良が発生しなかった。したがって、メッキ工程の収率及びメッキ装備の稼動率を大幅に向上できる。   Referring to FIG. 1, when the instantaneous interruption or stop of the plating is eliminated, the second applied current is converted to the first applied current that is a plating current and applied to the main anode 700 or the auxiliary anode 750. The plating process is further continued (140 in FIG. 1). In such a case, as described above, during the instantaneous interruption or stop period of plating, plating defects such as excessive plating, metal displacement deposition or oxidation can be effectively prevented in the product to be plated. It is no longer necessary to reprocess the product to be plated that has remained in the plating solution when the plating process is momentarily interrupted. Actually, plating failure did not occur in the product to be plated even when the plating was interrupted for about 2 minutes. Therefore, the yield of the plating process and the operation rate of the plating equipment can be greatly improved.

以上、本発明を具体的な実施例を通じて詳細に説明したが、本発明はこれに限定されず、本発明の技術的思想内で当業者によりその変形や改良が可能であることが明白である。
(産業上の利用可能性)
本発明は、半導体素子のような集積回路素子のパッケージ組立てに利用されうる。特に、半導体素子パッケージのリードをメッキするのに使用されうる。
The present invention has been described in detail through specific embodiments. However, the present invention is not limited thereto, and it is apparent that modifications and improvements can be made by those skilled in the art within the technical idea of the present invention. .
(Industrial applicability)
The present invention can be used for assembling a package of an integrated circuit device such as a semiconductor device. In particular, it can be used to plate the leads of a semiconductor device package.

本発明の実施例によるメッキ方法を概略的に示すフロー図である。It is a flowchart which shows the plating method by the Example of this invention roughly. 本発明の実施例によるメッキ方法に利用されるメッキ装備を概略的に示す模式図である。1 is a schematic view schematically showing plating equipment used in a plating method according to an embodiment of the present invention. 本発明の実施例によるメッキ装備を構成する主メッキ槽及び補助メッキ槽を概略的に示す平面図である。1 is a plan view schematically showing a main plating tank and an auxiliary plating tank constituting a plating equipment according to an embodiment of the present invention. 本発明の実施例によるメッキ装備を構成する主メッキ槽及び補助メッキ槽に設置された電極を概略的に示す平面図である。FIG. 4 is a plan view schematically showing electrodes installed in a main plating tank and an auxiliary plating tank constituting a plating apparatus according to an embodiment of the present invention. 本発明の実施例によるメッキ装備を構成する主メッキ槽での電流印加状態を概略的に示す模式図である。It is a schematic diagram which shows roughly the electric current application state in the main plating tank which comprises the plating equipment by the Example of this invention. 本発明の実施例によるメッキ装備を構成する補助メッキ槽での電流印加状態を概略的に示す模式図である。It is a schematic diagram which shows roughly the electric current application state in the auxiliary plating tank which comprises the plating equipment by the Example of this invention. 本発明の実施例によるメッキ装備を構成する補助メッキ槽を概略的に示す斜視図である。1 is a perspective view schematically showing an auxiliary plating tank constituting plating equipment according to an embodiment of the present invention. 本発明の実施例によるメッキ装備を構成する補助メッキ槽を概略的に示す側面図である。It is a side view which shows roughly the auxiliary plating tank which comprises the plating equipment by the Example of this invention.

符号の説明Explanation of symbols

270 前処理溶液槽、300 メッキ槽、310、320、330、340 主メッキ槽、311 メッキ液隔壁、350 連結部、390 メッキ液、400 補助メッキ槽、470 センサー、500 チェーンベルト、550 被メッキ製品、600 電源、700 主アノード、750 補助アノード   270 Pretreatment solution tank, 300 Plating tank, 310, 320, 330, 340 Main plating tank, 311 Plating liquid partition, 350 connection part, 390 plating liquid, 400 Auxiliary plating tank, 470 Sensor, 500 Chain belt, 550 Product to be plated 600 power supply, 700 main anode, 750 auxiliary anode

Claims (22)

メッキ槽に入れられたメッキ液に被メッキ製品を導入する段階と、
前記メッキ液に漬けられたアノードに前記被メッキ製品へのメッキのための第1印加電流を印加して前記被メッキ製品をメッキする段階と、
前記メッキが中断される時、前記第1印加電流より少ない電流量の第2印加電流を前記アノードに印加することにより、前記メッキが中断される間、前記被メッキ製品のメッキ不良の発生を防止する段階と、
前記メッキの中断が解消された後、前記第2印加電流を前記第1印加電流に転換して前記被メッキ製品にメッキを続行する段階と、
を含むことを特徴とするメッキ方法。
Introducing the product to be plated into the plating solution in the plating tank;
Plating the product to be plated by applying a first applied current for plating to the product to be plated to the anode immersed in the plating solution;
When the plating is interrupted, the second applied current having a smaller current amount than the first applied current is applied to the anode, thereby preventing the occurrence of plating failure of the product to be plated while the plating is interrupted. And the stage of
After the interruption of the plating is eliminated, converting the second applied current to the first applied current and continuing to plate the product to be plated;
The plating method characterized by including.
前記第2印加電流は、前記第1印加電流に比べて5%から40%の電流量であることを特徴とする請求項1に記載のメッキ方法。   2. The plating method according to claim 1, wherein the second applied current is a current amount of 5% to 40% as compared with the first applied current. 前記メッキ液は錫及びビスマスを含有し、前記メッキによって前記被メッキ製品に錫:ビスマスメッキ層が形成されることを特徴とする請求項1に記載のメッキ方法。   The plating method according to claim 1, wherein the plating solution contains tin and bismuth, and a tin: bismuth plating layer is formed on the product to be plated by the plating. メッキ液を収容する一連の複数の主メッキ槽と、
前記主メッキ槽の前記メッキ液に漬けられたアノードと、
前記主メッキ槽間を連結し、前記メッキ液が流れる補助メッキ槽と、
前記アノードに対応するカソードであって、前記主メッキ槽及び前記補助メッキ槽に被メッキ製品を順次に移送する移送手段と、
前記アノードに前記被メッキ製品へのメッキのための第1印加電流を選択的に印加し、前記メッキが中断される時、前記アノードに前記第1印加電流より少ない電流量の第2印加電流を選択的に印加する電源と、
を備えることを特徴とするメッキ装備。
A series of a plurality of main plating tanks containing the plating solution;
An anode immersed in the plating solution of the main plating tank;
An auxiliary plating tank that connects between the main plating tanks and the plating solution flows;
A cathode corresponding to the anode, a transfer means for sequentially transferring products to be plated to the main plating tank and the auxiliary plating tank;
A first applied current for plating the product to be plated is selectively applied to the anode, and when the plating is interrupted, a second applied current having a smaller current amount than the first applied current is applied to the anode. A power supply to selectively apply;
Equipped with plating equipment.
前記補助メッキ槽内を通過する前記カソードとしての移送手段に対応するように前記補助メッキ槽内に設置され、前記電源に連結される補助アノードをさらに備えることを特徴とする請求項4に記載のメッキ装備。   5. The auxiliary anode according to claim 4, further comprising an auxiliary anode installed in the auxiliary plating tank and connected to the power source so as to correspond to the transfer means as the cathode that passes through the auxiliary plating tank. Plating equipment. 前記補助アノードは、前記電源に連結された前記アノードに連結されることにより前記電源に連結されることを特徴とする請求項5に記載のメッキ装備。   The plating apparatus according to claim 5, wherein the auxiliary anode is connected to the power source by being connected to the anode connected to the power source. 前記アノードは、前記補助メッキ槽を通過するカソードとしての前記移送手段に対応して前記補助メッキ槽内に延びることを特徴とする請求項4に記載のメッキ装備。   5. The plating equipment according to claim 4, wherein the anode extends into the auxiliary plating tank corresponding to the transfer means as a cathode passing through the auxiliary plating tank. 前記補助メッキ槽内に流れ込んだ前記メッキ液を感知するために前記補助メッキ槽に設置されるセンサーをさらに備えることを特徴とする請求項4に記載のメッキ装備。   The plating equipment according to claim 4, further comprising a sensor installed in the auxiliary plating tank in order to sense the plating solution flowing into the auxiliary plating tank. 前記電源は、前記第1印加電流から前記第2印加電流に転換する時、前記第1印加電流の5%から40%の電流量で前記第2印加電流を印加することを特徴とする請求項4に記載のメッキ装備。   The power source applies the second applied current at a current amount of 5% to 40% of the first applied current when the first applied current is switched to the second applied current. The plating equipment as described in 4. メッキ液が入れられる一連の複数の主メッキ槽と、前記主メッキ槽の前記メッキ液に漬けられたアノードと、前記主メッキ槽間を連結し前記メッキ液が流れる補助メッキ槽と、前記アノードに対応するカソードであって前記主メッキ槽及び前記補助メッキ槽に被メッキ製品を順次に移送する移送手段と、前記アノードに電流を印加する電源とを備えるメッキ装備を用いるメッキ方法において、
前記移送手段で前記被メッキ製品を順次に供給し続けて前記被メッキ製品を前記主メッキ槽及び前記補助メッキ槽に通過させる段階と、
前記電源から前記アノードに前記被メッキ製品へのメッキのための第1印加電流を印加して前記被メッキ製品にメッキを進める段階と、
前記メッキが中断される時、前記電源から前記第1印加電流より少ない電流量の第2印加電流を前記アノードに印加することにより、前記メッキの中断の間、前記被メッキ製品のメッキ不良の発生を防止する段階と、
前記メッキの中断が解消された後で、前記電源によって前記第2印加電流を前記第1印加電流に転換して前記被メッキ製品にメッキを続行する段階と、
を含むことを特徴とするメッキ方法。
A series of a plurality of main plating tanks in which a plating solution is placed, an anode immersed in the plating solution in the main plating vessel, an auxiliary plating vessel in which the main plating vessel is connected and the plating solution flows, and the anode In a plating method using a plating equipment comprising a corresponding cathode, a transfer means for sequentially transferring products to be plated to the main plating tank and the auxiliary plating tank, and a power source for applying a current to the anode,
Continuously supplying the products to be plated by the transfer means and passing the products to be plated through the main plating tank and the auxiliary plating tank;
Applying a first applied current for plating on the product to be plated from the power source to the anode to advance the plating on the product to be plated;
When the plating is interrupted, by applying a second applied current having a current amount smaller than the first applied current from the power source to the anode, a plating failure of the product to be plated is generated during the interruption of the plating. The stage of preventing
After the interruption of plating is eliminated, the second applied current is converted to the first applied current by the power source to continue plating the product to be plated;
The plating method characterized by including.
前記メッキ液は錫及びビスマスを含有し、前記メッキによって前記被メッキ製品に錫:ビスマスメッキ層が形成されることを特徴とする請求項10に記載のメッキ方法。   The plating method according to claim 10, wherein the plating solution contains tin and bismuth, and a tin: bismuth plating layer is formed on the product to be plated by the plating. 前記第2印加電流は、前記第1印加電流に比べて5%から40%の電流量であることを特徴とする請求項10に記載のメッキ方法。   The plating method according to claim 10, wherein the second applied current has a current amount of 5% to 40% compared to the first applied current. 前記メッキ装備は、前記補助メッキ槽内に設置される補助アノードをさらに備え、
前記第2印加電流は、前記電源から前記補助アノード及び前記アノードに共に印加されることを特徴とする請求項10に記載のメッキ方法。
The plating equipment further includes an auxiliary anode installed in the auxiliary plating tank,
The plating method according to claim 10, wherein the second applied current is applied from the power source to the auxiliary anode and the anode.
前記メッキ装備は、前記補助メッキ槽内に設置される補助アノードをさらに備え、
前記第1印加電流は、前記電源から前記補助アノード及び前記アノードに共に印加されることを特徴とする請求項13に記載のメッキ方法。
The plating equipment further includes an auxiliary anode installed in the auxiliary plating tank,
The plating method according to claim 13, wherein the first applied current is applied from the power source to the auxiliary anode and the anode.
メッキ液が入れられた少なくとも1つのメッキ槽に少なくとも1つの被メッキ製品を浸ける段階と、
前記メッキ液に漬けられた少なくとも1つのアノードに前記被メッキ製品へのメッキのための電流を印加する段階と、
前記メッキの中断時に、前記アノードに印加されるメッキ電流を減少させる段階と、
前記メッキの中断が解消された後で、前記メッキ電流を以前の量に転換して前記被メッキ製品へのメッキを続行する段階と、
を含むことを特徴とするメッキ方法。
Immersing at least one product to be plated in at least one plating bath containing a plating solution;
Applying a current for plating the product to be plated to at least one anode immersed in the plating solution;
Reducing the plating current applied to the anode when the plating is interrupted;
After the interruption of the plating is resolved, the plating current is converted to the previous amount to continue the plating on the product to be plated;
The plating method characterized by including.
前記メッキ電流は、元来の値の5%から40%の電流量に減少することを特徴とする請求項15に記載のメッキ方法。   The plating method according to claim 15, wherein the plating current is reduced from 5% to 40% of the original value. 前記メッキ液は錫及びビスマスを含有し、前記メッキによって前記被メッキ製品に錫:ビスマスメッキ層が形成されることを特徴とする請求項15に記載のメッキ方法。   The plating method according to claim 15, wherein the plating solution contains tin and bismuth, and a tin: bismuth plating layer is formed on the product to be plated by the plating. メッキ液が入れられる一連の複数の主メッキ槽と、
前記主メッキ槽の前記メッキ液に漬けられたアノードと、
前記主メッキ槽間を連結し、前記メッキ液が流れる補助メッキ槽と、
前記アノードに対応するカソードであって、前記主メッキ槽及び前記補助メッキ槽に被メッキ製品を順次に移送する移送手段と、
前記アノードに前記被メッキ製品へのメッキのための電流を印加し、前記メッキの中断時に前記電流を減少させる電源と、
を備えることを特徴とするメッキ装備。
A series of main plating baths into which the plating solution is placed;
An anode immersed in the plating solution of the main plating tank;
An auxiliary plating tank that connects between the main plating tanks and the plating solution flows;
A cathode corresponding to the anode, a transfer means for sequentially transferring products to be plated to the main plating tank and the auxiliary plating tank;
Applying a current for plating to the product to be plated to the anode and reducing the current when the plating is interrupted;
Equipped with plating equipment.
少なくとも1つの被メッキ製品をメッキするためのメッキ液が入れられた少なくとも1つのメッキ槽と、
前記被メッキ製品へのメッキのために前記メッキ液に第1印加電流を印加し、前記メッキが中断される時に前記第1印加電流より少ない電流量の第2印加電流を選択的に印加する電源と、
を備えることを特徴とするメッキ装備。
At least one plating tank containing a plating solution for plating at least one product to be plated;
A power source that applies a first applied current to the plating solution for plating on the product to be plated and selectively applies a second applied current having a smaller current amount than the first applied current when the plating is interrupted. When,
Equipped with plating equipment.
メッキのためのメッキ液が入れられた少なくとも1つのメッキ槽を通過する少なくとも1つの被メッキ製品をメッキする段階と、
前記メッキが中断される間、前記メッキのための第1電流を減少させて第2電流に転換する段階と、
を含むことを特徴とするメッキ方法。
Plating at least one product to be plated that passes through at least one plating bath containing a plating solution for plating;
Reducing the first current for the plating and converting it to a second current while the plating is interrupted;
The plating method characterized by including.
前記第2電流は、前記メッキを引き起こさない程度に低く、前記メッキ液の成分の置換または析出を引き起こさない程に高いことを特徴とする請求項20に記載のメッキ方法。   21. The plating method according to claim 20, wherein the second current is low enough not to cause the plating and high enough not to cause substitution or deposition of the components of the plating solution. 少なくとも1つの主メッキ槽と、
少なくとも1つの被メッキ製品がメッキ液外部の環境に露出しないようにするために、前記メッキ液が何れか1つの前記主メッキ槽から流れるように前記主メッキ槽に連結されている少なくとも1つの補助メッキ槽と、
を備えることを特徴とするメッキ装備。
At least one main plating tank;
In order to prevent at least one product to be plated from being exposed to the environment outside the plating solution, at least one auxiliary connected to the main plating bath so that the plating solution flows from any one of the main plating baths. A plating tank,
Equipped with plating equipment.
JP2004187496A 2003-06-25 2004-06-25 Plating method, and plating device utilized therefor Pending JP2005015921A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0041445A KR100539239B1 (en) 2003-06-25 2003-06-25 Plating method for preventing failure due to plating-stop and plating apparatus therefor

Publications (1)

Publication Number Publication Date
JP2005015921A true JP2005015921A (en) 2005-01-20

Family

ID=33536245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004187496A Pending JP2005015921A (en) 2003-06-25 2004-06-25 Plating method, and plating device utilized therefor

Country Status (3)

Country Link
US (1) US20040262164A1 (en)
JP (1) JP2005015921A (en)
KR (1) KR100539239B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084669A (en) * 2007-10-03 2009-04-23 Renesas Technology Corp Method for producing semiconductor device
MD3970C2 (en) * 2008-12-23 2010-05-31 Институт Прикладной Физики Академии Наук Молдовы Process for identification of the current-conducting object

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4424059B2 (en) * 2004-05-11 2010-03-03 株式会社Ihi Method for forming anticorrosion film
JP5457010B2 (en) * 2007-11-01 2014-04-02 アルメックスPe株式会社 Continuous plating equipment
TW201303085A (en) * 2011-07-15 2013-01-16 Fih Hong Kong Ltd Anode oxidation device
JP5795514B2 (en) * 2011-09-29 2015-10-14 アルメックスPe株式会社 Continuous plating equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460694A1 (en) * 1974-12-20 1976-07-01 Siemens Ag GALVANIZING DEVICE FOR PARTIAL METALIZING OF TWO-ROW PIN HEADS
US4832812A (en) * 1987-09-08 1989-05-23 Eco-Tec Limited Apparatus for electroplating metals
JPH04128400A (en) * 1990-09-19 1992-04-28 Mitsubishi Electric Corp Plating system
JP2551237B2 (en) * 1990-12-04 1996-11-06 三菱電機株式会社 Electroplating equipment
US7087143B1 (en) * 1996-07-15 2006-08-08 Semitool, Inc. Plating system for semiconductor materials
JP3096296B1 (en) * 2000-01-14 2000-10-10 島田理化工業株式会社 Electroplating equipment
US6780305B2 (en) * 2001-02-20 2004-08-24 Fuji Photo Film Co., Ltd. Method for producing support for planographic printing plate, support for planographic printing plate, and planographic printing plate precursor
JP2002249900A (en) * 2001-02-26 2002-09-06 Tdk Corp Method and device for barrel plating
TWI227285B (en) * 2001-10-15 2005-02-01 Univ Southern California Methods of and apparatus for producing a three-dimensional structure
US20040026256A1 (en) * 2002-08-08 2004-02-12 Lindgren Joseph T. Method and apparatus for protecting tooling in a lead-free bath

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084669A (en) * 2007-10-03 2009-04-23 Renesas Technology Corp Method for producing semiconductor device
MD3970C2 (en) * 2008-12-23 2010-05-31 Институт Прикладной Физики Академии Наук Молдовы Process for identification of the current-conducting object

Also Published As

Publication number Publication date
KR100539239B1 (en) 2005-12-27
KR20050000865A (en) 2005-01-06
US20040262164A1 (en) 2004-12-30

Similar Documents

Publication Publication Date Title
TWI609100B (en) Cleaning electroplating substrate holders using reverse current deplating
TWI329140B (en) Plating apparatus and plating method
US20120325671A2 (en) Electroplated lead-free bump deposition
KR101391533B1 (en) electroless plating apparatus and electroless plating method
JP4136830B2 (en) Plating equipment
WO2017018096A1 (en) Suction plating apparatus
JP2005015921A (en) Plating method, and plating device utilized therefor
TW202325899A (en) Controlling plating electrolyte concentration on an electrochemical plating apparatus
TWI634234B (en) Plating apparatus and plating method
KR20220146370A (en) Plating apparatus and system
JP2016089253A (en) Non-electrolytic plating device operation method
US6780253B2 (en) Gradient dragout system in a continuous plating line
US10508354B2 (en) Feeder capable of feeding anode and plating apparatus
TW202146710A (en) Electrohydrodynamic ejection printing and electroplating for photoresist-free formation of metal features
JP2022510952A (en) Circuit pattern continuous manufacturing equipment
JP4227826B2 (en) Direct gold plating method and plating apparatus therefor
JP2010050320A (en) Device and method for manufacturing semiconductor device
JP5766587B2 (en) Electroless plating equipment
JP2010065255A (en) Alloy plating method and alloy plating apparatus
JP2998535B2 (en) Nickel plating method
JPH10172947A (en) Single tank-type cleaning method and device therefor
JP3568486B2 (en) Method for manufacturing semiconductor device
KR20100009861A (en) Method for plating substrate
JPH0463286A (en) Method and equipment for plating
KR200466385Y1 (en) Method and apparatus for wafer plating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091130