JP2005015881A - Structural steel superior in plastic fatigue characteristics, and steel structure - Google Patents

Structural steel superior in plastic fatigue characteristics, and steel structure Download PDF

Info

Publication number
JP2005015881A
JP2005015881A JP2003184769A JP2003184769A JP2005015881A JP 2005015881 A JP2005015881 A JP 2005015881A JP 2003184769 A JP2003184769 A JP 2003184769A JP 2003184769 A JP2003184769 A JP 2003184769A JP 2005015881 A JP2005015881 A JP 2005015881A
Authority
JP
Japan
Prior art keywords
steel
fatigue characteristics
ferrite
fatigue
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003184769A
Other languages
Japanese (ja)
Inventor
Koji Seto
厚司 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003184769A priority Critical patent/JP2005015881A/en
Publication of JP2005015881A publication Critical patent/JP2005015881A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably provide a structural steel superior in plastic fatigue characteristics, and a steel structure. <P>SOLUTION: The structural steel superior in plastic fatigue characteristics comprises 0.001%-0.15% C, 0.05%-3.0% Si, 0.05%-3.0% Mn, 0.05% or less S, 0.04% or less Al, 0.010%-0.025% sol. N and the balance iron with unavoidable impurities; and contains ferrite having such an average particle diameter (d) as to satisfy 5 μm≤ d ≤30 μm, and having a volume fraction exceeding 80%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は自動車、家電製品、建設機械、プラント、船舶、橋梁、建築構造物等に利用される塑性疲労特性に優れた構造用鋼およびそれを用いた鋼構造物にかかわるものであり、さらに詳しくは降伏応力を超える応力の繰返しに対して、成分および組織の最適化により低サイクル疲労特性を向上させるとともに、降伏応力を超える応力が保持された場合のひずみの進行を抑えるように成分を調整した構造用鋼、およびそれを用いた鋼構造物に関するものである。
【0002】
【従来の技術】
鋼に降伏応力を超える応力が繰返し作用すると、10万回以下の繰返し数で疲労破壊する、いわゆる低サイクル疲労破壊が生じるが、実際の鋼構造物では、一定周波数の繰返し応力が作用することは稀であり、例えばモーター部品やガスタービンのような回転体の場合には、回転による慣性力が部品に作用し、この応力は回転数が一定の間は保持され、回転数が低下するにつれて応力も徐々に低下し、回転数が増加すると再び応力が増加するといった不規則な繰返し応力が作用する。このような場合、繰返し応力のみならず、一定応力が保持されている間にひずみが増加し、鋼構造物にダメージを与えて破壊に影響を及ぼすため、両者の現象に対して抵抗力を高めた鋼の開発が切望されている。
【0003】
このような状況に対して、低サイクル疲労特性を高める観点から、成分および転位構造を規定した鋼材が特許文献1に、成分および組織を規定した鋼材が特許文献2に、成分および炭素当量を規定した鋼材が特許文献3に、さらに成分および塑性変形抵抗と粒界強度との関係を規定した鋼が特許文献4にそれぞれ開示されている。
【0004】
また、クリープと疲労との相互作用特性を高める観点から、成分を規定した鋼材が特許文献5および特許文献6に、またさらに高温疲労特性を向上させる観点から成分を規定した鋼材が特許文献7にそれぞれ開示されている。
【0005】
【特許文献1】
特開2002−105592号公報
【特許文献2】
特開平8−295997号公報
【特許文献3】
特開2001−234285号公報
【特許文献4】
特開平10−259450号公報
【特許文献5】
特開平9−157777号公報
【特許文献6】
特開平6−10099号公報
【特許文献7】
特開平9−310154号公報
【0006】
【発明が解決しようとする課題】
これら従来技術のうち、まず特許文献1では、Nの添加量を0.001〜0.1%とし、0.52Al/N≦10とすることで固溶N量を確保しているが、0.004%以上の固溶は加工性が劣化するとして推奨していない。このため一定応力下の変形抵抗向上が十分得られない。また特許文献1ではCr、Mo、Vの1種以上を必須としている。
【0007】
次に、特許文献2では、Si量を規定し、かつ組織がフェライトおよびパーライト組織、もしくは残留オーステナイト組織を含む鋼を開示しているが、特に規定の無いNは、実施例でも高々0.0038%であり、一定応力下の変形抵抗向上が十分には得られない。
【0008】
また、特許文献3では、強度、靭性および低サイクル疲労特性を向上させるためTi、Al、V等との炭窒化物の析出強化を目的にNを0.001〜0.02%に規定した免震ダンパー用棒鋼を開示しており、固溶N量の増加を抑えるために全N量の上限を0.02%とし、またAlの添加量を0.001〜0.3%としている。従ってAlが多い分だけ固溶N量は少なくなることが予想され、一定応力下の変形抵抗向上が十分には得られない。また、特許文献3では、フェライト組織の細粒化のため各成分を規定しているが、低サイクル疲労特性向上の観点から適正なフェライト粒径の範囲を規定してはおらず、十分な低サイクル疲労特性を得ることは困難である。
【0009】
次いで、特許文献4では、鋼の焼入れ性を高めて塑性変形抵抗を向上させるためCr、Mo、Nbの添加を必須とする低サイクル疲労特性に優れた肌焼鋼を開示しているが、Cは0.15〜0.30%の中炭素鋼であり、低炭素の構造用鋼ではない。
【0010】
クリープ特性向上を目的とした特許文献5および6のうち、まず特許文献5は、Cr、Co、W、Ta等の元素を必須とするNi基合金の発明であり、特許文献6は、Crを15〜30%、かつNiを10〜40%、およびZrを0.02〜0.5%添加する耐熱鋳鋼であり、いずれも構造用鋼ではない。
【0011】
またさらに、特許文献7は、高温疲労特性の向上を目的に、Mnを5.0〜8.0%、Crを22.0〜24.0%、Wを0.4〜2.0%添加した排気弁用鋼であり、構造用鋼ではない。
【0012】
本発明は、上記のような状況に鑑み、塑性疲労特性に優れた構造用鋼及び鋼構造物を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決するために、本発明の要旨とするところは、
(1)質量%で、
0.001%≦C≦0.14%、0.05%≦Si≦3.0%、0.05%≦Mn≦3.0%、S≦0.05%、Al≦0.04%、0.010%≦Sol.N≦0.025%を含有し、残部が鉄及び不可避的不純物からなり、平均フェライト粒径dが5μm≦d≦30μmを満足し、フェライト体積率が80%超であることを特徴とする塑性疲労特性に優れた構造用鋼、
(2)質量%で、さらに、
0.05%≦Mo≦1.0%、0.005%≦Ti≦1.0%、0.3%≦Cr≦3.0%、0.020%≦P≦0.20%の1種又は2種以上を含有することを特徴とする上記(1)記載の塑性疲労特性に優れた構造用鋼、
(3)質量%で、さらに、
0.0001%≦B≦0.01%、0.005%≦V≦2.0%、0.04%≦Nb≦1.0%、0.1%≦Ni≦5.0%、0.10%≦Cu≦2.00%の1種又は2種以上を含有することを特徴とする上記(1)または(2)記載の塑性疲労特性に優れた構造用鋼、
(4)上記(1)〜(3)の何れか1項に記載の鋼を少なくとも1箇所用いることを特徴とする塑性疲労特性に優れた鋼構造物、
(5)上記(1)〜(3)の何れか1項に記載の鋼材と、成分及び/又は板厚の異なる鋼とを予めつなぎ合わせた鋼を少なくとも1箇所用いることを特徴とする塑性疲労特性に優れた鋼構造物、
にある。
【0014】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0015】
本発明者は、塑性変形を繰返し与える応力で、かつ繰返し応力の周波数が一定ではなく、回転体のようにピーク応力が一定時間作用するような応力履歴の疲労破壊に対する抵抗力を高める鋼について鋭意検討した結果、まず塑性変形を与える応力が一定時間作用する場合のひずみを極力抑制する元素として、固溶N、固溶Si、および固溶Mnが有効であることを見出した。またこの一定応力を含む低サイクル疲労に対する抵抗力を高める手段として、フェライト体積率が80%以上であること、さらにフェライトの平均粒径は細粒すぎると好ましくなく、5〜30μmとすると有効であることを見出した。またさらにピーク応力の一定保持時に発生するひずみに対してMo、Ti、Crの添加が、低サイクル疲労に対してB、V、Nb、Cu、Niの添加がさらに有効であることも知見した。
【0016】
このように、本発明の鋼は固溶N、Si、Mnの添加により一定時間ピーク応力が作用する場合の変形抵抗を高め、かつフェライト体積率および粒径を規定することで低サイクル疲労特性も高めており、塑性疲労特性に優れている。
【0017】
次に、本発明の鋼における各成分の限定理由を述べる。
【0018】
Cは、多くなるとフェライト体積率を減少させ、また成形性を劣化するため少なくすることが望ましく、0.14%以下である必要があるが、鋼材の強度確保のためには、0.001%以上は必要である。
【0019】
Siは、一定応力下の変形抵抗を高めるために重要な元素であり、フェライト中の固溶量確保のため、0.05%以上の添加が必要であるが、3.0%を超えるとSiOなどの介在物の生成を招き加工性を低下させるので、含有量は0.05%以上3.0%以下とする。
【0020】
MnもSiと同じく、一定荷重下の変形抵抗を高めるために重要な元素であり、また強度を上げる元素として有用であり、これらの効果を発揮するためには0.05%以上の添加は必要であるが3.0%超を添加すると加工性を損なうので、含有量は0.05〜3.0%とする。
【0021】
Sは、製鋼工程で不可避的に鋼材に含まれる不純物であるが、多すぎると加工性を損なうので0.050%以下とする。
【0022】
Alは、脱酸剤として有効であり、不可避的に含まれる元素であるが、過剰に添加すると本発明で重要な役割を果たすNと結合してAlNとなり、固溶N量を減少させるため、上限を0.04%とする。
【0023】
Nは、本発明で重要な元素であり、フェライト中に固溶して、一定応力下での変形抵抗を高める役割を果たすが、Alや他の元素と結合して窒化物を形成しやすいため、本発明では固溶N量を規定する。固溶Nは、0.010%未満では優れた変形抵抗を示さないが、0.025%を超えると加工性が極端に劣化するため、含有量は0.010〜0.025%とする。なお、ここで固溶Nとは、鋼中に単独に存在するNだけでなく、Mo、Cr、V、Mn、Siなどの置換型固溶元素とペアやクラスターを形成するNも含む。固溶N量は、AlN、NbN、VN、TiN、BNなどの介在物として存在するN量を技術文献1に記載の抽出分離法により求め、全N量から差し引いた量から求める。
【0024】
Mo、TiおよびCrは、一定応力下のひずみを抑制させる元素として本発明で重要な元素であり、効果を発揮するためにはMoは、0.05%以上、Tiは、0.005%以上、Crは、0.3%以上それぞれ必要であるが、過剰の添加は窒化物などの介在物等を容易に生成させ加工性を劣化させるので、上限はMoおよびTiは、1.0%、Crは、3.0%とする。
【0025】
Pは、強度を確保するのに有効な元素であるが、製鋼工程で不可避的に0.020%程度は含まれることから、強度確保の場合に0.020%以上を添加する。しかし過剰の添加は加工性を損なうので0.20%を上限とする。
【0026】
また、B,V,Nb、Cu、Niは、いずれも低サイクル疲労に対する抵抗を高める元素として有効であるが、過剰の添加は窒化物等の介在物を形成し、加工性を劣化させるので、Bは、0.0001%〜0.01%、Vは、0.005%〜2.0%、Nbは、0.04%〜1.0%、Cuは、0.1%〜2.0%、Niは、0.1%〜5.0%を含有範囲とする。
【0027】
次に組織の体積率および粒径規定理由を述べる。
【0028】
低サイクル疲労特性は鋼の組織および破断真ひずみと相関があり、フェライト組織の体積率が大きいほど破断真ひずみは大きくなり、低サイクル疲労寿命を向上させる。したがって低サイクル疲労特性向上の観点からはフェライト単相、すなわちフェライト体積率が100%であることが好ましいが、フェライトの体積率が低サイクル疲労特性に及ぼす影響を検討したところ、80%超であれば良好な特性が得られることが判明したため、フェライト体積率を80%超とした。特に鋼の強度を高める必要がある場合には、第二相を適度に分散させることが好ましい。フェライト相以外の第二相は、パーライト、セメンタイト、オーステナイト、ベイナイト、マルテンサイト、アシキュラーフェライト、炭窒化物、金属間化合物のうち、1種または2種以上からなるものである。
【0029】
また、破断真ひずみは結晶粒径とも関係があり、細粒過ぎても、粗粒すぎても破断真ひずみは大きくならない。本発明ではフェライトの平均結晶粒径が5μm以上30μm以下であれば破断真ひずみ、さらには低サイクル疲労特性が向上することを見出した。なお、組織の体積率の測定方法は、技術文献2の点分析もしくは線分析を用いる。またフェライトの平均粒径は技術文献3の付属書2に記載の方法を用いる。
【0030】
本発明では特に鋼の形状を規定していないが、薄鋼板、厚鋼板など鋼板に限らず、鋼管、形鋼、棒鋼などでも実施することが可能である。
【0031】
さらに、本発明の鋼を構造物の一部又は全部に用いることにより疲労強度を高めた鋼構造物を作成することが可能である。すなわち、打抜き穴を加工するなど疲労破壊の起点となる部分には本発明の鋼を用い、その他の部分には必ずしも疲労強度の高くない高張力鋼材を用いることにより鋼構造物全体の重量を低減することが可能であり、具体的には例えば、本発明の鋼と他の高張力鋼をレーザー溶接などの接合方法で予めつなぎ合わせていわゆるテーラードブランク材としておき、成形加工などが施されたのち本発明の鋼の部分に加工することにより、全体として軽量でかつ高疲労強度を有する鋼構造物を得ることが可能である。
【0032】
〔技術文献1〕
第3版鉄鋼便覧、IV鉄鋼材料、試験分析(日本鉄鋼協会編)p.329〜334
〔技術文献2〕
第3版鉄鋼便覧、IV鉄鋼材料、試験分析(日本鉄鋼協会編)p.385〜386
〔技術文献3〕
JIS G0552「鋼のフェライト結晶粒度試験方法」
【0033】
【実施例】
表1に示す化学組成を持つ鋼片を、スラブ加熱温度1050〜1150℃、熱間圧延仕上げ温度850〜900℃、巻き取り温度450〜550℃、冷却速度10〜20℃/秒、の条件で熱間圧延し、板厚2.3mmの薄鋼板を製作した。これより図1の試験片を採取し、図2に示す台形波の応力を破断するまで繰返し載荷して、破断するまでの回数を測定した。3本の試験片について破断までの回数の平均値を求め表1の最右欄に示した。
【0034】
No.1〜18は本発明鋼であり、No.19〜27は比較鋼である。本発明鋼のNo.1〜18は、比較鋼に比べて疲労寿命が長く、どの発明鋼も比較鋼の2倍以上の寿命を示している。No.3〜18は、選択元素を含有するため、疲労寿命がNo.1およびNo.2に比べてさらに向上している。
【0035】
比較例No.19〜21および25は、それぞれC、Si、Mn、Alが上限を超えており、No.19は、その結果としてフェライト体積率が下限を下回っているため、疲労寿命が短い。No.23および26は、固溶Nが範囲外のため同様に疲労寿命が短い。またNo.22は、フェライト粒径が細粒であり、またNo.24は、フェライトが粗粒になって、平均粒径の範囲外になっているため、疲労寿命が短くなっている。またNo.27は、ベイナイトの体積率が増加したためフェライト体積率が低く、疲労寿命が短くなっている。
【0036】
【表1】

Figure 2005015881
【0037】
【発明の効果】
以上説明したように、本発明の鋼及び溶接構造物は、添加元素の最適化により高い塑性疲労強度を有しており、その原理は加工方法などによらず広範囲にわたり適用可能である。従って、塑性疲労が問題となる鋼構造物での使用に際し、設計面で特別な配慮を必要とせず高い疲労強度を安定して得ることが可能であり、工業的な価値が極めて高い発明であるといえる。
【図面の簡単な説明】
【図1】本発明の実施例における疲労試験片の形状、寸法の説明図である。
【図2】本発明の実施例における繰返し応力の波形の説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structural steel excellent in plastic fatigue characteristics used in automobiles, home appliances, construction machinery, plants, ships, bridges, building structures, and the like, and a steel structure using the same. Has improved the low-cycle fatigue characteristics by optimizing the composition and structure against repeated stress exceeding the yield stress, and adjusted the composition to suppress the progress of strain when the stress exceeding the yield stress is maintained. The present invention relates to structural steel and a steel structure using the structural steel.
[0002]
[Prior art]
When stress exceeding the yield stress is repeatedly applied to steel, so-called low cycle fatigue failure occurs in which the fatigue failure occurs at a repetition rate of 100,000 times or less. However, in an actual steel structure, repeated stress of a constant frequency is applied. In the case of rotating bodies such as motor parts and gas turbines, for example, inertial force due to rotation acts on the parts, and this stress is maintained while the rotation speed is constant, and the stress decreases as the rotation speed decreases. Is also gradually reduced, and irregular repeated stress acts such that the stress increases again as the rotational speed increases. In such cases, not only repetitive stress, but also strain increases while maintaining a constant stress, which damages the steel structure and affects fracture, increasing resistance to both phenomena. The development of new steel is eagerly desired.
[0003]
In view of this situation, from the viewpoint of enhancing low cycle fatigue characteristics, a steel material defining components and dislocation structures is specified in Patent Document 1, and a steel material specifying components and structure is specified in Patent Document 2, and components and carbon equivalents are specified. Japanese Patent Application Laid-Open No. H10-228707 discloses a steel material in which the relationship between components, plastic deformation resistance, and grain boundary strength is defined.
[0004]
Further, from the viewpoint of enhancing the interaction characteristics between creep and fatigue, steel materials with components defined in Patent Document 5 and Patent Document 6, and further, steel materials with components defined from the viewpoint of improving high temperature fatigue characteristics in Patent Document 7 Each is disclosed.
[0005]
[Patent Document 1]
JP 2002-105592 A [Patent Document 2]
JP-A-8-295997 [Patent Document 3]
JP 2001-234285 A [Patent Document 4]
Japanese Patent Laid-Open No. 10-259450 [Patent Document 5]
JP-A-9-157777 [Patent Document 6]
JP-A-6-10099 [Patent Document 7]
JP-A-9-310154
[Problems to be solved by the invention]
Among these prior arts, first, in Patent Document 1, the amount of N added is 0.001 to 0.1%, and the amount of solid solution N is ensured by 0.52Al / N ≦ 10. A solid solution of .004% or more is not recommended as workability deteriorates. For this reason, a sufficient improvement in deformation resistance under a constant stress cannot be obtained. In Patent Document 1, at least one of Cr, Mo, and V is essential.
[0007]
Next, Patent Document 2 discloses a steel in which the Si amount is specified and the structure includes a ferrite and pearlite structure or a retained austenite structure, but N that is not particularly specified is 0.0038 at most in the examples. %, The deformation resistance under a constant stress cannot be sufficiently improved.
[0008]
In Patent Document 3, N is defined as 0.001 to 0.02% for the purpose of strengthening precipitation of carbonitrides with Ti, Al, V, etc. in order to improve strength, toughness, and low cycle fatigue characteristics. Steel bars for seismic dampers are disclosed, and the upper limit of the total N amount is set to 0.02% and the addition amount of Al is set to 0.001 to 0.3% in order to suppress an increase in the amount of dissolved N. Therefore, it is expected that the amount of dissolved N will be reduced by the amount of Al, and a sufficient improvement in deformation resistance under a constant stress cannot be obtained. Further, in Patent Document 3, each component is specified for finer ferrite structure, but an appropriate ferrite particle size range is not specified from the viewpoint of improving low cycle fatigue characteristics, and sufficient low cycle is achieved. It is difficult to obtain fatigue characteristics.
[0009]
Next, Patent Document 4 discloses a case-hardened steel excellent in low cycle fatigue characteristics that requires the addition of Cr, Mo, and Nb in order to improve the hardenability of the steel and improve the plastic deformation resistance. Is a 0.15-0.30% medium carbon steel, not a low carbon structural steel.
[0010]
Of Patent Documents 5 and 6 aimed at improving creep characteristics, Patent Document 5 is an invention of a Ni-based alloy that essentially requires elements such as Cr, Co, W, Ta, etc., and Patent Document 6 describes Cr. It is a heat-resistant cast steel to which 15 to 30%, Ni is added to 10 to 40%, and Zr is added to 0.02 to 0.5%, and none of them is structural steel.
[0011]
Furthermore, Patent Document 7 adds 5.0 to 8.0% Mn, 22.0 to 24.0% Cr, and 0.4 to 2.0% W for the purpose of improving high temperature fatigue properties. Exhaust valve steel, not structural steel.
[0012]
An object of this invention is to provide the structural steel and steel structure excellent in the plastic fatigue characteristic in view of the above situations.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the gist of the present invention is as follows.
(1) In mass%,
0.001% ≦ C ≦ 0.14%, 0.05% ≦ Si ≦ 3.0%, 0.05% ≦ Mn ≦ 3.0%, S ≦ 0.05%, Al ≦ 0.04%, 0.010% ≦ Sol. N ≦ 0.025%, the balance is made of iron and inevitable impurities, the average ferrite particle diameter d satisfies 5 μm ≦ d ≦ 30 μm, and the ferrite volume fraction is more than 80%. Structural steel with excellent fatigue properties,
(2) In mass%,
0.05% ≦ Mo ≦ 1.0%, 0.005% ≦ Ti ≦ 1.0%, 0.3% ≦ Cr ≦ 3.0%, 0.020% ≦ P ≦ 0.20% Or a structural steel excellent in plastic fatigue properties as described in (1) above, comprising two or more types,
(3) In mass%,
0.0001% ≦ B ≦ 0.01%, 0.005% ≦ V ≦ 2.0%, 0.04% ≦ Nb ≦ 1.0%, 0.1% ≦ Ni ≦ 5.0%, Structural steel having excellent plastic fatigue properties as described in (1) or (2) above, containing one or more of 10% ≦ Cu ≦ 2.00%,
(4) A steel structure excellent in plastic fatigue characteristics characterized by using at least one steel according to any one of (1) to (3) above,
(5) Plastic fatigue characterized by using at least one steel obtained by previously joining the steel material according to any one of (1) to (3) above and a steel having different components and / or plate thicknesses. Steel structure with excellent characteristics,
It is in.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0015]
The present inventor has earnestly studied about a steel that increases resistance to fatigue failure due to stress history in which the stress is repeatedly applied with plastic deformation and the frequency of the cyclic stress is not constant, and the peak stress acts for a certain time, such as a rotating body. As a result of the study, first, it was found that solute N, solute Si, and solute Mn are effective as elements for suppressing the strain when the stress that gives plastic deformation acts for a certain period of time. Further, as means for increasing the resistance to low cycle fatigue including this constant stress, it is not preferable that the ferrite volume fraction is 80% or more, and that the average particle diameter of ferrite is too fine, and it is effective to make it 5-30 μm. I found out. Furthermore, it has also been found that the addition of Mo, Ti, Cr is more effective for the strain generated when the peak stress is kept constant, and the addition of B, V, Nb, Cu, Ni is more effective for low cycle fatigue.
[0016]
As described above, the steel of the present invention increases the deformation resistance when peak stress is applied for a certain time by adding solute N, Si, and Mn, and also has low cycle fatigue characteristics by specifying the ferrite volume fraction and grain size. It has a high plastic fatigue property.
[0017]
Next, the reasons for limiting each component in the steel of the present invention will be described.
[0018]
As C increases, the ferrite volume fraction decreases and the formability deteriorates, so it is desirable to reduce it, and it is necessary to be 0.14% or less, but in order to ensure the strength of the steel material, 0.001% The above is necessary.
[0019]
Si is an important element for increasing the deformation resistance under a constant stress, and it is necessary to add 0.05% or more in order to secure the solid solution amount in ferrite. The content is made 0.05% or more and 3.0% or less because it causes formation of inclusions such as 2 and lowers workability.
[0020]
Mn, like Si, is an important element for increasing the deformation resistance under a constant load, and is also useful as an element for increasing the strength. It is necessary to add 0.05% or more in order to exert these effects. However, if more than 3.0% is added, the workability is impaired, so the content is made 0.05 to 3.0%.
[0021]
S is an impurity inevitably contained in the steel material in the steelmaking process, but if it is too much, workability is impaired, so the content is made 0.050% or less.
[0022]
Al is an element that is effective as a deoxidizer and is inevitably contained, but if added excessively, it combines with N, which plays an important role in the present invention, and becomes AlN, thereby reducing the amount of dissolved N. The upper limit is 0.04%.
[0023]
N is an important element in the present invention, and is a solid solution in ferrite and plays a role of increasing deformation resistance under a constant stress. However, N is easily combined with Al or other elements to form a nitride. In the present invention, the amount of solute N is specified. If the solute N is less than 0.010%, excellent deformation resistance is not exhibited, but if it exceeds 0.025%, the workability is extremely deteriorated, so the content is made 0.010 to 0.025%. In addition, solid solution N here contains not only N which exists independently in steel but N which forms a pair or a cluster with substitutional solid solution elements, such as Mo, Cr, V, Mn, and Si. The amount of solid solution N is obtained from the amount obtained by subtracting the amount of N existing as inclusions such as AlN, NbN, VN, TiN, BN, etc., by the extraction and separation method described in Technical Document 1, and subtracting from the total amount of N.
[0024]
Mo, Ti, and Cr are important elements in the present invention as elements for suppressing strain under a constant stress, and Mo is 0.05% or more and Ti is 0.005% or more in order to exert the effect. , Cr is required to be 0.3% or more, respectively, but excessive addition easily generates inclusions such as nitride and deteriorates workability, so the upper limit is 1.0% for Mo and Ti. Cr is 3.0%.
[0025]
P is an element effective for ensuring the strength, but it is unavoidably contained in the steelmaking process by about 0.020%, so 0.020% or more is added when ensuring the strength. However, since excessive addition impairs workability, the upper limit is made 0.20%.
[0026]
In addition, B, V, Nb, Cu, and Ni are all effective as elements that increase resistance to low cycle fatigue, but excessive addition forms inclusions such as nitride and degrades workability. B is 0.0001% to 0.01%, V is 0.005% to 2.0%, Nb is 0.04% to 1.0%, and Cu is 0.1% to 2.0%. % And Ni are contained in the range of 0.1% to 5.0%.
[0027]
Next, the volume ratio of the tissue and the reason for defining the particle size will be described.
[0028]
The low cycle fatigue properties correlate with the steel structure and the true fracture strain, and the greater the volume fraction of the ferrite structure, the greater the true fracture strain, thereby improving the low cycle fatigue life. Therefore, from the viewpoint of improving the low cycle fatigue characteristics, it is preferable that the ferrite single phase, that is, the ferrite volume ratio is 100%. However, when the influence of the ferrite volume ratio on the low cycle fatigue characteristics is examined, it is preferable that the ferrite volume ratio exceeds 80%. Therefore, it was found that good characteristics could be obtained, so the ferrite volume fraction was set to more than 80%. In particular, when it is necessary to increase the strength of the steel, it is preferable to disperse the second phase appropriately. The second phase other than the ferrite phase is composed of one or more of pearlite, cementite, austenite, bainite, martensite, acicular ferrite, carbonitride, and intermetallic compounds.
[0029]
In addition, the true strain at break is related to the crystal grain size, and the true strain at break does not increase even if it is too fine or too coarse. In the present invention, it has been found that if the average grain size of ferrite is 5 μm or more and 30 μm or less, the true strain at break and further the low cycle fatigue characteristics are improved. As a method for measuring the volume ratio of the tissue, the point analysis or line analysis of Technical Document 2 is used. For the average particle diameter of ferrite, the method described in Appendix 2 of Technical Document 3 is used.
[0030]
In the present invention, the shape of the steel is not particularly defined. However, the present invention is not limited to a steel plate such as a thin steel plate or a thick steel plate, but can be implemented with a steel pipe, a shape steel, a steel bar, or the like.
[0031]
Furthermore, it is possible to create a steel structure with increased fatigue strength by using the steel of the present invention for part or all of the structure. In other words, the weight of the entire steel structure is reduced by using the steel of the present invention in the part that becomes the starting point of fatigue fracture such as punching holes and using high-tensile steel material that does not necessarily have high fatigue strength in other parts. Specifically, for example, the steel of the present invention and other high-strength steel are joined together in advance by a joining method such as laser welding to form a so-called tailored blank material, which is subjected to forming processing, etc. By processing the steel portion of the present invention, it is possible to obtain a steel structure that is lightweight as a whole and has high fatigue strength.
[0032]
[Technical Reference 1]
3rd Edition Steel Handbook, IV Steel Materials, Test Analysis (Japan Steel Association) p. 329-334
[Technical Reference 2]
3rd Edition Steel Handbook, IV Steel Materials, Test Analysis (Japan Steel Association) p. 385-386
[Technical Reference 3]
JIS G0552 "Testing method for ferrite grain size of steel"
[0033]
【Example】
A steel slab having the chemical composition shown in Table 1 is subjected to the conditions of a slab heating temperature of 1050 to 1150 ° C, a hot rolling finishing temperature of 850 to 900 ° C, a winding temperature of 450 to 550 ° C, and a cooling rate of 10 to 20 ° C / second. Hot rolling was performed to produce a thin steel plate having a thickness of 2.3 mm. From this, the test piece of FIG. 1 was sampled, the stress of the trapezoidal wave shown in FIG. 2 was repeatedly loaded until breaking, and the number of times until breaking was measured. The average value of the number of times until the rupture of the three test pieces was determined and shown in the rightmost column of Table 1.
[0034]
No. Nos. 1 to 18 are steels of the present invention. 19 to 27 are comparative steels. No. of the steel of the present invention. Nos. 1 to 18 have a fatigue life longer than that of the comparative steel, and all of the inventive steels have a life that is twice or more that of the comparative steel. No. Since Nos. 3 to 18 contain a selective element, the fatigue life is No. 3. 1 and no. Compared to 2, it is further improved.
[0035]
Comparative Example No. In Nos. 19 to 21 and 25, C, Si, Mn, and Al exceeded the upper limit, respectively. No. 19 has a short fatigue life since the ferrite volume fraction is below the lower limit as a result. No. Nos. 23 and 26 have a short fatigue life because the solute N is out of the range. No. No. 22 has a fine ferrite grain size. In No. 24, since the ferrite is coarse and out of the range of the average particle diameter, the fatigue life is shortened. No. In No. 27, since the volume fraction of bainite increased, the ferrite volume fraction was low, and the fatigue life was shortened.
[0036]
[Table 1]
Figure 2005015881
[0037]
【The invention's effect】
As described above, the steel and welded structure of the present invention have high plastic fatigue strength by optimizing the additive elements, and the principle can be applied over a wide range regardless of the processing method. Therefore, when used in a steel structure where plastic fatigue is a problem, it is possible to stably obtain high fatigue strength without requiring special consideration in terms of design, and it is an invention with extremely high industrial value. It can be said.
[Brief description of the drawings]
FIG. 1 is an explanatory view of the shape and dimensions of a fatigue test piece in an example of the present invention.
FIG. 2 is an explanatory diagram of a waveform of repeated stress in the embodiment of the present invention.

Claims (5)

質量%で、
0.001%≦C≦0.14%、0.05%≦Si≦3.0%、0.05%≦Mn≦3.0%、S≦0.05%、Al≦0.04%、0.010%≦Sol.N≦0.025%を含有し、残部が鉄及び不可避的不純物からなり、平均フェライト粒径dが5μm≦d≦30μmを満足し、フェライト体積率が80%超であることを特徴とする塑性疲労特性に優れた構造用鋼。
% By mass
0.001% ≦ C ≦ 0.14%, 0.05% ≦ Si ≦ 3.0%, 0.05% ≦ Mn ≦ 3.0%, S ≦ 0.05%, Al ≦ 0.04%, 0.010% ≦ Sol. N ≦ 0.025%, the balance is made of iron and inevitable impurities, the average ferrite particle diameter d satisfies 5 μm ≦ d ≦ 30 μm, and the ferrite volume fraction is more than 80%. Structural steel with excellent fatigue properties.
質量%で、さらに、
0.05%≦Mo≦1.0%、0.005%≦Ti≦1.0%、0.3%≦Cr≦3.0%、0.020%≦P≦0.20%、の1種又は2種以上を含有することを特徴とする請求項1記載の塑性疲労特性に優れた構造用鋼。
In mass%,
0.05% ≦ Mo ≦ 1.0%, 0.005% ≦ Ti ≦ 1.0%, 0.3% ≦ Cr ≦ 3.0%, 0.020% ≦ P ≦ 0.20% The structural steel having excellent plastic fatigue characteristics according to claim 1, comprising seeds or two or more kinds.
質量%で、さらに、
0.0001%≦B≦0.01%、0.005%≦V≦2.0%、0.04%≦Nb≦1.0%、0.1%≦Ni≦5.0%、0.10%≦Cu≦2.00%の1種又は2種以上を含有することを特徴とする請求項1または2記載の塑性疲労特性に優れた構造用鋼。
In mass%,
0.0001% ≦ B ≦ 0.01%, 0.005% ≦ V ≦ 2.0%, 0.04% ≦ Nb ≦ 1.0%, 0.1% ≦ Ni ≦ 5.0%, The structural steel excellent in plastic fatigue characteristics according to claim 1 or 2, wherein the structural steel contains one or more of 10% ≤Cu≤2.00%.
請求項1〜3の何れか1項に記載の鋼を少なくとも1箇所用いることを特徴とする塑性疲労特性に優れた鋼構造物。A steel structure excellent in plastic fatigue characteristics, wherein the steel according to any one of claims 1 to 3 is used in at least one place. 請求項1〜3の何れか1項に記載の鋼と、成分及び/又は板厚の異なる鋼とを予めつなぎ合わせた鋼を少なくとも1箇所用いることを特徴とする塑性疲労特性に優れた鋼構造物。A steel structure excellent in plastic fatigue characteristics, characterized by using at least one steel obtained by previously joining the steel according to any one of claims 1 to 3 and steel having different components and / or thicknesses. object.
JP2003184769A 2003-06-27 2003-06-27 Structural steel superior in plastic fatigue characteristics, and steel structure Withdrawn JP2005015881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184769A JP2005015881A (en) 2003-06-27 2003-06-27 Structural steel superior in plastic fatigue characteristics, and steel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184769A JP2005015881A (en) 2003-06-27 2003-06-27 Structural steel superior in plastic fatigue characteristics, and steel structure

Publications (1)

Publication Number Publication Date
JP2005015881A true JP2005015881A (en) 2005-01-20

Family

ID=34184430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184769A Withdrawn JP2005015881A (en) 2003-06-27 2003-06-27 Structural steel superior in plastic fatigue characteristics, and steel structure

Country Status (1)

Country Link
JP (1) JP2005015881A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228126A (en) * 2008-02-29 2009-10-08 Kobe Steel Ltd Steel for machine structure having excellent cold workability, and cold-worked component
JP2010202904A (en) * 2009-03-02 2010-09-16 Kobe Steel Ltd Steel for machine structure, method for manufacturing the same, and component for machine structure
JP2011026688A (en) * 2009-07-29 2011-02-10 Aichi Steel Works Ltd STEEL FOR CARBURIZING HAVING EXCELLENT STRENGTH WITHOUT ADDING Mo AND CARBURIZED COMPONENT USING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228126A (en) * 2008-02-29 2009-10-08 Kobe Steel Ltd Steel for machine structure having excellent cold workability, and cold-worked component
JP2010202904A (en) * 2009-03-02 2010-09-16 Kobe Steel Ltd Steel for machine structure, method for manufacturing the same, and component for machine structure
JP2011026688A (en) * 2009-07-29 2011-02-10 Aichi Steel Works Ltd STEEL FOR CARBURIZING HAVING EXCELLENT STRENGTH WITHOUT ADDING Mo AND CARBURIZED COMPONENT USING THE SAME

Similar Documents

Publication Publication Date Title
JP4803174B2 (en) Austenitic stainless steel
JP4427012B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
KR20100027993A (en) Steel plate
JP4676871B2 (en) Steel sheet with excellent fatigue crack growth control
RU2763027C1 (en) Forged part made of bainite steel and its manufacturing method
KR101539520B1 (en) Duplex stainless steel sheet
JP2006342421A (en) Method for producing high-tension steel excellent in weld crack resistance
WO2008029583A1 (en) Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
JP2003113449A (en) High-strength/high-toughness stainless steel sheet superior in delayed fracture resistance and manufacturing method therefor
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JPH08269632A (en) High strength and high corrosion resistant nitrogen-containing austenitic stainless steel
JP2008303424A (en) Method for producing high-tension steel excellent in weld-cracking resistance
JP3802810B2 (en) Steel for welded structures having no dependence on heat input of HAZ toughness and method for manufacturing
JP2005325388A (en) Low specific gravity iron alloy
JP6555345B2 (en) Steel for hot forging
JP3470660B2 (en) Chromium stainless steel material for spring and multi-layered structure for spring and method for producing the same
JP2000301377A (en) Welded joint of ferritic heat resistant steel and welding material
JP2005015881A (en) Structural steel superior in plastic fatigue characteristics, and steel structure
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP5239642B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP2005325387A (en) Low specific gravity iron alloy
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP2002004011A (en) Ferritic stainless steel for exhaust gas route member of gas turbine
JP3572152B2 (en) Low Cr ferritic cast steel with excellent high temperature strength and weldability
JP5470904B2 (en) TS of 570 MPa or more, total elongation of 25% or more, and fatigue crack propagation rate at ΔK = 15 MPa√m of 8.75 × 10 −9 m / cycle or less, excellent in total elongation and fatigue crack propagation resistance, plate thickness of 20 mm or less Of manufacturing thick steel plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905