JP2005015639A - Resin composition of electrically insulating material and electrically insulating laminate material - Google Patents

Resin composition of electrically insulating material and electrically insulating laminate material Download PDF

Info

Publication number
JP2005015639A
JP2005015639A JP2003182478A JP2003182478A JP2005015639A JP 2005015639 A JP2005015639 A JP 2005015639A JP 2003182478 A JP2003182478 A JP 2003182478A JP 2003182478 A JP2003182478 A JP 2003182478A JP 2005015639 A JP2005015639 A JP 2005015639A
Authority
JP
Japan
Prior art keywords
resin composition
electrically insulating
epoxy
weight
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003182478A
Other languages
Japanese (ja)
Inventor
Hideto Komurasaki
秀人 小紫
Tomoyuki Ito
智之 伊藤
Nobuaki Koyama
信明 小山
Koichi Kusakawa
公一 草川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2003182478A priority Critical patent/JP2005015639A/en
Publication of JP2005015639A publication Critical patent/JP2005015639A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition of an electrically insulating material having flexibility, heat resistance, and in addition high adhesive property. <P>SOLUTION: The resin composition of an electrically insulating material is obtained by crosslinking and curing an epoxy component (a) containing an epoxy compound modified with an oligomer rubber component consisting of a conjugated diene compound having a reactive unsaturated moiety and an unsaturated compound (b) having one or more carbon-carbon double bonds at the terminal with a combined use of an epoxy curing agent (d) and a radical initiator (e). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は銅はく等金属に対する接着性が良好で、柔軟ではあるが耐熱性の優れた電気絶縁材料に関し、半導体などを搭載した各種電子機器、産業用機器、通信機器、自動車用電子機器等に利用され特に低弾性、接着性、耐水性、耐熱性、放熱性に優れたプリント配線板用の絶縁材料に関するものである。
【0002】
【従来の技術】
従来様々な硬化性エポキシ樹脂がその接着性および電気絶縁性から電気絶縁接着剤として広く応用されてきた。現在では電子機器の小型化に伴った高発熱電子部品に対応する放熱特性が求められ、たとえば、金属ベース基材上にエポキシ樹脂等からなる無機充填剤を高充填した絶縁層を設け、その上に金属導体箔を配置した金属ベース銅張り積層板では、その放熱性が優れることから高発熱性電子部品を実装する金属ベースプリント配線板として用いられている。
【0003】
また、更には車載用電子機器についてもその小型化、小スペース化と共に電子機器をエンジンルームに設置することが要望され、高放熱性に加えて高耐熱性を有する金属ベース基板が要求されている。
【0004】
銅箔と絶縁接着層と金属板を貼り合わせた従来の金属ベース基板では、放熱性は良好であるが金属板と表面実装部品との熱膨張率の差に起因して、ヒートサイクル試験等ではんだにクラックが発生するという問題点があった。このような点を改良するためには絶縁接着層を低弾性率化、高放熱化し、発生する熱応力を緩和させることが必要となる。望ましくは更に耐熱性や耐湿熱性を有することが要求される。たとえば、このような問題を解決するために特許文献1では低弾性率化を目的として、反応性の官能基を持たせた高分子量体のアクリルゴムをエポキシ樹脂に多量添加することにより改質が成されているが、混合組成物のチキソトロピック性から高充填領域でのフィラー添加量が制限されしまい十分な高放熱化が達成されていない。また、特許文献2ではカルボキシ基末端ブタジエン−アクリロニトリルゴムにより変性されたエポキシ樹脂で構成された応力緩和層とエポキシで構成された高弾性率層を設置した、多層構造の絶縁層とすることにより耐ハンダクラック性および耐熱性の改善が成されているが、多層にする作業性と高弾性率層による加工性の問題が残る。このような問題を改良し耐熱性のあるエポキシ樹脂を得るために、特許文献3では反応性シリコーンゴム粒子を添加することにより改質された樹脂組成物の開示がされているが、ゴム粒子を添加することから作業性や無機充填剤の充填が妨げられ放熱性の障害となる課題が残る。
【特許文献1】
特開平10−242606号公報
【特許文献2】
特開平10−31422号公報
【特許文献3】
特開2002−76549号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、ゴム変性されたエポキシ化合物を主成分とした、柔軟性および耐熱性を有し且つ高い接着性を有する電気絶縁材料樹脂組成物で、更に無機フィラーを充填することにより高放熱性と低弾性率の双方の特性を併せ持ちながら良好な接着性を有する電気絶縁材料樹脂組成物を提供することである。
【0006】
【課題を解決するための手段】
本発明の要旨は、反応性不飽和部分を有する共役ジエン化合物から成るオリゴマーゴム成分により変性されたエポキシ化合物を含むエポキシ成分(a)と、末端に炭素−炭素二重結合を1つ以上有する不飽和化合物(b)にエポキシ硬化剤(d)およびラジカル開始剤(e)を併用して架橋し硬化させる事を特徴とする電気絶縁材料樹脂組成物である。
即ち、本発明は、より具体的には、その絶縁接着層が、反応性不飽和部分を有する共役ジエン化合物から成るオリゴマーゴム成分により変性されたエポキシ化合物を含むエポキシ成分(a)、末端に炭素−炭素二重結合を有し、更に望ましくは末端にカルボキシル基、エポキシ基、水酸基およびアミノ基から選ばれる官能基を1種有する不飽和炭化水素系化合物(b)、共役ジエン化合物の重合体および共役ジエンと不飽和炭化水素系化合物の共重合体から成り分子中に不飽和結合を有し且つ極性基が導入されたゴムの極性変性物(c)、エポキシ硬化剤(d)、ラジカル重合開始剤(e)を添加して得られる硬化性樹脂組成物の架橋硬化反応においてエポキシ硬化反応とラジカル重合反応を併用することを特徴とするものである。
これにより柔軟性と耐熱性を併せ持ちながら高い接着性を有する電気絶縁材料を提供するものである。更にこの樹脂組成物に高熱伝導性の無機充填材を配合する際に、高い充填率であってももろさを抑えることが出来、加工性が高く信頼性も上げることが出来る。更には金属板と組み合わせることでより放熱効率の高い金属ベース基板が提供できるものである。
【0007】
【発明の実施形態】
本発明で使用される絶縁接着層は、エポキシ変性ゴム成分とラジカル反応性不飽和化合物を主体とする樹脂組成物、エポキシ硬化剤、ラジカル開始剤、必要により無機充填剤から形成され、エポキシ変性ゴム成分による低弾性、無機充填剤による高放熱性、エポキシ樹脂による接着性、耐熱性、不飽和炭化水素系化合物と変性エポキシ樹脂中の不飽和部位を有機過酸化物で架橋させることにより、ゴム改質で有りながらも、耐水性、耐熱性、電気絶縁性に優れた硬化物を提供することができる。
以下、本発明における組成成分の配合について具体例を挙げて説明するがこれらに制限されるものでは無い。
【0008】
エポキシ成分(a)中に含まれる、共役二重結合を有するジエン系化合物で変成されたエポキシ化合物は、ゴム成分(a1)の分子中および末端にカルボキシル基、アミノ基、メルカプト基、フェノール性水酸基、アルコール性水酸基、エポキシ基等を導入し、エポキシ化合物(a2)と反応させる方法、もしくは過剰のジイソシアネート(a3)とエポキシ化合物(a2)中の水酸基とを付加反応させたのちに、ゴム成分(a1)の末端に水酸基を導入させたものを反応させる方法、もしくはゴム成分(a1)の末端に水酸基を持たせ、それに対して2倍の当量でジイソシアネート(a3)を反応させた後にエポキシ化合物(a2)を添加して反応させる方法で、ウレタン改質エポキシ変性ゴムとしたエポキシ基の導入方法も柔軟性を向上させることができることから使用し得る。
【0009】
ゴム成分(a1)としては、相溶性および作業性から分子量が30000以下の共役ジエン化合物の重合体または共役ジエン化合物と不飽和炭化水素系化合物の共重合体で、共役ジエン化合物として、ブタジエン、イソプレン、クロロプレン、不飽和炭化水素系化合物としては、スチレン、メタクリル酸メチル、アクリロニトリル、メチルスチレン、ハロゲン化スチレンなどが挙げられる。これら共重合体の例としてはスチレン−イソプレン−スチレンブロック共重合体、アクリロニトリル−ブタジエンブロック共重合体、メタクリル酸メチル−ブタジエン共重合体が挙げられその部分水添物も用いることができる。共役ジエン重合体は1,4−トランス体、1,4−シス体、1,2−ビニル体のどのような形態でも使用し得るが、1,2−ビニル体を用いるとラジカル開始剤による硬化反応が早い特徴があり、1,4−トランス体および1,4−シス体を用いると柔軟で密着性が高まる特徴がある。
【0010】
エポキシ樹脂(a2)は一般に用いられているものが使用でき、その例としては、ビスフェノールF型、ビスフェノールA型、ビスフェノールAD型、ジシクロペンタジエン型のエポキシ樹脂を挙げることができる。
【0011】
ジイソシアナート化合物(a3)は芳香族系として、トルエンジイソシアナート、ジフェニルメタンジイソシアナート、キシリレンジイソシアナートなどがあり、脂肪族系としてはヘキサメチレンジイソシアナート、ノルボルネンジイソシアナートの他に、トルエンジイソシアナート、ジフェニルメタンジイソシアナート、ナフタレンジイソシアナート、キシリレンジイソシアナートの水添物も利用できる。耐熱性と無黄変を考慮すると脂肪族ジイソシアナートや水添イソシアナートを使用することが好ましいがこれらに限定されるものではない。
【0012】
エポキシ硬化剤とラジカル開始剤を併用することから、エポキシ成分(a)にはこれらエポキシ変性ゴム成分(a2)に例示される未反応エポキシ樹脂成分が硬化物の低弾性を保てる範囲で存在していても良い。その使用範囲としては溶媒等を使用し系が低粘度化する場合において良相溶状態および分散状態を保てることが望ましく、その添加量、分子骨格、分子量および官能基数等で作業性または積層時のフロー性を調節することができる。
【0013】
末端に炭素間二重結合を有する不飽和化合物(b)は、末端にビニル基、イソプロペニル基およびアリル基を有する不飽和炭化水素系化合物で、ビニル基、イソプロペニル基およびアリル基の官能基数が1以上の化合物、望ましくは硬化物の低弾性および耐熱性を確保するために官能基数1から4のものが良く、更には1から3のものが低弾性と耐熱性をバランスさせることから好ましい。化合物の例としては、フェノキシエチルアクリレート、ネオペンチルグリコールジメタクリレート、ジビニルベンゼン、トリメチロールプロパントリメタクリレート、トリアリルイソシアヌレート、トリメタアリルイソシアヌレート、テトラメチロールメタンテトラアクリレートが挙げられる。更に望ましくは末端にカルボキシル基、エポキシ基、水酸基およびアミノ基から選ばれる官能基を1種有するものが金属との接着性を向上させるのに良く、化合物の例としては、モノアリルジグリシジルイソシアヌレート、β−メタクリロイルオキシエチルハイドロジェンサクシネート、ジアリルモノグリシジルイソシアヌレート等が挙げられる。その添加重量部はエポキシ成分(a)100重量部に対して1から50重量部であり、望ましくは3から20重量部が低弾性および耐熱性を調節できる好ましい範囲となる。
【0014】
極性基が導入された不飽和化合物(c)は共役ジエン化合物と不飽和炭化水素系化合物の共重合体(c1)、またはこれらの分子中および末端にカルボン酸、水酸基、アミン等の官能基を導入し、イソシアネート基、カルボキシル基、グリシジル基等に挙げられる特定の官能基を有する化合物と反応させて得られる、ウレタン変性物、エステル変性物、アミド変性物等も含まれる。これらは電気絶縁材料樹脂組成物溶液のワニス化および硬化物の低弾性化、強靭化を目的とし、その分子量が30000以上で分子中に不飽和結合を有し且つ極性基が導入されているものが好ましく、更には(a)および(b)成分の混合物と良相溶な化合物であることが望ましい。共役ジエン化合物と不飽和炭化水素系化合物の共重合体(c1)の組成においては、前記述のゴム成分(a1)と同様であり、導入され得る極性基としてはウレタン、エステル、アミド、カルボン酸、酸無水物、エポキシ等が挙げられる。その添加重量部はエポキシ成分(a)100重量部に対して1〜50重量部の範囲で低弾性率化を達成させる目的で添加することができる。
【0015】
エポキシ硬化剤(d)は一般に使用されるものを用いることができ、例えば、脂肪族アミン類、芳香族アミン類、酸無水物類、イミダゾール類、ジシアンジアミド類、ヒドラジッド類を用いることができる。脂肪族アミン類としては、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、N,N−ジエチルプロピレンジアミン等を例示できる。芳香族アミンとしては、m−キシリレンジアミン、ビス(4−アミノフェニル)メタン、ビス(4−アミノフェニル)スルホン等を例示できる。酸無水物類としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水ピロメリット酸、無水コハク酸等が例示できる。イミダゾール類としては2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール等が例示できるがこれらに制限されるものでは無い。上記記載のエポキシ硬化剤を単独もしくは併用で使用することができる。
【0016】
ラジカル開始剤(e)としては、有機過酸化物であるジアシルパーオキサイド、アルキルパーオキシエステル、パーオキシジカーボネート、モノパーオキシカーボネート、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、ケトンパーオキサイド、アゾビス系化合物に分類される化合物等を例示できる。有機過酸化物としては、過安息香酸、t−ブチルパーオキサイド、ジクミルパーオキサイド、アゾビス系化合物では、アゾビスイソブチロニトリル、アゾビス−1−シクロヘキサンニトリルが具体的に例示できるがこれに制限されるものでは無い。ラジカル重合開始剤(e)の添加量はゴム変性エポキシ樹脂(a)と不飽和化合物(b)又は極性基導入不飽和化合物(c)を混ぜ合わせた樹脂組成物100重量部に対して0.1から10重量部で、望ましくは1から5重量部が良好な硬化物を得ることができる好ましい範囲である。
【0017】
無機充填剤(f)は電気絶縁性が良く高熱伝導性のものが挙げられる。このようなものとして、シリカ、アルミナ、窒化アルミ、窒化ホウ素、炭化珪素、窒化珪素などがあり配合に最適な粒子径、粒度分布、形状、充填量を決定し配合して硬化させる。配合についてはエポキシ変性ゴム成分(a)、末端に炭素間二重結合を有する不飽和化合物(b)、極性基導入不飽和化合物(c)、エポキシ硬化剤(d)、有機過酸化物(e)、必要であればその他の添加剤を混ぜ合わせて形成される硬化性樹脂組成物と無機充填剤(f)からなる全配合組成物の体積に対して体積分率で40から90%、好ましくは50から75%配合することができる。カップリング剤としてはエポキシ基、アミノ基、メタクリロキシ基などを含むシラン系カップリング剤、またはチタネート系、アルミ系カップリング剤等が使用でき、無機充填剤に予め表面処理を施すか硬化性樹脂組成物の中に配合することにより、ガラスクロス、銅箔などとの接着力を向上させることができる。また、添加剤としては、イオンマイグレーションを抑制するためにイオン吸着剤、酸化劣化防止のために老化防止剤が長期信頼性を上げるために使用が可能であり、難燃剤を添加して難燃性を上げることもできる。
【0018】
絶縁接着層は、樹脂成分および無機充填剤を溶剤に溶解・分散させてワニスとし、金属箔または金属板およびその他の基材に塗布し、加熱により溶剤を除去して絶縁接着層を形成することができる。溶剤としては低沸点から高沸点のものが使用でき、低沸点のものでは、メタノール、アセトン、ジオキサン、トルエン、ブチルセルソルブ、高沸点のものではジメチルホルムアミド、メチルピロリドン、シクロヘキサノンなどが挙げられる。溶媒除去のしやすさおよび溶媒除去後の絶縁層表面状態を向上させる目的で、これら低沸点および高沸点の溶剤を混合し使用することも可能である。絶縁層ワニスの分散には有機溶剤に樹脂組成物および前述のカップリング剤、必要によりイオン吸着剤等を添加し溶解・分散させた後、無機充填材を適当量添加してボールミル、3本ロール、遠心攪拌機およびビーズミル等により充填剤を粉砕・分散させる。塗工方法はロールコート、バーコートおよびスクリーン印刷等で行い連続式および単板式塗工が可能である。連続式塗工に銅箔を用いることにより絶縁接着層付きの金属導体箔とすることができ、また、単板式塗工には鉄、銅およびアルミニウム板等を用いることも可能である。
【0019】
金属ベース基板の作製は、銅箔と金属基板とを絶縁接着層を介して配置した積層物に加熱と加圧を同時に行うことによりなされる。これには、ラミネーターおよびプレスを用いることができ、更にその雰囲気を真空状態にすることは絶縁接着層内部の気泡を低減することができることから望ましい。
【0020】
【実施例】
合成例1
三つ口セパラブルフラスコに減圧乾燥させた末端水酸基ポリブタジエン(R45HT:水酸基価46KOHmg/g、出光石油化学株式会社製商品名)46.32gとノルボルネンジイソシアナート(NBDI:NCO%40.8、三井化学株式会社製商品)7.84gを量り取り、ジオキサン210gを加え80℃に加熱しながら窒素雰囲気下で均一となるまで攪拌した後、10倍希釈されたジブチルチンジラウレートを2滴添加しそのまま80℃/6時間反応させイソシアネート末端のプレポリマーを得た。更にエポキシ樹脂としてビスフェノールA型エポキシ樹脂(エピコート1001:エポキシ当量480、ジャパンエポキシレジン株式会社製商品名)を35.84g添加し80℃/6時間反応させウレタンゴム改質エポキシ樹脂(A1)を得た。
【0021】
合成例2
三つ口セパラブルフラスコに減圧乾燥させた末端カルボキシル基ブタジエン−アクリロニトリル共重合体(HYCAR 1300×13:カルボキシル基%2.40、分子量3500、宇部興産株式会社製商品名)を15gとビスフェノールA型エポキシ樹脂(EPICLON840:エポキシ当量180、大日本インキ化学工業株式会社製商品名)を85g量り取り、窒素雰囲気下で180℃/2時間攪拌し反応させゴム変性エポキシ樹脂(A2)を得た。
【0022】
実施例1
ゴム変性エポキシ樹脂(A2)90重量部、末端に炭素間二重結合を有する不飽和炭化水素系化合物としてβ−メタクリロイルオキシエチルハイドロジェンフタレート(NKエステル CB−1:分子量278、新中村化学工業株式会社製商品名)10重量部、エポキシ硬化剤として2−エチル−4−メチルイミダゾール(キュアゾール2E4MZ:四国化成工業株式会社製商品名)1.0重量部、ラジカル重合開始剤としてジクミルパーオキサイド(パークミルD:日本油脂株式会社製商品名)2.0重量部を遠心脱泡攪拌機で5分間攪拌した後、シリコーンにより離型処理されたポリエチレンテレフタレート(PET)フィルム上に設けた高さ3mmの枠組みへ同様の配合物を流し込み、0.5mmのスペーサーを介してシリコーン処理されたPETフィルムで挟み、180℃×30分、5MPaの圧力で硬化させ動的粘弾性測定サンプルを作製し、ティー・エイ・インスツルメント・ジャパン社製動的粘弾性測定装置マークIIを用いて、曲げモード、周波数10Hz、2℃/分の昇温速度で−50℃から180℃までの貯蔵弾性率を測定した。
【0023】
比較例1
エポキシ成分としてビスフェノールA型エポキシ樹脂(EPICLON 860:エポキシ当量=240、大日本インキ化学工業株式会社製商品名)100重量部、エポキシ硬化剤として2−エチル−4−メチルイミダゾール(キュアゾール2E4MZ:四国化成工業株式会社製商品名)2.0重量部を加えたこと以外は実施例1と同様な手順で試料を作成し貯蔵弾性率を測定した。
【0024】
比較例2
ビスフェノールA型エポキシ樹脂(EPICLON840:エポキシ当量180、大日本インキ化学工業株式会社製商品名)85重量部、末端カルボキシル基ブタジエン−アクリロニトリル共重合体(HYCAR 1300×13:カルボキシル基%2.40、分子量3500、宇部興産株式会社製商品名)を15重量部、エポキシ硬化剤として2−エチル−4−メチルイミダゾール(キュアゾール2E4MZ:四国化成工業株式会社製商品名)1.0重量部にトルエンを加えたこと以外は実施例1と同様な手順で試料を作成し貯蔵弾性率を測定した。
【0025】
実施例2
ウレタンゴム変性エポキシ樹脂(A1)95重量部、末端に炭素―炭素間二重結合を有する不飽和炭化水素系化合物としてエトキシ化イソシアヌル酸トリアクリレート(NKエステル A−9300:分子量278、新中村化学工業株式会社製商品名)5重量部、エポキシ硬化剤として2−エチル−4−メチルイミダゾール(キュアゾール2E4MZ:四国化成工業株式会社製商品名)1.0重量部、ラジカル重合開始剤としてジクミルパーオキサイド(パークミルD:日本油脂株式会社製商品名)2.0重量部、γ−メタクリロキシプロピルトリメトキシシラン(KBM503:信越化学工業株式会社製商品名)3.0重量部にトルエンを加え、更に無機充填剤として平均粒径5μmのアルミナ(AS−50:昭和電工株式会社製商品名)600重量部(樹脂成分と無機充填剤成分を含む全体積に対して体積分率で60%)加えた。これを遠心脱泡攪拌機で5分間攪拌し、さらにトルエンで粘度調節した後、厚さ35μmの銅箔の接着処理面にバーコーターで塗布し、加熱オーブンで80℃×10分乾燥して溶媒を飛散させ100μmの絶縁層とした。その後、表面処理されたアルミ板と銅箔に塗った絶縁層と重ね合わせて、熱プレスで180℃×30分、5MPaの圧力で硬化積層し金属ベース基板を作製した。得られた積層板を評価するため各測定に適したパターンとなるようにエッチング液にて処理した。また、シリコーンにより離型処理されたポリエチレンテレフタレート(PET)フィルム上に設けた高さ3mmの枠組みへ同様の配合物を流し込み、乾燥させた後に0.5mmのスペサーを介してシリコーン処理されたPETフィルムで挟み、180℃×30分、5MPaの圧力で硬化させ動的粘弾性測定サンプルを作製し、セイコー社製動的粘弾性測定装置、曲げモード、周波数10Hz、2℃/分の昇温速度で−50℃から180℃までの貯蔵弾性率を測定した。
【0026】
実施例3
ゴム変性エポキシ樹脂(A2)90重量部、末端に炭素間二重結合を有する不飽和炭化水素系化合物としてβ−メタクリロイルオキシエチルハイドロジェンフタレート(NKエステル CB−1:分子量278、新中村化学工業株式会社製商品名)10重量部、エポキシ硬化剤として2−エチル−4−メチルイミダゾール(キュアゾール2E4MZ:四国化成工業株式会社製商品名)1.0重量部、ラジカル重合開始剤としてジクミルパーオキサイド(パークミルD:日本油脂株式会社製商品名)2.0重量部、γ−メタクリロキシプロピルトリメトキシシラン(KBM503:信越化学工業株式会社製商品名)3.0重量部にトルエンを加え、更に無機充填剤として平均粒径5μmのアルミナ(AS−50:昭和電工株式会社製商品名)600重量部(樹脂成分と無機充填剤成分を含む全体積に対して体積分率で60%)加えたこと以外は実施例2と同様に金属ベース基板を作製し、動的粘弾性測定を行った。
【0027】
実施例4
γ−メタクリロキシプロピルトリメトキシシラン(KBM503:信越化学工業株式会社製商品名)4.8重量部、アルミナを樹脂100重量部に対して950重量部(樹脂成分と無機充填剤成分を含む全体積に対して体積分率で70%)加えた以外は実施例2と同様に金属ベース基板を作製し、動的粘弾性測定を行った。
【0028】
実施例5
エポキシ変性ゴム成分(A2)90重量部、末端に炭素間二重結合を有する不飽和炭化水素系化合物としてβ−メタクリロイルオキシエチルハイドロジェンフタレート(NKエステル CB−1:分子量278、新中村化学工業株式会社製商品名)5.0重量部、更に、極性基が導入された不飽和炭化水素系化合物として酸無水物変成スチレン−ブタジエン−スチレンブロック共重合体(タフプレン912:旭化成工業株式会社製)を5.0重量部、エポキシ硬化剤として2−エチル−4−メチルイミダゾール(キュアゾール2E4MZ:四国化成工業株式会社製商品名)1.0重量部、ラジカル重合開始剤としてジクミルパーオキサイド(パークミルD:日本油脂株式会社製商品名)2.0重量部、γ−メタクリロキシプロピルトリメトキシシラン(KBM503:信越化学工業株式会社製商品名)3.0重量部にトルエンを加え、更に無機充填剤として平均粒径5μmのアルミナ(AS−50:昭和電工株式会社製商品名)600重量部(樹脂成分と無機充填剤成分を含む全体積に対して体積分率で60%)加えたこと以外は、上記、実施例2と同様な手順で金属ベース基板および動的粘弾性測定サンプルの作製を行った。
【0029】
実施例6
ゴム変性エポキシ樹脂(A2)70重量部、末端に炭素間二重結合を有する不飽和化合物としてビスフェノールA型エポキシアクリレート(NKオリゴ EA−1020:分子量520、新中村化学工業株式会社製商品名)30重量部、エポキシ硬化剤として2−エチル−4−メチルイミダゾール(キュアゾール2E4MZ:四国化成工業株式会社製商品名)1.0重量部、ラジカル重合開始剤としてジクミルパーオキサイド(パークミルD:日本油脂株式会社製商品名)2.0重量部、γ−メタクリロキシプロピルトリメトキシシラン(KBM503:信越化学工業株式会社製商品名)3.0重量部にトルエンを加え、更に無機充填剤として平均粒径5μmのアルミナ(AS−50:昭和電工株式会社製商品名)600重量部(樹脂成分と無機充填剤成分を含む全体積に対して体積分率で60%)加えた後、実施例2と同様な手順で金属ベース基板および動的粘弾性測定サンプルの作製を行った。
【0030】
比較例3
ビスフェノールA型エポキシ樹脂(EPICLON840:エポキシ当量180、大日本インキ化学工業株式会社製商品名)85重量部、末端カルボキシル基ブタジエン−アクリロニトリル共重合体(HYCAR 1300×13:カルボキシル基%2.40、分子量3500、宇部興産株式会社製商品名)を15重量部、エポキシ硬化剤として2−エチル−4−メチルイミダゾール(キュアゾール2E4MZ:四国化成工業株式会社製商品名)1.0重量部、γ−グリシドキシプロピルトリメトキシシラン(KBM403:信越化学工業株式会社製商品名)3.0重量部にトルエンを加え、更に無機充填剤として平均粒径5μmのアルミナ(AS−50:昭和電工株式会社製商品名)600重量部(樹脂成分と無機充填剤成分を含む全体積に対して体積分率で60%)加えたこと以外は実施例2と同様な手順で金属ベース基板および動的粘弾性測定サンプルの作製を行った。
【0031】
比較例4
ゴム変性エポキシ樹脂(A2)100重量部、エポキシ硬化剤として2−エチル−4−メチルイミダゾール(キュアゾール2E4MZ:四国化成工業株式会社製商品名)1.0重量部、γ−グリシドキシプロピルトリメトキシシラン(KBM403:信越化学工業株式会社製商品名)3.0重量部にトルエンを加え、更に無機充填剤として平均粒径5μmのアルミナ(AS−50:昭和電工株式会社製商品名)600重量部(樹脂成分と無機充填剤成分を含む全体積に対して体積分率で60%)加えたこと以外は実施例2と同様な手順で金属ベース基板および動的粘弾性測定サンプルの作製を行った。
【0032】
比較例5
ゴム変性エポキシ樹脂(A2)100重量部、エポキシ硬化剤として2−エチル−4−メチルイミダゾール(キュアゾール2E4MZ:四国化成工業株式会社製商品名)1.0重量部、ラジカル重合開始剤としてジクミルパーオキサイド(パークミルD:日本油脂株式会社製商品名)2.0重量部、γ−グリシドキシプロピルトリメトキシシラン(KBM403:信越化学工業株式会社製商品名)3.0重量部にトルエンを加え、更に無機充填剤として平均粒径5μmのアルミナ(AS−50:昭和電工株式会社製商品名)600重量部(樹脂成分と無機充填剤成分を含む全体積に対して体積分率で60%)加えたこと以外は実施例2と同様な手順で金属ベース基板および動的粘弾性測定サンプルの作製を行った。
【0033】
比較例6
エポキシ成分としてビスフェノールA型エポキシ樹脂(EPICLON 860:エポキシ当量=240、大日本インキ化学工業株式会社製商品名)100重量部、エポキシ硬化剤として2−エチル−4−メチルイミダゾール(キュアゾール2E4MZ:四国化成工業株式会社製商品名)2.0重量部、γ−グリシドキシプロピルトリメトキシシラン(KBM403:信越化学工業株式会社製商品名)3.0重量部にトルエンを加え、更に無機充填剤として平均粒径5μmのアルミナ(AS−50:昭和電工株式会社製商品名)600重量部(樹脂成分と無機充填剤成分を含む全体積に対して体積分率で60%)加えたこと以外は実施例2と同様な手順で金属ベース基板および動的粘弾性測定サンプルの作製を行った。
【0034】
上記で得られた各種金属ベース基板の配合および特性について表1に示す。各特性については以下の方法で測定した。
(接着強度):金属ベース基板をエッチングして幅10mmの銅箔帯を形成し90度を保ちながら50mm/分の速度で剥がして強さを測定した。この測定を220℃×120時間処理する前と後において測定を行った。
(熱抵抗値):基板サイズ30×40mm、ランドサイズ14×10mm、にはんだでトランジスタC2233を取り付け、基板裏面に熱伝導性のシリコーングリースを使い水冷却装置にセットして30Wの電力を供給したとき発熱するトランジスタ表面と冷却装置の温度を測定した。
熱抵抗値={(トランジスタ表面温度)−(冷却装置表面温度)}/負荷電力 から算出した。
(はんだ耐熱):300℃のはんだ浴の上に基板サイズ50×50mm、ランドサイズ25×50mm(右半分の銅箔を残す)を乗せて4分間膨れや剥がれがないことを目視で観察。
(吸水量):基板サイズ60×60mmで全面銅箔除去したサンプルを一旦50℃×24時間乾燥し初期重量とし次に25℃の水中に24時間浸漬し取り出して余分な水分を除去した後すばやく浸漬後の重量を秤り、吸水量をサンプルの表面積で割って算出した。
【0035】
【表1】

Figure 2005015639
【0036】
【表2】
Figure 2005015639
【0037】
表1の結果から本発明により得られた樹脂単独の絶縁接着剤層の特性は実施例1と比較例1,2に示したように従来のエポキシ樹脂系の組成をラジカル重合していないものに比べ弾性率が低く柔軟性に富み本発明の目的とする電気絶縁材料として利用が可能である事が分かる。
また表2は熱伝導性を良くするために無機充填剤を加えた組成では比較例に於いても目的とする放熱性はそれぞれ達成できているが、25℃における貯蔵弾性率が高く脆いものとなっている、比較例4,5のように中には低いものもあるが以下に述べるようにバランスの取れた特性をもつのは本発明に従った実施例のみである。
例えば未処理の接着性は同程度の強度を有するものがあるが耐熱試験後の低下の低下は比較例のような方法で低弾性化をすると好ましくない結果となり、またはんだ耐熱性も比較例で低弾性化をしたものは悪く膨れが発生していた。また吸水量も高く絶縁材料としては好ましくないと言うように比較例はバランスが取れず実用に供する事が出来ないことが分かる。
【0038】
【発明の効果】
本発明は、ゴム変性されたエポキシ化合物を主成分として柔軟性および耐熱性を有し且つ高い接着性を有する低弾性率の電気絶縁材料樹脂組成物であって、更に高放熱性を達成させるためにフィラーを高充填しても弾性率をはじめその他の物性低下を抑えることが出来、優れた耐熱性、耐水性および接着性を有する高放熱金属ベースプリント配線板を提供することができる。[0001]
[Technical field to which the invention belongs]
The present invention relates to an electrically insulating material that has good adhesion to metals such as copper foil and is flexible but excellent in heat resistance, and various electronic devices equipped with semiconductors, industrial devices, communication devices, automotive electronic devices, etc. In particular, the present invention relates to an insulating material for a printed wiring board having excellent low elasticity, adhesiveness, water resistance, heat resistance, and heat dissipation.
[0002]
[Prior art]
Conventionally, various curable epoxy resins have been widely applied as electrical insulating adhesives because of their adhesiveness and electrical insulating properties. Currently, heat dissipation characteristics corresponding to highly heat-generating electronic components accompanying the downsizing of electronic devices are required. For example, an insulating layer highly filled with an inorganic filler made of an epoxy resin or the like is provided on a metal base substrate, and further, A metal base copper-clad laminate having a metal conductor foil disposed thereon is used as a metal base printed wiring board for mounting a highly heat-generating electronic component because of its excellent heat dissipation.
[0003]
Furthermore, with respect to in-vehicle electronic devices, it is demanded that the electronic devices be installed in the engine room together with downsizing and space reduction, and a metal base substrate having high heat resistance in addition to high heat dissipation is required. .
[0004]
The conventional metal base substrate with copper foil, insulating adhesive layer, and metal plate bonded together has good heat dissipation, but due to the difference in coefficient of thermal expansion between the metal plate and surface mount components, There was a problem that cracks occurred in the solder. In order to improve such a point, it is necessary to reduce the elastic modulus and heat dissipation of the insulating adhesive layer and relieve the generated thermal stress. Desirably, it is further required to have heat resistance and moist heat resistance. For example, in order to solve such problems, Patent Document 1 is modified by adding a large amount of a high molecular weight acrylic rubber having a reactive functional group to an epoxy resin for the purpose of lowering the elastic modulus. However, the amount of filler added in the high filling region is limited due to the thixotropic property of the mixed composition, and sufficient heat dissipation is not achieved. Further, in Patent Document 2, a multi-layered insulating layer in which a stress relaxation layer composed of an epoxy resin modified with a carboxy group-terminated butadiene-acrylonitrile rubber and a high elastic modulus layer composed of an epoxy are provided is used as an insulating layer. Although solder cracking and heat resistance have been improved, there remain problems of workability with multiple layers and workability with a high elastic modulus layer. In order to improve such problems and obtain a heat-resistant epoxy resin, Patent Document 3 discloses a resin composition modified by adding reactive silicone rubber particles. Since the addition, the workability and filling of the inorganic filler are hindered, and there remains a problem that becomes an obstacle to heat dissipation.
[Patent Document 1]
JP-A-10-242606
[Patent Document 2]
Japanese Patent Laid-Open No. 10-31422
[Patent Document 3]
JP 2002-76549 A
[0005]
[Problems to be solved by the invention]
An object of the present invention is an electrically insulating material resin composition having flexibility, heat resistance and high adhesiveness, which is mainly composed of a rubber-modified epoxy compound. It is to provide an electrically insulating material resin composition having good adhesiveness while having both properties of low viscosity and low elastic modulus.
[0006]
[Means for Solving the Problems]
The gist of the present invention is an epoxy component (a) containing an epoxy compound modified with an oligomer rubber component comprising a conjugated diene compound having a reactive unsaturated moiety, and a non-functional compound having one or more carbon-carbon double bonds at the terminal. An electrically insulating material resin composition characterized in that a saturated compound (b) is crosslinked and cured by using an epoxy curing agent (d) and a radical initiator (e) in combination.
That is, the present invention more specifically relates to an epoxy component (a) whose insulating adhesive layer includes an epoxy compound modified with an oligomer rubber component composed of a conjugated diene compound having a reactive unsaturated moiety, and carbon at the end. An unsaturated hydrocarbon compound (b) having a carbon double bond, and more preferably having a functional group selected from a carboxyl group, an epoxy group, a hydroxyl group and an amino group at the terminal, a polymer of a conjugated diene compound, and A polar modified product of rubber (c), an epoxy curing agent (d), and radical polymerization initiation, comprising a copolymer of a conjugated diene and an unsaturated hydrocarbon compound and having an unsaturated bond in the molecule and a polar group introduced In the crosslinking curing reaction of the curable resin composition obtained by adding the agent (e), an epoxy curing reaction and a radical polymerization reaction are used in combination.
Thus, an electrical insulating material having high adhesion while having both flexibility and heat resistance is provided. Furthermore, when blending a highly heat-conductive inorganic filler in this resin composition, brittleness can be suppressed even at a high filling rate, and workability is high and reliability can be improved. Furthermore, a metal base substrate with higher heat dissipation efficiency can be provided by combining with a metal plate.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The insulating adhesive layer used in the present invention is formed from a resin composition mainly composed of an epoxy-modified rubber component and a radical-reactive unsaturated compound, an epoxy curing agent, a radical initiator, and if necessary an inorganic filler. Low elasticity by ingredients, high heat dissipation by inorganic fillers, adhesion by epoxy resins, heat resistance, and crosslinking of unsaturated sites in unsaturated hydrocarbon compounds and modified epoxy resins with organic peroxides It is possible to provide a cured product having excellent water resistance, heat resistance, and electrical insulation while being quality.
Hereinafter, although the specific example is given and demonstrated about the mixing | blending of the composition component in this invention, it is not restrict | limited to these.
[0008]
An epoxy compound modified with a diene compound having a conjugated double bond contained in the epoxy component (a) is a carboxyl group, amino group, mercapto group, phenolic hydroxyl group in the molecule and terminal of the rubber component (a1). , A method of introducing an alcoholic hydroxyl group, an epoxy group and the like and reacting with the epoxy compound (a2), or an addition reaction between excess diisocyanate (a3) and a hydroxyl group in the epoxy compound (a2), and then a rubber component ( a method in which a hydroxyl group is introduced at the terminal of a1) or a rubber component (a1) having a hydroxyl group at the terminal and reacting with diisocyanate (a3) at an equivalent amount twice that of epoxy compound ( Addition of a2) to react, and the introduction of epoxy groups made of urethane-modified epoxy-modified rubber also improves flexibility It may be used since it can be.
[0009]
The rubber component (a1) is a polymer of a conjugated diene compound having a molecular weight of 30000 or less or a copolymer of a conjugated diene compound and an unsaturated hydrocarbon compound because of compatibility and workability, and butadiene, isoprene as the conjugated diene compound. Examples of chloroprene and unsaturated hydrocarbon compounds include styrene, methyl methacrylate, acrylonitrile, methylstyrene, and halogenated styrene. Examples of these copolymers include styrene-isoprene-styrene block copolymers, acrylonitrile-butadiene block copolymers, and methyl methacrylate-butadiene copolymers. Partially hydrogenated products thereof can also be used. The conjugated diene polymer can be used in any form of 1,4-trans isomer, 1,4-cis isomer, and 1,2-vinyl isomer, but when 1,2-vinyl isomer is used, curing with a radical initiator is possible. There is a characteristic that reaction is quick, and when 1,4-trans form and 1,4-cis form are used, there is a characteristic that flexibility and adhesion are enhanced.
[0010]
As the epoxy resin (a2), those generally used can be used. Examples thereof include bisphenol F type, bisphenol A type, bisphenol AD type, and dicyclopentadiene type epoxy resins.
[0011]
The diisocyanate compound (a3) includes toluene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate and the like as an aromatic group, and aliphatic groups include hexamethylene diisocyanate and norbornene diisocyanate, Hydrogenated products of toluene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, and xylylene diisocyanate can also be used. In consideration of heat resistance and non-yellowing, it is preferable to use an aliphatic diisocyanate or a hydrogenated isocyanate, but it is not limited thereto.
[0012]
Since an epoxy curing agent and a radical initiator are used in combination, an unreacted epoxy resin component exemplified in the epoxy-modified rubber component (a2) is present in the epoxy component (a) in a range that can maintain the low elasticity of the cured product. May be. As for the range of use, it is desirable to maintain a good compatibility state and a dispersed state when using a solvent or the like to reduce the viscosity of the system. The workability or flow at the time of lamination is determined by the addition amount, molecular skeleton, molecular weight, and number of functional groups. Sex can be adjusted.
[0013]
The unsaturated compound (b) having a carbon-carbon double bond at the terminal is an unsaturated hydrocarbon compound having a vinyl group, isopropenyl group and allyl group at the terminal, and the number of functional groups of the vinyl group, isopropenyl group and allyl group Is one or more compounds, preferably one having 1 to 4 functional groups in order to ensure low elasticity and heat resistance of the cured product, and further one having 1 to 3 is preferred because it balances low elasticity and heat resistance. . Examples of the compound include phenoxyethyl acrylate, neopentyl glycol dimethacrylate, divinylbenzene, trimethylolpropane trimethacrylate, triallyl isocyanurate, trimethallyl isocyanurate, tetramethylolmethane tetraacrylate. More preferably, one having a functional group selected from a carboxyl group, an epoxy group, a hydroxyl group and an amino group at the end is good for improving the adhesion to a metal. Examples of the compound include monoallyl diglycidyl isocyanurate. , Β-methacryloyloxyethyl hydrogen succinate, diallyl monoglycidyl isocyanurate and the like. The added part by weight is 1 to 50 parts by weight with respect to 100 parts by weight of the epoxy component (a), and desirably 3 to 20 parts by weight is a preferred range in which low elasticity and heat resistance can be adjusted.
[0014]
The unsaturated compound (c) introduced with a polar group is a copolymer (c1) of a conjugated diene compound and an unsaturated hydrocarbon compound, or a functional group such as a carboxylic acid, a hydroxyl group or an amine in the molecule and at the terminal. Also included are urethane-modified products, ester-modified products, amide-modified products and the like obtained by introducing and reacting with compounds having specific functional groups such as isocyanate groups, carboxyl groups, glycidyl groups and the like. These are for the purpose of varnishing a resin composition solution of an electrically insulating material and reducing the elasticity and toughness of a cured product, having a molecular weight of 30000 or more, having an unsaturated bond in the molecule, and introducing a polar group Further, it is desirable that the compound be compatible with the mixture of the components (a) and (b). The composition of the copolymer (c1) of the conjugated diene compound and the unsaturated hydrocarbon compound is the same as that of the rubber component (a1) described above, and polar groups that can be introduced include urethane, ester, amide, and carboxylic acid. , Acid anhydrides, epoxies and the like. The added weight part can be added for the purpose of achieving a low elastic modulus in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the epoxy component (a).
[0015]
As the epoxy curing agent (d), those generally used can be used, and for example, aliphatic amines, aromatic amines, acid anhydrides, imidazoles, dicyandiamides, and hydrazides can be used. Examples of aliphatic amines include ethylenediamine, hexamethylenediamine, diethylenetriamine, N, N-diethylpropylenediamine, and the like. Examples of the aromatic amine include m-xylylenediamine, bis (4-aminophenyl) methane, and bis (4-aminophenyl) sulfone. Examples of acid anhydrides include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, pyromellitic anhydride, succinic anhydride, and the like. Examples of imidazoles include, but are not limited to, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, and the like. The above-described epoxy curing agents can be used alone or in combination.
[0016]
As the radical initiator (e), organic peroxides such as diacyl peroxide, alkyl peroxy ester, peroxy dicarbonate, monoperoxy carbonate, peroxy ketal, dialkyl peroxide, hydroperoxide, ketone peroxide, Examples include compounds classified as azobis compounds. Specific examples of organic peroxides include perbenzoic acid, t-butyl peroxide, dicumyl peroxide, and azobis-based compounds, but azobisisobutyronitrile and azobis-1-cyclohexanenitrile can be specifically exemplified. It is not what is done. The addition amount of the radical polymerization initiator (e) is 0. 0 parts by weight with respect to 100 parts by weight of the resin composition obtained by mixing the rubber-modified epoxy resin (a) and the unsaturated compound (b) or the polar group-introduced unsaturated compound (c). 1 to 10 parts by weight, desirably 1 to 5 parts by weight is a preferable range in which a good cured product can be obtained.
[0017]
Examples of the inorganic filler (f) include those having good electrical insulation and high thermal conductivity. Examples of such materials include silica, alumina, aluminum nitride, boron nitride, silicon carbide, and silicon nitride. The particle diameter, particle size distribution, shape, and filling amount that are optimal for blending are determined, blended, and cured. About compounding, epoxy-modified rubber component (a), unsaturated compound (b) having a carbon-carbon double bond at the terminal, polar group-introduced unsaturated compound (c), epoxy curing agent (d), organic peroxide (e ), If necessary, volume fraction of 40 to 90%, preferably 40% to 90%, based on the volume of the total composition composed of curable resin composition and inorganic filler (f) formed by mixing other additives Can be blended from 50 to 75%. As the coupling agent, a silane coupling agent containing an epoxy group, amino group, methacryloxy group, etc., or a titanate or aluminum coupling agent can be used, and the inorganic filler is subjected to surface treatment in advance or a curable resin composition. By blending in the product, the adhesive strength with glass cloth, copper foil, etc. can be improved. In addition, as an additive, an ion adsorbent can be used to suppress ion migration, and an anti-aging agent can be used to increase long-term reliability in order to prevent oxidative degradation. Can also be raised.
[0018]
The insulating adhesive layer is formed by dissolving and dispersing the resin component and the inorganic filler in a solvent to form a varnish, applying it to a metal foil or metal plate and other base material, and removing the solvent by heating to form an insulating adhesive layer. Can do. As the solvent, those having a low boiling point to a high boiling point can be used, and those having a low boiling point include methanol, acetone, dioxane, toluene, butyl cellosolve, and those having a high boiling point include dimethylformamide, methylpyrrolidone, cyclohexanone and the like. These low-boiling and high-boiling solvents can be mixed and used for the purpose of improving the ease of solvent removal and the surface state of the insulating layer after removal of the solvent. To disperse the insulating layer varnish, the resin composition and the above-mentioned coupling agent, and if necessary, an ion adsorbent and the like are added to an organic solvent and dissolved and dispersed, and then an appropriate amount of an inorganic filler is added to add a ball mill, three rolls Then, the filler is pulverized and dispersed by a centrifugal stirrer and a bead mill. The coating method may be roll coating, bar coating, screen printing or the like, and continuous or single plate coating is possible. By using a copper foil for continuous coating, a metal conductor foil with an insulating adhesive layer can be obtained, and for single-plate coating, iron, copper, aluminum plate, or the like can be used.
[0019]
The metal base substrate is manufactured by simultaneously heating and pressurizing a laminate in which a copper foil and a metal substrate are arranged via an insulating adhesive layer. For this purpose, a laminator and a press can be used, and it is desirable to make the atmosphere in a vacuum state since air bubbles inside the insulating adhesive layer can be reduced.
[0020]
【Example】
Synthesis example 1
Terminal hydroxyl group polybutadiene (R45HT: hydroxyl value 46 KOH mg / g, trade name, manufactured by Idemitsu Petrochemical Co., Ltd.) 46.32 g and norbornene diisocyanate (NBDI: NCO% 40.8, Mitsui) dried in a three-necked separable flask under reduced pressure. (Product made by Chemical Co., Ltd.) 7.84 g was weighed, 210 g of dioxane was added and stirred under nitrogen atmosphere while heating to 80 ° C., and then 2 drops of 10-fold diluted dibutyltin dilaurate was added and 80 as it was. The reaction was carried out at 6 ° C. for 6 hours to obtain an isocyanate-terminated prepolymer. Furthermore, 35.84 g of bisphenol A type epoxy resin (Epicoat 1001: Epoxy equivalent 480, product name of Japan Epoxy Resin Co., Ltd.) was added as an epoxy resin and reacted at 80 ° C. for 6 hours to obtain a urethane rubber-modified epoxy resin (A1). It was.
[0021]
Synthesis example 2
15 g of a terminal carboxyl group butadiene-acrylonitrile copolymer (HYCAR 1300 × 13: carboxyl group% 2.40, molecular weight 3,500, trade name manufactured by Ube Industries, Ltd.) dried in a three-necked separable flask under reduced pressure and bisphenol A type 85 g of epoxy resin (EPICLON 840: epoxy equivalent 180, trade name, manufactured by Dainippon Ink & Chemicals, Inc.) was weighed and stirred and reacted in a nitrogen atmosphere at 180 ° C./2 hours to obtain a rubber-modified epoxy resin (A2).
[0022]
Example 1
90 parts by weight of rubber-modified epoxy resin (A2), β-methacryloyloxyethyl hydrogen phthalate (NK ester CB-1: molecular weight 278, Shin-Nakamura Chemical Co., Ltd.) as an unsaturated hydrocarbon compound having a carbon-carbon double bond at the terminal 10 parts by weight of company-made product, 1.0 part by weight of 2-ethyl-4-methylimidazole (Cureazole 2E4MZ: trade name of Shikoku Kasei Kogyo Co., Ltd.) as an epoxy curing agent, and dicumyl peroxide as a radical polymerization initiator ( Park Mill D: Nippon Oil & Fats Co., Ltd. product name) 2.0 parts by weight was stirred with a centrifugal defoaming stirrer for 5 minutes, and then a 3 mm-high frame provided on a polyethylene terephthalate (PET) film that had been subjected to release treatment with silicone Pour the same formulation into the silicone treated 0.5 mm spacer. The sample is sandwiched between PET films and cured at 180 ° C. for 30 minutes under a pressure of 5 MPa to prepare a dynamic viscoelasticity measurement sample. Using a dynamic viscoelasticity measurement apparatus mark II manufactured by TA Instruments Japan Co., Ltd. The storage elastic modulus from −50 ° C. to 180 ° C. was measured at a bending mode, a frequency of 10 Hz, and a heating rate of 2 ° C./min.
[0023]
Comparative Example 1
100 parts by weight of bisphenol A type epoxy resin (EPICLON 860: epoxy equivalent = 240, trade name, manufactured by Dainippon Ink & Chemicals, Inc.) as an epoxy component, 2-ethyl-4-methylimidazole (Curesol 2E4MZ: Shikoku Chemicals) as an epoxy curing agent A sample was prepared in the same procedure as in Example 1 except that 2.0 parts by weight of a product name manufactured by Kogyo Co., Ltd. was added, and the storage elastic modulus was measured.
[0024]
Comparative Example 2
85 parts by weight of bisphenol A type epoxy resin (EPICLON 840: epoxy equivalent 180, trade name, manufactured by Dainippon Ink & Chemicals, Inc.), terminal carboxyl group butadiene-acrylonitrile copolymer (HYCAR 1300 × 13: carboxyl group% 2.40, molecular weight Toluene was added to 15 parts by weight of 3500, trade name of Ube Industries, Ltd.) and 1.0 part by weight of 2-ethyl-4-methylimidazole (Curesol 2E4MZ: trade name of Shikoku Kasei Kogyo Co., Ltd.) as an epoxy curing agent. Except that, a sample was prepared in the same procedure as in Example 1, and the storage elastic modulus was measured.
[0025]
Example 2
Urethane rubber modified epoxy resin (A1) 95 parts by weight, ethoxylated isocyanuric acid triacrylate (NK ester A-9300: molecular weight 278, Shin-Nakamura Chemical Co., Ltd.) as an unsaturated hydrocarbon compound having a carbon-carbon double bond at the terminal Product name) 5 parts by weight, 2-ethyl-4-methylimidazole (Cureazole 2E4MZ: trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) as an epoxy curing agent, dicumyl peroxide as a radical polymerization initiator (Park mill D: Nippon Oil & Fats Co., Ltd. trade name) 2.0 parts by weight, γ-methacryloxypropyltrimethoxysilane (KBM503: Shin-Etsu Chemical Co., Ltd. trade name) 3.0 parts by weight, toluene is added, and inorganic Alumina with an average particle size of 5 μm as filler (AS-50: trade name of Showa Denko KK) 6 0 parts by weight (60% volume fraction relative to the total volume containing the resin component and the inorganic filler component) were added. This was stirred with a centrifugal defoaming stirrer for 5 minutes, and after adjusting the viscosity with toluene, it was applied to the adhesive treated surface of a 35 μm thick copper foil with a bar coater and dried in a heating oven at 80 ° C. for 10 minutes. An insulating layer having a thickness of 100 μm was formed by scattering. Then, the surface-treated aluminum plate and the insulating layer applied to the copper foil were superposed and cured and laminated by hot pressing at 180 ° C. for 30 minutes and a pressure of 5 MPa to prepare a metal base substrate. In order to evaluate the obtained laminated board, it processed with the etching liquid so that it might become a pattern suitable for each measurement. Also, the same composition was poured into a 3 mm-high frame provided on a polyethylene terephthalate (PET) film that had been release-treated with silicone, and after drying, a PET film that had been silicone-treated through a 0.5 mm spacer The sample is cured at 180 ° C. for 30 minutes at a pressure of 5 MPa, and a dynamic viscoelasticity measurement sample is produced. The storage modulus from −50 ° C. to 180 ° C. was measured.
[0026]
Example 3
90 parts by weight of rubber-modified epoxy resin (A2), β-methacryloyloxyethyl hydrogen phthalate (NK ester CB-1: molecular weight 278, Shin-Nakamura Chemical Co., Ltd.) as an unsaturated hydrocarbon compound having a carbon-carbon double bond at the terminal 10 parts by weight of company-made product, 1.0 part by weight of 2-ethyl-4-methylimidazole (Cureazole 2E4MZ: trade name of Shikoku Kasei Kogyo Co., Ltd.) as an epoxy curing agent, and dicumyl peroxide as a radical polymerization initiator ( Park Mill D: Nippon Oil & Fats Co., Ltd. (trade name) 2.0 parts by weight, γ-methacryloxypropyltrimethoxysilane (KBM503: Shin-Etsu Chemical Co., Ltd., trade name) 3.0 parts by weight of toluene and further inorganic filling Alumina (AS-50: trade name, manufactured by Showa Denko KK) 600 having an average particle size of 5 μm as an agent A metal base substrate was prepared in the same manner as in Example 2 except that parts by weight (60% in volume fraction based on the total volume including the resin component and the inorganic filler component) were added, and dynamic viscoelasticity measurement was performed. .
[0027]
Example 4
4.8 parts by weight of γ-methacryloxypropyltrimethoxysilane (KBM503: trade name manufactured by Shin-Etsu Chemical Co., Ltd.), 950 parts by weight of alumina with respect to 100 parts by weight of resin (total volume including resin component and inorganic filler component) A metal base substrate was prepared in the same manner as in Example 2 except that the volume fraction was 70% in terms of volume fraction), and dynamic viscoelasticity measurement was performed.
[0028]
Example 5
Epoxy-modified rubber component (A2) 90 parts by weight, β-methacryloyloxyethyl hydrogen phthalate (NK ester CB-1: molecular weight 278, Shin-Nakamura Chemical Co., Ltd.) as an unsaturated hydrocarbon compound having a carbon-carbon double bond at the terminal Company product name) 5.0 parts by weight, and an anhydride-modified styrene-butadiene-styrene block copolymer (Tufprene 912: manufactured by Asahi Kasei Kogyo Co., Ltd.) as an unsaturated hydrocarbon compound having a polar group introduced. 5.0 parts by weight, 1.0 part by weight of 2-ethyl-4-methylimidazole (Curesol 2E4MZ: trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) as an epoxy curing agent, dicumyl peroxide (Park Mill D: as a radical polymerization initiator) Nippon Oil & Fat Co., Ltd. trade name) 2.0 parts by weight, γ-methacryloxypropyltrimethoxy Toluene is added to 3.0 parts by weight of run (KBM503: Shin-Etsu Chemical Co., Ltd. trade name), and 600 parts by weight of alumina (AS-50: trade name of Showa Denko KK) having an average particle size of 5 μm as an inorganic filler. Preparation of a metal base substrate and a dynamic viscoelasticity measurement sample in the same procedure as in Example 2 except that (volume ratio is 60% with respect to the total volume including the resin component and the inorganic filler component) Went.
[0029]
Example 6
70 parts by weight of rubber-modified epoxy resin (A2), bisphenol A type epoxy acrylate as an unsaturated compound having a carbon-carbon double bond at the terminal (NK Oligo EA-1020: molecular weight 520, trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.) 30 Parts by weight, 1.0 part by weight of 2-ethyl-4-methylimidazole (Curesol 2E4MZ: trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) as an epoxy curing agent, dicumyl peroxide (Park Mill D: Nippon Oil & Fats Co., Ltd.) as a radical polymerization initiator Company product name) 2.0 parts by weight, γ-methacryloxypropyltrimethoxysilane (KBM503: trade name manufactured by Shin-Etsu Chemical Co., Ltd.) 3.0 parts by weight toluene, and further an average particle size of 5 μm as an inorganic filler 600 parts by weight of alumina (AS-50: trade name of Showa Denko KK) After 60%) was added at a volume fraction relative to the total volume containing the filler component have been fabricated of metal base substrate and the dynamic viscoelasticity measurement samples in the same procedure as in Example 2.
[0030]
Comparative Example 3
85 parts by weight of bisphenol A type epoxy resin (EPICLON 840: epoxy equivalent 180, trade name, manufactured by Dainippon Ink & Chemicals, Inc.), terminal carboxyl group butadiene-acrylonitrile copolymer (HYCAR 1300 × 13: carboxyl group% 2.40, molecular weight 3500, Ube Industries, Ltd. (trade name) 15 parts by weight, epoxy curing agent 2-ethyl-4-methylimidazole (Cureazole 2E4MZ: Shikoku Kasei Kogyo Co., Ltd., trade name) 1.0 part by weight, γ-glycid Toluene was added to 3.0 parts by weight of xylpropyltrimethoxysilane (KBM403: trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), and alumina having an average particle size of 5 μm as an inorganic filler (AS-50: trade name, manufactured by Showa Denko KK). ) 600 parts by weight (based on the total volume including the resin component and the inorganic filler component) Then, a metal base substrate and a dynamic viscoelasticity measurement sample were prepared in the same procedure as in Example 2 except that the volume fraction was 60%.
[0031]
Comparative Example 4
100 parts by weight of rubber-modified epoxy resin (A2), 1.0 part by weight of 2-ethyl-4-methylimidazole (Curesol 2E4MZ: trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) as an epoxy curing agent, γ-glycidoxypropyltrimethoxy Toluene is added to 3.0 parts by weight of silane (KBM403: trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), and 600 parts by weight of alumina having a mean particle diameter of 5 μm (AS-50: trade name, manufactured by Showa Denko KK) as an inorganic filler. A metal base substrate and a dynamic viscoelasticity measurement sample were prepared in the same procedure as in Example 2 except that (volume ratio was 60% with respect to the total volume including the resin component and the inorganic filler component). .
[0032]
Comparative Example 5
100 parts by weight of rubber-modified epoxy resin (A2), 1.0 part by weight of 2-ethyl-4-methylimidazole (Curesol 2E4MZ: trade name manufactured by Shikoku Kasei Kogyo Co., Ltd.) as an epoxy curing agent, and dicumylpar as a radical polymerization initiator Toluene was added to 2.0 parts by weight of oxide (Park Mill D: product name manufactured by NOF Corporation), 3.0 parts by weight of γ-glycidoxypropyltrimethoxysilane (KBM403: product name manufactured by Shin-Etsu Chemical Co., Ltd.), Further, 600 parts by weight of alumina (AS-50: trade name, manufactured by Showa Denko KK) having an average particle diameter of 5 μm as an inorganic filler (60% by volume with respect to the total volume including the resin component and the inorganic filler component) was added. A metal base substrate and a dynamic viscoelasticity measurement sample were prepared in the same procedure as in Example 2 except that.
[0033]
Comparative Example 6
100 parts by weight of bisphenol A type epoxy resin (EPICLON 860: epoxy equivalent = 240, trade name, manufactured by Dainippon Ink & Chemicals, Inc.) as an epoxy component, 2-ethyl-4-methylimidazole (Curesol 2E4MZ: Shikoku Chemicals) as an epoxy curing agent (Trade name, manufactured by Kogyo Co., Ltd.) 2.0 parts by weight, toluene was added to 3.0 parts by weight of γ-glycidoxypropyltrimethoxysilane (KBM403: trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), and averaged as an inorganic filler. Example except that 600 parts by weight of alumina having a particle size of 5 μm (AS-50: trade name, manufactured by Showa Denko KK) (60% by volume with respect to the total volume including the resin component and the inorganic filler component) was added. The metal base substrate and the dynamic viscoelasticity measurement sample were prepared in the same procedure as in 2.
[0034]
Table 1 shows the composition and characteristics of the various metal base substrates obtained above. Each characteristic was measured by the following method.
(Adhesive strength): A metal base substrate was etched to form a copper foil strip having a width of 10 mm, and peeled off at a rate of 50 mm / min while maintaining 90 degrees, and the strength was measured. This measurement was performed before and after the treatment at 220 ° C. for 120 hours.
(Thermal resistance value): A transistor C2233 was attached to a substrate size of 30 × 40 mm and a land size of 14 × 10 mm with solder, and a heat conductive silicone grease was used on the back surface of the substrate and set in a water cooling device to supply 30 W of power. The temperature of the transistor surface that generated heat and the cooling device were measured.
Thermal resistance value = {(transistor surface temperature) − (cooling device surface temperature)} / load power.
(Solder heat resistance): A board size of 50 × 50 mm and a land size of 25 × 50 mm (leaving the right half copper foil) were placed on a 300 ° C. solder bath, and visually observed that there was no swelling or peeling for 4 minutes.
(Amount of water absorption): A sample having a substrate size of 60 × 60 mm, from which the copper foil was removed, was dried once at 50 ° C. for 24 hours to obtain an initial weight, and then immersed in water at 25 ° C. for 24 hours to remove excess moisture. The weight after immersion was weighed and calculated by dividing the amount of water absorption by the surface area of the sample.
[0035]
[Table 1]
Figure 2005015639
[0036]
[Table 2]
Figure 2005015639
[0037]
As shown in Example 1 and Comparative Examples 1 and 2, the characteristics of the resin-only insulating adhesive layer obtained by the present invention from the results of Table 1 are those in which the conventional epoxy resin composition is not radically polymerized. It can be seen that the elastic modulus is low and the flexibility is high, so that it can be used as an electrical insulating material intended by the present invention.
Table 2 shows that the composition with inorganic filler added to improve thermal conductivity achieves the desired heat dissipation even in the comparative examples, but the storage elastic modulus at 25 ° C. is high and brittle. Although some of them are low as in Comparative Examples 4 and 5, only Examples according to the present invention have balanced characteristics as described below.
For example, there are untreated adhesives that have similar strength, but the decrease in the decrease after the heat resistance test is not preferable when the elasticity is lowered by the method as in the comparative example, or the heat resistance of the solder is also in the comparative example. Those with low elasticity were badly swollen. Moreover, it can be seen that the comparative example is not well balanced and cannot be put to practical use, as the amount of water absorption is high and it is not preferable as an insulating material.
[0038]
【The invention's effect】
The present invention is a low elastic modulus electrically insulating material resin composition having a flexibility and heat resistance, and having high adhesiveness, mainly composed of a rubber-modified epoxy compound, in order to achieve higher heat dissipation. Even if the filler is highly filled, it is possible to suppress a decrease in other properties such as elastic modulus, and to provide a high heat dissipation metal base printed wiring board having excellent heat resistance, water resistance and adhesiveness.

Claims (6)

反応性不飽和部分を有する共役ジエン化合物から成るオリゴマーゴム成分により変性されたエポキシ化合物を含むエポキシ成分(a)と、末端に炭素−炭素二重結合を1つ以上有する不飽和化合物(b)にエポキシ硬化剤(d)およびラジカル開始剤(e)を併用して架橋し硬化させる事を特徴とする電気絶縁材料樹脂組成物。An epoxy component (a) containing an epoxy compound modified with an oligomer rubber component comprising a conjugated diene compound having a reactive unsaturated moiety, and an unsaturated compound (b) having one or more carbon-carbon double bonds at its ends An electrically insulating material resin composition which is crosslinked and cured using an epoxy curing agent (d) and a radical initiator (e) in combination. 請求項1に記載のエポキシ成分(a)100重量部に対し、末端に炭素−炭素二重結合を1つ以上有する不飽和化合物(b)を1〜50重量部配合してなる請求項1の電気絶縁材料樹脂組成物。1 to 50 parts by weight of an unsaturated compound (b) having one or more carbon-carbon double bonds at its end to 100 parts by weight of the epoxy component (a) according to claim 1. Electrical insulating material resin composition. 請求項1に記載の電気絶縁材料樹脂組成物に共役ジエン化合物の重合体および共役ジエンと不飽和炭化水素系化合物の共重合体から成り分子中に不飽和結合を有し且つ極性基が導入されたゴムの極性変性物(c)を添加したことを特徴とする電気絶縁材料樹脂組成物。The electrically insulating material resin composition according to claim 1, comprising a polymer of a conjugated diene compound and a copolymer of a conjugated diene and an unsaturated hydrocarbon compound, having an unsaturated bond in the molecule and introducing a polar group. An electrically insulating material resin composition characterized by adding a polar modified product (c) of rubber. 請求項1から請求項3の何れかの項に記載の電気絶縁材料樹脂組成物に熱伝導性無機充填剤(f)を樹脂組成物と無機充填剤を含む全配合組成に対して、体積分率で40から90%配合した熱伝導性を有する電気絶縁材料樹脂組成物。The volume fraction of the electrically insulating material resin composition according to any one of claims 1 to 3 with the thermally conductive inorganic filler (f) added to the total composition including the resin composition and the inorganic filler. An electrically insulating material resin composition having thermal conductivity blended by 40 to 90% at a rate. 金属板の少なくとも片面に、請求項4に記載の熱伝導性を有する電気絶縁材料樹脂組成物を配置し、その上に金属導体と共に積層させた電気絶縁積層材料。The electrically insulating laminated material which arrange | positioned the electrically insulating material resin composition which has the heat conductivity of Claim 4 on at least one surface of the metal plate, and was laminated | stacked with the metal conductor on it. 請求項1から4項の何れかの項に記載の樹脂組成物をガラスクロスに含浸させ、プリプレグとしたものを絶縁層とし、少なくとも片面に金属導体を積層した電気絶縁積層材料。An electrically insulating laminated material in which a glass cloth is impregnated with the resin composition according to any one of claims 1 to 4 and a prepreg is used as an insulating layer, and a metal conductor is laminated on at least one surface.
JP2003182478A 2003-06-26 2003-06-26 Resin composition of electrically insulating material and electrically insulating laminate material Pending JP2005015639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182478A JP2005015639A (en) 2003-06-26 2003-06-26 Resin composition of electrically insulating material and electrically insulating laminate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182478A JP2005015639A (en) 2003-06-26 2003-06-26 Resin composition of electrically insulating material and electrically insulating laminate material

Publications (1)

Publication Number Publication Date
JP2005015639A true JP2005015639A (en) 2005-01-20

Family

ID=34182856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182478A Pending JP2005015639A (en) 2003-06-26 2003-06-26 Resin composition of electrically insulating material and electrically insulating laminate material

Country Status (1)

Country Link
JP (1) JP2005015639A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021991A (en) * 2006-06-16 2008-01-31 Nitta Ind Corp Magnetic sheet, and antenna device and electronic information transmission apparatus using the magnetic sheet
JP2012153829A (en) * 2011-01-27 2012-08-16 Iteq Corp Halogen-free epoxy resin composition, prepreg and printed circuit board made using the same
JP2018058959A (en) * 2016-10-03 2018-04-12 味の素株式会社 Resin composition
WO2019176859A1 (en) * 2018-03-16 2019-09-19 日立化成株式会社 Epoxy resin composition and electronic component device
JP2021013034A (en) * 2020-10-06 2021-02-04 味の素株式会社 Resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021991A (en) * 2006-06-16 2008-01-31 Nitta Ind Corp Magnetic sheet, and antenna device and electronic information transmission apparatus using the magnetic sheet
JP2012153829A (en) * 2011-01-27 2012-08-16 Iteq Corp Halogen-free epoxy resin composition, prepreg and printed circuit board made using the same
JP2018058959A (en) * 2016-10-03 2018-04-12 味の素株式会社 Resin composition
WO2019176859A1 (en) * 2018-03-16 2019-09-19 日立化成株式会社 Epoxy resin composition and electronic component device
JPWO2019176859A1 (en) * 2018-03-16 2021-03-11 昭和電工マテリアルズ株式会社 Epoxy resin composition and electronic component equipment
JP7351291B2 (en) 2018-03-16 2023-09-27 株式会社レゾナック Epoxy resin composition and electronic component equipment
JP2021013034A (en) * 2020-10-06 2021-02-04 味の素株式会社 Resin composition
JP7067594B2 (en) 2020-10-06 2022-05-16 味の素株式会社 Resin composition

Similar Documents

Publication Publication Date Title
JP7202690B2 (en) Resin composition, film with substrate, metal/resin laminate and semiconductor device
JP5015591B2 (en) Epoxy resin composition
WO2018016489A1 (en) Resin composition, laminate sheet, and multilayer printed wiring board
TWI752057B (en) Composite film for electronic equipment, printed wiring board, and manufacturing method using high-frequency signal
JP6790816B2 (en) Polyimide adhesive
KR20100017386A (en) Process for producing resin varnish containing semi-ipn composite thermosetting resin and, provided using the same, resin varnish for printed wiring board, prepreg and metal-clad laminate
WO2018016524A1 (en) Thermosetting resin composition, interlayer insulation resin film, composite film, printed wiring board, and production method thereof
JP6809014B2 (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and its manufacturing method
JP2018012747A (en) Thermosetting resin composition, interlayer-insulating resin film, composite film, printed wiring board, and production methods thereof
JP2021175795A (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and production method of the same
JP2021025053A (en) Resin material and multilayer printed wiring board
JP2021127438A (en) Thermosetting resin composition, thermosetting adhesive, thermosetting resin film, and laminate, prepreg, and circuit board using thermosetting resin composition
JP2004217861A (en) Heat-resistant adhesive, laminate using this adhesive, heat sink with adhesive, and metal foil with adhesive
WO2000046816A1 (en) Thermoplastic resin composition having low permittivity, prepreg, laminated plate and laminated material for circuit using the same
US8535809B2 (en) Electrical insulating resin composition, and laminate for circuit board
JP2005015639A (en) Resin composition of electrically insulating material and electrically insulating laminate material
JP2018014388A (en) Thermosetting resin composition, resin film for interlayer insulation, printed wiring board and method for manufacturing the same
JP2018012775A (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and production method of the same
JPH06192478A (en) Curable resin composition, and prepreg, laminate and molding material each prepared by using same
JP6801279B2 (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and its manufacturing method
JP2005088309A (en) Substrate film with metal foil layer and substrate film with metal foil on both sides
JP2007194405A (en) Epoxy resin composition for heat conduction
JP2018012777A (en) Insulation resin material, resin film for interlayer insulation and production method of the same, composite film and production method of the same, and printed wiring board and production method of the same
JP4364503B2 (en) Laminated material comprising an electrically insulating material composition and a metal conductor foil
JP7238798B2 (en) Thermosetting resin composition, resin film for interlayer insulation, composite film, printed wiring board and semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630