JP2005009073A - Fish way - Google Patents

Fish way Download PDF

Info

Publication number
JP2005009073A
JP2005009073A JP2003170754A JP2003170754A JP2005009073A JP 2005009073 A JP2005009073 A JP 2005009073A JP 2003170754 A JP2003170754 A JP 2003170754A JP 2003170754 A JP2003170754 A JP 2003170754A JP 2005009073 A JP2005009073 A JP 2005009073A
Authority
JP
Japan
Prior art keywords
water
fishway
pool
level
stop valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003170754A
Other languages
Japanese (ja)
Inventor
Tsunekichi Yoshizawa
恒吉 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003170754A priority Critical patent/JP2005009073A/en
Publication of JP2005009073A publication Critical patent/JP2005009073A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/60Ecological corridors or buffer zones

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stepped type fish way with a simple construction at a low cost. <P>SOLUTION: The fish way include a hydrostatic pond 2 connected to the upstream side of a river crossing object 1 such as a weir, a dam or the like, and a fish way body 3 is provided along a river from the hydrostatic pond. The fish way body 3 is made of concrete, and it is so constituted that a plurality of pools 7 are arranged in a stair-like shape. In order to supply the water of the hydrostatic pond 2 to the pools 7, independent head races 9 are led to the pools 7 from the hydrostatic pond 2. A straight stop valve 10 is provided to an inlet of each head race 9. An automatic opening and closing controller automatically controls the straight stop valve so that water is supplied to the pools directly immediately below the water level of the hydrostatic pond through a water pipe from the hydrostatic pond so as to always supply an appropriate amount of water to the fish way. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、ダムや堰などの河川横断構造物のある河川を魚が遡上できるようにする魚道に関する。
【0002】
【従来の技術】
従来、様々な構造の魚道が作られているが、その代表的なものは階段式の魚道である。これは複数のプールを階段状に何段にも並べ、これに川の水を少量流し、上のプールから溢れた水が下のプールに次々と落ちるようにしたものであり、魚は落ちて来る水を目掛けて上のプールへと登って行く。
【0003】
このような階段式魚道では、堰やダムの水位が大きく変化すると、魚道への取水ができなくなったり、流量や流速に大きな変動が生じて、魚の遡上が妨げられることがある。このような問題を解決するため、潜孔またはフロートゲートを利用するようにしたものがあるが、いずれも、ダム水位の小さな範囲の変動にしか対応できず、また、特にフロートゲートを用いたものでは洪水や出水時にフロートゲートポケットに土砂等の堆積が起こりやすく、維持管理費の増大を招く欠点があった。また、プールの堰を可動ゲートにして、これを油圧装置で昇降させたり回転させたりして、魚道の水位や流量を調節するようにしたものもある。しかしこの方式は建設および維持管理に高い費用がかかる欠点がある。なお、この分野の関連文献としては、山海堂発行「魚道の設計」がある。
【0004】
【発明が解決しようとする課題】
この発明は、堰やダムの水位変化に拘わらず魚の遡上が可能な階段式魚道であって、構造が簡単で建設費の安価なものを提供することを課題とする。
【0005】
【課題を解決するための手段】
この発明の魚道は、複数のプールを階段状に並べて成る魚道本体を有する。ダム・堰などの河川横断物の上流側から各段のプールまで独立した導水路を複数本導設する。各導水路にそれぞれ止水弁を設ける(請求項1)。
【0006】
この魚道では、ダム・堰等の河川横断物の上流側水位(ダム水位)の変動に応じて、導水路の止水弁を開け閉めする。ダム水位が満水のときは、1段目(最上段)の導水路の止水弁を開けて1段目のプールに水を送る。1段目のプールから溢れた水は次々と下のプールへと流れ、やがて河川に流れ込む。魚は流れに逆らって進む習性があるので、水が流れ下るプールを上へ上へ登っていき、1段目のプールから対応する導水路を通って河川横断物の上流側に出ることができる。
【0007】
ダム水位が下がって1段目の導水路の流れが止まりそうになったら、その下の段(2段目)の導水路の止水弁を開く。こうすると、今度は2段目の導水路から2段目のプールに水が流れる。この場合、魚はプールを登って2段目のプールに達し、2段目の導水路を通って河川横断物の上流側に出る。
【0008】
以下同様に、ダムの水位が徐々に下がり、それまで使用していた導水路に水が流れなくなったら、その直ぐ下ののプールに水が流れるように対応する止水弁を開く。
【0009】
逆にダム水位が徐々に上がって来ると、導水路からプールに流れ込む流量が徐々に増大して来るので、その導水路の止水弁を閉め、そのすぐ上の段の導水路の止水弁を開けて対応するプールに水を送る。
【0010】
このように、ダム水位に応じて止水弁を適宜開閉することにより、魚道にいつも適量の水を流し続けることができる。
【0011】
本願発明(請求項1)の魚道では、河川横断物の上流側から各段のプールまで独立した導水路を複数本導設し、各導水路に設けた止水弁を適宜開閉することにより、河川横断物の上流側の水位変動に拘わらず、魚道にいつも適量の水を流して魚の遡上を可能にすることができる。また、従来のように可動ゲートは必要ないので、建設および維持コストが小さくてすむ効果がある。
【0012】
なお、止水弁の操作を手動で行うのは人手が掛かって実際問題として困難なので、ダム水位を常に測定して、その値によって、各段導水路の止水弁を自動開閉するようにすることが好ましい(請求項3)。
【0013】
同じプールに送水している間にも、ダム水位の変動で、魚道を流れる水の流量は変動する。このような流量変動を小さくするために、各プールの堰の一部に可動堰を設け、これをダム水位の変動に応じて上下に自動的に動かすようにしてもよい(請求項4)。
【0014】
また、各プールの越流堰を一定高さにしないで、高い部分と低い部分を設けることもできる(請求項5)。こうすれば、水の流量変化や流速変化をある程度抑えることができ、特に小さい魚が登りやすくなる。
【0015】
河川横断物の上流側に貯まった水を各プールに供給するための導水路であるが、上述のようにプール毎に独立したものを設けてもよいが、これを1本にまとめることもできる。すなわち、河川横断物の上流側から魚道本体に沿って共通導水路を導き、この共通導水路と各段のプールをそれぞれ結ぶ止水弁を設ける(請求項2)。この場合の止水弁操作は上述の場合と全く同じである。共通導水路は1本1本の独立導水路より太くなるが、1本で済むので建設コストは低減できる。
【0016】
【発明の実施の形態】
図1および2に示すように、堰、ダム等の河川横断物1の上流側に連通する静水池2を設け、この静水池から河川に沿って、適当な勾配(例えば6分の1)を付けて魚道本体3を設ける。静水池2には流入口5から河川の水が出入りし、その水位は河川横断物の上流側の水位とほぼ同レベルになる。メンテナンス等のため水の流入を遮断できるよう、流入口5には開閉ゲート6を設け、また、流入口5にはごみの流入を防ぐための格子を設ける。
【0017】
魚道本体3はコンクリート製で、複数のプール7が階段状に並んだ構造のものである(図4も参照)。上下のプールの高低差は例えば300mmである。これらのプール7に静水池2の水を供給するため、図2に示すように静水池2から各々のプール7まで独立した導水路9を導く。導水路は、コンクリート、金属またはプラスチック(塩化ビニール等)など様々な材料で作ることができる。なお、導水路9を設けるのは、静水池2水位変動範囲内の高さにあるプールだけでよく、それより下の方のプールには導水路は必要ない。
【0018】
図3に示すように、静水池内において、各導水路9の入口に止水弁10を設ける。この弁には様々な構造のものが使えるが、図示のものは板状の弁体を油圧シリンダ10aがスライドさせて、導水路9の入口を開閉する。同図で、符号12は静水池の水位レベルを計測する液面計、符号13は止水弁の自動開閉制御装置である。同制御装置は、魚道に常に適量の水が流れるよう、静水池の水位の直下レベルのプールに静水池から通水管を通って水が送られるように止水弁を自動操作する。
【0019】
今、静水池の水位(すなわち、河川横断物の上流側の水位)が図2のA状態であるとする。この状態では、自動開閉制御装置13は静水池水位の直下レベルのプール(すなわち上から4段目のプール)に水を送るために対応する止水弁10を開け、それ以外のプールに対応する止水弁はすべて閉じる。この状態では、河川の水は静水池2から導水路9を通って4段目のプールに流れ込む。4段目のプールに流入した水は、その堰15を越えて溢れ出て、その下のプールへと流れ落ちる。こうして、水が各段のプールを流れ下り、最後に川に流れ込む。
【0020】
川を登ってきた魚は河川横断物1の手前で立ち往生するが、魚道に水が流れているのに気付くと、魚道のプールを次々に登って来る。やがて魚は4段目のプールまで登ってくるが、このプールには、上の段のプールからでなく導水路から水が流れ込んで来るので、魚はその導水路の中を流れに逆らって進み、静水池2を通って最終的に川(河川横断物の上流側)に出ることができる。なお、導水路の中を魚が流れに逆らって進めるよう、導水路内は緩やかな流速になるように設計することが好ましい。
【0021】
このA状態から、静水池の水位が徐々に低下してプール(4段目)の堰15の上縁に近づいて来ると、水位差が小さくなるので、静水池から4段目のプールに流れ込む流量、したがって、その下の段のプールに越流する流量も減少して来る。自動開閉制御装置13は静水池の水位を監視しながら、その水位があるレベルまで下がったら、4段目の止水弁10を閉め、その下の5段目の止水弁10を開く。すると、今度は、静水池の水が5段目の導水路を通じて5段目のプールに、前より勢いよく送水される。魚道を登ってこの5段目のプールに達した魚は、5段目の導水路9を通って川に達する。
【0022】
前記A状態から今度は静水池水位が上昇し始めたとする。こうなると、水頭圧が大きくなるので、4段目のプールに流れ込む水の流量は徐々に増してくる。そこで、自動開閉装置13はその水位があるところまで上昇したら、4段目の弁を閉じ、その上の段、3段目の止水弁10を開ける。こうすれば、今度は静水池の水が3段目の導水路を通じて3段目のプールに送水され、その流量は前より小さくなる。
【0023】
このようにして、静水池の水位が大きく変動しても、自動開閉制御装置13が静水池の水位を監視しながら止水弁の操作を行い、静水池から水を送り込むプールを適宜選択することにより、常に魚道にある範囲の流量の水を流し続けることができる。そして、魚は魚道を遡上し、最後は導水路を通って河川横断物の上流側に出ることができる。
【0024】
静水池の水位変動が大きく変動する場合には、このように、静水池から水を送り込むプールを適宜選択することで対応するが、何段目かの特定のプールに向けて導水路から送水している間にも、静水池の小さな水位変動で、水の流量は変動する。このような流量変動を小さくするために、図4および5に示すように、各プール7の堰15の一部に上下に動く可動堰16を設け、水位の変動に応じて可動堰を油圧ユニット17などで自動的に上下に動かすようにしてもよい。
【0025】
プールの堰の形状を工夫して、魚が遡上しやすくすることも可能である。図4に示すように、魚道の下の方の、導水路を有しないプールでは、堰の高さを一定にしないで堰の一部に長方形の切欠き19を設けている。こうすれば小さい魚は切欠き19を通って上の段のプールに容易に登ることができ、また、魚道内の水位変動に伴う流量変化も緩和することができる。切欠き19はその他様々な形状とすることができ、図6(a)の切欠きは堰15の高さを左右方向に徐々に変化させるように形成したもの、同(b)の切欠きは曲線と直線の組み合わせからなるものである。
【0026】
上記の魚道では、導水路9が各段プールごとに独立していたが、これを1本の共通導水路で賄うようにしたのが、図7および図8に示す魚道である。このものでは、静水池2から魚道本体3の下を1本のコンクリート製の共通導水路20が延びている。この共通導水路と各段のプールを枝水路21で結び、各々の枝水路に止水弁10を設ける。この装置の動作は上記のものとほとんど同じであり、静水池の水位の直下のレベルのプールに対応する止水弁を開いて、当該プールに水を送るようにする。そして、当該プールまで遡上してきた魚は、開いている止水弁を通って共通導水路20に入り、さらに静水池を通って川に出ることができる。なお、共通導水路には土砂が貯まり易いので、最も低いところに土砂の排出装置22を設けるとよい。
【図面の簡単な説明】
【図1】魚道の平面図である。
【図2】魚道の縦断面図である。
【図3】静水池内の止水弁配置図である。
【図4】魚道本体の斜視図である。
【図5】プールの可動堰を示す、図4のV−V断面図である。
【図6】プールの堰に設ける切欠きの各種形状を示す。
【図7】共通導水路を備えた魚道の縦断面図である。
【図8】同じく横断面図である。
【符号の説明】
1 河川横断物
2 静水池
3 魚道本体
7 プール
9 導水路
10 止水弁
13 自動開閉制御装置
15 堰
16 可動堰
20 共通導水路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fishway that allows fish to run up a river with a river crossing structure such as a dam or a weir.
[0002]
[Prior art]
Conventionally, various structures have been made, but the typical one is a stepped fishway. This is a series of multiple pools arranged in steps, with a small amount of river water flowing into it, so that the water overflowing from the upper pool falls into the lower pool one after another, and the fish falls Go up to the upper pool with the water coming.
[0003]
In such a staircase type fishway, if the water level of the weir or dam changes greatly, it may not be possible to take water into the fishway, or the flow rate and flow rate may fluctuate greatly, preventing the fish from going up. In order to solve such problems, there are some which use a submerged hole or a float gate, but all of them can only cope with a small range of dam water level, and especially those using a float gate However, there was a drawback that sediment and sand were likely to accumulate in the float gate pocket during floods and floods, leading to an increase in maintenance costs. In some cases, the pool weir is a movable gate that is moved up and down and rotated by a hydraulic device to adjust the water level and flow rate of the fishway. However, this method has the disadvantage that it is expensive to construct and maintain. In addition, as related literature in this field, there is “Fishway design” published by Sankaido.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a staircase type fishway capable of going up a fish regardless of a water level change of a weir or a dam, having a simple structure and a low construction cost.
[0005]
[Means for Solving the Problems]
The fishway of the present invention has a fishway body formed by arranging a plurality of pools in a staircase pattern. Multiple independent water channels from the upstream side of river crossings such as dams and weirs to the pools at each stage will be installed. A water stop valve is provided in each water conduit (claim 1).
[0006]
In this fishway, the water stop valve of the waterway is opened and closed in response to fluctuations in the upstream water level (dam water level) of river crossings such as dams and weirs. When the dam water level is full, open the water stop valve of the first (top) waterway and send water to the first pool. The water overflowing from the first-tier pool flows to the lower pool one after another and eventually flows into the river. Since fish have the habit of going against the flow, you can climb up the pool where the water flows down and exit from the first level pool to the upstream side of the river crossing through the corresponding conduit. .
[0007]
When the dam water level drops and the flow of the first waterway is about to stop, the water stop valve of the waterway of the lower stage (second stage) is opened. This way, water now flows from the second level waterway into the second level pool. In this case, the fish climbs the pool to reach the second level pool, and then goes upstream of the river crossing through the second level waterway.
[0008]
Similarly, when the water level of the dam gradually falls and water stops flowing into the waterway that has been used, the corresponding stop valve is opened so that water flows into the pool immediately below.
[0009]
On the other hand, when the dam water level gradually rises, the flow rate flowing into the pool from the water conduit gradually increases, so the water stop valve of that water conduit is closed and the water stop valve of the water conduit immediately above it. Open and send water to the corresponding pool.
[0010]
Thus, by appropriately opening and closing the water stop valve according to the dam water level, an appropriate amount of water can always flow through the fishway.
[0011]
In the fishway of the present invention (Claim 1), by installing a plurality of independent water conduits from the upstream side of the river crossing to the pool of each stage, by appropriately opening and closing the water stop valve provided in each water conduit, Regardless of the fluctuation of the water level upstream of the river crossing, it is possible to always run a proper amount of water on the fishway to allow the fish to run up. In addition, since a movable gate is not required as in the prior art, the construction and maintenance costs can be reduced.
[0012]
In addition, since it is difficult as a practical problem to manually operate the water stop valve, the dam water level is always measured, and the water stop valve of each stage conduit is automatically opened and closed according to the value. (Claim 3).
[0013]
While the water is being sent to the same pool, the water flow through the fishway fluctuates due to fluctuations in the dam level. In order to reduce such flow rate fluctuation, a movable weir may be provided in a part of the weir of each pool, and this may be automatically moved up and down according to the fluctuation of the dam water level (Claim 4).
[0014]
Moreover, it is also possible to provide a high portion and a low portion without setting the overflow weir of each pool to a certain height (Claim 5). By doing so, it is possible to suppress changes in the flow rate and flow rate of water to some extent, and it is particularly easy to climb small fish.
[0015]
It is a conduit for supplying water stored in the upstream side of the river crossing to each pool, but as described above, an independent one may be provided for each pool, but this can be combined into one. . That is, a common water conduit is led from the upstream side of the river crossing along the fishway main body, and a water stop valve is provided to connect the common water conduit and the pools of the respective stages (Claim 2). The water stop valve operation in this case is exactly the same as that described above. Although the common conduit is thicker than each independent conduit, construction cost can be reduced because only one conduit is sufficient.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIGS. 1 and 2, a hydrostatic pond 2 communicating with the upstream side of a river crossing 1 such as a weir or a dam is provided, and an appropriate gradient (for example, 1/6) is provided along the river from the hydrostatic pond. In addition, a fishway body 3 is provided. River water enters and exits the still water pond 2 from the inlet 5, and the water level is almost the same as the water level upstream of the river crossing. In order to block the inflow of water for maintenance or the like, an opening / closing gate 6 is provided at the inflow port 5, and a lattice for preventing inflow of dust is provided at the inflow port 5.
[0017]
The fishway main body 3 is made of concrete and has a structure in which a plurality of pools 7 are arranged in a staircase pattern (see also FIG. 4). The height difference between the upper and lower pools is, for example, 300 mm. In order to supply the water from the hydrostatic ponds 2 to these pools 7, independent water conduits 9 are led from the hydrostatic ponds 2 to the respective pools 7, as shown in FIG. The water conduit can be made of various materials such as concrete, metal or plastic (such as vinyl chloride). The water conduit 9 is provided only in a pool at a height within the range of the water level fluctuation of the still water pond 2, and a water conduit is not required in the lower pool.
[0018]
As shown in FIG. 3, a stop valve 10 is provided at the inlet of each water conduit 9 in the still water pond. This valve can have various structures. In the illustrated valve, the hydraulic cylinder 10a slides a plate-like valve body to open and close the inlet of the water conduit 9. In the figure, reference numeral 12 denotes a liquid level gauge for measuring the water level of the still water pond, and reference numeral 13 denotes an automatic opening / closing control device for the water stop valve. The control device automatically operates the water stop valve so that the appropriate amount of water always flows through the fishway so that water is sent from the still water pond through the water pipe to the pool at a level immediately below the water level of the still water pond.
[0019]
Assume that the water level of the still water pond (that is, the water level upstream of the river crossing) is in the state A in FIG. In this state, the automatic opening / closing control device 13 opens the corresponding stop valve 10 to send water to the pool at the level immediately below the water level of the still water pond (that is, the fourth-tier pool from the top), and handles other pools. Close all stop valves. In this state, the river water flows from the still water pond 2 through the conduit 9 into the fourth-tier pool. The water flowing into the fourth-tier pool overflows over the weir 15 and flows down to the pool below it. Thus, water flows down the pools at each stage and finally into the river.
[0020]
The fish that have climbed the river are stuck in front of the river crossing 1, but when they notice that water is flowing along the fishway, they climb up the fishway pool one after another. Eventually, the fish will climb up to the fourth level pool, but water will flow into the pool from the channel instead of from the upper level pool, so the fish will move against the flow in the channel. , You can finally go to the river (upstream side of the river crossing) through the still water pond 2. In addition, it is preferable to design the inside of the water channel so as to have a gentle flow velocity so that the fish can move against the flow in the water channel.
[0021]
From this state A, when the water level of the still water pond gradually decreases and approaches the upper edge of the weir 15 of the pool (fourth stage), the water level difference becomes smaller, so the water flows into the fourth stage pool from the still water pond. The flow rate, and therefore the flow rate that overflows to the lower pool, also decreases. The automatic opening / closing control device 13 monitors the water level of the still water pond, and when the water level drops to a certain level, closes the fourth-stage water stop valve 10 and opens the fifth-stage water stop valve 10 below it. This time, the water of the Shizuike pond is sent to the fifth-stage pool through the fifth-stage water channel more vigorously than before. The fish that climbs the fishway and reaches the fifth level pool reaches the river through the fifth level waterway 9.
[0022]
It is assumed that the water level of the still water pond starts to rise from the A state. When this happens, the water head pressure increases, so the flow rate of water flowing into the fourth-stage pool gradually increases. Therefore, when the automatic opening / closing device 13 rises to a certain level, the fourth-stage valve is closed, and the upper-stage and third-stage water stop valve 10 is opened. In this way, the water of the still water pond is now sent to the third-stage pool through the third-stage conduit, and the flow rate becomes smaller than before.
[0023]
In this way, even if the water level of the still water pond fluctuates greatly, the automatic opening / closing control device 13 operates the water stop valve while monitoring the water level of the still water pond, and appropriately selects a pool for feeding water from the still water pond. Thus, it is possible to always keep flowing water in a range of a certain amount in the fishway. And the fish can go up the fishway, and finally go out to the upstream side of the river crossing through the waterway.
[0024]
When the water level fluctuations in the still water pond fluctuate greatly, it is possible to respond by selecting the pool that sends water from the still water pond as appropriate, but the water is sent from the waterway to the specific pool at some stage. In the meantime, the flow rate of the water fluctuates due to small fluctuations in the water level of the still pond. In order to reduce such flow rate fluctuation, as shown in FIGS. 4 and 5, a movable weir 16 that moves up and down is provided in a part of the weir 15 of each pool 7, and the movable weir is hydraulic unit according to the fluctuation of the water level. 17 may be automatically moved up and down.
[0025]
The shape of the pool weir can be devised to make it easier for fish to go up. As shown in FIG. 4, a rectangular notch 19 is provided in a part of the weir without making the height of the weir constant in the pool below the fishway and having no water conduit. In this way, small fish can easily climb through the notch 19 to the upper pool, and the flow rate change due to fluctuations in the water level in the fishway can be mitigated. The notch 19 can have various other shapes. The notch in FIG. 6A is formed so that the height of the weir 15 is gradually changed in the left-right direction, and the notch in FIG. It consists of a combination of curves and straight lines.
[0026]
In the above-described fishway, the waterway 9 was independent for each step pool, but the fishway shown in FIGS. 7 and 8 is configured to cover this with a single common waterway. In this structure, a single concrete common conduit 20 extends from the still water pond 2 under the fishway main body 3. The common water channel and the pool of each stage are connected by branch water channels 21, and a stop valve 10 is provided in each branch water channel. The operation of this device is almost the same as described above, and the water stop valve corresponding to the pool at the level just below the water level of the still water pond is opened to send water to the pool. And the fish which went up to the said pool can enter the common conduit 20 through the open water stop valve, and can go out further to a river through a still water pond. In addition, since earth and sand are easy to accumulate in the common water channel, the earth and sand discharge device 22 may be provided at the lowest place.
[Brief description of the drawings]
FIG. 1 is a plan view of a fishway.
FIG. 2 is a longitudinal sectional view of a fishway.
FIG. 3 is a layout diagram of water stop valves in a still water pond.
FIG. 4 is a perspective view of a fishway body.
5 is a cross-sectional view taken along the line VV of FIG. 4, showing the movable weir of the pool.
FIG. 6 shows various shapes of notches provided in a pool weir.
FIG. 7 is a longitudinal sectional view of a fishway provided with a common water conduit.
FIG. 8 is a cross-sectional view of the same.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 River crossing 2 Still water pond 3 Fishway body 7 Pool 9 Water guideway 10 Water stop valve 13 Automatic opening / closing control device 15 Weir 16 Movable weir 20 Common waterway

Claims (5)

複数のプールを階段状に並べて成る魚道本体と、ダム・堰等の河川横断物の上流側から各段のプールまで独立して導設された複数本の導水路と、各導水路にそれぞれ設けられた止水弁から成る魚道。The main body of the fishway that consists of a plurality of pools arranged in a staircase, multiple waterways that are independently routed from the upstream side of river crossings such as dams and weirs to each level pool, and each waterway A fishway consisting of a water stop valve. 複数のプールを階段状に並べて成る魚道本体と、ダム・堰等の河川横断物の上流側から該魚道本体に沿って導設された共通導水路と、該共通導水路と各段のプールをそれぞれ結ぶ止水弁から成る魚道。A main body of a fishway that is formed by arranging a plurality of pools in a staircase, a common waterway that runs along the fishway body from the upstream side of a river crossing such as a dam or weir, and the common waterway and a pool of each step A fishway that consists of a water stop valve. 該河川横断物の上流側水位の変動に応じて該止水弁を自動的に開閉し、該河川横断物の上流側水位の直ぐ下のレベルのプールに送水するように構成した請求項1または2に記載の魚道。The water stop valve is automatically opened and closed according to a change in the upstream water level of the river crossing, and the water is sent to a pool at a level immediately below the upstream water level of the river crossing. 2. The fishway described in 2. 各プールの堰の一部を可動堰とし、これを、該河川横断物の上流側水位の変動に応じて上下に自動的に動かして、該魚道本体を流れる水の流量流速変化を小さく抑えるようにした請求項1、2または3に記載の魚道。A part of the weir of each pool is a movable weir, and this is automatically moved up and down according to the fluctuation of the water level on the upstream side of the river crossing so as to keep the flow rate change of the water flowing through the fishway body small. The fishway according to claim 1, 2, or 3. 各プールの越流堰を一定高さにしないで、高い部分と低い部分を設けた請求項1、2または3に記載の魚道。The fishway according to claim 1, 2 or 3, wherein a high portion and a low portion are provided without setting the overflow overflow weir of each pool to a constant height.
JP2003170754A 2003-06-16 2003-06-16 Fish way Pending JP2005009073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003170754A JP2005009073A (en) 2003-06-16 2003-06-16 Fish way

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003170754A JP2005009073A (en) 2003-06-16 2003-06-16 Fish way

Publications (1)

Publication Number Publication Date
JP2005009073A true JP2005009073A (en) 2005-01-13

Family

ID=34095475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170754A Pending JP2005009073A (en) 2003-06-16 2003-06-16 Fish way

Country Status (1)

Country Link
JP (1) JP2005009073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104863100A (en) * 2015-05-22 2015-08-26 三峡大学 Crawler type fish continuous downstream dam passing device
RU2675543C1 (en) * 2018-03-26 2018-12-19 Федеральное государственное бюджетное научное учреждение "Российский научно-исследовательский институт проблем мелиорации" (ФГБНУ "РосНИИПМ") Fish passage spillway for ponds and reservoirs on small rivers
KR102448989B1 (en) * 2022-05-16 2022-09-29 주식회사 프리피쉬 Individually operated fishway according to the level of the river

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104863100A (en) * 2015-05-22 2015-08-26 三峡大学 Crawler type fish continuous downstream dam passing device
RU2675543C1 (en) * 2018-03-26 2018-12-19 Федеральное государственное бюджетное научное учреждение "Российский научно-исследовательский институт проблем мелиорации" (ФГБНУ "РосНИИПМ") Fish passage spillway for ponds and reservoirs on small rivers
KR102448989B1 (en) * 2022-05-16 2022-09-29 주식회사 프리피쉬 Individually operated fishway according to the level of the river

Similar Documents

Publication Publication Date Title
CN104594320B (en) Cross fish formula ship lock and cross fish method
JPH03151408A (en) Automatic swing fishway
JP5737675B2 (en) Sabo weir
ES2746114T3 (en) Fish lock
KR100592975B1 (en) Fish way block
JP2005009073A (en) Fish way
CN106049378B (en) A kind of fishway exit and design method for adapting to fluctuation of water table
CN204753517U (en) Be provided with floodgate body and dam of drainage tube
JP3215231U (en) Flood control system
JP3490917B2 (en) Stair type fishway equipment
JP2007138401A (en) Revetment wall for river, and construction method of revetment wall for river
US1376889A (en) Lake or pond
KR102349726B1 (en) Fish ladder
KR102259684B1 (en) Water collecting type fish way having water pressure reduction function
JP4097639B2 (en) Fishway
JP3628302B2 (en) Sabo Dam
JP3927904B2 (en) Fishway equipment
CN206034391U (en) Adaptation water level variation&#39;s fishway exit
JP2006009241A (en) Fishway exit equipment
JP3246808B2 (en) Fishway with water level fluctuation
KR101051471B1 (en) Fishery
JPH05179631A (en) Dam structure
KR100420101B1 (en) flow controller for reservoir of sewage treatments
JP2001152434A (en) Movable type fish-pass waterway facility
RU2675543C1 (en) Fish passage spillway for ponds and reservoirs on small rivers