JP2005005549A - Semiconductor device, its packaging structure, and its manufacturing process - Google Patents

Semiconductor device, its packaging structure, and its manufacturing process Download PDF

Info

Publication number
JP2005005549A
JP2005005549A JP2003168626A JP2003168626A JP2005005549A JP 2005005549 A JP2005005549 A JP 2005005549A JP 2003168626 A JP2003168626 A JP 2003168626A JP 2003168626 A JP2003168626 A JP 2003168626A JP 2005005549 A JP2005005549 A JP 2005005549A
Authority
JP
Japan
Prior art keywords
insulating layer
semiconductor device
substrate
wiring
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003168626A
Other languages
Japanese (ja)
Other versions
JP4280979B2 (en
Inventor
Osamu Yamagata
修 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003168626A priority Critical patent/JP4280979B2/en
Publication of JP2005005549A publication Critical patent/JP2005005549A/en
Application granted granted Critical
Publication of JP4280979B2 publication Critical patent/JP4280979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small, thin, lightweight and low cost packaged semiconductor device mounting semiconductor chips and passive elements three-dimensionally at high density and capable of exhibiting multifunction and dealing with modification of specification, failure of component, and the like, and to provide its packaging structure and its manufacturing process. <P>SOLUTION: Insulation layers 11 and 21 are formed on a silicon substrate 1 to cover passive elements, e.g. capacitors 10 and inductors 20, and an IC chip 30 is face-up fixed in the insulation layer 21. In each insulation layer, electrodes of the buried elements are led out by means of plugs (16 and 26) to the upper surface where conductive layers (25 and the like) for interconnecting the elements and rearranging the electrode positions are formed to be bonded to the plugs. An insulation layer 44 covering the semiconductor device and being provided with external connection electrodes 45 is formed at the uppermost part. An IC chip 50 is fixed externally to a connection electrode 48 for mounting an electronic component in a recess 47 formed at an external connection terminal part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、半導体チップ等の能動素子とコンデンサ(キャパシタ)等の受動素子とを共通基体に有する半導体装置及びその実装構造、並びにその製造方法に関するものである。
【0002】
【従来の技術】
近年、携帯電話をはじめとする携帯用小型電子機器の普及と発展にともない、電子機器の携帯利便性や高性能化等が求められ、それらに使用される半導体装置も小型軽量化や薄型化、あるいは多機能化や低コスト化が求められている。
【0003】
このため、小型、高密度実装技術を使用したモジュール製品やパッケージ製品への要求が強くなり、各種基板材料を用い、所望の機能を実現するのに必要な半導体チップ及び受動素子等を1つのパッケージの中に集積したマルチチップモジュール(MCM)製品やシステム・イン・パッケージ(以下、SiPと略記する。)製品などが多数開発されている。
【0004】
しかし、シリコン基板に導電性があり、漏れ電流や誘導電流が流れることから、例えば無線機器等のRF(Radio Frequency)回路用SiPの基板として、シリコン基板を使用することはできなかった。このため、RF回路用SiPでは、基板としてLTCC(Low Temperature Co−Fired Ceramic;低温共焼成セラミック)基板等のセラミック基板や、FR−4(アメリカ合衆国NEMA(National Electrical Manufacturers Association)の難燃性規格)のガラスエポキシ基板等の有機材料系基板を用い、半導体チップに対する電気的接続をフリップチップ接合又はワイヤボンディングで行うのが一般的である。
【0005】
図12は、LTCC基板を用いたRF用SiPの一例の概略断面図である。LTCC基板61は、フィラーを混ぜ込んだアルミナ等からなる粘土状のシート(通称、グリーンシート)を、600〜700℃程度の比較的低い温度で焼成して形成する。通常、SiP等を作製する場合には、図12に示すように、複数のグリーンシートを積層してプレスした後、焼成する。
【0006】
LTCC基板61は、熱伝達性がよく、強度が高く、反りが無いという利点がある。又、受動素子を印刷配線で形成することができる利点もある。即ち、基板上のインダクタ62や配線部65は、グリーンシートの表面に銀やタングステン等の印刷ペーストを印刷によって付着させておくことで形成することができる。また、セラミックス自体が誘電体であるので、セラミックス層を挟んで対向電極を形成することによりキャパシタ(コンデンサ)63と64を形成することができる。なお、基板を貫通する接続部66は、グリーンシートにドリル加工で開けた孔(スルーホール)に印刷ペーストを埋め込むことで形成することができる。
【0007】
しかし、LTCC基板を用いたSiPには、次の1〜6の問題点がある。
1.各層の厚さをあまり薄くできない(最小で25μm程度、通常、50μm程度)。このため、積層によるSiPの薄型化が困難である。
2.半導体チップ67や68に対する接続は、フリップチップ接合又はワイヤボンディングを行うしかない。フリップチップ接合では、アンダーフィル材69を入れるスペースが必要で、これがチップのサイズより面方向にはみ出し、他の素子を配設できない領域が生じ、また、ワイヤボンディングでは、ワイヤを設ける空間が必要になる。いずれも、コンパクトな実装が難しい。
3.焼成が行われるので、半導体チップをセラミック層に埋め込むことができない。従って、半導体チップを上記のように基板上に固定する必要があるため、その保護材が別に必要になり、この分かさ高になる。
4.パターンを形成する方法が印刷に限られる。
5.積層するセラミック各層は、熱膨張係数を同程度にそろえる必要があり、材質を同一にする必要がある。
6.この結果、各層の誘電率も制限され、各層間で変化させることが困難であり、上記したキャパシタの容量が制限される。
7.コストが高い。
【0008】
一方、図13(a)は、FR−4等のガラスエポキシ基板を用いたRF用SiPの一例の概略断面図である。ガラスエポキシ基板71は、ドリルやレーザで孔開けできるなど、加工が容易であるが、基板の厚さが150μm程度と厚い上、基板の誘電率が小さいために、基板自体でキャパシタを形成することができないという問題点がある(但し、インダクタ72は内蔵可能である。)。従って、LTCC基板と同様、ユーザー側で半導体チップ77を基板上にフリップチップ接合又はワイヤボンディング等で接続し、またキャパシタ等の受動素子78は基板上にはんだ付け接続(ワイヤレス接続)しているため、コンパクトな実装が難しい。
【0009】
また、図13(b)に示すように、ガラスエポキシ基板内に電子部品を埋め込むことが検討されているが、電子部品の高さが高いため、半導体チップ等の電子部品を埋め込んだ層の厚さが400〜600μmに達し、SiP全体の高さを抑えることができず、モバイル製品等に対する薄型化要求を満足することが難しい。
【0010】
そこで、埋め込む半導体チップを薄型化して、全体の厚さを抑制する方法が検討されているが、従来の半導体チップの薄型化の方法は、支持基板を用いて研削する方法であるため、バックグラインド用保護テープの貼り合わせ装置以外に、支持基板との貼り合わせ装置、及びその貼り合わせ後の剥離装置が設備として新たに必要となり、また、使用材料も多くなるため、コスト高になり、SiPの価格を上昇させる原因になる。
【0011】
また、すべての電子部品を埋め込む構造を取った場合、部品の交換や追加ができないため、部品不良や故障の発生、或いは仕様の変更等に対応できないという問題がある。
【0012】
また、半導体チップをフェイスアップ式に高精度で固定する方法は、フリップチップ接合の場合では、精度15μmが限界であり、ワイヤボンディングの場合では、35μmが限界である(特開平2−150041号公報、特開平5−343449号公報、及び特開平11−26481号公報参照。)。レーザ発光素子では精度5μm程度を実現するダイボンダーが開発されているが、タクト時間が長い上、熱の影響により精度を出せないために大口径のウエーハや基板を用いることができない。
【0013】
信頼性の高い基板であるシリコン基板を用い、この基板上にフェイスアップで半導体チップを搭載し、受動素子を絶縁層に埋め込み搭載し、各素子間に配線を形成する方法を考えた場合、現状ではフリップチップ接合とワイヤボンディング以外に接続方法がないため、面方向及び高さ方向のいずれでも薄型化及び小型化は難しい。
【0014】
一方、半導体チップの側では、別々に作製された半導体チップを層間絶縁膜等の技術を用いて一体化し、コンパクトな実装や良好な回路特性の実現を目指す提案がなされている(後述の特許文献1及び2参照。)。
【0015】
例えば、特許文献1には、半導体基板上に所定の機能を有する回路と1つ以上の凹部が形成され、その凹部に予め作製されていた別種の半導体チップが嵌設され、半導体基板と半導体チップとの段差を埋める絶縁層が形成された半導体装置が開示され、その実施形態においては、この絶縁層の必要箇所にコンタクトホールを形成した後、各半導体チップ上の集積回路間をアルミニウムなどの金属配線により接続する方法が記載されている。また、特許文献2には、複数の半導体チップをフェイスアップで積層して搭載する種々の配置方法が開示されている。
【0016】
しかしながら、いずれの方法でも受動素子の作製や搭載については何も考慮されていない。また、特許文献1に係わる発明では、すべての半導体チップを1つの基板上に搭載するので、搭載する半導体チップが多くなると、基板面積が大きくなる問題点がある。他方、特許文献2に係わる発明は、2〜3個程度の半導体チップの高密度搭載のみを目的とするものであり、積層された半導体チップを実装する別の基板が必要である。
【0017】
【特許文献1】
特開2001−298149号公報(第4−6頁、図1及び図13)
【特許文献2】
特開2001−189424号公報(第6−10頁、図2、図4、図6及び図8)
【0018】
【発明が解決しようとする課題】
本発明の目的は、上記のような実情に鑑み、半導体チップ等の能動素子とコンデンサ等の受動素子とを高密度に内蔵し、小型、薄型、軽量、低コストで、しかも多機能化も可能で、且つ、仕様の変更、及び部品不良や故障の発生等に対応できる、パッケージ化された半導体装置及びその実装構造、並びにその製造方法を提供することにある。
【0019】
【課題を解決するための手段】
即ち、本発明は、基体上に形成された絶縁層によって、少なくともフェイスアップ式の能動素子(例えば半導体チップ;以下、同様。)と受動素子(例えばコンデンサ、インダクタ、抵抗;以下、同様。)とが被覆され、前記能動素子及び/又は前記受動素子が、下部絶縁層としての前記絶縁層を介してこの絶縁層上の配線に接続されており、且つ、前記配線上に形成された上部絶縁層を介して外部接続端子が設けられていると共に、前記上部絶縁層を用いて電子部品搭載用の接続電極が設けられている、半導体装置に係わり、また、前記半導体装置の製造方法であって、
前記下部絶縁層によって前記能動素子を被覆する工程と、
前記下部絶縁層によって前記受動素子を被覆する工程と、
前記下部絶縁層を介してこの絶縁層上に、前記能動素子及び/又は前記受動素子に接続された前記配線を形成する工程と、
前記配線上に形成された前記上部絶縁層を介して外部接続端子を設ける工程と、
前記上部絶縁層を用いて電子部品搭載用の前記接続電極を設ける工程と
を有する、半導体装置の製造方法に係わるものである。
【0020】
更に、前記半導体装置が絶縁物質層中に埋設され、この絶縁物質層を介して外部接続電極が形成されている、半導体装置の実装構造にも係わるものである。
【0021】
なお、前記下部絶縁層とは、前記配線よりも前記基体側に形成されている絶縁層のことである。
【0022】
本発明によれば、前記基体上に形成された前記下部絶縁層によって、少なくともフェイスアップ式の前記能動素子と前記受動素子とが被覆され、前記能動素子及び/又は前記受動素子が、前記下部絶縁層を介してこの絶縁層上の配線に接続されているため、必要な電気的接続を形成しながら、前記能動素子や前記受動素子を前記下部絶縁層に埋設し、例えば絶縁層同士の接着力を利用して複数の絶縁層を積層して前記下部絶縁層を形成し、所望の機能を有する半導体装置を可能な限り薄い厚さで、しかも絶縁層で保護してパッケージ化することができる。
【0023】
即ち、前記下部絶縁層が有する多様な機能、即ち、表面や貫通孔に導電体等を付着させて前記受動素子や前記配線を形成し得る機能、前記能動素子や前記受動素子を被覆し、外部からの機械的、化学的、或いは電気的な悪影響から保護しつつ、これらの素子を所定の位置に保持する機能、厚さの小さい薄膜を容易に形成でき、しかも絶縁層間の接着力のみで容易に積層構造を作り得る機能等を十二分に利用し、従来回路基板やモールド樹脂等によって分担されていた、素子の高密度実装と保護の役割を、前記下部絶縁層のみで実現するものであるから、本発明の半導体装置は、小型、薄型、軽量で、低コストなSiPとなり、また、前記能動素子がフェイスアップで保持されているため、前記下部絶縁層を介して幅及びピッチの微細な配線を任意に施すことができ、設計の自由度が増し、積層する絶縁層を増やすことにより多種の素子を内蔵して多機能化することが容易である。
【0024】
更に、本発明の半導体装置は、前記配線上に形成された前記上部絶縁層を介して前記外部接続端子が設けられ、前記上部絶縁層を用いて電子部品搭載用の前記接続電極が設けられているので、半導体装置の仕様を変更する必要が生じたときにその変更が容易である。例えば、半導体チップ等の能動素子を前記下部絶縁層に埋め込んだ状態で、前記接続電極に別の能動素子を外付け可能としたので、SiPの性能を向上させたり、品種やレイアウトの変更や新しい機能の追加が可能で、SiPの設計の自由度が増すことになる。
【0025】
また、RF回路等で、例えば、回路の基本部分は変わらないが、適用する周波数に応じて一部のコンデンサの容量を変更する必要がある場合に、本発明の半導体装置を用いてRF回路の基本部分を作製し、前記コンデンサを前記接続電極に外付けすることにより幅広い周波数に対応すること等が可能である。
【0026】
また、不良品率や故障率の高い半導体チップ等の電子部品を搭載した場合、絶縁層に埋め込んだ後ではSiPの動作不良による歩留まり低下を生じてしまうが、そうした電子部品を前記接続電極に外付け可能とすることにより、これらの電子部品の不良や故障の発生に対し、不良部品の交換で対応することができるので、SiPの歩留まりを低下させることがない。
【0027】
本発明の製造方法は、本発明の半導体装置を再現性良く製造できる方法であり、また、本発明の実装構造は、本発明の半導体装置を他の電気部品と共に回路基板等に実装するのを容易にする構造である。
【0028】
【発明の実施の形態】
本発明において、前記電子部品としての例えば能動素子(例えば半導体チップ)が前記下部絶縁層表面に設けられた前記接続電極に接続されるのがよい。例えば、仕様の変更に伴って変更される能動素子や、追加的に設けられる能動素子や、不良品率や故障率の高い能動素子等は、前記能動素子として前記下部絶縁層に埋め込むのではなく、前記接続電極に外付け接続するのがよい。これによって、仕様の変更、性能の向上や機能の追加、及び部品不良や故障の発生等に、それぞれ対応することができる。
【0029】
この際、前記半導体装置の耐久性を向上させるために、少なくとも、前記電子部品と前記接続電極との接続部が絶縁性物質で封止されているのがよい。この際、前記外部接続端子の近傍において、前記電子部品が前記下部絶縁層上に設けられた前記上部絶縁層の凹部内に固定されているのが望ましいが、前記上部絶縁層上に固定されていてもよい。また、その固定位置も前記外部接続端子部が望ましいが、他の位置であってもよい。
【0030】
また、前記配線上に前記上部絶縁層が形成され、この上部絶縁層上に外部接続電極が設けられていて、前記配線が前記下部絶縁層上に、そして前記外部接続電極が前記上部絶縁層上に、それぞれ形成されているのがよい。
【0031】
また、前記下部絶縁層に形成された接続孔に、前記能動素子及び/又は前記受動素子と前記配線とを接続するための導電体が形成されているのがよい。より詳しく説明すると、下記の通りである。
【0032】
本発明の半導体装置は、通常、複数の絶縁層が積層されて前記下部絶縁層が構成された構造を有する。各絶縁層は類似した構造をもち、下部に受動素子や半導体チップが形成又は固定され、下部に配置されたこれらの素子の電極等をこの絶縁層の上部表面に引き出すための導電体プラグが絶縁層を上下方向に貫いて形成され、上部表面には、この導電体プラグと接合して、各素子間を電気的に接続、或いは電極位置を再配置するための配線等が設けられている。この構造は、前記半導体チップをフェイスアップ式にフリップチップ実装することによって実現可能になる。
【0033】
具体的には、前記絶縁層を前記導電体プラグや前記配線に対応してパターニングし、そのパターンにめっきによって銅などの金属を埋め込むことによって、前記導電体プラグと前記配線の形成を行うのがよい。
【0034】
インダクタンス素子は前記配線の一部として形成することができる。
【0035】
積層構造としては、特に制限されることはなく、種々の構造が考えられる。例えば、第1絶縁層によって第1の受動素子(例えばコンデンサ;以下、同様。)が被覆され、前記第1絶縁層上の第2絶縁層によって第2の受動素子(例えばインダクタ;以下、同様。)と半導体チップとが被覆されている半導体装置、及び前記第2絶縁層上の第3絶縁層(上部絶縁層)を用いて前記電子部品としての第2の能動素子が前記接続電極に接続されている半導体装置を挙げることができる。要は、必要な電気的接続を形成しながら前記半導体チップや前記受動素子を各絶縁層に埋設し、その絶縁層を積層することで、所望の機能を有するシステムを1つのパッケージとして組み上げることである。
【0036】
前記基体上に半導体チップを固定するに際し、前記基体上又は前記下部絶縁層上の位置合わせ目標と、前記半導体チップの電極との両方を、例えばCCD(Charge Coupled Device)カメラを用いて同一視野内で認識しつつ、前記半導体チップの位置決めを行うのがよい。これにより、±2.5μmの搭載精度を達成することができる。
【0037】
前記半導体チップが複数個必要な場合には、複数の前記半導体チップを積層して固定するのが、全体をコンパクトに作る上で有利である。
【0038】
前記基体の表面側を保護シートで保持した状態で裏面を研削することによって、前記基体を薄型化する際、予め前記基体の表面側から分離溝を形成しておき、この分離溝に達するように前記基体の薄型化を行うことによって、薄型化と個片化を同時に行えるようにするのがよい。
【0039】
また、半導体チップとなる半導体ウエーハを個片化するに際し、前記半導体ウエーハの電極面に保護シートを被着した状態で前記電極面とは反対側の裏面を研削することによって、前記半導体ウエーハを薄型化し、前記保護シートを被着したまま前記半導体ウエーハをダイシングシートに貼り付け、しかる後に前記保護シートを除去してダイシングを行うことによって、薄型化した半導体チップを得、この半導体チップを前記基体上に固定するのがよい。これにより、研削のための支持基板等の材料や加工設備の一部が不要になり、薄型化のコストを低下させることができる。
【0040】
前記基体がシリコン基板であるのがよい。前記絶縁層の形成には何らかの支持体が必要であるが、そのような支持体としてシリコン基板が最も適している。シリコン基板は、機械的強度や、耐熱性、熱伝達性、平坦性、微細加工性等に優れているばかりでなく、長い半導体加工の歴史の中で蓄積されてきた技術や設備を利用できるメリットがある。例えば、大型の極めて平坦性の優れた材料が入手でき、容易に微細パターンを形成できるほか、上述した研削加工により容易に薄型化することができる。また、必要なら、基板を単なる基板ではなく、能動素子を形成する材料として用いることもできる。
【0041】
前記絶縁層の材料として感光性ポリイミドを用いるのがよい。ポリイミドは、耐熱性や機械的強度等に優れた構造材料であるばかりでなく、誘電率が低く、絶縁性が高いなど、電気的特性も優れている。その上、感光性ポリイミドからなる絶縁層は、露光と現像によって容易に前記導電体や前記配線に対応したパターンにパターニングすることができる。
【0042】
前記半導体装置の実装構造は、絶縁物質層上に他の機能部品と共に実装されているのがよい。例えば水晶振動子のように、前記半導体装置に組み込めないものや組み込むメリットのないものは、例えばFR−4規格のガラスエポキシ基板等を用いて前記半導体装置と共に実装するようにするのがよい。
【0043】
次に、本発明の好ましい実施の形態を図面参照下に具体的に説明する。
【0044】
半導体装置(SiP)
図1(a)は、本発明の好ましい実施の形態に基づく半導体装置(システム・イン・パッケージ;以下、SiPと略記する。)の一例を示す概略断面図である。
【0045】
このSiPでは、基板上に、第1絶縁層である絶縁層11によってキャパシタ(コンデンサ)10が被覆埋設され、その上に第2絶縁層である絶縁層21によってインダクタ20と半導体チップであるICチップ30が被覆埋設され、最上部に、SiP内部を被覆して保護しながら、SiP内部の電極位置や配線と、外部機器の電極位置等との間を調整するバッファ層の機能も有する絶縁層44が積層されている。更に、絶縁層44の外部接続端子部には、絶縁層44に形成した凹部47内に埋め込むように第2のICチップ50が外付けで搭載されている。
【0046】
基板の表面を配線形成領域として用いて単層の絶縁層でSiPを作製することも不可能ではないが、多様な機能を実現しながら面方向のサイズをコンパクトにするためには、図1に示すように複数の絶縁層を積層する構造が望ましい。
【0047】
各絶縁層は類似した構造をもち、下部に受動素子や半導体チップが形成又は固定され、下部に配置されたこれらの素子の電極等を上部表面に引き出すための導電体プラグ(16や26など)等が絶縁層を上下方向に貫いて形成され、その絶縁層の上部表面には、導電体プラグ(16や26など)に接合し、各素子間を電気的に接続、或いは電極位置を再配置するための導電層(25など)が設けられている。この構造によって、半導体チップ30をフェイスアップでフリップチップ実装することが可能になる。なお、各プラグは後述の方法で形成されたシード層と電解めっき層との積層体からなる。
【0048】
以下、各部をより詳細に説明する。
【0049】
このSiPでは基板としてシリコン基板1を用い、その表面上に絶縁層として酸化シリコン膜2が、4000Å以上の厚さに設けられている。シリコン基板1の厚さは、研削によって50μmに薄型化されている。基板としては、シリコン基板以外に、例えばガラス基板やセラミック基板を用いることができる。
【0050】
酸化シリコン膜2の上には、下部電極3(厚さ1μm程度のアルミニウム又は銅の薄膜)、誘電体層4、誘電体層4の保護層5(酸化ケイ素膜又は窒化ケイ素膜)、及び下部電極3の引き出し電極6と上部電極7(厚さ1μm程度のアルミニウム又は銅の薄膜)とが順次積層され、キャパシタ10が形成されている。
【0051】
誘電体層4の材料は、酸化タンタルTa、BST(チタン酸バリウムストロンチウムBaSr1−xTiO)、PZT(チタン酸ジルコン酸鉛PbZrTi1−x)、チタン酸バリウムBaTiO、窒化ケイ素SiN、PI(ポリイミド)、又は酸化ケイ素SiO等の中から、キャパシタ10の容量と耐圧を考慮して選ばれる。
【0052】
例えば、0.1pF〜40pF程度のキャパシタ10を形成するには、酸化タンタルTaを用いる。この場合、膜厚を40nmとすると、単位容量は、7fF/μm程度であり、耐圧は、電流密度1μA/cmにおいて4V程度である。
【0053】
このように、本実施の形態に基づくSiPは、誘電体材料を多くの材料の中から選択でき、様々な容量と耐圧を有するキャパシタを形成できる点でも、LTCC基板を用いる従来法に比べ優れている。
【0054】
キャパシタ10の上には、キャパシタ10を被覆すると共に、その上にインダクタ20等の導電層を形成するための絶縁層11が設けられている。
【0055】
絶縁層11の厚さは、インダクタ20を流れる電流によってシリコン基板1に誘導電流が誘起され、インダクタ20のQ値が低下することがないように、50μm以上の厚さになっている。なお、Q値とは、強制振動における共鳴の鋭さを表す量で、インダクタの性能を示す重要な指標である。
【0056】
絶縁層11の材料は、誘電率の小さい材料がよく、例えば、誘電率が2.9〜3.3程度のポリイミド(PI)、ポリベンゾオキサゾール(PBO)、エポキシ樹脂、又はポリアミドイミド樹脂等である。
【0057】
絶縁層11の上には、導電層によってインダクタ20や(図示省略した)配線部やランド部17が形成され、ランド部17は、プラグ部16によってキャパシタ10の電極6及び7と接続されている。
【0058】
また、絶縁層11の上には半導体チップであるICチップ30も、ダイアタッチフィルム(DAF)を用いて固定されている。スペースを有効に利用するため、ICチップ30は、ランド部17や配線部と上下に重なるように配設することができる。
【0059】
ICチップ30の厚さは、研削によって例えば50μmに薄型化されている。また、2個以上のICチップを積層して搭載する場合や、特に厚さに制約がある場合には、ICチップの厚さを例えば25μmに薄型化したものを搭載する。
【0060】
インダクタ20やICチップ30の上には、これらを被覆する絶縁層21が設けられ、絶縁層21の上には、IC電極32の引き出し部等を形成する導電層25が設けられている。
【0061】
導電層25は、SiP内部の電極位置を外部に向けて再配置する役割をもち、その上に設けられる銅ポスト43及び外部接続電極45は、外部機器と接続するのに都合のよい位置に設けられる。絶縁層44は、この半導体装置を最も外側で平坦に被覆して、内部を保護するとともに、SiPの外形を整え、SiPの信頼性を向上させる。導電層25、銅ポスト43、外部接続電極45及び絶縁層44は、SiPを例えばFR−4等のマザー基板に実装する際、接続の信頼性が向上するように調整するバッファ層として機能する。
【0062】
外部接続電極がはんだバンプ45である場合には、はんだバンプ45の配置は、エリアアレイ型又はペリフェラル型のBGA(Ball Grid Array)パッケージの標準の電極位置と一致するものとする。また、導電層25には、外部接続電極45に対応する位置にランド部27が設けられている。
【0063】
図示は省略するが、外部接続電極を、はんだバンプに代えてランドとしてもよい。この場合、ランドは相手方電極とはんだペーストを用いて接合される。ランドの配置は、LGA(Land Grid Array)パッケージの標準の電極位置と一致するようにする。
【0064】
更に、絶縁層44において、外部接続電極45が形成されている外部接続端子部に設けられた凹部47に埋め込むように第2のICチップ50が固定され、凹部47に設けられた接続電極48に接続され、少なくともこの接続部が絶縁性物質である絶縁性樹脂49で封止されている。
【0065】
図1(a)に示すように、第2のICチップ50をフリップチップ接続する場合には、第2のICチップ50の電極部51に、Ni/Au、UBM、はんだバンプ、又はAuスタッドバンプ等を形成し、熱圧着又は超音波圧着で接続電極48と接合する。接合後、絶縁性樹脂49としてNCP(non conductor paste)、NCF(non conductor film)、ACP(anisotropic conductor paste)、又はACF(anisotropic conductor film)等を用いて、接合部を封止する。
【0066】
図1(b)に示すように、ワイヤ52でワイヤボンディング接続する場合には、接続電極48にNi/Auめっきを行い、ワイヤボンディングする。ワイヤボンディング後、エポキシ樹脂、ポリイミド樹脂、又はフェノール系樹脂等を絶縁性樹脂49として用いて封止する。
【0067】
半導体装置(SiP)の作製
次に、図1に示したSiPを作製する工程例を、図2〜図10の概略断面図を参照しながら工程順に説明する。
【0068】
まず、図2(1)に示すように、オリエンテーションフラット又はノッチをもつ多結晶又は単結晶シリコンウエーハ(直径:8インチ、厚さ:725μm、抵抗率:1〜20Ω・cm)等のシリコン基板1を用意し、シリコン基板1の表面上にCVD(Chemical Vapor Deposition)法又は熱酸化法によって酸化シリコン膜2を4000Å以上の厚さに成膜する。基板としては、シリコン基板以外に、例えばガラス基板やセラミック基板を用いることができる。
【0069】
[キャパシタの形成]
次に、図2(2)に示すように、MIM−C(Metal Insulator Metal−Capacitor)プロセスにより、キャパシタ10を形成する。
【0070】
まず、下部電極3として、例えば、スパッタ法若しくは蒸着法によってアルミニウム又は銅の薄膜を厚さ1μm程度に形成する。更に、図示は省略するが、下部電極3が誘電体層4と接する部位には、酸化反応防止膜として窒化チタン膜を50nmの厚さに形成する。
【0071】
次に、CVD法又はスパッタ法にて誘電体層4を形成する。誘電体材料としては、酸化タンタル、BST、PZT、チタン酸バリウム、窒化ケイ素、ポリイミド、又は酸化ケイ素等の中から、キャパシタ10の容量と耐圧を考慮して選択する。
【0072】
例えば、0.1pF〜40pF程度のキャパシタ10を形成するには、誘電体層4として酸化タンタルTa層を用いる。この場合、膜厚を40nmとすると、単位容量は、7fF/μm程度であり、耐圧は、電流密度1μA/cmにおいて4V程度である。
【0073】
更に、誘電体層4の保護層5として、CVD法によって酸化ケイ素膜又は窒化ケイ素膜を形成し、リアクティブイオンエッチング(RIE)により電極取り出し用の窓開けを行う。そして、窓開けしたところに下部電極3の引き出し電極6及び上部電極7として、スパッタ法若しくは蒸着法によってアルミニウム又は銅の薄膜を形成し、キャパシタ10を完成する。
【0074】
[インダクタの形成]
次に、図2(3)〜図4(9)に示すように、絶縁層11を形成し、その上に導電体パターンを形成し、インダクタ(L)20等を作製する。
【0075】
まず、図2(3)に示すように、絶縁層11を形成する。絶縁層11の厚さは、インダクタ20を流れる電流によってシリコン基板1に誘導電流が流れ、インダクタ20のQ値が低下することがないように、50μm以上の厚さとする。
【0076】
絶縁層11の材料は、誘電率の小さい材料がよく、例えば、誘電率が2.9〜3.3程度のポリイミド、ポリベンゾオキサゾール、エポキシ樹脂、又はポリアミドイミド樹脂等を用いる。絶縁層11は、スピンコート法、印刷法、又はディスペンス法によって形成する。
【0077】
例えば、感光性ポリイミドを用い、スピンコート法によって絶縁層11を形成する場合には、下記の成膜条件によって50μmの厚さの絶縁層11を形成する。
塗布液の粘度:200P(ポアズ);
スピンコータの回転速度:800rpmで30秒間回転させ、続いて1500rpmで30秒間回転させる;
プリベーク:窒素ガス雰囲気中にて、90℃で300秒間加熱し、続いて110℃で300秒間加熱する。
【0078】
次に、図2(4)に示すように、キャパシタ10の電極6及び7と接続するためのプラグ部16を作製するための接続孔(ビアホール)12として、絶縁層11に例えば直径50μmの孔を形成する。
【0079】
絶縁層11を感光性ポリイミドで形成した場合には、下記の条件による露光・現像によって接続孔(ビアホール)12を形成する。
露光:ステッパを用い、ブロードバンド光を、i線換算にて400mJ/cm照射;
現像:スピンデベロッパを用いて、スプレー現像を行う;J.E.T.(Ju st Exposure Time)×1.8倍;
現像検査:インスペクションマシーンによって行う;
ポストベーク:酸素濃度40ppm以下の雰囲気中で、150℃で0.5時間加熱し、続いて250℃で2.0時間加熱する。
【0080】
現像後、絶縁層11の表面のスカム(レジストの残渣)除去処理を行う。スカム除去処理は、例えば、プラズマアッシング装置を用い、酸素流量100sccm、RF出力100(〜300)mWの条件下で、10分間行う。
【0081】
次に、図3(5)に示すように、シード層(下地金属層)13としてチタン膜と銅膜との積層膜をスパッタ法によって形成する。
【0082】
スパッタは、例えば、下記の条件で行なう。
膜厚:厚さ1600Åのチタン膜を成膜後、その上に厚さ6000Åの銅膜を積層する。
真空度:3.6×10−3Pa;
スパッタ圧力:6.1×10−1Pa;
アルゴンガス流量:110〜115cm/min;
スパッタ電力:2000〜3000W
【0083】
シード層(下地金属層)13は、無電解めっき法によって形成してもよい。
【0084】
次に、フォトレジストを塗布し、インダクタ20等の導電体パターンに対応した露光を行い、現像とスカム除去処理を行い、図3(6)に示すように、導電体パターンに対応したレジストパターン14を形成する。
【0085】
例えば、スピンコート法によってレジストを塗布し、下記の条件による現像でレジストパターン14を形成する。
スピンコータの回転速度:500rpmで10秒間回転させ、続いて4000rpmで30秒間回転させ、更に5000rpmで0.5秒間回転させ、その後3秒間で徐々に減速して停止させる;
現像:現像液P−7Gを用い、スピンデベロッパで現像する。基板1に現像液を散布しながら50rpmで3秒間回転させた後、30秒間停止させる処理を7回繰り返す;
リンス:500rpmで回転させながら、純水を60秒間基板1に散布する;
スピンドライ:基板1を3000rpmで30秒間回転させ、水を振り切って乾燥させる;
現像検査:インスペクションマシーンを用いる。
【0086】
レジストパターン14を形成した後、表面のスカム除去処理を行う。スカム除去処理は、例えば、プラズマアッシング装置を用い、酸素流量100sccm、RF電力100(〜300)mWの条件下で10分間行う。
【0087】
続いて、図3(7)に示すように、レジストパターン14をマスクとして、銅の電解めっき法により導電層15を埋め込み、プラグ部16、ランド部17、配線部18、及びインダクタ部20を形成する。配線部18は、例えば約5μmの厚さに形成する。
【0088】
電解めっきは、例えば、下記の条件で行う。
洗浄:バンプクリーナーに30分間浸漬した後、1分間水洗し、続いて30秒間、5%硫酸水溶液に浸漬した後、1分間水洗する;
脱脂洗浄:40℃で1分間行う;
湿潤処理:40℃で2分間行う;
酸水洗:1分間行う;
硫酸銅メッキ液:液温25℃;硫酸銅濃度:50g/l、硫酸濃度:25g/l;
光沢処理:Cu Bright VF−2(エバラ社の商品名)(A液20cm/lとB液:10cm/lとを混合);
DK(陰極電流密度):0.03A/cm
【0089】
電解めっき終了後、図3(8)に示すように、レジスト14を除去し、レジスト残渣のアッシング処理を行う。例えば、アルカリ液を用いてレジストを剥離させた後、プラズマアッシング装置を用い、テトラフルオロメタンCFと酸素とを、それぞれ流量50sccmで流しながら、RF電力25Wを印加して残渣をアッシングする。このアッシング処理を、5分間ずつ2回繰り返す。
【0090】
次に、導電層15の表面の酸化膜を除去するためのライトエッチングを行い、続いて導電層15をマスクにして、導電層15下部以外のシード層13(銅膜及びチタン膜)をエッチング除去して、インダクタ20とランド部(接続端子)17を形成する(図4(9))。
【0091】
各層は、例えばウエットエッチング装置を用いて、次の条件でエッチング除去する。
【0092】
<酸化膜のライトエッチング>
薬液としてフッ化水素酸を用いる。
【0093】
<銅膜>
薬液としてSO−YO(関東化学社製)を用い、基板1を50rpmで回転させながら、15秒間薬液を散布して洗浄する。次に、基板1を500rpmで回転させながら、純水を60秒間散布する(リンス)。次に、基板1を3000rpmで30秒間回転させて水を振り切り、乾燥させる(スピンドライ)。
【0094】
<チタン膜>
薬液としてSO−1(関東化学社製)を用い、基板1を50rpmで回転させながら、25秒間薬液を注いで洗浄する。次に、基板1を500rpmで回転させながら、純水を60秒間散布する(リンス)。次に、基板1を3000rpmで30秒間回転させて水を振り切り、乾燥させる(スピンドライ)。
【0095】
[ICチップの薄型化加工]
上記とは別に、シリコン基板1に搭載するICチップ30を用意する。ICチップ30は、樹脂層に埋め込むため、図4(10)〜図4(13)に示すように、IC基板を研削してチップを薄型化する加工を施すことが必須である。薄型化加工は、ICチップ30がウエーハ上に形成された段階で、チップ状に個片化される前に行うのがよい。
【0096】
まず、図4(10)に示すように、公知の方法でICチップ30が形成されたIC基板(ウエーハ)31の表面に、薄型化加工のための基板としてバックグラインド用保護テープ34を貼り付ける。保護テープ34自体に粘着層があるので、加熱することなく、加圧ローラにて貼り付けを行う。例えば、非紫外線硬化型のサポートタイプで、総厚265μmのものを用いることができる。IC基板31としては、例えばシリコン基板やガリウム砒素基板を用いることができる。
【0097】
保護テープ34の貼り付け後、粗研削用と仕上げ研削用の、粗さの異なる2種類の砥石を使用して研削し、基板31の仕上がり厚さを50μmとする(図4(11))。
【0098】
例えば、基板31がガリウム砒素基板である場合には、#600の砥石を用いてスピンドル回転数3000rpmで粗研削し、#2000の砥石を用いてスピンドル回転数3000rpmで仕上げ研削を行い、IC基板31の厚さを初期厚さ120μmから70μm減少させる。
【0099】
次に、図4(12)に示すように、厚さ50μmに薄型化したIC基板31の裏面にダイアタッチフィルム(DAF)35とダイシングシート36とを貼り付ける。DAF35とダイシングシート36とは一体型のもので、ダイアタッチフィルム35(厚さ10〜50μm)、(図示省略した)接着層(厚さ5μm)、及び、例えばポリオレフィン製のダイシングシート36(厚さ100μm)の3層が積層された構造である。貼り付けは、手動又は自動機で行う。
【0100】
自動機を用いる場合には、例えば下記の条件で貼り付ける。
自動貼り付け機:PM−8500(日東電工製)を使用;
温度:40℃;
圧力:15N/cm
ラミネート速度:10mm/sec;
【0101】
次に、ダイシングによってICチップ30を個片化する。上記のようにダイシングシート36に貼り付けて一体型化してテープカットダイシングを行う場合では、上記の条件でダイシング用リングに貼り合わせ後、バックグラインド用保護テープ34を取り除き、フルカットダイシングを行う(図4(13))。
【0102】
ダイシングは、IC基板(ウエーハ)31の材質に応じて、下記の条件で行う。
<厚さ50μmのシリコン基板を切断する場合>
ブレード:2050 27HECC(DISCO社製);
スピンドル回転数:3000rpm;
送り速度:30mm/sec
<厚さ50μmのガリウム砒素基板を切断する場合>
ブレード:ZH126F(DISCO社製);
スピンドル回転数:3000rpm;
送り速度:5mm/sec;
切り込み量:40〜85μm
【0103】
[基板へのICチップの搭載]
次に、薄形化され、個片化されたICチップ30をダイシングシートから取り外し、シリコン基板1に搭載する(図5(14))。この際、DAF35は、絶縁性のある接着材として、絶縁層11の上にICチップ30を接着固定する。
【0104】
ダイシングシートからのピックアップは、下記の条件で行う。
<ニードルの場合>
プランジアップ速度:80〜100mm/sec;
ピックアップ保持時間:10〜50msec;
ピックアップリフト:400μm;
エキスパンド:(最小)5μm;
<ニードルレスの場合>
ストローク:3000μm;
速度:10mm/sec
【0105】
図5(15)は、精度5μmでICチップ30をフェイスアップの状態でダイボンディングして、精度5μmで基板1の上に固定する方法を示す説明図である。ICチップ30をピックアップするツール37はセラミックス製のものである。ボンディング(搭載)は、ツール温度110℃、荷重1N/ダイで行い、1秒間でピール強度1kgf以上となる。シリコン基板1との合わせ精度は、±2.5μm以内である。
【0106】
以下、具体的に説明する。まず、ウエーハエキスパンドしたウエーハ又はチップトレーの上のICチップ30に対して、パターン認識による検査を行い、あらかじめ良品、不良品判定を行う。ツール37は、良品と判定されたICチップ30のみをピックアップする。
【0107】
ピックアップ時の座標は、基板1にあらかじめ形成した位置合わせ目標39と、搭載するICチップ30のパッド(電極)32の位置を入力する。ツール37はICチップ30のパッド(電極)32から100〜500μm程度一方向にオフセットした位置を吸着する。これにより、基板1の位置合わせ目標39とパッド(電極)32とを共に1つのCCDカメラ38の視野の中におさめた状態で、基板1とICチップ30との位置合わせが可能になる。
【0108】
より具体的には、図5(15−1)に示した装置を用いて、ICチップ30の水平方向搭載位置近傍で、ICチップ30を吸着したツール37を鉛直方向搭載位置近傍まで鉛直方向に下降させ、図5(15−2)及び(15−3)に示すように、この位置で基板1の位置あわせ目標39と、ICチップ30のパッド(電極)32との位置測定を行い、水平方向の位置合わせを行った後、更にツールを下降させてICチップ30を基板1に圧着させ、加圧加温して基板1へのICチップ30の搭載を完了させる。
【0109】
この際、カメラの視野は、縦480μm、横640μmの長方形状で、パターンマッチングはエッジ検出によって行う。搭載精度は、±2.5μmを達成する。搭載条件は、例えば、130℃、1N/ダイである。加熱はツール37のヒータのみで行うことで、基板1の上の銅配線の酸化を防止する。搭載後、窒素ガスでブローし、ツール37を常温まで冷却する。
【0110】
[ICチップの埋め込みと電極引き出し部の形成]
次に、図5(16)〜図7(20)に示すように、搭載したICチップ30を絶縁層中に埋め込み、IC電極32の引き出し部等を形成する。この工程は、図2(3)〜図4(9)に示した工程とほぼ同様で、絶縁層21の形成、接続孔22の形成、シード層23の形成、レジストパターン24の形成、及び電解めっきによる導電層25の形成等の工程からなる。
【0111】
まず、図5(16)に示すように、絶縁層21を、スピンコート法、印刷法、又はディスペンス法によって形成する。この絶縁層21により、ICチップ30を上面まで完全に埋め込む。絶縁層21の塗布条件は、シリコン基板上の絶縁層11の塗布条件と同様とする。
【0112】
絶縁層21の材料は、誘電率の小さい材料がよく、例えば、ポリイミド、ポリベンゾオキサゾール、エポキシ樹脂、又はポリアミドイミド樹脂等を用いる。
【0113】
例えば、感光性ポリイミドを用い、スピンコート法によって絶縁層21を形成する場合には、下記の成膜条件によって絶縁層21を形成する。
塗布液の粘度:200P(ポアズ);
スピンコータの回転速度:800rpmで30秒間回転させ、続いて1200rpmで30秒間回転させる;
プリベーク:窒素ガス雰囲気中にて、60℃で240秒間加熱し、続いて90℃で240秒間加熱し、更に110℃で240秒間加熱する。
【0114】
次に、図6(17)に示すように、絶縁層21に電極取り出し用の接続孔22を、例えば直径50μmの大きさで形成する。
【0115】
絶縁層21を感光性ポリイミドを用いて形成した場合には、下記の条件による露光・現像によって接続孔22を形成する。
露光:ステッパを用い、ブロードバンド光を、i線換算にて400mJ/cm照射;
現像:スピンデベロッパを用いて、スプレー現像を行う;J.E.T.×1 .8倍;
現像検査:インスペクションマシーンによって行う;
ポストベーク:酸素濃度40ppm以下の雰囲気中で、150℃で0.5時間加熱し、続いて250℃で2.0時間加熱する。
【0116】
現像後、絶縁層11の表面のスカム(残渣)除去処理を行う。スカム(残渣)除去処理は、例えば、プラズマアッシング装置を用い、酸素流量100sccm、RF電力100mWの条件下で、10分間行う。
【0117】
次に、図6(18)に示すように、シード層(下地金属層)23としてチタン膜と銅膜との積層膜をスパッタ法によって形成する。
【0118】
スパッタは、例えば、下記の条件で行なう。
膜厚:厚さ1600Åのチタン膜を成膜後、その上に厚さ6000Åの銅膜を積層する;
真空度:3.6×10−3Pa;
スパッタ圧力:6.1×10−1Pa;
アルゴンガス流量:110〜115cm/min;
スパッタ電力:2000〜3000W
【0119】
次に、フォトレジストを塗布し、配線パターンに対応した露光を行い、現像とスカム除去処理を行い、図6(19)に示すように、配線パターンに対応したレジストパターン24を形成する。
【0120】
例えば、スピンコート法によってレジストを塗布し、下記の条件による現像でレジストパターン24を形成する。
スピンコータの回転速度:500rpmで10秒間回転させ、続いて4000rpmで30秒間回転させ、更に5000rpmで0.5秒間回転させ、その後3秒間で徐々に減速して停止させる;
プリベーク:110℃で30分間加熱する;
露光:ステッパを用いる;
現像:現像液P−7Gを用い、スピンデベロッパで現像する。基板1に現像液を散布しながら50rpmで3秒間回転させた後、30秒間停止させる処理を7回繰り返す;
リンス:500rpmで回転させながら、純水を60秒間基板1に散布する;
スピンドライ:基板1を3000rpmで30秒間回転させ、水を振り切って乾燥させる;
現像検査:インスペクションマシーンを用いる。
【0121】
レジストパターン24を形成した後、表面のスカム除去処理を行う。スカム除去処理は、例えば、プラズマアッシング装置を用い、酸素流量100sccm、RF電力100mWの条件下で10分間行う。
【0122】
続いて、図7(20)に示すように、レジストパターン24をマスクとして、例えば銅の電解めっき法により、接続孔22と配線パターン部とに導電層25を埋め込み、プラグ部26、ランド部27、及び配線部等を形成する.例えば、プラグ部26の直径は50μm、ランド部27の直径は70μm、そして配線部の厚さは約5μmに形成する。このとき、第2のICチップ50を接続するための接続電極48と、接続電極48に接続される配線(図示省略)も形成する。
【0123】
電解めっきは、例えば、下記の条件で行う。
洗浄:バンプクリーナーに30分間浸漬した後、1分間水洗し、続いて30秒間、5%硫酸水溶液に浸漬した後、1分間水洗する;
脱脂洗浄:40℃で1分間行う;
湿潤処理:40℃で2分間行う;
酸水洗:1分間行う;
硫酸銅メッキ液:液温25℃;硫酸銅濃度:50g/l、硫酸濃度:25g/l;
DK(陰極電流密度):0.03A/cm
【0124】
電解めっき終了後、レジスト24を除去し、レジスト残渣のアッシング処理を行う。例えば、アルカリ液を用いてレジスト24を剥離させた後、プラズマアッシング装置を用い、テトラフルオロメタンCFと酸素とを、それぞれ流量50sccmで流しながら、RF電力25Wを印加して残渣をアッシングする。このアッシング処理を、5分間ずつ2回繰り返す。
【0125】
[バッファ層と外部接続電極の形成]
次に、図7(21)〜図9(27)に示すように、FR−4等のマザー基板との接続信頼性を向上させるためのバッファ層として、外部接続電極取り出し用の銅ポスト43とそれ以外の部分を平坦に被覆する絶縁層44とを形成し、第2のICチップを装着し、銅ポスト43の露出面に外部接続電極45を形成する。
【0126】
まず、導電層25の表面の酸化膜をフッ化水素酸を用いるライトエッチングによって取り除いた後、感光性ドライフィルム(レジスト膜)41を貼り付ける。このレジスト膜41の一部をマスクして露光した後、カバーフィルムを剥離して除き、現像し、スカム除去処理を行い、銅ポスト43に対応した空孔42をレジスト膜41に形成する(図7(21))。
【0127】
その後、図7(22)に示すように、レジスト膜41をマスクにした電解めっきを行い、空孔42に銅を埋設して、例えば、直径150μm、高さ100μmの銅ポスト43を形成する。
【0128】
次に、図8(23)に示すように、ドライフィルム41を剥離し、続いて導電層25をマスクにして、導電層25下部以外のシード層23をエッチング除去して、導電層25からなるプラグ部26、ランド部27、接続電極48、及び配線部等の形成を終了する。
【0129】
シード層23の銅膜とチタン膜の除去は、例えば、ウエットエッチング装置を用いて次の条件で行う。
<銅膜>
薬液としてSO−YOを用い、基板1を50rpmで回転させながら、15秒間薬液を散布して洗浄する。次に、基板1を500rpmで回転させながら、純水を60秒間散布する(リンス)。次に、基板1を3000rpmで30秒間回転させて水を振り切り、乾燥させる(スピンドライ)。
<チタン膜>
薬液としてSO−1を用い、基板1を50rpmで回転させながら、25秒間薬液を注いで洗浄する。次に、基板1を500rpmで回転させながら、純水を60秒間散布する(リンス)。次に、基板1を3000rpmで30秒間回転させて水を振り切り、乾燥させる(スピンドライ)。
【0130】
次に、図8(24)に示すように、銅ポスト43が立った状態で、スピンコート法、印刷法、又はトランスファーモールド法によってエポキシ樹脂、PBO、PI樹脂、又はフェノール樹脂等の絶縁層44を形成し、銅ポスト43を完全に被覆する。絶縁層44は、真空オーブン中で脱泡し、更に120℃で1時間、引き続いて150℃で2時間キュアする。
【0131】
この際、例えば印刷法で絶縁層44を付着させる場合は、銅ポスト43の上面を10μm以上の厚さで覆うようにスキージングを行い、表面の凹凸が±30μm程度以内になるように仕上げる。このとき、凹部47に樹脂が浸入しないようにする。
【0132】
樹脂硬化後、図9(25)に示すように、表面を研削して、銅ポスト43の頭出しを行う。この際、例えば、#600の砥石を用いて、スピンドル回転数3000rpmで研削を行う。その後、接続電極48や銅ポスト43の露出部に酸化膜が形成されるのを防止するための活性化処理を行う。
【0133】
次に、図9(26)に示すように、凹部47に第2のICチップ50を固定し、接続電極48に電気的に接続する。フリップチップ接続する場合には、ICチップ50の電極部51に、Ni/Au、UBM、はんだバンプ、又はAuスタッドバンプ等を形成し、熱圧着又は超音波圧着で接続電極48と接合する。接合後、絶縁性樹脂49としてNCP、NCF、ACP、又はACF等を用いて、接合部を封止する。
【0134】
ワイヤボンディングで接続する場合は、接続電極48にNi/Auめっきを行い、ワイヤボンディングする。ワイヤボンディング後、エポキシ樹脂、ポリイミド樹脂、又はフェノール系樹脂で封止を行う。
【0135】
次に、図9(27)に示すように、銅ポスト43の露出部に外部接続電極45を形成する。外部接続電極45としては、はんだボールバンプ、無鉛はんだボールバンプ、Auスタッドバンプ、LGA、又は印刷バンプ等を形成する。
【0136】
例えば、図9(27)に示すように、はんだボールを形成する場合には、フラックス塗布後、直径0.15mm程度のはんだボールを付着させ、リフローで溶融接合を行う。接合後、フラックスを洗浄して完了する。
【0137】
このパッケージの外部接続電極45の配置は、エリアアレイ型又はペリフェラル型のBGA又はLGAに対応した配置とする。
【0138】
[パッケージの薄型化と個片化]
外部接続電極45を形成した後、パッケージの薄型化と個片化を行う。
【0139】
まず、図10(28)に示すように、シリコン基板1のハーフカットを行う。この際、例えば、#1500の砥石を用いて、スピンドル回転数3000rpmで研削し、シリコン基板1に深さ70μmの切り溝46を形成する。
【0140】
ハーフカット後、シリコン基板1の裏面を研削して、薄型化と個片化を同時に行う。この際、シリコン基板1の表面側にバックグラインド用保護テープを貼り、例えば、#360の砥石を用いて4800rpmで粗研削し、続いて#600の砥石を用いて5500rpmで仕上げ研削を行い、シリコン基板1を、例えば厚さ50μmに研削する。この後、バックグラインド用保護テープを剥離し、転写フィルムへの貼り付けを行うことで、SiP100の個片化が完了する(図10(29))。
【0141】
SiPの実装構造
図11は、SiPの実装構造を示す概略断面図である。
【0142】
図11(a)は、上記したSiP100を他の半導体チップ78や水晶振動子80等と共に、FR−4規格のガラスエポキシ基板に実装した例である。このSiP100は、ガラスエポキシ基板71中に埋設するが、水晶振動子のように、SiPに組み込めないものや、組み込むメリットのないものは、ガラスエポキシ基板上に実装するのがよい。このように、SiP100を他の半導体チップや機能部品と共に実装することで、より多機能な装置を実現することができる。
【0143】
図11(b)は、インターポーザ層81の中にSiP100を埋め込んで実装する例を示す。同図は、インターポーザ層81によってSiP100の電極ピッチ(0.1〜0.3mm)と外部機器の電極ピッチ(0.5mm)とは、インターポーザ層81を用いた再配置配線によって調整することができるので、SiP内における配線幅や配線ピッチをより小さくしてSiPを小型化しても、外部接続電極83の配置に自由度が得られ、ピン数(外部端子数)を増やすこともできる。
【0144】
上述したように、本発明の実施の形態によれば、シリコン基板上において受動素子とフェイスアップ式の能動素子とを搭載し、これらの素子を絶縁層で被覆して埋設し、この際、これらの素子の電極等を上部に引き出すための導電体プラグを絶縁層を上下方向に貫いて形成し、かつ絶縁層上に必要な配線を形成することが可能になる。
【0145】
このように、フリップチップ実装、フェイスアップ搭載可能な構造とすることで、各素子を3次元的に高密度に搭載することができ、また、SiP全体の設計の自由度を向上させることができる。シリコン基板上に形成されたキャパシタとIC部を近接させることができ、高周波特性の向上を実現できる。
【0146】
更に、第2のICチップが絶縁層表面に固定され、絶縁層表面に設けられた接続電極に接続されているので、この第2のICチップを、仕様の変更に伴って変更されるICチップや、追加的に設けられるICチップや、不良品率や故障率の高いICチップ等とすることで、仕様の変更、性能の向上や機能の追加、及び部品不良や故障の発生等に、それぞれ対応することができる。
【0147】
特に、シリコン基板に受動素子を形成し、能動素子を埋め込んだSiPにおいて、外付けICを搭載可能としたことにより、SiP設計の自由度が一層増すことになる。また、歩留まりの悪いIC等を搭載する場合、埋め込んだ後では、SiP全体の歩留を下げてしまうが、外付け可能とすることにより、SiP全体の歩留を下げることはない。そして、フリップチップ接続又はワイヤボンディング接続用のランドをSiP上に設置することにより、ICレイアウト、品種変更に対応し、モデルチェンジに早期に対応可能となる。
【0148】
この際、第2のICチップと接続電極との少なくとも接続部が絶縁性物質で封止され、第2のICチップが絶縁層に設けられた凹部内に固定されているので、半導体装置の耐久性を向上させることができる。
【0149】
基板上にICチップを固定するに際し、基板上又は絶縁層上の位置合わせ目標と、ICチップの電極との両方を、例えばCCDカメラを用いて同一視野内で認識しつつ、ICチップの位置決めを行うので、搭載精度±2.5μmでICチップをフェイスアップで固定することができる。
【0150】
また、複数のICチップを積層する場合、各ICを研削によって薄型化することにより、SiP全体の厚さを変えることなしに多くのICを搭載することが可能となり、容易に多機能化できる。
【0151】
また、基板としてシリコン基板を用いているので、機械的強度や、耐熱性、熱伝達性等に優れているばかりでなく、長い半導体加工の歴史の中で蓄積されてきた技術や設備を利用でき、低コストで効率的な製造が可能である。例えば、大型の極めて平坦性の優れたウエーハが入手でき、研削加工により容易に薄型化することができる。また、ウエーハ上で半導体加工技術を用いた一括処理により、容易に微細パターンを形成して、効率的に配線幅及びピッチの小さい配線形成や電極位置の変更などの再配線加工を行なうことができ、SiP全体の小型化が可能となる。更に、必要なら、シリコン基板を単なる基板ではなく、トランジスタ等の能動素子を常法に従って形成し、これをSiPに組み込むこともできる。
【0152】
また、絶縁層の材料として感光性ポリイミドを用いるので、耐熱性や機械的強度等に優れ、誘電率が低く、絶縁性が高いなど、電気的特性も優れている。その上、感光性ポリイミドからなる絶縁層は、露光と現像によって容易にパターニングすることができる。
【0153】
また、得られたSiPは、FR−4基板等への埋め込み搭載が可能となり、より多機能のSiPを形成することが可能となる。
【0154】
以上に説明した本発明の実施の形態は、発明の主旨を逸脱しない範囲において、条件、装置等について適宜変更可能であることは言うまでもない。
【0155】
【発明の作用効果】
本発明によれば、基体上に形成された下部絶縁層によって、少なくともフェイスアップ式の能動素子と受動素子とが被覆され、能動素子及び/又は受動素子が、下部絶縁層を介してこの絶縁層上の配線に接続されているため、必要な電気的接続を形成しながら、能動素子や受動素子を下部絶縁層に埋設し、例えば絶縁層同士の接着力を利用して複数の絶縁層を積層して下部絶縁層を形成し、所望の機能を有する半導体装置を可能な限り薄い厚さで、しかも絶縁層で保護してパッケージ化することができる。
【0156】
即ち、下部絶縁層が有する多様な機能、即ち、表面や貫通孔に導電体等を付着させて受動素子や配線を形成し得る機能、能動素子や受動素子を被覆して、外部からの機械的、化学的、或いは電気的な悪影響から保護しつつ、これらの素子を所定の位置に保持する機能、厚さの小さい薄膜を容易に形成でき、しかも絶縁層間の接着力のみで容易に積層構造を作り得る機能等を十二分に利用し、従来回路基板やモールド樹脂等によって分担されていた、素子の高密度実装と保護の役割を、下部絶縁層のみで実現するものであるから、本発明の半導体装置は、小型、薄型、軽量で、低コストなSiPとなり、また、能動素子がフェイスアップで保持されているため、下部絶縁層を介して幅及びピッチの微細な配線を任意に施すことができ、設計の自由度が増し、積層する絶縁層を増やすことにより多種の素子を内蔵して多機能化することが容易である。
【0157】
更に、本発明の半導体装置は、配線上に形成された上部絶縁層を介して外部接続端子が設けられ、上部絶縁層を用いて電子部品搭載用の接続電極が設けられているので、半導体装置の仕様を変更する必要が生じたときにその変更が容易である。例えば、半導体チップ等の能動素子を下部絶縁層に埋め込んだ状態で、接続電極に別の能動素子を外付け可能としたので、SiPの性能を向上させたり、品種やレイアウトの変更や新しい機能の追加が可能で、SiPの設計の自由度が増すことになる。
【0158】
また、RF回路等で、例えば、回路の基本部分は変わらないが、適用する周波数に応じて一部のコンデンサの容量を変更する必要がある場合に、本発明の半導体装置を用いてRF回路の基本部分を作製し、コンデンサを接続電極に外付けすることにより幅広い周波数に対応すること等が可能である。
【0159】
また、不良品率や故障率の高い半導体チップ等の電子部品を搭載した場合、絶縁層に埋め込んだ後ではSiPの動作不良による歩留まり低下を生じてしまうが、そうした電子部品を前記接続電極に外付け可能とすることにより、これらの電子部品の不良や故障の発生に対し、不良部品の交換で対応することができるので、SiPの歩留まりを低下させることがない。
【0160】
本発明の製造方法は、本発明の半導体装置を再現性良く製造できる方法であり、また、本発明の実装構造は、本発明の半導体装置を他の電気部品と共に回路基板等に実装するのを容易にする構造である。
【図面の簡単な説明】
【図1】本発明の好ましい実施の形態に基づくSiP(システム・イン・パッケージ)の一例を示す概略断面図である。
【図2】同、SiPを作製する工程を示す概略断面図である。
【図3】同、SiPを作製する工程を示す概略断面図である。
【図4】同、SiPを作製する工程を示す概略断面図である。
【図5】同、SiPを作製する工程を示す概略断面図である。
【図6】同、SiPを作製する工程を示す概略断面図である。
【図7】同、SiPを作製する工程を示す概略断面図である。
【図8】同、SiPを作製する工程を示す概略断面図である。
【図9】同、SiPを作製する工程を示す概略断面図である。
【図10】同、SiPを作製する工程を示す概略断面図である。
【図11】同、SiPの実装例を示す概略断面図である。
【図12】従来のLTCC基板を用いたRF用システム・イン・パッケージの一例を示す概略断面図である。
【図13】従来のFR−4ガラスエポキシ基板を用いたRF用システム・イン・パッケージの一例を示す概略断面図である。
【符号の説明】
1…シリコン基板、2…酸化シリコン膜、3…下部電極、4…誘電体層、5…保護層、6…引き出し電極、7…上部電極、10…キャパシタ、11…絶縁層、12…接続孔(ビアホール)、13…シード層(下地金属層)、14…レジストパターン、15…銅導電層、16…プラグ部、17…ランド部、18…配線部、20…インダクタ、21絶縁層、22…電極取り出し用の接続孔、23…シード層(下地金属層)、24…レジストパターン、25…導電層、25A…中間導電層、26…プラグ部、27…ランド部、28…中間絶縁層、29…絶縁層、30、30A、30B…ICチップ、31、31A、31B…IC基板、32、32A、32B…IC電極、33、33B…パッシベーション膜、34…バックグラインド用保護テープ、35…ダイアタッチフィルム(DAF)、36…ダイシングシート、35…接着層、41…感光性ドライフィルム(レジスト膜)、42…空孔、43…銅ポスト、44…絶縁層、45…外部接続電極、46…切り溝、47…凹部、48…接続電極、49…絶縁性樹脂、50…第2のICチップ、51…第2のICチップの電極、52…ワイヤ、61…LTCC基板、62…インダクタ、63、64…キャパシタ、65…基板面上の配線部、66…基板を貫通する接続部、67、68…半導体チップ、69…アンダーフィル材、71…FR−4規格等のガラスエポキシ基板、72…インダクタ、75…基板面上の配線部、76…基板を貫通する接続部、77…半導体チップ、78…受動素子、77b…埋め込まれた半導体チップ、78b…埋め込まれた受動素子、79…アンダーフィル材、80…水晶振動子、81…インターポーザ層、82…内部接続電極、83…外部接続電極、100…半導体装置(SiP)
[0001]
[Technical field to which the invention belongs]
The present invention relates to a semiconductor device having an active element such as a semiconductor chip and a passive element such as a capacitor (capacitor) on a common substrate, a mounting structure thereof, and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, with the spread and development of portable small electronic devices such as mobile phones, the convenience and high performance of portable electronic devices are required, and the semiconductor devices used for them are becoming smaller, lighter and thinner. Or multi-function and cost reduction are required.
[0003]
For this reason, there is a strong demand for module products and package products that use small-sized and high-density packaging technology, and various packages are used to package semiconductor chips and passive elements necessary for realizing desired functions in one package. Many multi-chip module (MCM) products and system-in-package (hereinafter abbreviated as SiP) products have been developed.
[0004]
However, since the silicon substrate is conductive and leakage current and induced current flow, it has not been possible to use the silicon substrate as a SiP substrate for RF (Radio Frequency) circuits such as wireless devices. For this reason, in SiP for RF circuits, ceramic substrates such as LTCC (Low Temperature Co-Fired Ceramic) substrates, and FR-4 (NEMA (National Electrical Manufacturers Association) flame retardant standard) are used as substrates. In general, an organic material substrate such as a glass epoxy substrate is used, and electrical connection to a semiconductor chip is performed by flip chip bonding or wire bonding.
[0005]
FIG. 12 is a schematic sectional view of an example of RF SiP using an LTCC substrate. The LTCC substrate 61 is formed by firing a clay-like sheet (commonly known as a green sheet) made of alumina or the like mixed with a filler at a relatively low temperature of about 600 to 700 ° C. Usually, when producing SiP or the like, as shown in FIG. 12, a plurality of green sheets are stacked and pressed and then fired.
[0006]
The LTCC substrate 61 has the advantages of good heat transfer, high strength, and no warping. In addition, there is an advantage that the passive element can be formed by printed wiring. That is, the inductor 62 and the wiring portion 65 on the substrate can be formed by attaching a printing paste such as silver or tungsten to the surface of the green sheet by printing. Further, since the ceramic itself is a dielectric, the capacitors (capacitors) 63 and 64 can be formed by forming the counter electrode with the ceramic layer interposed therebetween. In addition, the connection part 66 which penetrates a board | substrate can be formed by embedding printing paste in the hole (through hole) opened by the drilling process in the green sheet.
[0007]
However, SiP using an LTCC substrate has the following problems 1 to 6.
1. The thickness of each layer cannot be made very thin (at least about 25 μm, usually about 50 μm). For this reason, it is difficult to thin the SiP by stacking.
2. Connection to the semiconductor chips 67 and 68 can only be performed by flip chip bonding or wire bonding. In flip chip bonding, a space for inserting an underfill material 69 is required, which protrudes in the surface direction from the size of the chip, resulting in a region where other elements cannot be disposed. In wire bonding, a space for providing a wire is required. Become. In any case, compact mounting is difficult.
3. Since firing is performed, the semiconductor chip cannot be embedded in the ceramic layer. Therefore, since it is necessary to fix the semiconductor chip on the substrate as described above, a separate protective material is required, which increases the bulk.
4). The method for forming the pattern is limited to printing.
5. The ceramic layers to be laminated must have the same thermal expansion coefficient and the same material.
6). As a result, the dielectric constant of each layer is also limited, and it is difficult to change between the respective layers, and the capacitance of the capacitor described above is limited.
7). Cost is high.
[0008]
On the other hand, Fig.13 (a) is a schematic sectional drawing of an example of SiP for RF using glass epoxy substrates, such as FR-4. The glass epoxy substrate 71 can be easily processed, such as being drilled with a drill or a laser. However, since the substrate is as thick as about 150 μm and the dielectric constant of the substrate is small, a capacitor is formed by the substrate itself. (However, the inductor 72 can be built-in.) Therefore, similar to the LTCC substrate, the semiconductor chip 77 is connected to the substrate by flip chip bonding or wire bonding on the user side, and the passive element 78 such as a capacitor is soldered (wireless connection) to the substrate. Compact mounting is difficult.
[0009]
Further, as shown in FIG. 13B, it has been studied to embed an electronic component in a glass epoxy substrate. However, since the height of the electronic component is high, the thickness of the layer in which the electronic component such as a semiconductor chip is embedded. Therefore, it is difficult to satisfy the thinning requirement for mobile products and the like.
[0010]
Therefore, a method for reducing the thickness of the semiconductor chip to be embedded and suppressing the overall thickness has been studied. However, since the conventional method for reducing the thickness of the semiconductor chip is a method of grinding using a support substrate, back grinding is performed. In addition to the protective tape laminating device, a laminating device with the support substrate and a peeling device after the laminating are newly required as equipment, and more materials are used. Causes the price to rise.
[0011]
Further, when a structure in which all the electronic parts are embedded is adopted, there is a problem that the parts cannot be exchanged or added, so that it is not possible to cope with the occurrence of a defective part or a failure, or a change in specifications.
[0012]
Further, in the method of fixing a semiconductor chip with high precision in a face-up type, the accuracy is 15 μm in the case of flip chip bonding, and the limit is 35 μm in the case of wire bonding (Japanese Patent Laid-Open No. 2-150041). (See JP-A-5-343449 and JP-A-11-26481). In the laser light emitting element, a die bonder that achieves an accuracy of about 5 μm has been developed. However, since the tact time is long and the accuracy cannot be obtained due to the influence of heat, a large-diameter wafer or substrate cannot be used.
[0013]
When using a silicon substrate, which is a highly reliable substrate, mounting a semiconductor chip face-up on this substrate, embedding and mounting passive elements in an insulating layer, and forming a wiring between each element, However, since there is no connection method other than flip chip bonding and wire bonding, it is difficult to reduce the thickness and size in both the surface direction and the height direction.
[0014]
On the other hand, on the semiconductor chip side, proposals have been made to integrate separately manufactured semiconductor chips using a technique such as an interlayer insulating film to achieve compact mounting and good circuit characteristics (Patent Documents described later) 1 and 2).
[0015]
For example, in Patent Document 1, a circuit having a predetermined function and one or more recesses are formed on a semiconductor substrate, and another type of semiconductor chip prepared in advance is fitted into the recesses. In this embodiment, a contact hole is formed at a necessary portion of the insulating layer, and then a metal such as aluminum is formed between integrated circuits on each semiconductor chip. A method of connecting by wiring is described. Patent Document 2 discloses various arrangement methods for stacking and mounting a plurality of semiconductor chips face up.
[0016]
However, none of the methods considers the production and mounting of passive elements. In the invention according to Patent Document 1, since all semiconductor chips are mounted on one substrate, there is a problem that the substrate area increases as the number of mounted semiconductor chips increases. On the other hand, the invention according to Patent Document 2 is intended only for high-density mounting of about two to three semiconductor chips, and requires another substrate for mounting stacked semiconductor chips.
[0017]
[Patent Document 1]
JP 2001-298149 A (page 4-6, FIG. 1 and FIG. 13)
[Patent Document 2]
JP 2001-189424 A (page 6-10, FIG. 2, FIG. 4, FIG. 6 and FIG. 8)
[0018]
[Problems to be solved by the invention]
In view of the above circumstances, the object of the present invention is to incorporate an active element such as a semiconductor chip and a passive element such as a capacitor at a high density, and can be made compact, thin, lightweight, low cost and multi-functional. It is another object of the present invention to provide a packaged semiconductor device, a mounting structure thereof, and a manufacturing method thereof, which can cope with a change in specifications and occurrence of a component defect or failure.
[0019]
[Means for Solving the Problems]
That is, according to the present invention, at least a face-up type active element (for example, a semiconductor chip; hereinafter the same) and a passive element (for example, a capacitor, an inductor, a resistance; hereinafter the same) are provided by an insulating layer formed on the substrate. And the active element and / or the passive element is connected to the wiring on the insulating layer through the insulating layer as a lower insulating layer, and the upper insulating layer formed on the wiring External connection terminals are provided via the upper insulating layer, and connection electrodes for mounting electronic components are provided using the upper insulating layer, and also relates to a method for manufacturing the semiconductor device,
Covering the active element with the lower insulating layer;
Covering the passive element with the lower insulating layer;
Forming the wiring connected to the active element and / or the passive element on the insulating layer via the lower insulating layer;
Providing an external connection terminal through the upper insulating layer formed on the wiring;
Providing the connection electrode for mounting an electronic component using the upper insulating layer;
The present invention relates to a method for manufacturing a semiconductor device.
[0020]
Furthermore, the present invention also relates to a semiconductor device mounting structure in which the semiconductor device is embedded in an insulating material layer and an external connection electrode is formed through the insulating material layer.
[0021]
The lower insulating layer is an insulating layer formed closer to the base than the wiring.
[0022]
According to the present invention, at least the face-up active element and the passive element are covered by the lower insulating layer formed on the substrate, and the active element and / or the passive element is the lower insulating layer. The active element and the passive element are embedded in the lower insulating layer while forming the necessary electrical connection, so that, for example, the adhesive strength between the insulating layers is The lower insulating layer is formed by laminating a plurality of insulating layers by using the semiconductor device, and a semiconductor device having a desired function can be packaged with a thickness as thin as possible and protected by the insulating layer.
[0023]
That is, various functions of the lower insulating layer, that is, a function capable of forming the passive element or the wiring by attaching a conductor or the like to the surface or the through-hole, covering the active element or the passive element, A function to hold these elements in place while protecting them from adverse mechanical, chemical, or electrical influences, easily forming a thin film with a small thickness, and easily with only the adhesive force between insulating layers The function that can make a laminated structure is fully utilized, and the role of high-density mounting and protection of elements, which has been shared by conventional circuit boards and mold resins, is realized only by the lower insulating layer. Therefore, the semiconductor device of the present invention is a small, thin, lightweight, low-cost SiP, and since the active element is held face-up, the width and pitch are fine via the lower insulating layer. Wiring Can be applied to intention, increases the degree of freedom in design, it is easy to multifunctional incorporates elements of various by increasing the insulating layer stacked.
[0024]
Furthermore, in the semiconductor device of the present invention, the external connection terminal is provided via the upper insulating layer formed on the wiring, and the connection electrode for mounting an electronic component is provided using the upper insulating layer. Therefore, when it becomes necessary to change the specifications of the semiconductor device, the change is easy. For example, since an active element such as a semiconductor chip is embedded in the lower insulating layer, another active element can be externally attached to the connection electrode, so that the performance of the SiP can be improved, the type or layout can be changed, or a new Functions can be added and the degree of freedom in designing the SiP is increased.
[0025]
Further, in the case of an RF circuit or the like, for example, when the basic part of the circuit does not change, but it is necessary to change the capacitance of some capacitors in accordance with the applied frequency, the semiconductor device of the present invention is used for the RF circuit. It is possible to cope with a wide range of frequencies by preparing a basic portion and externally attaching the capacitor to the connection electrode.
[0026]
In addition, when electronic parts such as semiconductor chips with a high defect rate or failure rate are mounted, the yield decreases due to the malfunction of SiP after being embedded in the insulating layer. However, such electronic parts are not attached to the connection electrodes. By enabling the attachment, it is possible to deal with the failure or failure of these electronic components by replacing the defective components, so that the yield of SiP is not reduced.
[0027]
The manufacturing method of the present invention is a method by which the semiconductor device of the present invention can be manufactured with good reproducibility, and the mounting structure of the present invention mounts the semiconductor device of the present invention on a circuit board or the like together with other electrical components. It is a structure that facilitates.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, for example, an active element (for example, a semiconductor chip) as the electronic component may be connected to the connection electrode provided on the surface of the lower insulating layer. For example, an active element that is changed in accordance with a change in specifications, an active element that is additionally provided, an active element having a high defect rate or failure rate, etc. is not embedded in the lower insulating layer as the active element. The connection electrode is preferably connected externally. Thereby, it is possible to cope with a change in specifications, an improvement in performance, addition of functions, occurrence of component defects and failures, and the like.
[0029]
At this time, in order to improve the durability of the semiconductor device, at least a connection portion between the electronic component and the connection electrode is preferably sealed with an insulating material. At this time, it is desirable that the electronic component is fixed in a recess of the upper insulating layer provided on the lower insulating layer in the vicinity of the external connection terminal, but is fixed on the upper insulating layer. May be. Moreover, although the said external connection terminal part is desirable also for the fixed position, another position may be sufficient.
[0030]
The upper insulating layer is formed on the wiring, and an external connection electrode is provided on the upper insulating layer. The wiring is on the lower insulating layer, and the external connection electrode is on the upper insulating layer. In addition, it is preferable that each is formed.
[0031]
In addition, a conductor for connecting the active element and / or the passive element and the wiring may be formed in a connection hole formed in the lower insulating layer. More detailed description is as follows.
[0032]
The semiconductor device of the present invention usually has a structure in which a plurality of insulating layers are stacked to form the lower insulating layer. Each insulating layer has a similar structure, and passive elements and semiconductor chips are formed or fixed in the lower part. Conductor plugs for extracting the electrodes of these elements arranged in the lower part to the upper surface of the insulating layer are insulated. The layers are formed so as to penetrate the layers in the vertical direction, and wirings or the like are provided on the upper surface so as to be connected to the conductor plugs to electrically connect the elements or to rearrange electrode positions. This structure can be realized by flip-chip mounting the semiconductor chip in a face-up manner.
[0033]
Specifically, the conductor plug and the wiring are formed by patterning the insulating layer corresponding to the conductor plug and the wiring, and embedding a metal such as copper in the pattern by plating. Good.
[0034]
The inductance element can be formed as a part of the wiring.
[0035]
The laminated structure is not particularly limited, and various structures can be considered. For example, a first passive element (for example, a capacitor; hereinafter the same) is covered with a first insulating layer, and a second passive element (for example, an inductor; hereinafter the same) is covered by a second insulating layer on the first insulating layer. ) And the semiconductor chip are covered, and the second active element as the electronic component is connected to the connection electrode using the third insulating layer (upper insulating layer) on the second insulating layer. The semiconductor device can be mentioned. In short, the semiconductor chip and the passive element are embedded in each insulating layer while forming necessary electrical connections, and the insulating layers are stacked to assemble a system having a desired function as one package. is there.
[0036]
When fixing the semiconductor chip on the base, both the alignment target on the base or the lower insulating layer and the electrode of the semiconductor chip are within the same field of view using, for example, a CCD (Charge Coupled Device) camera. It is preferable to position the semiconductor chip while recognizing with the above. Thereby, mounting accuracy of ± 2.5 μm can be achieved.
[0037]
When a plurality of semiconductor chips are required, stacking and fixing the plurality of semiconductor chips is advantageous for making the whole compact.
[0038]
When the substrate is thinned by grinding the back surface with the surface side of the substrate held by a protective sheet, a separation groove is formed in advance from the surface side of the substrate so as to reach the separation groove. By thinning the substrate, it is preferable that the thinning and singulation can be performed simultaneously.
[0039]
Further, when the semiconductor wafer to be a semiconductor chip is singulated, the semiconductor wafer is thinned by grinding the back surface opposite to the electrode surface with a protective sheet attached to the electrode surface of the semiconductor wafer. The semiconductor wafer is attached to the dicing sheet with the protective sheet attached, and then the protective sheet is removed and dicing is performed to obtain a thinned semiconductor chip. It is good to fix to. This eliminates the need for materials such as a support substrate for grinding and part of the processing equipment, thereby reducing the cost of thinning.
[0040]
The substrate is preferably a silicon substrate. A certain support is required for forming the insulating layer, and a silicon substrate is most suitable as such a support. The silicon substrate is not only superior in mechanical strength, heat resistance, heat transfer, flatness, and fine workability, but also has the advantage of being able to use the technology and equipment accumulated over the long history of semiconductor processing. There is. For example, a large material with excellent flatness can be obtained, a fine pattern can be easily formed, and the thickness can be easily reduced by the above-described grinding. Further, if necessary, the substrate can be used as a material for forming an active element instead of a simple substrate.
[0041]
Photosensitive polyimide is preferably used as the material for the insulating layer. Polyimide is not only a structural material with excellent heat resistance and mechanical strength, but also has excellent electrical characteristics such as low dielectric constant and high insulation. In addition, the insulating layer made of photosensitive polyimide can be easily patterned into a pattern corresponding to the conductor and the wiring by exposure and development.
[0042]
The mounting structure of the semiconductor device is preferably mounted together with other functional components on the insulating material layer. For example, a crystal oscillator such as a crystal resonator that cannot be incorporated into the semiconductor device or has no merit to be incorporated is preferably mounted together with the semiconductor device using a FR-4 standard glass epoxy substrate or the like.
[0043]
Next, a preferred embodiment of the present invention will be specifically described with reference to the drawings.
[0044]
Semiconductor device (SiP)
FIG. 1A is a schematic cross-sectional view showing an example of a semiconductor device (system-in-package; hereinafter abbreviated as SiP) according to a preferred embodiment of the present invention.
[0045]
In this SiP, a capacitor (capacitor) 10 is embedded on a substrate by an insulating layer 11 which is a first insulating layer, and an inductor 20 and an IC chip which is a semiconductor chip are formed thereon by an insulating layer 21 which is a second insulating layer. Insulating layer 44 having a function of a buffer layer that adjusts between the electrode position and wiring inside SiP and the electrode position of an external device, etc. while covering and protecting the inside of SiP at the top. Are stacked. Further, a second IC chip 50 is externally mounted on the external connection terminal portion of the insulating layer 44 so as to be embedded in a recess 47 formed in the insulating layer 44.
[0046]
Although it is not impossible to fabricate a SiP with a single insulating layer using the surface of the substrate as a wiring formation region, in order to make the size in the plane direction compact while realizing various functions, FIG. As shown, a structure in which a plurality of insulating layers are stacked is desirable.
[0047]
Each insulating layer has a similar structure, in which passive elements and semiconductor chips are formed or fixed in the lower part, and conductor plugs (16, 26, etc.) for extracting the electrodes of these elements arranged in the lower part to the upper surface. Etc. are formed through the insulating layer in the vertical direction, and the upper surface of the insulating layer is joined to a conductor plug (16, 26, etc.) to electrically connect each element or rearrange the electrode positions. A conductive layer (such as 25) is provided. With this structure, the semiconductor chip 30 can be flip-chip mounted face up. Each plug is composed of a laminate of a seed layer and an electrolytic plating layer formed by a method described later.
[0048]
Hereinafter, each part will be described in more detail.
[0049]
In this SiP, a silicon substrate 1 is used as a substrate, and a silicon oxide film 2 as an insulating layer is provided on the surface thereof to a thickness of 4000 mm or more. The thickness of the silicon substrate 1 is reduced to 50 μm by grinding. As the substrate, for example, a glass substrate or a ceramic substrate can be used in addition to the silicon substrate.
[0050]
On the silicon oxide film 2, a lower electrode 3 (a thin film of aluminum or copper having a thickness of about 1 μm), a dielectric layer 4, a protective layer 5 for the dielectric layer 4 (a silicon oxide film or a silicon nitride film), and a lower part The lead electrode 6 of the electrode 3 and the upper electrode 7 (a thin film of aluminum or copper having a thickness of about 1 μm) are sequentially laminated to form a capacitor 10.
[0051]
The material of the dielectric layer 4 is tantalum oxide Ta2O5, BST (Barium strontium titanate BaxSr1-xTiO3), PZT (lead zirconate titanate PbZr)xTi1-xO3), Barium titanate BaTiO3, Silicon nitride SiN, PI (polyimide), or silicon oxide SiO2Is selected in consideration of the capacitance and breakdown voltage of the capacitor 10.
[0052]
For example, in order to form the capacitor 10 of about 0.1 pF to 40 pF, tantalum oxide Ta2O5Is used. In this case, when the film thickness is 40 nm, the unit capacitance is 7 fF / μm.2The withstand voltage is a current density of 1 μA / cm.2Is about 4V.
[0053]
As described above, the SiP based on the present embodiment is superior to the conventional method using the LTCC substrate in that a dielectric material can be selected from many materials and capacitors having various capacitances and breakdown voltages can be formed. Yes.
[0054]
An insulating layer 11 for covering the capacitor 10 and forming a conductive layer such as the inductor 20 is provided on the capacitor 10.
[0055]
The thickness of the insulating layer 11 is 50 μm or more so that an induced current is induced in the silicon substrate 1 by a current flowing through the inductor 20 and the Q value of the inductor 20 does not decrease. The Q value is an amount that represents the sharpness of resonance in forced vibration, and is an important index that indicates the performance of the inductor.
[0056]
The material of the insulating layer 11 is preferably a material having a low dielectric constant, such as polyimide (PI), polybenzoxazole (PBO), epoxy resin, or polyamide-imide resin having a dielectric constant of about 2.9 to 3.3. is there.
[0057]
On the insulating layer 11, an inductor 20, a wiring portion (not shown) and a land portion 17 are formed by a conductive layer, and the land portion 17 is connected to the electrodes 6 and 7 of the capacitor 10 by a plug portion 16. .
[0058]
An IC chip 30 that is a semiconductor chip is also fixed on the insulating layer 11 using a die attach film (DAF). In order to effectively use the space, the IC chip 30 can be disposed so as to overlap the land portion 17 and the wiring portion vertically.
[0059]
The thickness of the IC chip 30 is reduced to, for example, 50 μm by grinding. In addition, when two or more IC chips are stacked and mounted, or particularly when the thickness is limited, an IC chip whose thickness is reduced to, for example, 25 μm is mounted.
[0060]
An insulating layer 21 is provided on the inductor 20 and the IC chip 30, and a conductive layer 25 is provided on the insulating layer 21 to form a lead-out portion of the IC electrode 32.
[0061]
The conductive layer 25 has a role of rearranging the electrode position inside the SiP toward the outside, and the copper post 43 and the external connection electrode 45 provided on the conductive layer 25 are provided at a position convenient for connecting to an external device. It is done. The insulating layer 44 covers the semiconductor device flatly on the outermost side, protects the inside, and adjusts the outer shape of the SiP, thereby improving the reliability of the SiP. The conductive layer 25, the copper post 43, the external connection electrode 45, and the insulating layer 44 function as a buffer layer that adjusts so as to improve connection reliability when SiP is mounted on a mother substrate such as FR-4.
[0062]
When the external connection electrodes are solder bumps 45, the arrangement of the solder bumps 45 coincides with the standard electrode position of an area array type or peripheral type BGA (Ball Grid Array) package. The conductive layer 25 is provided with a land portion 27 at a position corresponding to the external connection electrode 45.
[0063]
Although illustration is omitted, the external connection electrode may be a land instead of the solder bump. In this case, the land is bonded to the counterpart electrode using a solder paste. The land arrangement is made to coincide with the standard electrode position of an LGA (Land Grid Array) package.
[0064]
Further, in the insulating layer 44, the second IC chip 50 is fixed so as to be embedded in the recess 47 provided in the external connection terminal portion where the external connection electrode 45 is formed, and the connection electrode 48 provided in the recess 47 is attached to the connection electrode 48. At least the connection portion is sealed with an insulating resin 49 which is an insulating material.
[0065]
As shown in FIG. 1A, when the second IC chip 50 is flip-chip connected, Ni / Au, UBM, solder bump, or Au stud bump is applied to the electrode portion 51 of the second IC chip 50. And the like and bonded to the connection electrode 48 by thermocompression bonding or ultrasonic pressure bonding. After the bonding, NCP (non-conductor paste), NCF (non-conductor film), ACP (anisotropic conductor film), or ACF (anisotropic conductor film) is used as the insulating resin 49.
[0066]
As shown in FIG. 1B, in the case of wire bonding connection with the wire 52, Ni / Au plating is performed on the connection electrode 48 and wire bonding is performed. After wire bonding, an epoxy resin, a polyimide resin, a phenol resin, or the like is used as the insulating resin 49 for sealing.
[0067]
Fabrication of semiconductor device (SiP)
Next, an example of a process for manufacturing the SiP shown in FIG. 1 will be described in the order of processes with reference to the schematic cross-sectional views of FIGS.
[0068]
First, as shown in FIG. 2 (1), a silicon substrate 1 such as a polycrystalline or single crystal silicon wafer (diameter: 8 inches, thickness: 725 μm, resistivity: 1 to 20 Ω · cm) having an orientation flat or notch. And a silicon oxide film 2 is formed on the surface of the silicon substrate 1 to a thickness of 4000 mm or more by a CVD (Chemical Vapor Deposition) method or a thermal oxidation method. As the substrate, for example, a glass substrate or a ceramic substrate can be used in addition to the silicon substrate.
[0069]
[Capacitor formation]
Next, as shown in FIG. 2B, the capacitor 10 is formed by a MIM-C (Metal Insulator Metal-Capacitor) process.
[0070]
First, as the lower electrode 3, for example, an aluminum or copper thin film is formed to a thickness of about 1 μm by sputtering or vapor deposition. Further, although not shown, a titanium nitride film having a thickness of 50 nm is formed as an oxidation reaction preventing film at a portion where the lower electrode 3 is in contact with the dielectric layer 4.
[0071]
Next, the dielectric layer 4 is formed by CVD or sputtering. The dielectric material is selected from tantalum oxide, BST, PZT, barium titanate, silicon nitride, polyimide, silicon oxide, or the like in consideration of the capacity and breakdown voltage of the capacitor 10.
[0072]
For example, in order to form the capacitor 10 of about 0.1 pF to 40 pF, the tantalum oxide Ta is used as the dielectric layer 4.2O5Use layers. In this case, when the film thickness is 40 nm, the unit capacitance is 7 fF / μm.2The withstand voltage is a current density of 1 μA / cm.2Is about 4V.
[0073]
Further, as the protective layer 5 of the dielectric layer 4, a silicon oxide film or a silicon nitride film is formed by a CVD method, and a window for taking out the electrode is formed by reactive ion etching (RIE). Then, an aluminum or copper thin film is formed as a lead electrode 6 and an upper electrode 7 of the lower electrode 3 by a sputtering method or a vapor deposition method in the place where the window is opened, and the capacitor 10 is completed.
[0074]
[Inductor formation]
Next, as shown in FIGS. 2 (3) to 4 (9), the insulating layer 11 is formed, and the conductor pattern is formed thereon, whereby the inductor (L) 20 and the like are manufactured.
[0075]
First, as shown in FIG. 2 (3), the insulating layer 11 is formed. The thickness of the insulating layer 11 is set to 50 μm or more so that an induced current flows through the silicon substrate 1 due to a current flowing through the inductor 20 and a Q value of the inductor 20 does not decrease.
[0076]
The material of the insulating layer 11 is preferably a material having a low dielectric constant. For example, polyimide, polybenzoxazole, epoxy resin, or polyamideimide resin having a dielectric constant of about 2.9 to 3.3 is used. The insulating layer 11 is formed by a spin coating method, a printing method, or a dispensing method.
[0077]
For example, when the insulating layer 11 is formed by spin coating using photosensitive polyimide, the insulating layer 11 having a thickness of 50 μm is formed under the following film forming conditions.
Viscosity of coating solution: 200 P (poise);
Spin coater rotation speed: rotate at 800 rpm for 30 seconds, followed by rotation at 1500 rpm for 30 seconds;
Pre-baking: heating at 90 ° C. for 300 seconds in a nitrogen gas atmosphere, followed by heating at 110 ° C. for 300 seconds.
[0078]
Next, as shown in FIG. 2 (4), a hole having a diameter of 50 μm, for example, is formed in the insulating layer 11 as a connection hole (via hole) 12 for producing a plug portion 16 for connection to the electrodes 6 and 7 of the capacitor 10. Form.
[0079]
When the insulating layer 11 is formed of photosensitive polyimide, the connection hole (via hole) 12 is formed by exposure and development under the following conditions.
Exposure: Using a stepper, broadband light is 400 mJ / cm in terms of i-line2Irradiation;
Development: Perform spray development using a spin developer; E. T.A. (Just Exposure Time) × 1.8 times;
Development inspection: by inspection machine;
Post-baking: Heating is performed at 150 ° C. for 0.5 hours in an atmosphere having an oxygen concentration of 40 ppm or less, followed by heating at 250 ° C. for 2.0 hours.
[0080]
After the development, a scum (resist residue) removal process on the surface of the insulating layer 11 is performed. The scum removal process is performed, for example, using a plasma ashing apparatus for 10 minutes under conditions of an oxygen flow rate of 100 sccm and an RF output of 100 (˜300) mW.
[0081]
Next, as shown in FIG. 3 (5), a laminated film of a titanium film and a copper film is formed as a seed layer (underlying metal layer) 13 by a sputtering method.
[0082]
Sputtering is performed, for example, under the following conditions.
Film thickness: After forming a 1600 mm thick titanium film, a 6000 mm thick copper film is laminated thereon.
Degree of vacuum: 3.6 × 10-3Pa;
Sputtering pressure: 6.1 × 10-1Pa;
Argon gas flow rate: 110-115cm3/ Min;
Sputtering power: 2000 to 3000W
[0083]
The seed layer (underlying metal layer) 13 may be formed by an electroless plating method.
[0084]
Next, a photoresist is applied, exposure corresponding to the conductor pattern such as the inductor 20 is performed, development and scum removal processing are performed, and a resist pattern 14 corresponding to the conductor pattern is formed as shown in FIG. Form.
[0085]
For example, a resist is applied by spin coating, and a resist pattern 14 is formed by development under the following conditions.
Spin coater rotation speed: Rotate at 500 rpm for 10 seconds, then rotate at 4000 rpm for 30 seconds, further rotate at 5000 rpm for 0.5 seconds, then gradually decelerate and stop for 3 seconds;
Development: Develop with a spin developer using developer P-7G. The process of rotating for 3 seconds at 50 rpm while spraying the developer on the substrate 1 and then stopping for 30 seconds is repeated 7 times;
Rinse: sprinkle pure water on the substrate 1 for 60 seconds while rotating at 500 rpm;
Spin dry: substrate 1 is rotated at 3000 rpm for 30 seconds, water is sprinkled off and dried;
Development inspection: An inspection machine is used.
[0086]
After the resist pattern 14 is formed, surface scum removal processing is performed. The scum removal process is performed, for example, using a plasma ashing apparatus for 10 minutes under the conditions of an oxygen flow rate of 100 sccm and an RF power of 100 (˜300) mW.
[0087]
Subsequently, as shown in FIG. 3 (7), using the resist pattern 14 as a mask, the conductive layer 15 is embedded by copper electroplating to form a plug portion 16, a land portion 17, a wiring portion 18, and an inductor portion 20. To do. The wiring part 18 is formed to a thickness of about 5 μm, for example.
[0088]
For example, the electrolytic plating is performed under the following conditions.
Washing: Immerse in bump cleaner for 30 minutes, then wash with water for 1 minute, then soak for 30 seconds in 5% aqueous sulfuric acid, then wash with water for 1 minute;
Degreasing and cleaning: performed at 40 ° C. for 1 minute;
Wetting treatment: 2 minutes at 40 ° C;
Pickling with water: 1 minute;
Copper sulfate plating solution: liquid temperature 25 ° C .; copper sulfate concentration: 50 g / l, sulfuric acid concentration: 25 g / l;
Glossy treatment: Cu Bright VF-2 (trade name of Ebara) (A liquid 20cm3/ L and B liquid: 10cm3/ L);
DK (cathode current density): 0.03 A / cm2
[0089]
After the completion of the electrolytic plating, as shown in FIG. 3 (8), the resist 14 is removed and the resist residue is ashed. For example, after removing the resist using an alkali solution, using a plasma ashing device, tetrafluoromethane CF4While flowing oxygen and oxygen at a flow rate of 50 sccm, the residue is ashed by applying RF power of 25 W. This ashing process is repeated twice for 5 minutes each.
[0090]
Next, light etching for removing the oxide film on the surface of the conductive layer 15 is performed, and then the seed layer 13 (copper film and titanium film) other than the lower part of the conductive layer 15 is removed by etching using the conductive layer 15 as a mask. Thus, the inductor 20 and the land portion (connection terminal) 17 are formed (FIG. 4 (9)).
[0091]
Each layer is removed by etching under the following conditions using, for example, a wet etching apparatus.
[0092]
<Light etching of oxide film>
Hydrofluoric acid is used as the chemical solution.
[0093]
<Copper film>
Using SO-YO (manufactured by Kanto Chemical Co., Inc.) as a chemical solution, the chemical solution is sprayed and washed for 15 seconds while rotating the substrate 1 at 50 rpm. Next, pure water is sprayed for 60 seconds (rinsing) while rotating the substrate 1 at 500 rpm. Next, the substrate 1 is rotated at 3000 rpm for 30 seconds to shake off water and dry (spin drying).
[0094]
<Titanium film>
Using SO-1 (manufactured by Kanto Chemical Co., Inc.) as the chemical solution, the chemical solution is poured and washed for 25 seconds while rotating the substrate 1 at 50 rpm. Next, pure water is sprayed for 60 seconds (rinsing) while rotating the substrate 1 at 500 rpm. Next, the substrate 1 is rotated at 3000 rpm for 30 seconds to shake off water and dry (spin drying).
[0095]
[Thinning processing of IC chip]
Apart from the above, an IC chip 30 to be mounted on the silicon substrate 1 is prepared. Since the IC chip 30 is embedded in the resin layer, as shown in FIGS. 4 (10) to 4 (13), it is essential to perform processing for grinding the IC substrate to make the chip thinner. The thinning process is preferably performed at the stage where the IC chip 30 is formed on the wafer and before being singulated into chips.
[0096]
First, as shown in FIG. 4 (10), a backgrinding protective tape 34 is pasted as a substrate for thinning processing on the surface of an IC substrate (wafer) 31 on which an IC chip 30 is formed by a known method. . Since the protective tape 34 itself has an adhesive layer, it is attached with a pressure roller without heating. For example, a non-ultraviolet curable support type having a total thickness of 265 μm can be used. As the IC substrate 31, for example, a silicon substrate or a gallium arsenide substrate can be used.
[0097]
After applying the protective tape 34, grinding is performed using two types of grindstones having different roughnesses for rough grinding and finish grinding, so that the finished thickness of the substrate 31 is 50 μm (FIG. 4 (11)).
[0098]
For example, when the substrate 31 is a gallium arsenide substrate, rough grinding is performed at a spindle rotational speed of 3000 rpm using a # 600 grindstone, and finish grinding is performed at a spindle rotational speed of 3000 rpm using a # 2000 grindstone. The initial thickness is decreased from 120 μm to 70 μm.
[0099]
Next, as shown in FIG. 4 (12), a die attach film (DAF) 35 and a dicing sheet 36 are attached to the back surface of the IC substrate 31 thinned to a thickness of 50 μm. The DAF 35 and the dicing sheet 36 are of an integrated type, a die attach film 35 (thickness 10 to 50 μm), an adhesive layer (not shown) (thickness 5 μm), and a dicing sheet 36 (thickness made of polyolefin, for example) 100 μm) is a laminated structure. Pasting is performed manually or with an automatic machine.
[0100]
When using an automatic machine, for example, it is attached under the following conditions.
Automatic pasting machine: Use PM-8500 (Nitto Denko);
Temperature: 40 ° C .;
Pressure: 15N / cm2;
Laminating speed: 10 mm / sec;
[0101]
Next, the IC chip 30 is separated into pieces by dicing. In the case where tape cutting dicing is performed by attaching to the dicing sheet 36 as described above and performing tape cut dicing as described above, after bonding to the dicing ring under the above conditions, the backgrinding protective tape 34 is removed and full cut dicing is performed ( FIG. 4 (13)).
[0102]
Dicing is performed under the following conditions depending on the material of the IC substrate (wafer) 31.
<When cutting a 50 μm thick silicon substrate>
Blade: 2050 27HECC (manufactured by DISCO);
Spindle speed: 3000 rpm;
Feeding speed: 30mm / sec
<When cutting a 50 μm thick gallium arsenide substrate>
Blade: ZH126F (manufactured by DISCO);
Spindle speed: 3000 rpm;
Feed rate: 5 mm / sec;
Cutting depth: 40-85 μm
[0103]
[Installation of IC chip on substrate]
Next, the thinned and separated IC chip 30 is removed from the dicing sheet and mounted on the silicon substrate 1 (FIG. 5 (14)). At this time, the DAF 35 adheres and fixes the IC chip 30 on the insulating layer 11 as an insulating adhesive.
[0104]
Pickup from the dicing sheet is performed under the following conditions.
<For needle>
Plunge-up speed: 80 to 100 mm / sec;
Pickup holding time: 10-50 msec;
Pickup lift: 400 μm;
Expand: (minimum) 5 μm;
<For needleless>
Stroke: 3000 μm;
Speed: 10mm / sec
[0105]
FIG. 5 (15) is an explanatory view showing a method of die-bonding the IC chip 30 with a precision of 5 μm in a face-up state and fixing it onto the substrate 1 with a precision of 5 μm. The tool 37 for picking up the IC chip 30 is made of ceramics. Bonding (mounting) is performed at a tool temperature of 110 ° C., a load of 1 N / die, and a peel strength of 1 kgf or more per second. The alignment accuracy with the silicon substrate 1 is within ± 2.5 μm.
[0106]
This will be specifically described below. First, an inspection by pattern recognition is performed on a wafer expanded wafer or an IC chip 30 on a chip tray, and a non-defective product or a defective product is determined in advance. The tool 37 picks up only the IC chip 30 determined to be non-defective.
[0107]
As the coordinates at the time of pick-up, an alignment target 39 formed in advance on the substrate 1 and the positions of the pads (electrodes) 32 of the IC chip 30 to be mounted are input. The tool 37 sucks a position offset from the pad (electrode) 32 of the IC chip 30 by about 100 to 500 μm in one direction. As a result, the substrate 1 and the IC chip 30 can be aligned in a state where the alignment target 39 of the substrate 1 and the pad (electrode) 32 are both within the field of view of one CCD camera 38.
[0108]
More specifically, using the apparatus shown in FIG. 5 (15-1), the tool 37 that has attracted the IC chip 30 is vertically moved to the vicinity of the vertical mounting position in the vicinity of the horizontal mounting position of the IC chip 30. As shown in FIGS. 5 (15-2) and (15-3), the positions of the alignment target 39 of the substrate 1 and the pads (electrodes) 32 of the IC chip 30 are measured at this position. After the alignment of the direction, the tool is further lowered to press the IC chip 30 against the substrate 1 and heated under pressure to complete the mounting of the IC chip 30 on the substrate 1.
[0109]
At this time, the visual field of the camera is a rectangular shape having a length of 480 μm and a width of 640 μm, and pattern matching is performed by edge detection. Mounting accuracy achieves ± 2.5 μm. The mounting condition is, for example, 130 ° C. and 1 N / die. Heating is performed only with the heater of the tool 37, thereby preventing the copper wiring on the substrate 1 from being oxidized. After mounting, the tool 37 is cooled to room temperature by blowing with nitrogen gas.
[0110]
[Embedding IC chip and forming electrode lead-out part]
Next, as shown in FIGS. 5 (16) to 7 (20), the mounted IC chip 30 is embedded in an insulating layer to form a lead-out portion of the IC electrode 32. This process is substantially the same as the process shown in FIGS. 2 (3) to 4 (9). The insulating layer 21, the connection hole 22, the seed layer 23, the resist pattern 24, and the electrolysis are formed. It consists of processes, such as formation of the conductive layer 25 by plating.
[0111]
First, as shown in FIG. 5 (16), the insulating layer 21 is formed by a spin coating method, a printing method, or a dispensing method. With this insulating layer 21, the IC chip 30 is completely embedded up to the upper surface. The coating conditions for the insulating layer 21 are the same as the coating conditions for the insulating layer 11 on the silicon substrate.
[0112]
The material of the insulating layer 21 is preferably a material having a low dielectric constant. For example, polyimide, polybenzoxazole, epoxy resin, or polyamideimide resin is used.
[0113]
For example, when the insulating layer 21 is formed by spin coating using photosensitive polyimide, the insulating layer 21 is formed under the following film formation conditions.
Viscosity of coating solution: 200 P (poise);
Spin coater rotation speed: rotate at 800 rpm for 30 seconds, then rotate at 1200 rpm for 30 seconds;
Pre-baking: heating in a nitrogen gas atmosphere at 60 ° C. for 240 seconds, followed by heating at 90 ° C. for 240 seconds, and further heating at 110 ° C. for 240 seconds.
[0114]
Next, as shown in FIG. 6 (17), a connection hole 22 for extracting an electrode is formed in the insulating layer 21 with a diameter of, for example, 50 μm.
[0115]
When the insulating layer 21 is formed using photosensitive polyimide, the connection hole 22 is formed by exposure and development under the following conditions.
Exposure: Using a stepper, broadband light is 400 mJ / cm in terms of i-line2Irradiation;
Development: Perform spray development using a spin developer; E. T.A. × 1. 8 times;
Development inspection: by inspection machine;
Post-baking: Heating is performed at 150 ° C. for 0.5 hours in an atmosphere having an oxygen concentration of 40 ppm or less, followed by heating at 250 ° C. for 2.0 hours.
[0116]
After the development, a scum (residue) removing process on the surface of the insulating layer 11 is performed. The scum (residue) removing process is performed for 10 minutes using, for example, a plasma ashing apparatus under conditions of an oxygen flow rate of 100 sccm and an RF power of 100 mW.
[0117]
Next, as shown in FIG. 6 (18), a laminated film of a titanium film and a copper film is formed as a seed layer (underlying metal layer) 23 by a sputtering method.
[0118]
Sputtering is performed, for example, under the following conditions.
Film thickness: After forming a 1600 mm thick titanium film, a 6000 mm thick copper film is laminated thereon;
Degree of vacuum: 3.6 × 10-3Pa;
Sputtering pressure: 6.1 × 10-1Pa;
Argon gas flow rate: 110-115cm3/ Min;
Sputtering power: 2000 to 3000W
[0119]
Next, a photoresist is applied, exposure corresponding to the wiring pattern is performed, development and scum removal processing are performed, and a resist pattern 24 corresponding to the wiring pattern is formed as shown in FIG.
[0120]
For example, a resist is applied by spin coating, and a resist pattern 24 is formed by development under the following conditions.
Spin coater rotation speed: Rotate at 500 rpm for 10 seconds, then rotate at 4000 rpm for 30 seconds, further rotate at 5000 rpm for 0.5 seconds, then gradually decelerate and stop for 3 seconds;
Pre-bake: heat at 110 ° C. for 30 minutes;
Exposure: using a stepper;
Development: Develop with a spin developer using developer P-7G. The process of rotating for 3 seconds at 50 rpm while spraying the developer on the substrate 1 and then stopping for 30 seconds is repeated 7 times;
Rinse: sprinkle pure water on the substrate 1 for 60 seconds while rotating at 500 rpm;
Spin dry: substrate 1 is rotated at 3000 rpm for 30 seconds, water is sprinkled off and dried;
Development inspection: An inspection machine is used.
[0121]
After the resist pattern 24 is formed, a surface scum removal process is performed. The scum removal process is performed, for example, using a plasma ashing apparatus for 10 minutes under conditions of an oxygen flow rate of 100 sccm and an RF power of 100 mW.
[0122]
Subsequently, as shown in FIG. 7 (20), using the resist pattern 24 as a mask, a conductive layer 25 is embedded in the connection hole 22 and the wiring pattern portion by, for example, copper electroplating, and a plug portion 26 and a land portion 27 are embedded. , And wiring parts. For example, the plug portion 26 has a diameter of 50 μm, the land portion 27 has a diameter of 70 μm, and the wiring portion has a thickness of about 5 μm. At this time, a connection electrode 48 for connecting the second IC chip 50 and a wiring (not shown) connected to the connection electrode 48 are also formed.
[0123]
For example, the electrolytic plating is performed under the following conditions.
Washing: Immerse in bump cleaner for 30 minutes, then wash with water for 1 minute, then soak for 30 seconds in 5% aqueous sulfuric acid, then wash with water for 1 minute;
Degreasing and cleaning: performed at 40 ° C. for 1 minute;
Wetting treatment: 2 minutes at 40 ° C;
Pickling with water: 1 minute;
Copper sulfate plating solution: liquid temperature 25 ° C .; copper sulfate concentration: 50 g / l, sulfuric acid concentration: 25 g / l;
DK (cathode current density): 0.03 A / cm2
[0124]
After the completion of the electrolytic plating, the resist 24 is removed and the resist residue is ashed. For example, after removing the resist 24 using an alkaline solution, a tetrafluoromethane CF is used using a plasma ashing device.4While flowing oxygen and oxygen at a flow rate of 50 sccm, the residue is ashed by applying RF power of 25 W. This ashing process is repeated twice for 5 minutes each.
[0125]
[Formation of buffer layer and external connection electrode]
Next, as shown in FIGS. 7 (21) to 9 (27), as a buffer layer for improving connection reliability with a mother substrate such as FR-4, a copper post 43 for extracting external connection electrodes, An insulating layer 44 that covers the other portions flatly is formed, a second IC chip is mounted, and an external connection electrode 45 is formed on the exposed surface of the copper post 43.
[0126]
First, after removing the oxide film on the surface of the conductive layer 25 by light etching using hydrofluoric acid, a photosensitive dry film (resist film) 41 is attached. After exposing a part of the resist film 41 by masking, the cover film is peeled off, developed, scum-removed, and holes 42 corresponding to the copper posts 43 are formed in the resist film 41 (FIG. 7 (21)).
[0127]
Thereafter, as shown in FIG. 7 (22), electrolytic plating using the resist film 41 as a mask is performed, and copper is embedded in the voids 42 to form, for example, copper posts 43 having a diameter of 150 μm and a height of 100 μm.
[0128]
Next, as shown in FIG. 8 (23), the dry film 41 is peeled off, and then the seed layer 23 other than the lower part of the conductive layer 25 is removed by etching using the conductive layer 25 as a mask to form the conductive layer 25. The formation of the plug part 26, the land part 27, the connection electrode 48, the wiring part, etc. is completed.
[0129]
The removal of the copper film and the titanium film of the seed layer 23 is performed under the following conditions using, for example, a wet etching apparatus.
<Copper film>
Using SO-YO as a chemical solution, the chemical solution is sprayed and cleaned for 15 seconds while rotating the substrate 1 at 50 rpm. Next, pure water is sprayed for 60 seconds (rinsing) while rotating the substrate 1 at 500 rpm. Next, the substrate 1 is rotated at 3000 rpm for 30 seconds to shake off water and dry (spin drying).
<Titanium film>
Using SO-1 as the chemical solution, the chemical solution is poured and washed for 25 seconds while rotating the substrate 1 at 50 rpm. Next, pure water is sprayed for 60 seconds (rinsing) while rotating the substrate 1 at 500 rpm. Next, the substrate 1 is rotated at 3000 rpm for 30 seconds to shake off water and dry (spin drying).
[0130]
Next, as shown in FIG. 8 (24), with the copper post 43 standing, an insulating layer 44 such as epoxy resin, PBO, PI resin, or phenol resin is formed by spin coating, printing, or transfer molding. To completely cover the copper post 43. The insulating layer 44 is degassed in a vacuum oven and further cured at 120 ° C. for 1 hour and subsequently at 150 ° C. for 2 hours.
[0131]
At this time, for example, when the insulating layer 44 is attached by a printing method, squeezing is performed so as to cover the upper surface of the copper post 43 with a thickness of 10 μm or more, and the surface unevenness is finished within about ± 30 μm. At this time, the resin is prevented from entering the recess 47.
[0132]
After the resin is cured, as shown in FIG. 9 (25), the surface is ground to cue the copper post 43. At this time, for example, grinding is performed using a # 600 grindstone at a spindle rotation speed of 3000 rpm. Thereafter, an activation process is performed to prevent an oxide film from being formed on the exposed portions of the connection electrode 48 and the copper post 43.
[0133]
Next, as shown in FIG. 9 (26), the second IC chip 50 is fixed to the recess 47 and electrically connected to the connection electrode 48. In the case of flip-chip connection, Ni / Au, UBM, solder bump, Au stud bump or the like is formed on the electrode portion 51 of the IC chip 50 and joined to the connection electrode 48 by thermocompression bonding or ultrasonic pressure bonding. After bonding, the bonding portion is sealed using NCP, NCF, ACP, ACF, or the like as the insulating resin 49.
[0134]
When connecting by wire bonding, Ni / Au plating is performed on the connection electrode 48 and wire bonding is performed. After wire bonding, sealing is performed with an epoxy resin, a polyimide resin, or a phenol resin.
[0135]
Next, as shown in FIG. 9 (27), the external connection electrode 45 is formed on the exposed portion of the copper post 43. As the external connection electrodes 45, solder ball bumps, lead-free solder ball bumps, Au stud bumps, LGA, or print bumps are formed.
[0136]
For example, as shown in FIG. 9 (27), when forming a solder ball, after applying the flux, a solder ball having a diameter of about 0.15 mm is attached, and fusion bonding is performed by reflow. After joining, the flux is washed and completed.
[0137]
The arrangement of the external connection electrodes 45 of this package is an arrangement corresponding to an area array type or peripheral type BGA or LGA.
[0138]
[Thinner and thinner package]
After the external connection electrode 45 is formed, the package is thinned and separated.
[0139]
First, as shown in FIG. 10 (28), the silicon substrate 1 is half-cut. At this time, for example, grinding is performed at a spindle rotation speed of 3000 rpm using a # 1500 grindstone to form a groove 46 having a depth of 70 μm in the silicon substrate 1.
[0140]
After half-cutting, the back surface of the silicon substrate 1 is ground to reduce the thickness and separate the pieces at the same time. At this time, a backgrinding protective tape is applied to the surface side of the silicon substrate 1, and for example, rough grinding is performed at 4800 rpm using a # 360 grindstone, and then finish grinding is performed at 5500 rpm using a # 600 grindstone. The substrate 1 is ground to a thickness of 50 μm, for example. Thereafter, the backgrinding protective tape is peeled off and attached to the transfer film, whereby the individualization of the SiP100 is completed (FIG. 10 (29)).
[0141]
SiP mounting structure
FIG. 11 is a schematic cross-sectional view showing a SiP mounting structure.
[0142]
FIG. 11A shows an example in which the above-described SiP 100 is mounted on an FR-4 standard glass epoxy substrate together with other semiconductor chips 78, a crystal resonator 80, and the like. The SiP 100 is embedded in the glass epoxy substrate 71. However, it is preferable to mount a material that cannot be incorporated into the SiP, such as a crystal resonator, or that has no merit of incorporation, on the glass epoxy substrate. As described above, by mounting the SiP 100 together with other semiconductor chips and functional components, a more multifunctional device can be realized.
[0143]
FIG. 11B shows an example in which the SiP 100 is embedded in the interposer layer 81 and mounted. In the figure, the electrode pitch (0.1 to 0.3 mm) of the SiP 100 and the electrode pitch (0.5 mm) of the external device can be adjusted by the rearrangement wiring using the interposer layer 81 by the interposer layer 81. Therefore, even if the wiring width and wiring pitch in the SiP are further reduced to reduce the size of the SiP, the degree of freedom in the arrangement of the external connection electrodes 83 can be obtained and the number of pins (number of external terminals) can be increased.
[0144]
As described above, according to the embodiment of the present invention, passive elements and face-up active elements are mounted on a silicon substrate, and these elements are covered with an insulating layer and embedded. It is possible to form a conductor plug for pulling out the electrode of the element in the upper part through the insulating layer in the vertical direction and to form a necessary wiring on the insulating layer.
[0145]
Thus, by adopting a structure capable of flip-chip mounting and face-up mounting, each element can be mounted three-dimensionally at a high density, and the design freedom of the entire SiP can be improved. . The capacitor formed on the silicon substrate and the IC part can be brought close to each other, and the high frequency characteristics can be improved.
[0146]
Further, since the second IC chip is fixed to the surface of the insulating layer and connected to the connection electrode provided on the surface of the insulating layer, the second IC chip is changed as the specification is changed. In addition, by making additional IC chips, IC chips with high defective product rate and failure rate, etc., for specification change, performance improvement and function addition, parts failure and failure occurrence etc., respectively Can respond.
[0147]
In particular, since an external IC can be mounted on a SiP in which a passive element is formed on a silicon substrate and an active element is embedded, the degree of freedom of SiP design is further increased. In addition, when an IC or the like having a low yield is mounted, the yield of the entire SiP is lowered after being embedded, but the yield of the entire SiP is not lowered by being externally attachable. Then, by installing a land for flip chip connection or wire bonding connection on the SiP, it is possible to cope with the IC layout and the product type change and to cope with the model change at an early stage.
[0148]
At this time, at least the connection portion between the second IC chip and the connection electrode is sealed with an insulating material, and the second IC chip is fixed in the recess provided in the insulating layer. Can be improved.
[0149]
When fixing the IC chip on the substrate, the IC chip is positioned while recognizing both the alignment target on the substrate or the insulating layer and the electrode of the IC chip in the same field of view using, for example, a CCD camera. Therefore, the IC chip can be fixed face-up with a mounting accuracy of ± 2.5 μm.
[0150]
Further, when a plurality of IC chips are stacked, by thinning each IC by grinding, it becomes possible to mount a large number of ICs without changing the thickness of the entire SiP, and it can be easily multi-functionalized.
[0151]
In addition, since a silicon substrate is used as a substrate, not only is it excellent in mechanical strength, heat resistance, heat transfer properties, etc., but it is possible to use technologies and equipment accumulated over the long history of semiconductor processing. Low cost and efficient production is possible. For example, a large and extremely flat wafer can be obtained and can be easily thinned by grinding. In addition, by performing batch processing using semiconductor processing technology on the wafer, it is possible to easily form a fine pattern and efficiently perform rewiring processing such as wiring formation with a small wiring width and pitch and change of electrode position. Therefore, the entire SiP can be reduced in size. Further, if necessary, an active element such as a transistor can be formed in accordance with a conventional method instead of a simple substrate, and can be incorporated into SiP.
[0152]
In addition, since photosensitive polyimide is used as the material for the insulating layer, it has excellent electrical characteristics such as excellent heat resistance, mechanical strength, low dielectric constant, high insulation, and the like. In addition, the insulating layer made of photosensitive polyimide can be easily patterned by exposure and development.
[0153]
Further, the obtained SiP can be embedded in an FR-4 substrate or the like, and a more multifunctional SiP can be formed.
[0154]
It goes without saying that the embodiment of the present invention described above can be appropriately changed with respect to conditions, devices, and the like without departing from the spirit of the invention.
[0155]
[Effects of the invention]
According to the present invention, at least the face-up type active element and the passive element are covered by the lower insulating layer formed on the substrate, and the active element and / or the passive element is interposed between the lower insulating layer and the insulating layer. Because it is connected to the upper wiring, the active and passive elements are embedded in the lower insulating layer while forming the necessary electrical connections, and multiple insulating layers are stacked using, for example, the adhesive force between the insulating layers Thus, a lower insulating layer is formed, and a semiconductor device having a desired function can be packaged with a thickness as thin as possible and protected by the insulating layer.
[0156]
That is, various functions of the lower insulating layer, that is, a function capable of forming a passive element or wiring by attaching a conductor or the like to the surface or the through-hole, and a mechanical element from outside by covering the active element or the passive element A function to hold these elements in place while protecting them from chemical or electrical adverse effects, a thin film with a small thickness can be easily formed, and a laminated structure can be easily formed only by the adhesive force between insulating layers. Since the functions that can be made are fully utilized and the role of high-density mounting and protection of elements, which has been shared by conventional circuit boards and mold resins, is realized by only the lower insulating layer, the present invention This semiconductor device is a small, thin, light, low-cost SiP, and the active element is held face up, so that fine wiring with a small width and pitch can be arbitrarily provided through the lower insulating layer. Can design Degree is increased, it is easy to multifunctional incorporates elements of various by increasing the insulating layer stacked.
[0157]
Furthermore, in the semiconductor device of the present invention, the external connection terminal is provided via the upper insulating layer formed on the wiring, and the connection electrode for mounting the electronic component is provided using the upper insulating layer. When there is a need to change the specifications, it is easy to change. For example, since an active element such as a semiconductor chip is embedded in the lower insulating layer, another active element can be externally attached to the connection electrode, thereby improving the performance of the SiP, changing the product type or layout, This can be added, and the degree of freedom in designing the SiP is increased.
[0158]
Further, in the case of an RF circuit or the like, for example, when the basic part of the circuit does not change, but it is necessary to change the capacitance of some capacitors in accordance with the applied frequency, the semiconductor device of the present invention is used for the RF circuit. It is possible to cope with a wide range of frequencies by producing a basic part and externally attaching a capacitor to the connection electrode.
[0159]
In addition, when electronic parts such as semiconductor chips with a high defect rate or failure rate are mounted, the yield decreases due to the malfunction of SiP after being embedded in the insulating layer. However, such electronic parts are not attached to the connection electrodes. By enabling the attachment, it is possible to deal with the failure or failure of these electronic components by replacing the defective components, so that the yield of SiP is not reduced.
[0160]
The manufacturing method of the present invention is a method by which the semiconductor device of the present invention can be manufactured with good reproducibility, and the mounting structure of the present invention mounts the semiconductor device of the present invention on a circuit board or the like together with other electrical components. It is a structure that facilitates.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a SiP (system in package) according to a preferred embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing a process for producing SiP.
FIG. 3 is a schematic cross-sectional view showing a process for producing SiP.
FIG. 4 is a schematic cross-sectional view showing a process for producing SiP.
FIG. 5 is a schematic cross-sectional view showing a process for producing SiP.
FIG. 6 is a schematic cross-sectional view showing a process for producing SiP.
FIG. 7 is a schematic cross-sectional view showing a process for producing SiP.
FIG. 8 is a schematic cross-sectional view showing a process for producing SiP.
FIG. 9 is a schematic cross-sectional view showing a process for producing SiP.
FIG. 10 is a schematic cross-sectional view showing a process for producing SiP.
FIG. 11 is a schematic cross-sectional view showing an example of mounting SiP.
FIG. 12 is a schematic cross-sectional view showing an example of an RF system-in-package using a conventional LTCC substrate.
FIG. 13 is a schematic cross-sectional view showing an example of an RF system-in-package using a conventional FR-4 glass epoxy substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Silicon substrate, 2 ... Silicon oxide film, 3 ... Lower electrode, 4 ... Dielectric layer, 5 ... Protective layer, 6 ... Lead electrode, 7 ... Upper electrode, 10 ... Capacitor, 11 ... Insulating layer, 12 ... Connection hole (Via hole), 13 ... seed layer (underlying metal layer), 14 ... resist pattern, 15 ... copper conductive layer, 16 ... plug part, 17 ... land part, 18 ... wiring part, 20 ... inductor, 21 insulating layer, 22 ... Connection hole for electrode extraction, 23 ... seed layer (underlying metal layer), 24 ... resist pattern, 25 ... conductive layer, 25A ... intermediate conductive layer, 26 ... plug part, 27 ... land part, 28 ... intermediate insulating layer, 29 ... Insulating layer, 30, 30A, 30B ... IC chip, 31, 31A, 31B ... IC substrate, 32, 32A, 32B ... IC electrode, 33, 33B ... Passivation film, 34 ... Backgrinding protective tape, 5 ... Die attach film (DAF), 36 ... Dicing sheet, 35 ... Adhesive layer, 41 ... Photosensitive dry film (resist film), 42 ... Hole, 43 ... Copper post, 44 ... Insulating layer, 45 ... External connection electrode , 46 ... groove, 47 ... recess, 48 ... connection electrode, 49 ... insulating resin, 50 ... second IC chip, 51 ... electrode of the second IC chip, 52 ... wire, 61 ... LTCC substrate, 62 ... Inductors, 63, 64 ... capacitors, 65 ... wiring portions on the substrate surface, 66 ... connection portions penetrating the substrate, 67, 68 ... semiconductor chip, 69 ... underfill material, 71 ... glass epoxy substrate such as FR-4 standard , 72 ... inductor, 75 ... wiring part on the substrate surface, 76 ... connection part penetrating the substrate, 77 ... semiconductor chip, 78 ... passive element, 77b ... embedded semiconductor chip, 78b ... buried Or a passive element, 79 ... underfill material, 80 ... crystal oscillator, 81 ... interposer layer, 82 ... internal connection electrode, 83 ... external connection electrodes, 100 ... semiconductor device (SiP)

Claims (28)

基体上に形成された絶縁層によって、少なくともフェイスアップ式の能動素子と受動素子とが被覆され、前記能動素子及び/又は前記受動素子が、下部絶縁層としての前記絶縁層を介してこの絶縁層上の配線に接続されており、且つ、前記配線上に形成された上部絶縁層を介して外部接続端子が設けられていると共に、前記上部絶縁層を用いて電子部品搭載用の接続電極が設けられている、半導体装置。At least a face-up type active element and a passive element are covered with an insulating layer formed on the substrate, and the active element and / or the passive element is interposed between the insulating layer as a lower insulating layer and the insulating layer. An external connection terminal is provided via an upper insulating layer formed on the wiring, and a connection electrode for mounting an electronic component is provided using the upper insulating layer. A semiconductor device. 前記電子部品が前記下部絶縁層表面に設けられた前記接続電極に接続され、少なくともこの接続部が絶縁性物質で封止されている、請求項1に記載した半導体装置。The semiconductor device according to claim 1, wherein the electronic component is connected to the connection electrode provided on the surface of the lower insulating layer, and at least the connection portion is sealed with an insulating material. 前記外部接続端子の近傍において、前記電子部品が前記下部絶縁層上に設けられた前記上部絶縁層の凹部内に固定されている、請求項2に記載した半導体装置。The semiconductor device according to claim 2, wherein the electronic component is fixed in a recess of the upper insulating layer provided on the lower insulating layer in the vicinity of the external connection terminal. 前記配線上に形成された前記上部絶縁層の上に外部接続電極が設けられている、請求項1に記載した半導体装置。The semiconductor device according to claim 1, wherein an external connection electrode is provided on the upper insulating layer formed on the wiring. 前記配線が前記下部絶縁層上に、前記外部接続電極が前記上部絶縁層上に、それぞれ形成されている、請求項4に記載した半導体装置。The semiconductor device according to claim 4, wherein the wiring is formed on the lower insulating layer and the external connection electrode is formed on the upper insulating layer. 前記下部絶縁層に形成された接続孔に、前記能動素子及び/又は前記受動素子と前記配線とを接続するための導電体が形成されている、請求項1に記載した半導体装置。2. The semiconductor device according to claim 1, wherein a conductor for connecting the active element and / or the passive element and the wiring is formed in a connection hole formed in the lower insulating layer. 前記配線がインダクタンス素子を構成している、請求項1に記載した半導体装置。The semiconductor device according to claim 1, wherein the wiring forms an inductance element. 第1絶縁層によって第1の受動素子が被覆され、前記第1絶縁層上の第2絶縁層によって第2の受動素子と半導体チップとが被覆されている、請求項1に記載した半導体装置。2. The semiconductor device according to claim 1, wherein the first passive element is covered with a first insulating layer, and the second passive element and the semiconductor chip are covered with a second insulating layer on the first insulating layer. 前記第2絶縁層上の第3絶縁層を用いて前記電子部品としての第2の能動素子が前記接続電極に接続されている、請求項8に記載した半導体装置。The semiconductor device according to claim 8, wherein a second active element as the electronic component is connected to the connection electrode using a third insulating layer on the second insulating layer. 前記基体がシリコン基板である、請求項1に記載した半導体装置。The semiconductor device according to claim 1, wherein the base is a silicon substrate. 前記絶縁層が感光性ポリイミドからなる、請求項1に記載した半導体装置。The semiconductor device according to claim 1, wherein the insulating layer is made of photosensitive polyimide. 請求項1〜11のいずれか1項に記載された半導体装置が絶縁物質層中に埋設され、この絶縁物質層を介して外部接続電極が形成されている、半導体装置の実装構造。A mounting structure for a semiconductor device, wherein the semiconductor device according to claim 1 is embedded in an insulating material layer, and an external connection electrode is formed through the insulating material layer. 前記絶縁物質層上に他の機能部品が実装されている、請求項12に記載した半導体装置の実装構造。The mounting structure of a semiconductor device according to claim 12, wherein another functional component is mounted on the insulating material layer. 基体上に形成された絶縁層によって、少なくともフェイスアップ式の能動素子と受動素子とが被覆され、前記能動素子及び/又は前記受動素子が、下部絶縁層としての前記絶縁層を介してこの絶縁層上の配線に接続されており、且つ、前記配線上に形成された上部絶縁層を介して外部接続端子が設けられていると共に、前記上部絶縁層を用いて電子部品搭載用の接続電極が設けられている、半導体装置を製造する方法であって、
前記下部絶縁層によって前記能動素子を被覆する工程と、
前記下部絶縁層によって前記受動素子を被覆する工程と、
前記下部絶縁層を介してこの絶縁層上に、前記能動素子及び/又は前記受動素子に接続された前記配線を形成する工程と、
前記配線上に形成された前記上部絶縁層を介して外部接続端子を設ける工程と、
前記上部絶縁層を用いて電子部品搭載用の前記接続電極を設ける工程と
を有する、半導体装置の製造方法。
At least a face-up type active element and a passive element are covered with an insulating layer formed on the substrate, and the active element and / or the passive element is interposed between the insulating layer as a lower insulating layer and the insulating layer. An external connection terminal is provided via an upper insulating layer formed on the wiring, and a connection electrode for mounting an electronic component is provided using the upper insulating layer. A method for manufacturing a semiconductor device, comprising:
Covering the active element with the lower insulating layer;
Covering the passive element with the lower insulating layer;
Forming the wiring connected to the active element and / or the passive element on the insulating layer via the lower insulating layer;
Providing an external connection terminal through the upper insulating layer formed on the wiring;
And a step of providing the connection electrode for mounting an electronic component using the upper insulating layer.
前記電子部品を前記下部絶縁層表面に設けられた前記接続電極に接続し、少なくともこの接続部を絶縁性物質で封止する、請求項14に記載した半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 14, wherein the electronic component is connected to the connection electrode provided on the surface of the lower insulating layer, and at least the connection portion is sealed with an insulating material. 前記外部接続端子の近傍において、前記電子部品を前記下部絶縁層上に設けられた前記上部絶縁層の凹部内に固定する、請求項15に記載した半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 15, wherein the electronic component is fixed in a recess of the upper insulating layer provided on the lower insulating layer in the vicinity of the external connection terminal. 前記配線上に前記上部絶縁層を形成し、この絶縁層に接続孔を形成し、前記配線に接続された外部接続電極を前記接続孔上に形成する、請求項14に記載した半導体装置の製造方法。The semiconductor device manufacturing method according to claim 14, wherein the upper insulating layer is formed on the wiring, a connection hole is formed in the insulating layer, and an external connection electrode connected to the wiring is formed on the connection hole. Method. 前記下部絶縁層に接続孔を形成し、前記能動素子及び/又は前記受動素子と前記配線とを接続するように導電体を前記接続孔に形成する、請求項14に記載した半導体装置の製造方法。The method for manufacturing a semiconductor device according to claim 14, wherein a connection hole is formed in the lower insulating layer, and a conductor is formed in the connection hole so as to connect the active element and / or the passive element and the wiring. . 前記配線によってインダクタンス素子を形成する、請求項14に記載した半導体装置の製造方法。The method for manufacturing a semiconductor device according to claim 14, wherein an inductance element is formed by the wiring. 前記配線の形成と、前記能動素子及び前記受動素子への接続とをめっきによって行う、請求項14に記載した半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 14, wherein the formation of the wiring and the connection to the active element and the passive element are performed by plating. 第1絶縁層によって第1の受動素子を被覆し、前記第1絶縁層上の第2絶縁層によって第2の受動素子と半導体チップとを被覆する、請求項14に記載した半導体装置の製造方法。15. The method of manufacturing a semiconductor device according to claim 14, wherein the first passive element is covered with a first insulating layer, and the second passive element and the semiconductor chip are covered with a second insulating layer on the first insulating layer. . 前記第2絶縁層上に形成した第3絶縁層を用いて前記電子部品としての第2の能動素子を前記接続電極に接続する、請求項21に記載した半導体装置の製造方法。The method for manufacturing a semiconductor device according to claim 21, wherein a second active element as the electronic component is connected to the connection electrode using a third insulating layer formed on the second insulating layer. 前記基体上に半導体チップを固定するに際し、前記基体上又は前記下部絶縁層上の位置合わせ目標と、前記半導体チップの電極との両方を同一視野内で認識しつつ、前記半導体チップの位置決めを行う、請求項14に記載した半導体装置の製造方法。When fixing the semiconductor chip on the substrate, the semiconductor chip is positioned while recognizing both the alignment target on the substrate or the lower insulating layer and the electrode of the semiconductor chip within the same field of view. A method for manufacturing a semiconductor device according to claim 14. 前記基体の表面側を保護シートで保持した状態で裏面を研削することによって、前記基体を薄型化する、請求項14に記載した半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 14, wherein the base is thinned by grinding a back surface in a state where the front side of the base is held by a protective sheet. 前記基体の表面側から分離溝を形成し、この分離溝に達するように前記基体の薄型化を行うことによって、個片化した半導体装置を得る、請求項24に記載した半導体装置の製造方法。25. The method of manufacturing a semiconductor device according to claim 24, wherein a separation groove is formed from the surface side of the base body, and the base body is thinned so as to reach the separation groove, thereby obtaining an individual semiconductor device. 半導体チップとなる半導体ウエーハを個片化するに際し、前記半導体ウエーハの電極面に保護シートを被着した状態で前記電極面とは反対側の裏面を研削することによって、前記半導体ウエーハを薄型化し、前記保護シートを被着したまま前記半導体ウエーハをダイシングシートに貼り付け、しかる後に前記保護シートを除去してダイシングを行うことによって、薄型化した半導体チップを得、この半導体チップを前記基体上に固定する、請求項14に記載した半導体装置の製造方法。When singulating a semiconductor wafer to be a semiconductor chip, by grinding a back surface opposite to the electrode surface in a state where a protective sheet is attached to the electrode surface of the semiconductor wafer, the semiconductor wafer is thinned, The semiconductor wafer is attached to the dicing sheet with the protective sheet attached, and then the protective sheet is removed and dicing is performed to obtain a thinned semiconductor chip, and the semiconductor chip is fixed on the substrate. A method for manufacturing a semiconductor device according to claim 14. 前記基体としてシリコン基板を用いる、請求項14に記載した半導体装置の製造方法。The method for manufacturing a semiconductor device according to claim 14, wherein a silicon substrate is used as the base. 前記絶縁層を感光性ポリイミドによって形成する、請求項14に記載した半導体装置の製造方法。The method for manufacturing a semiconductor device according to claim 14, wherein the insulating layer is formed of photosensitive polyimide.
JP2003168626A 2003-06-13 2003-06-13 Semiconductor device, mounting structure thereof, and manufacturing method thereof Expired - Fee Related JP4280979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168626A JP4280979B2 (en) 2003-06-13 2003-06-13 Semiconductor device, mounting structure thereof, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168626A JP4280979B2 (en) 2003-06-13 2003-06-13 Semiconductor device, mounting structure thereof, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005005549A true JP2005005549A (en) 2005-01-06
JP4280979B2 JP4280979B2 (en) 2009-06-17

Family

ID=34094007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168626A Expired - Fee Related JP4280979B2 (en) 2003-06-13 2003-06-13 Semiconductor device, mounting structure thereof, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4280979B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216767A (en) * 2005-02-03 2006-08-17 Sony Corp Semiconductor device and its manufacturing method
JP2006216769A (en) * 2005-02-03 2006-08-17 Sony Corp Semiconductor device and its fabrication process
JP2009522767A (en) * 2005-12-29 2009-06-11 ウエイブニクス インク. Three-dimensional package module, method for manufacturing the same, and method for manufacturing passive elements applied to the three-dimensional package module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412250A (en) * 2011-11-04 2012-04-11 日月光半导体制造股份有限公司 Semiconductor packaging structure, integrated passive element and fabrication method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216767A (en) * 2005-02-03 2006-08-17 Sony Corp Semiconductor device and its manufacturing method
JP2006216769A (en) * 2005-02-03 2006-08-17 Sony Corp Semiconductor device and its fabrication process
JP4591100B2 (en) * 2005-02-03 2010-12-01 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP2009522767A (en) * 2005-12-29 2009-06-11 ウエイブニクス インク. Three-dimensional package module, method for manufacturing the same, and method for manufacturing passive elements applied to the three-dimensional package module
US8034664B2 (en) 2005-12-29 2011-10-11 Wavenics Inc. Method of fabricating passive device applied to the three-dimensional package module

Also Published As

Publication number Publication date
JP4280979B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP4016340B2 (en) Semiconductor device, mounting structure thereof, and manufacturing method thereof
US11727714B2 (en) Fingerprint sensor device and method
US10700045B2 (en) Surface mount device/integrated passive device on package or device structure and methods of forming
US10943889B2 (en) Semiconductor device and method of manufacture
US7220667B2 (en) Semiconductor device and method of fabricating the same
US7981722B2 (en) Semiconductor device and fabrication method thereof
US20050046041A1 (en) Integrated circuit device with embedded passive component by flip-chip connection and method for manufacturing the same
US11715686B2 (en) Semiconductor device and method of manufacture
US11145614B2 (en) Semiconductor device and method of manufacture
US20220302009A1 (en) Semiconductor package and method of manufacture
US20230386986A1 (en) Semiconductor Device and Method of Manufacture
US20220359489A1 (en) Semiconductor Devices and Methods of Manufacturing
JP4654598B2 (en) Semiconductor device and manufacturing method thereof
JP4380551B2 (en) Semiconductor device and manufacturing method thereof
JP4280979B2 (en) Semiconductor device, mounting structure thereof, and manufacturing method thereof
US20230062775A1 (en) Package substrate, package using the same, and method of manufacturing the same
JP4200812B2 (en) Semiconductor device, method for manufacturing the same, and electronic circuit device
US8501612B2 (en) Flip chip structure and method of manufacture
JP4591100B2 (en) Semiconductor device and manufacturing method thereof
JPWO2020261994A1 (en) Composite parts and their manufacturing methods
JP2008300560A (en) Semiconductor device, and manufacturing method thereof
JP2005317867A (en) Manufacturing method of semiconductor device
JP2006216769A (en) Semiconductor device and its fabrication process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060817

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees