JP2005005404A - Circuit substrate, heat dissipation module and semiconductor component - Google Patents

Circuit substrate, heat dissipation module and semiconductor component Download PDF

Info

Publication number
JP2005005404A
JP2005005404A JP2003165705A JP2003165705A JP2005005404A JP 2005005404 A JP2005005404 A JP 2005005404A JP 2003165705 A JP2003165705 A JP 2003165705A JP 2003165705 A JP2003165705 A JP 2003165705A JP 2005005404 A JP2005005404 A JP 2005005404A
Authority
JP
Japan
Prior art keywords
metal plate
ceramic substrate
circuit
metal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003165705A
Other languages
Japanese (ja)
Inventor
Tomoo Tanaka
智雄 田中
Naohito Sato
尚人 佐藤
Masaya Ito
正也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003165705A priority Critical patent/JP2005005404A/en
Publication of JP2005005404A publication Critical patent/JP2005005404A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To remarkably improve reliability of heat-proof cycle nature as compared with conventional arts, concerning a semiconductor component which is equipped with and constituted by a semiconductor element in the circuit substrate by joining a metal plate to a ceramics substrate and forming a circuit on the metal plate by etching and obtaining the circuit substrate. <P>SOLUTION: One surface of the ceramics substrate 2 is equipped with the metal plate 3, an insulation part 4 is formed in the metal plate 3 and a circuit is formed, thereby constituting the circuit substrate 5. A surface layer 3A specifies a thickness component in substantially constant region in hardness of the metal plate. The back layer 3B which has a higher hardness. Point A is a point of intersection of the boundary surface 3C of the surface layer 3A and the back layer 3B and an outer peripheral metal end surface of the metal plate 3. A metal end bottom of base end by the side of the ceramics substrate 2 of a metal end surface is made B. The interface of the ceramics substrate 2 and the metal plate 3 is made C. The circuit substrate 5 wherein ∠ABC=α is 30°≤α≤70° is offered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車、ハイブリッド車、家庭用機器のインバーター制御に用いられるIGBTをはじめとするパワーモジュール等の回路基板と、その回路基板に放熱部材を接合した放熱モジュール及び前記回路基板又は前記放熱モジュールに半導体素子を装着してなる半導体部品に関する。
【0002】
【従来の技術】
パワーモジュールやスイッチング電源モジュール等の半導体部品として、アルミナ(Al)、窒化アルミニウム(AlN)等のセラミックス基板に銅やアルミニウム等の導電性に優れた金属板を接合し、その金属板に回路を構成する線状の絶縁部をエッチングで形成して回路基板とし、その回路基板に半導体素子を装着して構成したものがある。前記回路基板のセラミックス基板と金属板は、ろう付け法、メタライズ法、ダイレクト・ボンド・カッパー法等の化学的接合手段により一体に接合されている。
【0003】
【発明が解決しようとする課題】
半導体素子は通電により発熱し、その熱が回路基板に伝わる。一般に回路基板のセラミックス基板には非回路側の面に金属板やヒートシンク等の放熱部材が接合されていて、半導体素子の熱がその放熱部材から外部に拡散するようになっている。もちろん半導体素子への通電が止まれば発熱は止み、回路基板の温度も下がる。
回路基板は、このようなヒートサイクルを繰り返し受けるため、セラミックスと金属の熱膨張係数の違いによる残留応力や熱応力の影響を受けて回路を構成する金属板とセラミックス基板の界面にクラックが生じたり、セラミックス基板自体にクラックが生ずるおそれがある。金属板とセラミックス基板の界面に生ずるクラックの発生は、放熱性能の低下や耐電圧の低下等、半導体部品の動作不良、寿命、信頼性に直結する重大事であり、従ってこれまでも多くのヒートサイクル対策が行われてきた。特に近年、半導体素子の高集積化が著しく、それに比例して発熱量も急増していることから、回路基板の耐ヒートサイクル性の向上は急務である。
【0004】
ところで回路を構成する金属板には導電性に優れた銅やアルミニウムが使われるが、これらの材質は比較的軟質であるため、前記ヒートサイクルによる熱応力や残留応力に対して緩衝作用を発揮し、それがヒートサイクル対策として有効に機能するものと考えられていた。
【0005】
しかしながらセラミックス基板と金属板を化学的接合手段で接合した場合には、例えばろう材に含まれるAg、Sn、Ti等の成分が銅やアルミニウムで出来ている金属板に拡散・固溶して界面からある範囲に渡って硬度を上昇させるから、それだけ緩衝性能が低下する。従ってそのような金属板の接合に起因する硬化現象を無視した従来のヒートサイクル対策では正確性・信頼性に欠ける。
【0006】
本発明者は斯かる観点に立ち、接合による金属板の硬化を考慮しつつヒートサイクル試験を繰り返した結果、金属板の硬化と金属板の外周囲金属端面形状の相関々係を見出し、本発明に到達したものである。
【0007】
【課題を解決するための手段】
セラミックス基板の一方の面に回路形成用の金属板を備え、その金属板に絶縁部を設けて回路を形成してなる回路基板において、前記金属板の硬度がほぼ一定である範囲を厚さ成分とする表層とそれより高硬度の裏層との境界面と、前記金属板の外周囲金属端面との交点をAとし、前記金属端面のセラミックス基板側の基端である金属端底部をBとし、セラミックス基板と金属板の界面をCとした場合に、∠ABC=αが30度≦α≦70度である回路基板を提供する。なお、ここで金属板の外周囲金属端面には、金属板の外形の輪郭、絶縁部の輪郭、或いは後述するビス挿通用の貫通孔の輪郭など、金属板の全ての金属端面を含む。
また、請求項2に記載したように前記セラミックス基板の非回路側の面に放熱部材を接合してなる放熱モジュールを提供する。
また、請求項3に記載したように前記セラミックス基板の非回路側の面に放熱部材たる放熱板を接合し、さらにその放熱板の他面に第二のセラミックス基板を接合してなる放熱モジュールを提供する。
さらにまた、請求項4に記載したように前記回路基板又は前記放熱モジュールの金属板に半導体素子を装着してなる半導体部品を提供する。
なお、上記αの範囲は以下のようにして求めた。
【0008】
【半導体部品の製造】
先ず図1,2に示した半導体部品1を製造した。この半導体部品1は、セラミックス基板2の上面に回路形成用の金属板3を接合しその金属板3にエッチングで絶縁部4を設けて回路を形成してなる回路基板5と、その回路基板5の回路上にはんだ付けして装着した半導体素子6と、前記セラミックス基板2の下面側に配置した放熱部材たる放熱板7と、その放熱板7の下面に配置した第二のセラミックス基板20と、さらにそのセラミックス基板20の下面に配置した第二の放熱部材たる放熱板70とからなる。上記各部材は、金属板3の下面側にセラミックス基板2の上面をセットし、そのセラミックス基板2の下面側に放熱板7の上面をセットし、さらにその放熱板7の下面に第二のセラミックス基板20の上面をセットし、さらにそのセラミックス基板20の下面に第二の放熱板70の上面をセットし、全てろう付けにより800℃〜1000℃、30〜60分で一体に接合することができる。
【0009】
前記セラミックス基板2と第二のセラミックス基板20は、窒化珪素製で厚さ約0.25mmである。また、金属板3は、銅製で厚さ約0.4mmである。セラミックス基板2と金属板3の接合には、セラミックス基板2の接合面に活性金属であるTiを含有するペーストろう材を用いた。
二枚のセラミックス基板2,20の間に挟まれる前記放熱板7は、銅製で厚さ約3mmであり、セラミックス基板2と放熱板7、また、放熱板7と第二のセラミックス基板20の接合は前記した金属板3とセラミックス基板2の接合と同じろう材による。また、第二の放熱板70は、銅製で厚さ約0.4mmである。
【0010】
なお、上記した金属板3、セラミックス基板2と第二のセラミックス基板20、放熱板7と第二の放熱板70の各厚みはある程度の幅を持たせてもよく、金属板3は0.25〜0.5mm、セラミックス基板2と第二のセラミックス基板20は0.25mm〜0.4mm、放熱板7は2〜4mm、第二の放熱板70は0.2〜0.5mmの範囲で増減可能である。
【0011】
また、回路は、金属板3の上面にエッチングレジストを形成し、塩化第二鉄溶液でパターン外の不要な銅を除去して絶縁部4を形成した。図1はエッチングにより形成した絶縁部4の断面を拡大して示したものであり、絶縁部4の金属端面形状(以下エッチング端面形状ともいう。)は図示したようにアール形状になっている。このエッチング端面形状は、前記塩化第二鉄溶液の温度、濃度、時間、噴射圧を調整することにより適宜制御することができるため、これらを調整して種々のエッチング端面形状に仕上げた。
次に絶縁部4に残る不要なろう材をフッ酸により除去した後、金属板3上に残る不要なレジストリを剥がした。
なお、金属板3のエッチング工程は、各部材を一体にろう付けした後に実行したが、ろう付け前の金属板3に対してエッチングを施してから各部材同士を一括してろう付けするようにしてもよい。
【0012】
【ヒートサイクル試験】
上記のようにして製造した半導体部品1に対し、「−40℃×8分 → 25℃×5分 → 125℃×8分 → 25℃×5分」を1サイクルとしてこれを1,000サイクル行うヒートサイクル試験を実施した。
【0013】
【測定】
以上のヒートサイクル試験を終えた回路基板5を切断して鏡面研磨を行い、先ず金属板3の界面からの硬度(ビッカース硬度)分布を測定して硬度がほぼ一定である範囲を厚さ成分とする表層3Aとそれより高硬度の裏層3Bとの境界面3Cを特定し、その境界面3Cと金属板3の金属端面との交点Aを特定した。
なお、金属板3の硬度分布の一例を図3のグラフに示した。この図3のグラフによれば金属板3のビッカース硬度は、界面からの距離に対してなだらかな曲線を描いて一定になることを示している。従って上記した表層3Aと裏層3Bの境界面3Cの特定には若干の主観的要因を含むため「硬度がほぼ一定である範囲」と記載せざるを得ないのであるが、経験則によればそのような主観的要因による誤差は極僅かであって許容可能な範囲である。
次に回路基板5の切断面から、金属端面のセラミックス基板2側の基端である金属端底部Bと、セラミックス基板2と金属板3の界面Cを特定し、∠ABC=αの値を測定した。
また、金属端底部Bからセラミックス基板2と金属板3の界面Cに生じているクラック長を測定し、そのクラック長と角度αの関係をグラフ化した。その結果が図4である。
【0014】
【評価】
クラック長が90μmを越えると熱伝導特性の低下が顕著になって好ましくないため、クラック長の上限値を90μmに設定した。そうすると図4のグラフで明らかなように、角度α≦70度であれば1,000サイクルにも及ぶヒートサイクル試験の後もクラック長が上限を上回らないことが判明した。
一方、角度αが30度を下回ると、絶縁部4が細い線状である場合に対向する金属端底部B,B同士の距離が近づきすぎて絶縁性が損なわれるおそれがあるためこれを下限とした。
【0015】
【実施例】
上記した材質、寸法、接合条件等で図1,2の半導体部品1を製造する場合の具体的な条件は、塩化第二鉄溶液の温度(約40℃)、濃度(2.7〜3.9モル/L(比重1.32〜3.89))、時間(30分)、噴射圧(1.5kg/cm)である。もちろんこの条件は上記した材質、寸法、接合条件等の半導体部品1に当て嵌まるものであって、材質、寸法、接合条件などの構成に応じて適宜調整を要する。
【0016】
なお、上記した半導体部品1は、回路基板5に放熱板7,70を一体に設けた放熱モジュールに半導体素子6を装着したものであるが、例えば図5に示したように放熱板7,70を一体に有しない単純な回路基板5に半導体素子6を装着してもよい。この場合の熱対策は独立したヒートシンクに回路基板5を設置することで対応できる。また、図6に示したように第二の放熱板70を一体に有しない放熱モジュールに半導体素子6を装着してもよい。
【0017】
また、セラミックス基板2,20の材質としては上記窒化珪素の他、アルミナや窒化アルミニウム等であってもよい。もっとも窒化珪素は、アルミナや窒化アルミニウムに比べて破壊靭性や耐熱衝撃性など機械的特性に優れ、従って耐ヒートサイクル性に優れるため好ましい。
【0018】
また、放熱板7,70は金属に限定されず、金属(例えばCu、Al)を主成分とする無機化合物を含む複合材(例えばCuO、SiC、Alなど)であってもよい。
【0019】
また、上記の金属端面に関する説明は、金属板3の細い線状にした絶縁部4を例に行ったが、絶縁部4には線状のもの以外にも図2に示したようにやや広い範囲にわたる適宜形状のものも含まれる。また、金属板3の外周囲や図2,図5,図6に示したようにビス挿通用の貫通孔40を形成した場合の金属端面も同様である。
【0020】
【発明の効果】
本発明は、回路を構成する金属板の硬化現象を加味して金属端面形状を特定するようにしたため、従来に比し耐ヒートサイクル性の信頼性が大幅に向上する。
【0021】
また、請求項3のように放熱部材たる放熱板をセラミックス基板でサンドイッチ状に挟み込むようにすれば、放熱板を構成する材質とセラミックス基板の熱膨張係数に大きな隔たりがあっても、そのような熱膨張差に起因する熱応力を放熱板の両面でセラミックス基板同士が打ち消し合うため、何れかの方向に反るような不具合が発生しない。
【図面の簡単な説明】
【図1】要部を示す拡大断面図である。
【図2】構成要素を分離させて示す斜視図である。
【図3】金属板の硬度分布を示すグラフである。
【図4】クラック長と角度αの関係を示すグラフである。
【図5】構成要素を分離させて示す斜視図である。
【図6】構成要素を分離させて示す斜視図である。
【符号の説明】
1 …半導体部品
2 …セラミックス基板
20…第二のセラミックス基板
3 …金属板
3A…表層
3B…裏層
3C…境界面
4 …絶縁部
5 …回路基板
6 …半導体素子
7 …放熱板
70…第二の放熱板
A …金属端面と境界面3Cの交点
B …金属端底部
C …セラミックス基板2と金属板3の界面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit board such as a power module including an IGBT used for inverter control of an electric vehicle, a hybrid vehicle, and a household device, a heat radiation module in which a heat radiation member is joined to the circuit board, and the circuit board or the heat radiation. The present invention relates to a semiconductor component formed by mounting a semiconductor element on a module.
[0002]
[Prior art]
As a semiconductor component such as a power module or a switching power supply module, a metal plate excellent in conductivity such as copper or aluminum is bonded to a ceramic substrate such as alumina (Al 2 O 3 ) or aluminum nitride (AlN), and the metal plate is bonded to the metal plate. There is a configuration in which a linear insulating portion constituting a circuit is formed by etching to form a circuit board, and a semiconductor element is mounted on the circuit board. The ceramic substrate and the metal plate of the circuit board are integrally bonded by a chemical bonding means such as a brazing method, a metallizing method, and a direct bond copper method.
[0003]
[Problems to be solved by the invention]
The semiconductor element generates heat when energized, and the heat is transmitted to the circuit board. In general, a ceramic substrate of a circuit board is bonded to a non-circuit side surface with a heat radiating member such as a metal plate or a heat sink, and heat of the semiconductor element is diffused from the heat radiating member to the outside. Of course, when the semiconductor element is de-energized, the heat generation stops and the temperature of the circuit board also decreases.
Since circuit boards are repeatedly subjected to such heat cycles, cracks may occur at the interface between the metal plate and the ceramic substrate that make up the circuit due to the effects of residual stress and thermal stress due to differences in the thermal expansion coefficient between ceramics and metals. There is a possibility that cracks may occur in the ceramic substrate itself. The occurrence of cracks at the interface between a metal plate and a ceramic substrate is a serious factor that directly affects the malfunction, life and reliability of semiconductor components, such as reduced heat dissipation performance and reduced withstand voltage. Cycle measures have been taken. In particular, in recent years, semiconductor devices have been highly integrated, and the amount of heat generated has increased rapidly in proportion thereto. Therefore, it is urgent to improve the heat cycle resistance of circuit boards.
[0004]
By the way, copper and aluminum with excellent electrical conductivity are used for the metal plates constituting the circuit, but these materials are relatively soft, so that they exert a buffering action against thermal stress and residual stress due to the heat cycle. It was thought that it would function effectively as a heat cycle countermeasure.
[0005]
However, when the ceramic substrate and the metal plate are joined by chemical joining means, for example, the components such as Ag, Sn, Ti, etc. contained in the brazing material diffuse and dissolve in the metal plate made of copper or aluminum to form an interface. Since the hardness is increased over a certain range, the buffering performance is reduced accordingly. Therefore, the conventional heat cycle countermeasures ignoring the hardening phenomenon resulting from the joining of the metal plates lack accuracy and reliability.
[0006]
As a result of repeating the heat cycle test in consideration of the hardening of the metal plate by joining, the present inventor found out the correlation between the hardening of the metal plate and the shape of the outer peripheral metal end face of the metal plate. Has reached
[0007]
[Means for Solving the Problems]
A circuit board comprising a metal plate for circuit formation on one surface of a ceramic substrate, and an insulating portion provided on the metal plate to form a circuit, wherein the thickness of the metal plate has a substantially constant range. A is the intersection of the boundary surface between the surface layer and the back layer of higher hardness and the outer peripheral metal end surface of the metal plate, and B is the metal end bottom that is the base end of the metal end surface on the ceramic substrate side. Provided is a circuit board where ∠ABC = α is 30 degrees ≦ α ≦ 70 degrees, where C is the interface between the ceramic substrate and the metal plate. Here, the outer peripheral metal end surface of the metal plate includes all the metal end surfaces of the metal plate, such as the contour of the outer shape of the metal plate, the contour of the insulating portion, or the contour of a through hole for inserting a screw to be described later.
According to a second aspect of the present invention, there is provided a heat dissipating module in which a heat dissipating member is joined to the non-circuit side surface of the ceramic substrate.
According to a third aspect of the present invention, there is provided a heat dissipating module in which a heat dissipating plate as a heat dissipating member is bonded to the non-circuit side surface of the ceramic substrate, and a second ceramic substrate is bonded to the other surface of the heat dissipating plate. provide.
Furthermore, as described in claim 4, there is provided a semiconductor component comprising a semiconductor element mounted on the circuit board or a metal plate of the heat dissipation module.
The range of α was determined as follows.
[0008]
[Manufacture of semiconductor parts]
First, the semiconductor component 1 shown in FIGS. The semiconductor component 1 includes a circuit board 5 formed by bonding a metal plate 3 for circuit formation to an upper surface of a ceramic substrate 2 and forming an insulating portion 4 on the metal plate 3 by etching to form a circuit, and the circuit board 5. A semiconductor element 6 soldered on the circuit, a heat radiating plate 7 as a heat radiating member disposed on the lower surface side of the ceramic substrate 2, a second ceramic substrate 20 disposed on the lower surface of the heat radiating plate 7, Furthermore, it comprises a heat radiating plate 70 as a second heat radiating member disposed on the lower surface of the ceramic substrate 20. Each of the above members has the upper surface of the ceramic substrate 2 set on the lower surface side of the metal plate 3, the upper surface of the heat sink 7 is set on the lower surface side of the ceramic substrate 2, and the second ceramic is further formed on the lower surface of the heat sink 7. The upper surface of the substrate 20 is set, and the upper surface of the second heat dissipation plate 70 is set on the lower surface of the ceramic substrate 20, and all can be integrally bonded by brazing at 800 ° C. to 1000 ° C. for 30 to 60 minutes. .
[0009]
The ceramic substrate 2 and the second ceramic substrate 20 are made of silicon nitride and have a thickness of about 0.25 mm. The metal plate 3 is made of copper and has a thickness of about 0.4 mm. For bonding the ceramic substrate 2 and the metal plate 3, a paste brazing material containing Ti as an active metal was used on the bonding surface of the ceramic substrate 2.
The heat radiating plate 7 sandwiched between the two ceramic substrates 2 and 20 is made of copper and has a thickness of about 3 mm, and the ceramic substrate 2 and the heat radiating plate 7 or the heat radiating plate 7 and the second ceramic substrate 20 are joined. Is the same brazing material as the joining of the metal plate 3 and the ceramic substrate 2 described above. The second heat radiating plate 70 is made of copper and has a thickness of about 0.4 mm.
[0010]
Each thickness of the metal plate 3, the ceramic substrate 2 and the second ceramic substrate 20, the radiator plate 7 and the second radiator plate 70 may have a certain width, and the metal plate 3 is 0.25. -0.5 mm, the ceramic substrate 2 and the second ceramic substrate 20 are 0.25 mm to 0.4 mm, the heat sink 7 is 2 to 4 mm, and the second heat sink 70 is 0.2 to 0.5 mm. Is possible.
[0011]
In the circuit, an insulating resist 4 was formed by forming an etching resist on the upper surface of the metal plate 3 and removing unnecessary copper outside the pattern with a ferric chloride solution. FIG. 1 is an enlarged view of the cross section of the insulating portion 4 formed by etching, and the metal end face shape (hereinafter also referred to as an etching end face shape) of the insulating portion 4 is rounded as shown. Since the etching end face shape can be appropriately controlled by adjusting the temperature, concentration, time, and jetting pressure of the ferric chloride solution, these are adjusted to finish various etching end face shapes.
Next, unnecessary brazing material remaining on the insulating portion 4 was removed with hydrofluoric acid, and then unnecessary registry remaining on the metal plate 3 was peeled off.
The etching process of the metal plate 3 was performed after the members were brazed together. However, after etching the metal plate 3 before brazing, the members were brazed together. May be.
[0012]
[Heat cycle test]
With respect to the semiconductor component 1 manufactured as described above, “−40 ° C. × 8 minutes → 25 ° C. × 5 minutes → 125 ° C. × 8 minutes → 25 ° C. × 5 minutes” is set as one cycle and 1,000 cycles are performed. A heat cycle test was conducted.
[0013]
[Measurement]
The circuit board 5 that has been subjected to the above heat cycle test is cut and mirror-polished, and first, the hardness (Vickers hardness) distribution from the interface of the metal plate 3 is measured, and the range in which the hardness is substantially constant is defined as the thickness component. The boundary surface 3 </ b> C between the surface layer 3 </ b> A and the back layer 3 </ b> B having higher hardness is specified, and the intersection A between the boundary surface 3 </ b> C and the metal end surface of the metal plate 3 is specified.
An example of the hardness distribution of the metal plate 3 is shown in the graph of FIG. The graph of FIG. 3 shows that the Vickers hardness of the metal plate 3 is constant by drawing a gentle curve with respect to the distance from the interface. Therefore, since the identification of the boundary surface 3C between the surface layer 3A and the back layer 3B includes some subjective factors, it must be described as “a range in which the hardness is substantially constant”. The error due to such subjective factors is negligible and acceptable.
Next, from the cut surface of the circuit board 5, the metal end bottom B which is the base end of the metal end face on the ceramic substrate 2 side and the interface C between the ceramic substrate 2 and the metal plate 3 are specified, and the value of ∠ABC = α is measured. did.
Further, the crack length generated at the interface C between the ceramic substrate 2 and the metal plate 3 from the metal end bottom B was measured, and the relationship between the crack length and the angle α was graphed. The result is shown in FIG.
[0014]
[Evaluation]
When the crack length exceeds 90 μm, the heat conduction characteristics deteriorate significantly, which is not preferable. Therefore, the upper limit of the crack length is set to 90 μm. Then, as apparent from the graph of FIG. 4, it was found that the crack length does not exceed the upper limit even after the heat cycle test of 1,000 cycles if the angle α ≦ 70 degrees.
On the other hand, if the angle α is less than 30 degrees, the distance between the metal end bottoms B, B facing each other may become too close when the insulating portion 4 is a thin line, and the insulating property may be impaired. did.
[0015]
【Example】
The specific conditions for manufacturing the semiconductor component 1 of FIGS. 1 and 2 with the above-described materials, dimensions, joining conditions, etc. are the temperature (about 40 ° C.) and concentration (2.7-3. 9 mol / L (specific gravity: 1.32 to 3.89)), time (30 minutes), and injection pressure (1.5 kg / cm 2 ). Of course, this condition applies to the semiconductor component 1 such as the above-described material, dimensions, bonding conditions, and the like, and appropriate adjustment is required according to the configuration of the material, dimensions, bonding conditions, and the like.
[0016]
In the semiconductor component 1 described above, the semiconductor element 6 is mounted on a heat dissipation module in which the heat dissipation plates 7 and 70 are integrally provided on the circuit board 5. For example, as shown in FIG. Alternatively, the semiconductor element 6 may be mounted on a simple circuit board 5 that does not have a single body. The heat countermeasure in this case can be dealt with by installing the circuit board 5 on an independent heat sink. Further, as shown in FIG. 6, the semiconductor element 6 may be mounted on a heat dissipation module that does not have the second heat dissipation plate 70 integrally.
[0017]
Moreover, as a material of the ceramic substrates 2 and 20, alumina, aluminum nitride, or the like may be used in addition to the above silicon nitride. However, silicon nitride is preferable because it is superior in mechanical properties such as fracture toughness and thermal shock resistance, and therefore excellent in heat cycle resistance, compared to alumina and aluminum nitride.
[0018]
Moreover, the heat sinks 7 and 70 are not limited to metals, and may be composite materials (for example, Cu 2 O, SiC, Al 2 O 3, etc.) containing an inorganic compound whose main component is a metal (for example, Cu, Al). Good.
[0019]
Moreover, although the description regarding said metal end surface was performed in the case of the thin linear insulating part 4 of the metal plate 3, the insulating part 4 is slightly wider as shown in FIG. 2 besides the linear one. The thing of the appropriate shape over the range is also included. The same applies to the outer periphery of the metal plate 3 and the metal end face when the through hole 40 for screw insertion is formed as shown in FIGS.
[0020]
【The invention's effect】
In the present invention, the metal end face shape is specified in consideration of the hardening phenomenon of the metal plate constituting the circuit, so that the reliability of the heat cycle resistance is greatly improved as compared with the conventional case.
[0021]
Further, if the heat sink as a heat radiating member is sandwiched between ceramic substrates as in claim 3, even if there is a large gap between the thermal expansion coefficient of the material constituting the heat sink and the ceramic substrate, Since the ceramic substrates cancel out the thermal stress caused by the thermal expansion difference on both sides of the heat sink, there is no problem of warping in either direction.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view showing a main part.
FIG. 2 is a perspective view showing components separated.
FIG. 3 is a graph showing the hardness distribution of a metal plate.
FIG. 4 is a graph showing the relationship between crack length and angle α.
FIG. 5 is a perspective view showing components separated.
FIG. 6 is a perspective view showing components separated.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor component 2 ... Ceramic substrate 20 ... 2nd ceramic substrate 3 ... Metal plate 3A ... Surface layer 3B ... Back layer 3C ... Interface 4 ... Insulation part 5 ... Circuit board 6 ... Semiconductor element 7 ... Heat sink 70 ... Second Heat sink A ... intersection B of metal end face and boundary surface 3C ... metal end bottom C ... interface between ceramic substrate 2 and metal plate 3

Claims (4)

セラミックス基板の一方の面に回路形成用の金属板を備え、その金属板に絶縁部を設けて回路を形成してなる回路基板において、
前記金属板の硬度がほぼ一定である範囲を厚さ成分とする表層とそれより高硬度の裏層との境界面と、前記金属板の外周囲金属端面との交点をAとし、
前記金属端面のセラミックス基板側の基端である金属端底部をBとし、
セラミックス基板と金属板の界面をCとした場合に、
∠ABC=αが30度≦α≦70度であることを特徴とする回路基板。
A circuit board comprising a metal plate for circuit formation on one surface of a ceramic substrate, and forming a circuit by providing an insulating portion on the metal plate,
The intersection between the boundary surface of the surface layer having a thickness component in the range in which the hardness of the metal plate is substantially constant and the back layer having a higher hardness, and the outer peripheral metal end surface of the metal plate is A,
B is a metal end bottom portion which is a base end of the metal end surface on the ceramic substrate side,
When the interface between the ceramic substrate and the metal plate is C,
A circuit board, wherein ABC = α is 30 degrees ≦ α ≦ 70 degrees.
請求項1記載の回路基板の前記セラミックス基板の非回路側の面に放熱部材を接合してなることを特徴とする放熱モジュール。A heat dissipation module comprising a heat dissipation member joined to a surface of the ceramic substrate on the non-circuit side of the circuit board according to claim 1. 請求項1記載の回路基板の前記セラミックス基板の非回路側の面に放熱部材たる放熱板を接合し、さらにその放熱板の他面に第二のセラミックス基板を接合してなることを特徴とする放熱モジュール。A heat sink as a heat radiating member is bonded to the non-circuit side surface of the ceramic substrate of the circuit board according to claim 1, and a second ceramic substrate is bonded to the other surface of the heat sink. Heat dissipation module. 請求項1記載の回路基板又は請求項2若しくは3記載の放熱モジュールの前記金属板に半導体素子を装着してなることを特徴とする半導体部品。A semiconductor component comprising a semiconductor element mounted on the circuit board according to claim 1 or the metal plate of the heat dissipation module according to claim 2 or 3.
JP2003165705A 2003-06-10 2003-06-10 Circuit substrate, heat dissipation module and semiconductor component Pending JP2005005404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165705A JP2005005404A (en) 2003-06-10 2003-06-10 Circuit substrate, heat dissipation module and semiconductor component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165705A JP2005005404A (en) 2003-06-10 2003-06-10 Circuit substrate, heat dissipation module and semiconductor component

Publications (1)

Publication Number Publication Date
JP2005005404A true JP2005005404A (en) 2005-01-06

Family

ID=34092108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165705A Pending JP2005005404A (en) 2003-06-10 2003-06-10 Circuit substrate, heat dissipation module and semiconductor component

Country Status (1)

Country Link
JP (1) JP2005005404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138182A (en) * 2011-11-30 2013-07-11 Tdk Corp Terminal structure, printed wiring board, module substrate, electronic device and method for manufacturing terminal structure
WO2022176777A1 (en) * 2021-02-17 2022-08-25 株式会社 東芝 Ceramic circuit board and semiconductor device using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013138182A (en) * 2011-11-30 2013-07-11 Tdk Corp Terminal structure, printed wiring board, module substrate, electronic device and method for manufacturing terminal structure
WO2022176777A1 (en) * 2021-02-17 2022-08-25 株式会社 東芝 Ceramic circuit board and semiconductor device using same

Similar Documents

Publication Publication Date Title
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
JP5598522B2 (en) Circuit board, semiconductor module using the same, and circuit board manufacturing method
WO2002067324A1 (en) Member for electronic circuit, method for manufacturing the member, and electronic part
JP2008218938A (en) Metal-ceramics bonded substrate
JP2013055218A (en) Heat radiator
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JP2003204020A5 (en)
JP4124040B2 (en) Semiconductor device
JP2006286754A (en) Metal-ceramic bonding substrate
JP2005005404A (en) Circuit substrate, heat dissipation module and semiconductor component
JP3779074B2 (en) Ceramic circuit board and power module using it
JP6565735B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP2006286897A (en) Metal-ceramic bonding substrate
JP5614127B2 (en) Power module substrate and manufacturing method thereof
TWI541488B (en) Heat dissipation device and method of manufacturing same
JP2007088272A (en) Ceramic circuit board and module using the same
JP5388697B2 (en) Multi-circuit board, circuit board, and module using the same
JP2004343035A (en) Heat radiating component, circuit board, and semiconductor device
JP2020113686A (en) Method for manufacturing insulated circuit board with heat sink and insulated circuit board with heat sink
JP2005019875A (en) Heat radiating plate, heat radiating module, semiconductor mounted module, and semiconductor device
JP2005011862A (en) Semiconductor device
JP2005050919A (en) Circuit board and semiconductor device
JP5319463B2 (en) Silicon nitride substrate with improved positioning and semiconductor device using the same
JP4656126B2 (en) Semiconductor device