JP2005003542A - Method and apparatus for detecting marking position of steel piece - Google Patents

Method and apparatus for detecting marking position of steel piece Download PDF

Info

Publication number
JP2005003542A
JP2005003542A JP2003168004A JP2003168004A JP2005003542A JP 2005003542 A JP2005003542 A JP 2005003542A JP 2003168004 A JP2003168004 A JP 2003168004A JP 2003168004 A JP2003168004 A JP 2003168004A JP 2005003542 A JP2005003542 A JP 2005003542A
Authority
JP
Japan
Prior art keywords
marking
fluorescent
wavelength
magnetic powder
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003168004A
Other languages
Japanese (ja)
Other versions
JP4074837B2 (en
Inventor
Katsuya Takaoka
克也 高岡
Yasuhiro Wasa
泰宏 和佐
Akashi Yamaguchi
証 山口
Koji Nakada
浩司 中田
Shoji Maekawa
祥二 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003168004A priority Critical patent/JP4074837B2/en
Publication of JP2005003542A publication Critical patent/JP2005003542A/en
Application granted granted Critical
Publication of JP4074837B2 publication Critical patent/JP4074837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting a marking position of a steel piece, which marks a flaw part with a marking material containing a florescent substance and which can precisely detect the marking position. <P>SOLUTION: In the method for detecting the marking position of the steel piece, the marking position is detected by magnetizing the steel piece, attaching a magnetic powder liquid containing the fluorescent substance to a magnetic pole generated at the flaw part so as to detect the flaw, marking the flaw part with the marking material containing the fluorescent substance, then performing the irradiation with ultraviolet rays from an ultraviolet irradiation light source so that the marking emits a florescent light, converting the optical signal of the fluorescent emission light into an electric signal by an optical sensor, and processing electric signal. The marking position is detected, using the marking material which emits the fluorescent light having the wavelength different from those of the ultraviolet rays of the ultraviolet irradiation light source and the florescent emission light of the magnetic powder liquid, and using the optical sensor having the characteristic in which the sensitivity for the wavelength of the ultraviolet rays of the ultraviolet irradiation light source and for the wavelength of the fluorescent emission light of the magnetic powder liquid is lower than the sensitivity for the wavelength of the florescent emission light of the marking material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼片のマーキング位置検出方法及び装置に関し、詳細には蛍光磁粉探傷された鋼片上の疵にマーキングを施し、そのマーキング位置を検出する技術に関するものである。
【0002】
【従来の技術】
例えば、特開平7−140117号公報(特許文献1)、特開2001−154016号公報(特許文献2)などに開示されているように、鋼片の表面欠陥検出方法として、蛍光磁粉探傷が広く利用されている。磁粉探傷は、鋼材などの強磁性体を磁化し、疵部分に生じた磁極に磁粉液が付着することを利用して、疵を検出する方法である。磁粉探傷の一種である蛍光磁粉探傷は、磁粉液に蛍光物質を含ませ、紫外線で照射することによって、疵の検出を容易にしている。なお、検出は目視によって行われるのが一般的である。
【0003】
上記蛍光磁粉探傷で検出した疵の位置にマーキングを施し次工程で疵部分の除去を行っているが、このマーキング位置を自動認識させることができれば自動での疵部分の切削除去が可能となる。これを実現可能とするマーキング位置の認識方法が、特開平8−271234号公報(特許文献3)、特開平11−264723号公報(特許文献4)に提案されている。
【0004】
特許文献3には、スラブの表面欠陥部にチョークでマーキングを施し、その位置をCCDカメラなどの光センサで検出する方法が提案されている。
【0005】
特許文献4には、鋼片の疵の位置を表示するマーキング材に蛍光物質を含ませ、遮蔽フード内で紫外線を照射してマーキング材を蛍光発光させ、マーキング位置の読取精度を向上させる方法が提案されている。
【0006】
【特許文献1】
特開平7−140117号公報
【特許文献2】
特開2001−154016号公報
【特許文献3】
特開平8−271234号公報
【特許文献4】
特開平11−264723号公報
【0007】
【発明が解決しようとする課題】
しかし、特許文献3に提案の方法では、スラブ等の鋼片の表面に凹凸や汚れがあるとマーキングと区別しづらく、精度の高いマーキング位置の検出は難しい。特に磁粉探傷を実施した後では表面に磁粉液が残っており、識別はより難しくなる。
【0008】
また、特許文献4に提案の方法では、マーキング材に蛍光物質を含み紫外線で照射して発光させるため、上記特許文献3に提案の方法に比べてマーキングの検出は容易になるが、蛍光磁粉探傷を行った後は、蛍光物質を含んだ磁粉液(以下蛍光磁粉液とも言う)が大量に表面に残留している。そのため、残留した蛍光磁粉液からの発光がノイズとなり、マーキングだけを検出することは非常に難しい。そこで、残留した蛍光磁粉液を除去する方法として水洗などが考えられるが、(1)そもそもマーキング材に影響を与えることなく残留した蛍光磁粉液だけを洗い流すことは容易ではない。これは細かい凹凸の有る鋼材表面の奥深くに染み込んでいるためである。(2)また、洗い流してマーキングを読み取るには、蛍光磁粉液を付着→マーキングの実施→洗い流し→マーキングの読み取り、といった工程を経る必要がある。そのため、蛍光磁粉液のみを洗い流すことは困難で、マーキングも一緒に流される可能性が高い。また一方、紫外線が鋼材の表面で反射した光もノイズとなる問題もある。
【0009】
本発明は、上記の問題点に鑑みなしたものであって、その目的は、蛍光磁粉探傷後に蛍光磁粉液を洗い流すことなく、その後に蛍光物質を含んだマーキング材で疵部分をマーキングしても、そのマーキング位置を精度良く検出し得る鋼片のマーキング位置検出方法及び装置を提供するものである。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明(請求項1)に係る鋼片のマーキング位置検出方法は、鋼片を磁化し、疵部分に生じた磁極に蛍光物質を含んだ磁粉液を付着させ疵を検出し、その疵部分に蛍光物質を含んだマーキング材でマーキングを行い、その後に紫外線照射光源より紫外線を照射してマーキングを蛍光発光させ、蛍光発光された光信号を光センサで電気信号に変換するとともに、その電気信号を処理することによってマーキング位置を検出する鋼片のマーキング位置検出方法であって、紫外線照射光源の紫外線の波長及び磁粉液の蛍光発光波長とは異なる波長の蛍光を発光するマーキング材を用い、且つ、マーキング材の蛍光発光波長に対する感度に比べ、紫外線照射光源の紫外線の波長と磁粉液の蛍光発光波長に対する感度が低い特性を有する光センサを用いてマーキング位置を検出するものである。
【0011】
そして、上記請求項1に係る鋼片のマーキング位置検出方法においては、光センサが、マーキング材からの蛍光発光の波長帯域に対して透過率が高く、紫外線照射光源の紫外線の波長帯域と磁粉液からの蛍光発光の波長帯域に対して透過率が低い光学フィルタを備えることが好ましい(請求項2)。またこの場合、紫外線照射光源の紫外線の波長帯域を300nm〜413nm、磁粉液の蛍光発光波長を500nm〜700nm、及びマーキング材の蛍光発光波長を413nm〜500nmとし、光学フィルタの透過波長域を413nm〜500nmとすることが好ましい(請求項3)。また、前記紫外線照射光源の紫外線の波長帯域を300nm〜413nmに代えて694nm〜780nmとしてもよい(請求項4)。
【0012】
また、本発明(請求項5)に係る鋼片のマーキング位置検出装置は、鋼片を磁化し、疵部分に生じた磁極に蛍光物質を含んだ磁粉液を付着させ疵を検出し、その疵部分に蛍光物質を含んだマーキング材でマーキングを行い、その後に紫外線照射光源より紫外線を照射してマーキングを蛍光発光させ、蛍光発光された光信号を光センサで電気信号に変換するとともに、その電気信号を処理することによってマーキング位置を検出する鋼片のマーキング位置検出装置であって、マーキング材の蛍光物質が紫外線照射光源の紫外線の波長及び磁粉液の蛍光物質の蛍光発光波長とは異なる蛍光発光波長を有し、光センサがマーキング材からの蛍光発光波長の検出感度に比べ、紫外線照射光源の紫外線の波長と磁粉液からの蛍光発光波長の検出感度が低い特性を有するものである。
【0013】
上記本発明は、図1に示すように、蛍光物質を含んだ磁粉液(蛍光磁粉液)を使用して鋼片の蛍光磁粉探傷を行い、疵を検出する工程(イ)、この検出した疵部分に、紫外線照射光源から照射される紫外線の波長及び蛍光磁粉液から蛍光発光される光の波長と異なる蛍光発光波長を持つ蛍光物質を含んだマーキング材でマーキングする工程(ロ)、然る後、全体を遮蔽フードで覆った場所に鋼片を移動させ、紫外線照射光源より紫外線を照射しマーキング材を発光させ、照射される紫外線の波長域と蛍光磁粉探傷で用いた蛍光磁粉液の蛍光波長域とを除去する光学フィルタが取付けられたCCDカメラなどの光センサにて鋼片を撮像し、画像処理を行うことによって、マーキングを識別し、疵部分を認識する工程(ハ)、を含むものであるので、照射される紫外線の波長域と蛍光磁粉探傷で用いた蛍光磁粉液の発光波長域とが除去され、疵部分のマーキングだけが鮮明に撮影され、マーキングの誤認識を減らすことができる。その結果、次工程(ニ)での疵除去の精度が向上する。
【0014】
そしてこの場合、一般的に使用されるメタルハライドランプを有する紫外線照射光源の波長域は300nm〜413nmと694nm以上である(例えば特許文献2の段落[0008]、図8参照)。また、一般的に使用される蛍光磁粉液の発光波長は500nm〜700nmである。そこで、マーキング材に含む蛍光物質の発光波長を413nm〜500nmの間にし、光学フィルタの透過波長も413nm〜500nmにすることによって、紫外線照射光源からの紫外線の反射と蛍光磁粉液からの蛍光発光の影響を低減でき、疵部分のマーキングだけを鮮明に撮影することができ、マーキングの誤認識を減らすことができる。その結果、次工程(ニ)での疵除去の精度が向上する。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図2は、本発明に係る鋼片のマーキング位置検出方法に適用される装置の模式的説明図であって、aは平面図、bはaのX−X断面図である。
【0016】
図2に示すように、マーキング位置検出装置1は、鋼片2を搬送するテーブルローラ3を備えるとともに、そのテーブルローラ3の側方及び上方を覆うように設置された遮光フード4を備える。遮光フード4内の上方部には光学フィルタ5を備えるCCDカメラ(光センサ)6と、紫外線照射光源7が設置されている。
【0017】
鋼片2は、予め上工程で蛍光磁粉探傷が行われ、その疵部分には、蛍光磁粉液の蛍光物質の蛍光発光波長及び紫外線照射光源7の紫外線の波長とは異なる蛍光発光波長を持つ蛍光物質を含んだマーキング材を用いてマーキング8がなされている。そして、テーブルローラ3上を搬送され上記遮光フード4内を通過する過程で、紫外線照射光源7から紫外線が照射されると共に光学フィルタ5を介してCCDカメラ6で撮像し、この撮像を画像処理して、マーキング8の識別がなされる。
【0018】
【実施例】
発光波長が500nm〜700nmの蛍光磁粉液を使用して、対象となる鋼片の蛍光磁粉探傷を行う。探傷で検出された鋼片の疵部分に、発光の中心波長が450nmの蛍光物質を含んだ蛍光チョークでマーキング8を行う。
【0019】
上記マーキング位置検出装置1の遮蔽フード6内には波長が300nm〜413nmと694nm以上のメタルハライドランプを有する紫外線照射光源7と透過領域が430nm〜470nmの光学フィルタ5を備えるCCDカメラ6が設置されている。
【0020】
上記マーキング8が行われた鋼片2を、テーブルローラ3上を搬送し遮光フード4内を通過させ、紫外線照射光源7で照射すると、蛍光磁粉探傷で使用した蛍光磁粉液が500nm〜700nmの波長域で発光し、疵部分をマーキングしたマーキング8の蛍光チョークが波長450nmを中心に発光する。また、鋼片2の鏡面部からは、紫外線照射光源7からの光が300nm〜413nmと694nm以上の波長域で反射する。
【0021】
上記の光をCCDカメラ6で撮像するが、CCDカメラ6に装着した光学フィルタ5によって観測される光の波長は430nm〜470nmに制限されるため、500nm〜700nmの蛍光磁粉液からの発光と300nm〜413nmと694nm以上の紫外線照射光源7からの光の影響を受けず、450nmを中心とするマーキング8の蛍光チョークからの発光だけが観測される(図3参照)。
【0022】
なお、上記実施例においては、発光波長が500nm〜700nmの蛍光磁粉液を使用し、対象となる鋼片の蛍光磁粉探傷を行い、その探傷で検出された鋼片の疵部分に蛍光チョークでマーキング8を行う場合を例としたが、本発明はこの例に限定されるものではなく、例えば前記蛍光磁粉探傷の際に、遮光フード内で、メタルハライドランプを用い、蛍光磁粉液の発光波長と同じ透過領域の光学フィルタを備えるCCDカメラで撮影して蛍光磁粉探傷を行い、次いでその探傷で検出された鋼片の疵部分に蛍光チョークでマーキング8を行うようにし、以降、上記実施例と同様にして鋼片上のマーキング位置を検出するようにしてもよい。
【0023】
上記のように蛍光磁粉探傷の際にもCCDカメラを用いて撮影した場合、両者の撮影された画像データは別々に又は単純に足しあわせた後、画像処理(例えば白と黒の2値化をして疵・チョークを目立つように処理するなど)をして、また、両者を画像処理したものを単純に足しあわせて、疵及びマーキング位置を検出する。この検出位置をもとに、後工程の疵取り工程で疵取りを行う。この場合は、蛍光磁粉での検出とマーキングでの検出による疵部分を同時に疵取りできる。なおここで、蛍光磁粉探傷でのCCDカメラによる撮影直後(マーキング前)にその画像データを画像処理し、疵取りを行うものでもよい。この場合、蛍光磁粉探傷の通常の工程のあと本発明のマーキングによる疵位置検出を行うこととなる。また、蛍光磁粉探傷でのCCDカメラによる撮影直後(マーキング前)にその画像データを画像処理し、自動マーキング装置でマーキングするものでもよい。
【0024】
また、上記実施例では、紫外線照射光源7の波長域を300nm〜413nmと694nm以上(例えば694nm〜780nm)の場合を例としたが、これは、目視で検査する場合を想定したものである。従って、本発明はこの例に限定されるものではなく、300nm〜694nm以上とする波長域の紫外線照射光源7を使用することができ、例えば特許文献1に示されている385±5nmとする波長域の紫外線照射光源7を使用することもできる。この場合、マーキングに使用できる蛍光チョークの波長域が390nm〜500nmに広げることができる。しかし、紫外線照射光源7の波長を狭めれば、光量の絶対量が減少してしまうため、蛍光チョークの発光強度も低下する。両者のバランスを考慮して紫外線照射光源7を選定する必要がある。また、蛍光磁粉液の発光波長を長くすれば、マーキングに使用できる蛍光チョークの波長を広げることができるが、波長が長くなれば蛍光磁粉探傷において目視での感度が低下して、探傷能力を下げる可能性がある。これも両者のバランスを考慮して、波長を選定する必要がある。
【0025】
また、本発明の実施においては、磁粉探傷の前後、マーキングの前後に鋼片の超音波探傷検査を行ってもよく、これによるデータを疵取り時に使用してもよい。また、疵取りは機械で自動化してもよいし、手動で行ってもよい。また、疵取りは各探傷の疵位置データをあわせて実施してもよいし、別々に実施してもよい。また、マーキングは通常人手による目視が一般的であるが、機械的に実施することもできる。また、磁粉探傷及びマーキングは基本的に、表裏を別々に行う。但し、マーキングの場合、検査対象にもよるが、表裏同時に行うことも可能である。また、疵取りは複数の疵取装置を並列又は直列に備えるものでもよい。また、疵取りの後、別の磁粉探傷・マーキング・疵取りを再度行ってもよい。
【0026】
【発明の効果】
以上説明したように、本発明によれば、蛍光磁粉探傷後に蛍光磁粉液を洗い流すことなく、蛍光物質を含んだマーキング材で疵部分をマーキングして、そのマーキングされた画像を鮮明に撮影することができ、次工程での疵除去に正確な位置情報を与えることができる。
【図面の簡単な説明】
【図1】本発明に係る鋼片のマーキング位置検出方法の工程説明図である。
【図2】本発明に係る鋼片のマーキング位置検出方法に適用される装置の模式的説明図であって、aは平面図、bはaのX−X断面図である。
【図3】本発明に係る波長域の説明図である。
【符号の説明】
1:マーキング位置検出装置 2:鋼片
3:テーブルローラ 4:遮光フード 5:光学フィルタ
6:CCDカメラ 7:紫外線照射光源 8:マーキング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for detecting a marking position of a steel slab, and more particularly to a technique for marking a ridge on a steel slab subjected to fluorescent magnetic particle testing and detecting the marking position.
[0002]
[Prior art]
For example, as disclosed in Japanese Patent Application Laid-Open No. 7-14117 (Patent Document 1), Japanese Patent Application Laid-Open No. 2001-154016 (Patent Document 2), etc., as a method for detecting a surface defect of a steel slab, fluorescent magnetic particle flaw detection is widely used. It's being used. The magnetic particle flaw detection is a method for detecting wrinkles by magnetizing a ferromagnetic material such as a steel material and utilizing magnetic powder liquid adhering to the magnetic pole generated in the wrinkle portion. Fluorescent magnetic particle flaw detection, which is a type of magnetic particle flaw detection, facilitates detection of wrinkles by including a fluorescent substance in a magnetic powder liquid and irradiating it with ultraviolet rays. In general, detection is performed visually.
[0003]
Marking is performed on the position of the wrinkle detected by the above-mentioned fluorescent magnetic particle flaw detection, and the wrinkle part is removed in the next process. If this marking position can be recognized automatically, the wrinkle part can be automatically removed by cutting. A method for recognizing a marking position that can realize this has been proposed in Japanese Patent Laid-Open No. 8-271234 (Patent Document 3) and Japanese Patent Laid-Open No. 11-264723 (Patent Document 4).
[0004]
Patent Document 3 proposes a method of marking a surface defect portion of a slab with chalk and detecting the position with an optical sensor such as a CCD camera.
[0005]
Patent Document 4 discloses a method for improving the reading accuracy of the marking position by including a fluorescent substance in the marking material for displaying the position of the heel of the steel slab, and irradiating the marking material with fluorescence by irradiating ultraviolet rays in the shielding hood. Proposed.
[0006]
[Patent Document 1]
JP 7-14117 A [Patent Document 2]
JP 2001-154016 A [Patent Document 3]
JP-A-8-271234 [Patent Document 4]
Japanese Patent Laid-Open No. 11-264723
[Problems to be solved by the invention]
However, in the method proposed in Patent Document 3, it is difficult to distinguish from marking if there is unevenness or dirt on the surface of a steel piece such as a slab, and it is difficult to detect a marking position with high accuracy. In particular, after performing the magnetic particle flaw detection, the magnetic powder liquid remains on the surface, and the identification becomes more difficult.
[0008]
Further, in the method proposed in Patent Document 4, since the marking material contains a fluorescent substance and is irradiated with ultraviolet rays to emit light, the marking can be detected more easily than the method proposed in Patent Document 3, but the fluorescent magnetic particle flaw detection is performed. After performing the above, a large amount of magnetic powder containing a fluorescent material (hereinafter also referred to as fluorescent magnetic powder) remains on the surface. For this reason, light emission from the remaining fluorescent magnetic powder becomes noise, and it is very difficult to detect only the marking. Then, although washing with water etc. can be considered as a method for removing the remaining fluorescent magnetic powder, it is not easy to wash away only the remaining fluorescent magnetic powder without affecting the marking material in the first place. This is because it penetrates deep into the steel surface with fine irregularities. (2) Further, in order to read the marking by washing it out, it is necessary to go through the steps of attaching a magnetic magnetic powder solution → implementing the marking → washing off → reading the marking. For this reason, it is difficult to wash away only the fluorescent magnetic powder, and there is a high possibility that the marking is also washed away. On the other hand, there is also a problem that light reflected by the surface of the steel material becomes noise.
[0009]
The present invention has been made in view of the above-mentioned problems, and its purpose is not to wash away the fluorescent magnetic powder liquid after the fluorescent magnetic powder flaw detection, but to mark the heel portion with a marking material containing a fluorescent substance thereafter. The present invention provides a method and an apparatus for detecting the marking position of a steel piece that can accurately detect the marking position.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a method for detecting a marking position of a steel slab according to the present invention (Claim 1) magnetizes the steel slab and attaches a magnetic powder liquid containing a fluorescent substance to the magnetic pole generated in the flange portion. Detecting wrinkles, marking with a marking material containing fluorescent material on the wrinkles, and then irradiating ultraviolet rays from an ultraviolet irradiation light source to cause the markings to fluoresce. Is a method of detecting the marking position of a steel piece by processing the electrical signal and detecting the marking position of the slab, and the fluorescent light having a wavelength different from the wavelength of the ultraviolet light of the ultraviolet irradiation light source and the fluorescence emission wavelength of the magnetic powder is used. Uses a marking material that emits light, and is less sensitive to the ultraviolet light wavelength of the ultraviolet light source and to the fluorescent light emission wavelength of the magnetic powder liquid than the sensitivity of the marking material to the fluorescent light emission wavelength. And it detects a marking position using an optical sensor having characteristics.
[0011]
In the steel piece marking position detecting method according to claim 1, the optical sensor has a high transmittance with respect to the wavelength band of the fluorescence emission from the marking material, and the ultraviolet wavelength band of the ultraviolet irradiation light source and the magnetic powder liquid. It is preferable to provide an optical filter having a low transmittance with respect to the wavelength band of the fluorescence emission from (Claim 2). Further, in this case, the ultraviolet wavelength band of the ultraviolet irradiation light source is 300 nm to 413 nm, the fluorescent emission wavelength of the magnetic powder is 500 nm to 700 nm, the fluorescent emission wavelength of the marking material is 413 nm to 500 nm, and the transmission wavelength range of the optical filter is 413 nm to 413 nm. The thickness is preferably 500 nm. Further, the ultraviolet wavelength band of the ultraviolet irradiation light source may be 694 nm to 780 nm instead of 300 nm to 413 nm.
[0012]
Further, the steel piece marking position detecting device according to the present invention (Claim 5) magnetizes the steel piece, attaches a magnetic powder liquid containing a fluorescent substance to the magnetic pole generated in the saddle portion, and detects the soot. Marking with marking material containing fluorescent material in the part, and then irradiating ultraviolet rays from the ultraviolet light source to cause the markings to fluoresce. The optical signal emitted from the fluorescent light is converted into an electrical signal by an optical sensor, and the electrical A marking position detection device for a piece of steel that detects a marking position by processing a signal, wherein the fluorescent material of the marking material is different from the fluorescent light emission wavelength of the ultraviolet light of the ultraviolet light source and the fluorescent material of the magnetic powder liquid. Compared to the detection sensitivity of the fluorescence emission wavelength from the marking material, the optical sensor has a lower detection sensitivity for the ultraviolet wavelength of the ultraviolet irradiation light source and the fluorescence emission wavelength from the magnetic powder liquid. And it has a characteristic.
[0013]
In the present invention, as shown in FIG. 1, a step (a) of detecting flaws by performing flaw detection on a steel piece using a magnetic powder liquid (fluorescent magnetic powder liquid) containing a fluorescent material to detect wrinkles, The step of marking the portion with a marking material containing a fluorescent material having a fluorescent emission wavelength different from the wavelength of the ultraviolet light emitted from the ultraviolet light source and the wavelength of the fluorescent light emitted from the fluorescent magnetic powder solution (b), thereafter The steel piece is moved to a place where the whole is covered with a shielding hood, and the marking material is emitted by irradiating ultraviolet rays from the ultraviolet irradiation light source. The wavelength range of the irradiated ultraviolet rays and the fluorescence wavelength of the fluorescent magnetic powder liquid used in the fluorescent magnetic particle inspection A step (c) of recognizing the marking and recognizing the scissors by imaging the steel piece with an optical sensor such as a CCD camera to which an optical filter for removing the region is attached and performing image processing. of A light emitting wavelength range of the fluorescent magnetic particle solution used in the wavelength range and the fluorescent magnetic particle flaw of ultraviolet ray irradiated is removed, only the marking of the flaw portion is clearly photographed, it is possible to reduce wrong recognition of the marking. As a result, the accuracy of soot removal in the next step (d) is improved.
[0014]
In this case, the wavelength range of an ultraviolet irradiation light source having a metal halide lamp that is generally used is 300 nm to 413 nm and 694 nm or more (see, for example, paragraph [0008] of FIG. 8 and FIG. 8). Moreover, the emission wavelength of the commonly used fluorescent magnetic powder is 500 nm to 700 nm. Therefore, by setting the emission wavelength of the fluorescent substance included in the marking material to between 413 nm and 500 nm and the transmission wavelength of the optical filter also between 413 nm and 500 nm, the reflection of ultraviolet rays from the ultraviolet irradiation light source and the fluorescence emission from the fluorescent magnetic powder liquid are reduced. The influence can be reduced, and only the marking of the heel portion can be clearly photographed, and the erroneous recognition of the marking can be reduced. As a result, the accuracy of soot removal in the next step (d) is improved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a schematic explanatory view of an apparatus applied to a steel piece marking position detection method according to the present invention, in which a is a plan view and b is an XX cross-sectional view of a.
[0016]
As shown in FIG. 2, the marking position detection device 1 includes a table roller 3 that conveys the steel piece 2, and a light shielding hood 4 that is installed so as to cover the side and upper side of the table roller 3. A CCD camera (light sensor) 6 having an optical filter 5 and an ultraviolet irradiation light source 7 are installed in the upper part of the light shielding hood 4.
[0017]
The slab 2 is preliminarily subjected to fluorescent magnetic particle flaw detection in the above process, and a fluorescent light having a fluorescent emission wavelength different from the fluorescent emission wavelength of the fluorescent substance of the fluorescent magnetic powder solution and the ultraviolet light wavelength of the ultraviolet irradiation light source 7 is provided in the flange portion. The marking 8 is made using a marking material containing a substance. Then, in the process of being transported on the table roller 3 and passing through the light shielding hood 4, ultraviolet light is irradiated from the ultraviolet irradiation light source 7 and imaged by the CCD camera 6 through the optical filter 5, and this imaging is subjected to image processing. Thus, the marking 8 is identified.
[0018]
【Example】
Using a fluorescent magnetic powder having an emission wavelength of 500 nm to 700 nm, a fluorescent magnetic powder flaw detection is performed on a target steel piece. Marking 8 is performed on the flange portion of the steel piece detected by the flaw detection with a fluorescent choke containing a fluorescent material having a central wavelength of light emission of 450 nm.
[0019]
In the shielding hood 6 of the marking position detection apparatus 1, a CCD camera 6 including an ultraviolet irradiation light source 7 having a metal halide lamp with wavelengths of 300 nm to 413 nm and 694 nm or more and an optical filter 5 with a transmission region of 430 nm to 470 nm is installed. Yes.
[0020]
When the steel piece 2 on which the marking 8 has been performed is conveyed on the table roller 3 and passed through the light shielding hood 4 and irradiated with the ultraviolet light source 7, the fluorescent magnetic powder used in the fluorescent magnetic particle inspection has a wavelength of 500 nm to 700 nm. The fluorescent chalk of the marking 8 that has emitted light in the region and marked the ridge part emits light with a wavelength of 450 nm as the center. Moreover, from the mirror surface part of the steel slab 2, light from the ultraviolet irradiation light source 7 is reflected in a wavelength range of 300 nm to 413 nm and 694 nm or more.
[0021]
Although the above-mentioned light is imaged by the CCD camera 6, the wavelength of the light observed by the optical filter 5 mounted on the CCD camera 6 is limited to 430 nm to 470 nm, and thus light emission from a fluorescent magnetic powder of 500 nm to 700 nm and 300 nm Only light emitted from the fluorescent chalk of the marking 8 centered at 450 nm is observed without being affected by light from the ultraviolet irradiation light source 7 of ˜413 nm and 694 nm or more (see FIG. 3).
[0022]
In the above embodiment, a fluorescent magnetic powder having an emission wavelength of 500 nm to 700 nm is used, a fluorescent magnetic powder flaw detection is performed on the target steel piece, and a mark portion of the steel piece detected by the flaw detection is marked with a fluorescent chalk. However, the present invention is not limited to this example. For example, when the fluorescent magnetic powder flaw detection is performed, a metal halide lamp is used in the light shielding hood, and the emission wavelength of the fluorescent magnetic powder liquid is the same. Fluorescent magnetic particle flaw detection is performed by photographing with a CCD camera equipped with an optical filter in the transmission region, and then marking 8 is performed with a fluorescent choke on the heel portion of the steel piece detected by the flaw detection. The marking position on the steel piece may be detected.
[0023]
As described above, in the case of fluorescent magnetic particle flaw detection, when imaged using a CCD camera, both imaged image data are added separately or simply, and then subjected to image processing (for example, binarization of white and black). Then, the wrinkle and the chalk are processed so that they are conspicuous, and the image processing of both is simply added to detect the wrinkle and the marking position. Based on this detection position, scoring is performed in a scoring process in a subsequent process. In this case, it is possible to simultaneously remove the wrinkles due to the detection with the fluorescent magnetic powder and the detection with the marking. Here, the image data may be subjected to image processing immediately after photographing (before marking) by the CCD camera in the fluorescent magnetic particle flaw detection, and the picking may be performed. In this case, the eyelid position is detected by the marking of the present invention after the normal process of fluorescent magnetic particle flaw detection. Alternatively, the image data may be image-processed immediately after photographing (before marking) with a CCD camera in fluorescent magnetic particle flaw detection, and marking may be performed with an automatic marking device.
[0024]
Moreover, in the said Example, although the case where the wavelength range of the ultraviolet irradiation light source 7 is 300 nm-413 nm and 694 nm or more (for example, 694 nm-780 nm) was taken as an example, this assumes the case where it test | inspects visually. Therefore, the present invention is not limited to this example, and an ultraviolet irradiation light source 7 having a wavelength range of 300 nm to 694 nm or more can be used. For example, the wavelength of 385 ± 5 nm shown in Patent Document 1 is used. It is also possible to use an ultraviolet irradiation light source 7 of the area. In this case, the wavelength range of the fluorescent chalk that can be used for marking can be expanded to 390 nm to 500 nm. However, if the wavelength of the ultraviolet irradiation light source 7 is narrowed, the absolute amount of light decreases, so that the emission intensity of the fluorescent chalk also decreases. It is necessary to select the ultraviolet irradiation light source 7 in consideration of the balance between the two. In addition, if the emission wavelength of the fluorescent magnetic powder liquid is increased, the wavelength of the fluorescent choke that can be used for marking can be increased. However, if the wavelength is increased, the visual sensitivity of the fluorescent magnetic powder flaw detection is lowered and the flaw detection capability is lowered. there is a possibility. In this case, it is necessary to select the wavelength in consideration of the balance between the two.
[0025]
In carrying out the present invention, the steel piece may be subjected to ultrasonic flaw inspection before and after magnetic particle flaw detection and before and after marking, and the data obtained therefrom may be used at the time of scraping. In addition, the scraping may be automated with a machine or manually. Further, scoring may be performed by combining the flaw position data of each flaw detection or may be performed separately. In addition, marking is generally performed manually by hand, but can also be performed mechanically. In addition, magnetic particle inspection and marking are basically performed separately on the front and back sides. However, in the case of marking, depending on the object to be inspected, it can also be performed at the same time. In addition, the scraping may be provided with a plurality of scraping devices in parallel or in series. Further, after the scraping, another magnetic particle flaw detection / marking / scoring may be performed again.
[0026]
【The invention's effect】
As described above, according to the present invention, the scissors portion is marked with a marking material containing a fluorescent substance without washing away the fluorescent magnetic powder after the fluorescent magnetic powder flaw detection, and the marked image is clearly captured. Therefore, accurate position information can be given to the removal of wrinkles in the next process.
[Brief description of the drawings]
FIG. 1 is a process explanatory diagram of a steel piece marking position detection method according to the present invention.
FIG. 2 is a schematic explanatory view of an apparatus applied to a steel piece marking position detection method according to the present invention, in which a is a plan view and b is an XX cross-sectional view of a.
FIG. 3 is an explanatory diagram of a wavelength range according to the present invention.
[Explanation of symbols]
1: Marking position detection device 2: Steel slab 3: Table roller 4: Light shielding hood 5: Optical filter 6: CCD camera 7: Ultraviolet irradiation light source 8: Marking

Claims (5)

鋼片を磁化し、疵部分に生じた磁極に蛍光物質を含んだ磁粉液を付着させ疵を検出し、その疵部分に蛍光物質を含んだマーキング材でマーキングを行い、その後に紫外線照射光源より紫外線を照射してマーキングを蛍光発光させ、蛍光発光された光信号を光センサで電気信号に変換するとともに、その電気信号を処理することによってマーキング位置を検出する鋼片のマーキング位置検出方法であって、紫外線照射光源の紫外線の波長及び磁粉液の蛍光発光波長とは異なる波長の蛍光を発光するマーキング材を用い、且つ、マーキング材の蛍光発光波長に対する感度に比べ、紫外線照射光源の紫外線の波長と磁粉液の蛍光発光波長に対する感度が低い特性を有する光センサを用いてマーキング位置を検出することを特徴とする鋼片のマーキング位置検出方法。The steel piece is magnetized, magnetic powder containing fluorescent material is attached to the magnetic pole generated in the saddle part, and the defect is detected, and marking is performed with a marking material containing the fluorescent substance on the saddle part, and then the ultraviolet light source is used. This is a method for detecting the marking position of a steel piece, in which the marking emits fluorescence by irradiating ultraviolet rays, the optical signal emitted from the fluorescence is converted into an electrical signal by an optical sensor, and the marking position is detected by processing the electrical signal. In addition, a marking material that emits fluorescence having a wavelength different from the wavelength of the ultraviolet light of the ultraviolet irradiation light source and the fluorescence emission wavelength of the magnetic powder is used, and the wavelength of the ultraviolet light of the ultraviolet light irradiation light source is higher than the sensitivity of the marking material to the fluorescent light emission wavelength. Steel mark markin using a photosensor having a low sensitivity to the fluorescence emission wavelength of the magnetic powder and the magnetic powder. Position detection method. 請求項1記載の鋼片のマーキング位置検出方法において、マーキング材の蛍光発光波長に対する感度に比べ、紫外線照射光源の紫外線の波長と磁粉液の蛍光発光波長に対する感度が低い特性を有する光センサとして、マーキング材からの蛍光発光の波長帯域に対して透過率が高く、紫外線照射光源の紫外線の波長帯域と磁粉液からの蛍光発光の波長帯域に対して透過率が低い光学フィルタを備える光学センサを用いる鋼片のマーキング位置検出方法。In the method for detecting the marking position of a steel piece according to claim 1, as a photosensor having a characteristic that the sensitivity to the ultraviolet light wavelength of the ultraviolet irradiation light source and the fluorescence light emission wavelength of the magnetic powder liquid is lower than the sensitivity to the fluorescent light emission wavelength of the marking material, An optical sensor having an optical filter that has a high transmittance with respect to the wavelength band of the fluorescent light emitted from the marking material and a low transmittance with respect to the wavelength band of the ultraviolet light emitted from the ultraviolet light source and the wavelength band of the fluorescent light emitted from the magnetic powder liquid is used. A method for detecting the marking position of a steel piece. 請求項2記載の鋼片のマーキング位置検出方法において、紫外線照射光源の紫外線の波長帯域を300nm〜413nm、磁粉液の蛍光発光波長を500nm〜700nm、及びマーキング材の蛍光発光波長を413nm〜500nmとし、光学フィルタの透過波長域を413nm〜500nmとする鋼片のマーキング位置検出方法。3. The method for detecting the marking position of a steel piece according to claim 2, wherein the ultraviolet wavelength band of the ultraviolet irradiation light source is 300 nm to 413 nm, the fluorescent emission wavelength of the magnetic powder is 500 nm to 700 nm, and the fluorescent emission wavelength of the marking material is 413 nm to 500 nm. A method for detecting the marking position of a steel piece in which the transmission wavelength range of the optical filter is 413 nm to 500 nm. 請求項2記載の鋼片のマーキング位置検出方法において、紫外線照射光源の紫外線の波長帯域を694nm〜780nm、磁粉液の蛍光発光波長を500nm〜700nm、及びマーキング材の蛍光発光波長を413nm〜500nmとし、光学フィルタの透過波長域を413nm〜500nmとする鋼片のマーキング位置検出方法。3. The method for detecting the marking position of a steel piece according to claim 2, wherein the ultraviolet wavelength band of the ultraviolet irradiation light source is 694 nm to 780 nm, the fluorescent emission wavelength of the magnetic powder is 500 nm to 700 nm, and the fluorescent emission wavelength of the marking material is 413 nm to 500 nm. A method for detecting the marking position of a steel piece in which the transmission wavelength range of the optical filter is 413 nm to 500 nm. 鋼片を磁化し、疵部分に生じた磁極に蛍光物質を含んだ磁粉液を付着させ疵を検出し、その疵部分に蛍光物質を含んだマーキング材でマーキングを行い、その後に紫外線照射光源より紫外線を照射してマーキングを蛍光発光させ、蛍光発光された光信号を光センサで電気信号に変換するとともに、その電気信号を処理することによってマーキング位置を検出する鋼片のマーキング位置検出装置であって、マーキング材の蛍光物質が紫外線照射光源の紫外線の波長及び磁粉液の蛍光物質の蛍光発光波長とは異なる蛍光発光波長を有し、光センサがマーキング材からの蛍光発光波長の検出感度に比べ、紫外線照射光源の紫外線の波長と磁粉液からの蛍光発光波長の検出感度が低い特性を有することを特徴とする鋼片のマーキング位置検出装置。A steel piece is magnetized, a magnetic powder containing a fluorescent material is attached to the magnetic pole generated in the saddle part, and the soot is detected. Then, marking is performed with a marking material containing the fluorescent substance on the saddle part, and then an ultraviolet irradiation light source is used. A marking position detection device for a steel piece that detects the marking position by irradiating ultraviolet rays to cause the marking to emit fluorescent light, converting the fluorescent light signal into an electrical signal by an optical sensor, and processing the electrical signal. In addition, the fluorescent material of the marking material has a fluorescence emission wavelength different from the wavelength of the ultraviolet light of the ultraviolet irradiation light source and the fluorescence emission wavelength of the fluorescent material of the magnetic powder liquid, and the optical sensor is compared with the detection sensitivity of the fluorescence emission wavelength from the marking material. An apparatus for detecting the marking position of a steel piece, characterized by having a low detection sensitivity of the wavelength of the ultraviolet light of the ultraviolet light source and the fluorescence emission wavelength from the magnetic powder.
JP2003168004A 2003-06-12 2003-06-12 Method and apparatus for detecting the marking position of a steel piece Expired - Fee Related JP4074837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168004A JP4074837B2 (en) 2003-06-12 2003-06-12 Method and apparatus for detecting the marking position of a steel piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168004A JP4074837B2 (en) 2003-06-12 2003-06-12 Method and apparatus for detecting the marking position of a steel piece

Publications (2)

Publication Number Publication Date
JP2005003542A true JP2005003542A (en) 2005-01-06
JP4074837B2 JP4074837B2 (en) 2008-04-16

Family

ID=34093636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168004A Expired - Fee Related JP4074837B2 (en) 2003-06-12 2003-06-12 Method and apparatus for detecting the marking position of a steel piece

Country Status (1)

Country Link
JP (1) JP4074837B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732148A (en) * 2018-05-09 2018-11-02 冶金自动化研究设计院 A kind of fluorescent magnetic particle flaw detection on-line measuring device and method
WO2019059012A1 (en) * 2017-09-19 2019-03-28 コニカミノルタ株式会社 Non-destructive inspection method
CN111609806A (en) * 2020-06-02 2020-09-01 支琴芳 High-precision workpiece detection device based on cloud computing
CN114076794A (en) * 2020-08-19 2022-02-22 宝山钢铁股份有限公司 Automatic detection device and detection method for near-surface defects of small strip steel square billet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059012A1 (en) * 2017-09-19 2019-03-28 コニカミノルタ株式会社 Non-destructive inspection method
CN111094953A (en) * 2017-09-19 2020-05-01 柯尼卡美能达株式会社 Nondestructive inspection method
JPWO2019059012A1 (en) * 2017-09-19 2020-11-05 コニカミノルタ株式会社 Non-destructive inspection method
US20210036384A1 (en) * 2017-09-19 2021-02-04 Konica Minolta, Inc. Non-Destructive Inspection Method
JP7126147B2 (en) 2017-09-19 2022-08-26 コニカミノルタ株式会社 Nondestructive test method
US11652243B2 (en) 2017-09-19 2023-05-16 Konica Minolta, Inc Non-destructive inspection method
CN108732148A (en) * 2018-05-09 2018-11-02 冶金自动化研究设计院 A kind of fluorescent magnetic particle flaw detection on-line measuring device and method
CN108732148B (en) * 2018-05-09 2023-12-22 冶金自动化研究设计院 Online detection device and method for fluorescent magnetic particle inspection
CN111609806A (en) * 2020-06-02 2020-09-01 支琴芳 High-precision workpiece detection device based on cloud computing
CN114076794A (en) * 2020-08-19 2022-02-22 宝山钢铁股份有限公司 Automatic detection device and detection method for near-surface defects of small strip steel square billet

Also Published As

Publication number Publication date
JP4074837B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
KR100442071B1 (en) Nondestructive inspection method and an apparatus thereof
JP4618502B2 (en) Fluorescence flaw detector and fluorescent flaw detection method
TWI803680B (en) Method and apparatus of detection of adhesive residue on a wafer
JP2007528490A (en) System and method for inspecting electrical circuits utilizing reflective and fluorescent images
JP4045742B2 (en) Nondestructive inspection method and apparatus
JP3095958B2 (en) Method and apparatus for automatically characterizing, optimizing and inspecting an analysis method by penetrant inspection
CN108027326A (en) The optical detection of fluorescent liquid from wood fibre net
JP4618501B2 (en) Fluorescence flaw detector and fluorescent flaw detection method
JP2011013007A (en) Magnetic particle flaw inspection apparatus
JP2008153119A (en) Battery inspection system, and battery inspection method
JP2010276538A (en) Detection method of crack defect
JP4074837B2 (en) Method and apparatus for detecting the marking position of a steel piece
JP2011033612A (en) Agricultural product inspection device
JP2008249413A (en) Defect detection method and device
JP2005283599A (en) Defect inspection method, defect inspection device and defect inspection support method
JP4356015B2 (en) Measuring method of residual rice bran
JP2007271507A (en) Defect detecting method, defect detector and defect detecting program
JP2002090258A (en) Method, apparatus and system for inspection of lens
JP2003344299A (en) Defect inspection device for color filter and detect inspection method for color filter
JP3874562B2 (en) Glass plate crushing test method, apparatus and glass test imaging method
JPS61182238A (en) Inspection device for residue of organic compound of resist or the like
JPH04223262A (en) Processing method of image in fluorescent magnetic powder flaw detection
JP2010038723A (en) Flaw inspecting method
JP2003344304A (en) Equipment and method for visual inspection
JPH0518901A (en) Wafer-surface inspecting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4074837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees