JP2005002978A - Thermal power unit/thermal power-generator - Google Patents

Thermal power unit/thermal power-generator Download PDF

Info

Publication number
JP2005002978A
JP2005002978A JP2003198086A JP2003198086A JP2005002978A JP 2005002978 A JP2005002978 A JP 2005002978A JP 2003198086 A JP2003198086 A JP 2003198086A JP 2003198086 A JP2003198086 A JP 2003198086A JP 2005002978 A JP2005002978 A JP 2005002978A
Authority
JP
Japan
Prior art keywords
heat
hot water
water tank
shape memory
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003198086A
Other languages
Japanese (ja)
Inventor
Yoshinori Shinohara
芳紀 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003198086A priority Critical patent/JP2005002978A/en
Publication of JP2005002978A publication Critical patent/JP2005002978A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal power unit/thermal power-generator which obtains electric power directly from waste heat such as the solar heat or the low temperature waste heat from a factory without using the fossil fuel energy supplied from the outside. <P>SOLUTION: The device comprises a rotating mechanism, shape memory alloy bars, a hot water tank, a support and a gear. The shape memory alloy bars subjected to two-way shape memory treatment and arranged around the rotating mechanism are changed into a high-temperature shape to push the support and obtain rotational motion, when they enter the hot water tank and returns to a normal temperature shape when they go out of the hot water tank to be cooled. The device is connected to an electric generator or a shaft provided in parallel to the rotating mechanism with respect to the axial direction thereof to generate electricity or motive power by way of gears for increasing/decreasing the rotating speed of the rotating mechanism, and uses the solar heat, a liquid heated to a temperature higher than the room temperature by the waste heat of the factory or the like as an energy source for feeding heat to the hot water tank. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、形状記憶合金が温度により変形する原理を用い回転運動を得る装置であって、動力源、発電を用途とする装置に関するものである。
【0002】
【従来の技術】
従来の動力装置としては化石燃料等の燃焼による機械的力あるいは電気を機械的力の変えることにより回転運動を得るものであった。従来の発電装置としては水力、原子力、火力発電がある。熱から直接動力を得る装置としては特許文献1に記載のようにスターリングエンジンがある。
【0003】
【特許文献1】
特許公開2003−139428
【0004】
【発明が解決しようとする課題】
しかしながら、エネルギー源には限りがあり、化石燃料によるエネルギー生産に際しては環境を阻害する物質が副次的に生産されてしまい、原子力発電の場合は放射性廃棄物が発生するうといった短所があった。風力発電、太陽光発電の場合は有害廃棄物を発生しないが、最大の未利用エネルギーである太陽熱からの発電を行なうものではない。スターリングエンジンの場合は熱を供給することにより動力を得るが、その原理は気体の熱膨張・収縮を利用したものであり、効率が悪く、装置重量が過大となるため、大出力化には向かないので用途が限定されるといった短所があった。
【0005】
本発明の目的は、上記問題を解決するため、外部よりの化石燃料エネルギーを使わずに太陽熱あるいは工場での低温廃熱といった未利用熱を収集し、この熱から直接動力を得ると共に、発電を行なう熱動力・熱発電装置を提供することにある。
【0006】
【課題を解決するための手段および作用】
本発明に係る熱動力・熱発電装置は、上記の目的を達成するために、次のように構成される。
【0007】
第1の熱動力・熱発電装置(請求項1に対応)は、熱を回転運動に変える装置であって、回転機構、形状記憶合金棒、温水槽、支柱、ギヤーにより構成され、回転機構の回りに形状記憶合金棒を配し、形状記憶合金が温度により変形する原理を用い、形状記憶合金棒が温水槽に入ることにより支柱を押し回転運動を得て、ギヤーにより回転機構の回転数を増減させ、このギヤーを介して発電機に接続し、熱発電を行なうことができ、エネルギー源として太陽熱、工場での低温廃熱起源等の常温より高い温度の液体を用いる熱動力装置であって、馬力が必要である場合は回転機構の回転軸方向に並列に設置することで特徴づけられる。
【0008】
第1の熱動力・熱発電装置によれば、形状記憶合金材料は温度上昇によりマルテンサイト相転移温度に達すると変形する。この現象を利用し、温水槽に形状記憶合金棒を入れ温度上昇させるとこの温度での記憶形状に変形することから変形力を得るため、固定支柱を設置しておくことにより回転板に取り付けた形状記憶合金が移動し、回転板が回転することができる。この形状記憶合金を連続的に回転板に取りつけておくと回転板は次々と回転を続けることができる。さらに回転板が回転を続け、形状記憶合金が温水槽の外にでると形状記憶合金は空冷され、常温形状に戻る。
【0009】
第2の収熱装置(請求項2に対応)は上記の構成において、好ましくは熱動力・熱発電装置に取りつけ、発電所、製鉄施設、セメント製造施設等の大量の廃熱発生装置、家屋、工場建家、路面または砂漠、荒野等の太陽熱受熱地域の熱の回収を行なうことを可能とすることで特徴づけられる。
【0010】
第2の収熱装置によれば、発電所、製鉄施設、セメント製造施設等の大量の廃熱及び家屋、工場建家、路面または砂漠、荒野等の太陽熱受熱地域の熱を熱伝導体を用いて熱動力・熱発電装置の温水槽に導き、温水槽の温度上昇により、形状記憶合金の変形を得、熱動力・熱発電装置に回転運動を与え発電を行なうことができる。
【0011】
【発明の実施の形態】
以下、本発明の好適な実施形態を添付図面に基づいて説明する。
【0012】
図1は、第1の実施形態にかかる熱動力・熱発電装置の断面図である。熱動力装置1は温液体槽2と回転板4と固定柱5を備えている。回転板4は形状記憶合金を材料とした腕3を備えている。回転板4にはギヤー6を介して動力を伝達する装置が接続される。発電を行なう場合にはギヤー6を介して発電機を接続する。
【0013】
温液体槽2は熱伝導率が低い材料から成り、収熱装置からの温水を受入れ、腕3により温水の熱を奪われ冷えると収熱装置に還流するための容器である。
【0014】
固定柱5は熱伝導率が低い材料から成り、腕3が変形することにより押す為の固定された柱である。
【0015】
回転板4は熱伝導率が低い材料から成り、形状記憶合金を材料とした腕3を周辺に配したもので、それ自体がギヤーとなっているため、別のギヤー6を取りつけ可能としている。
【0016】
ギヤー6は回転板4のギヤーに取りつけ、回転板4の回転運動を外部発電装置に回転数を変えて伝達する為の装置である。
【0017】
図3は、第1の実施形態にかかる収熱装置の断面図である。収熱装置は太陽熱受熱装置42と熱伝導体43と熱逆流防止熱伝導路遮断装置47と一時蓄熱槽44と熱動力・熱発電装置の温水槽に温水を供給させる供給パイプ45、この温水槽から一時蓄熱槽44に還流させる還流パイプ46で構成される。
【0018】
太陽熱受熱装置42は屋根41の上に一面に敷かれた瓦であり、太陽熱を受け蓄熱する。
【0019】
熱伝導体43は熱伝導率の高い銅材料でできた熱伝導体であり、太陽熱受熱装置42の熱を機械的な熱逆流防止熱伝導路遮断装置47を経由し一時蓄熱槽44に伝達する。
【0020】
熱逆流防止熱伝導路遮断装置47は形状記憶合金を材料とした装置で、熱伝導体43の温度が低下した場合、一時蓄熱槽44の熱が熱伝導体43に逆流させないために熱伝導体43と一時蓄熱槽44を機械的に離すための装置である。熱伝導体43の温度が上昇し、形状記憶合金の設定温度以上となった場合は熱伝導体43を一時蓄熱槽44に接触させ熱を一時蓄熱槽44に供給する。
【0021】
一時蓄熱槽44は熱伝導率の低い材料で構成された容器で、熱伝導体43により伝えられた太陽熱を容器中の凍結防止材を入れた水に供給し、水を温める。
【0022】
パイプ45は熱伝導率の低い材料で構成された管で、一時蓄熱槽44の温水が温度上昇に伴い比重が軽くなることから、この温水を熱動力・熱発電装置の温水槽に流入させる為のパイプである。
【0023】
供給パイプ46は熱伝導率の低い材料で構成された管で、熱動力・熱発電装置の温水槽の温水が熱を奪われ、温度が下がると比重が増すことにより一時蓄熱槽44に自然還流させる為のパイプである。
【0024】
次に、本実施形態に係る熱動力・熱発電装置1の動作を説明する。
【0025】
図2において、腕3は逆U字型の常温時形状を与えられている。この形状は2本の固定柱5の間を通過できる長さである。温度が上昇し、2方向処理された形状記憶合金の高温側マルテンサイト相転移温度に達すると形状変形し、直線形状を経由して、あらかじめ熱処理により記憶されたU字型の高温形状になる。直線形状時の腕3の長さは2本の固定柱5の間の長さより長い。この水泳の平泳ぎの手の動きをする場所に2本の固定柱5が固定されて存在すると、相対的に形状記憶合金が動き推力が生まれる。この高温の腕3が冷却され2方向処理された形状記憶合金の常温側マルテンサイト相転移温度に達すると形状変形し逆U字型の常温時形状になる。
【0026】
図1において、腕3が温水槽2の中で高温となるとU字型の高温形状になることにより固定柱6を押し力が発生するため回転板4を回転させる。腕3が固定柱5を押し終わる時点で次の腕3が固定柱5を押す。一方、回転板4が回転すると、腕3は温水槽2の外に出る。腕3は温水槽2の外に出ると、空冷され、逆U字型常温形状になり固定柱5の間を通過できるようになる。上記作用を繰り返すことにより、回転板は回転し続け、回転板の外側にきられたギヤーと組合わされるギヤー6を介して動力を外部供給しつづけることができる。腕3は温水槽2の熱を奪うため、温水槽2の温度は下がるが、下記に述べる収熱装置から熱が供給される間、相転移温度以上を保つことができ、発電を継続することができる。収熱装置からの熱供給が止まり、温水槽2の温度が高温側相転移温度以下となると、腕3の形状変化が起きないので、上記作用が起きず、動力は発生しない為発電は行なわれない。上記回転板を回転軸に複数取りつけると大きな力を得ることができる。
【0027】
図3において、本実施形態の収熱装置の収熱動作を説明する。
瓦である太陽熱受熱装置42で受熱・蓄熱された熱は銅で作れられた熱伝導体43により一時蓄熱槽44に伝えられ、このため一時蓄熱槽44を満たす水は温水となる。一時蓄熱槽44の温水が温度上昇に伴い比重が軽くなると熱動力・熱発電装置の温水槽2にパイプ45を通り熱動力・熱発電装置44の温水槽2に流れ出る。これにより熱動力・熱発電装置1による発電が行なわれ。発電の結果、熱を奪われた水は温度低下に伴い比重が重くなる。この結果重い水は温水槽2からパイプ46を通り一時蓄熱槽44に戻る。このように太陽からの熱を供給し温水を自然循環させることにより発電が続けられる。一時蓄熱槽と熱動力・熱発電装置との間の温水の循環は強制循環によることも可能である。
【0028】
次に本発明の熱伝導体として水を用いる第2の実施形態を説明する。第2の実施形態では熱動力・熱発電装置は同じであるが、収熱装置が第1の実施形態とは異なり、熱源として道路を用いている。図4は道路を用いた収熱装置の断面図である。
本実施例では舗装道路51の下に熱伝導率の高い銅製の熱伝導管52と熱動力・熱発電装置で構成する。
【0029】
熱伝導管52は熱動力・熱発電装置の温水槽下部から出て舗装道路51の下を経由して熱動力・熱発電装置1の温水槽上部に戻り、この熱伝導管52の中を熱伝導体である凍結防止材を入れた水で満たす。水は舗装道路51より熱を受け取ると、比重が軽くなるので熱動力・熱発電装置が設置されている上部へ移動し、熱動力・熱発電装置の温水槽に入り、形状記憶合金の形状変化により発電が行なわれる。発電が行なわれると温水は形状記憶合金に熱を奪われるため、熱を奪われた液体は比重が重くなるので舗装道路51下に還流される。このように液体を自然循環させることにより熱動力・熱発電装置に常に温水を供給し、発電を続ける。収熱効果を高め、発電量を増やしたい場合は強制循環方式も実施可能である。
【0030】
【発明の効果】
以上の説明で明らかなように本発明によれば、次の効果を奏する。
【0031】
本熱動力・熱発電装置は熱を供給することにより動力・電力を得ることができる。
本熱動力・熱発電装置は化石燃料を使わないため、CO2、SOX,NOXといった環境汚染物質を発生しないクリーンな動力源であり、この熱動力装置を発電機に接続させ、発生させる電気エネルギーもクリーンである。
【0032】
同時に、化石燃料を使わず、太陽熱あるいは工場での低温廃熱といった未利用熱をエネルギー源とすることから、エネルギー料金は非常に安価である。特に第2の実施例に見られるように、道路が太陽から受ける熱を用いて発電ができる効果がある。
【0033】
【図面の簡単な説明】
【図1】形状記憶合金を利用した熱動力・熱発電装置を示す図である。
【図2】常温及び高温時の腕の記憶形状を示す図である。
【図3】建家より収熱を行なう方法示す図である。
【図4】道路より収熱を行なう方法を示す図である。
【符号の説明】
1 熱動力・熱発電装置
2 温水槽
3 腕
4 回転板
5 固定柱
6 ギヤー
41 屋根
42 太陽熱受熱装置
43 熱伝導体
44 一時蓄熱槽
45 供給パイプ
46 還流パイプ
47 熱逆流防止熱伝導路遮断装置
51 舗装道路
52 熱伝導管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for obtaining a rotational motion using the principle that a shape memory alloy is deformed by temperature, and relates to an apparatus that uses a power source and power generation.
[0002]
[Prior art]
As a conventional power unit, a rotational force is obtained by changing a mechanical force by combustion of fossil fuel or the like or electricity. Conventional power generation devices include hydropower, nuclear power, and thermal power generation. As a device for directly obtaining power from heat, there is a Stirling engine as described in Patent Document 1.
[0003]
[Patent Document 1]
Patent Publication 2003-139428
[0004]
[Problems to be solved by the invention]
However, the energy source is limited, and in the case of fossil fuel energy production, substances that hinder the environment are produced as a secondary, and in the case of nuclear power generation, radioactive waste is generated. In the case of wind power generation and solar power generation, no hazardous waste is generated, but power generation from solar heat, which is the largest unused energy, is not performed. In the case of a Stirling engine, power is obtained by supplying heat, but the principle is that it uses thermal expansion / contraction of gas, which is inefficient and excessively heavy. However, there was a disadvantage that the application was limited.
[0005]
An object of the present invention is to collect unused heat such as solar heat or low-temperature waste heat in a factory without using fossil fuel energy from the outside in order to solve the above problem, and to obtain power directly from this heat and to generate power. It is to provide a thermal power / thermoelectric generator to be performed.
[0006]
[Means and Actions for Solving the Problems]
The thermal power / thermoelectric generator according to the present invention is configured as follows in order to achieve the above object.
[0007]
The first thermal power / thermoelectric generator (corresponding to claim 1) is a device that converts heat into rotational motion, and is composed of a rotating mechanism, a shape memory alloy rod, a hot water tank, a support column, and a gear. The shape memory alloy rod is arranged around, the shape memory alloy is deformed according to the temperature, the shape memory alloy rod enters the hot water tank, the column is pushed to obtain the rotational motion, and the rotation speed of the rotation mechanism is controlled by the gear. It is a thermopower device that can increase and decrease, connect to a generator via this gear, and perform thermoelectric power generation, and use a liquid with a temperature higher than normal temperature such as solar heat and low temperature waste heat source at the factory as an energy source. When horsepower is required, it is characterized by being installed in parallel in the direction of the rotation axis of the rotation mechanism.
[0008]
According to the first thermopower / thermoelectric generator, the shape memory alloy material is deformed when it reaches the martensite phase transition temperature due to temperature rise. Using this phenomenon, when a shape memory alloy rod is put in a hot water tank and the temperature is raised, it deforms into a memory shape at this temperature, so that deformation force is obtained. The shape memory alloy moves and the rotating plate can rotate. If this shape memory alloy is continuously attached to the rotating plate, the rotating plate can continue to rotate one after another. Further, when the rotating plate continues to rotate and the shape memory alloy comes out of the hot water tank, the shape memory alloy is cooled by air and returns to the room temperature shape.
[0009]
The second heat collecting apparatus (corresponding to claim 2) is preferably attached to the thermopower / thermoelectric generator in the above-described configuration, and a large amount of waste heat generator such as a power plant, a steel manufacturing facility, a cement manufacturing facility, a house, Characterized by making it possible to recover heat from solar heat receiving areas such as factory buildings, roads or deserts and wilderness.
[0010]
According to the second heat recovery device, a large amount of waste heat from power plants, steel manufacturing facilities, cement manufacturing facilities, etc. and heat from solar heat receiving areas such as houses, factory buildings, road surfaces or deserts, and wilderness are used as heat conductors. Then, the heat can be guided to the hot water tank of the thermopower / thermoelectric generator and the shape memory alloy can be deformed by the temperature rise of the hotwater tank, and the thermopower / thermoelectric generator can be rotated to generate electric power.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.
[0012]
FIG. 1 is a cross-sectional view of the thermal power / thermoelectric generator according to the first embodiment. The thermopower device 1 includes a warm liquid tank 2, a rotating plate 4, and a fixed column 5. The rotating plate 4 includes an arm 3 made of a shape memory alloy. A device for transmitting power via a gear 6 is connected to the rotating plate 4. When power generation is performed, a generator is connected via the gear 6.
[0013]
The warm liquid tank 2 is made of a material having low thermal conductivity, and is a container for receiving warm water from the heat collecting device and returning to the heat collecting device when the heat of the warm water is taken away by the arm 3 and cooled.
[0014]
The fixed column 5 is made of a material having a low thermal conductivity, and is a fixed column for pressing when the arm 3 is deformed.
[0015]
The rotating plate 4 is made of a material having a low thermal conductivity, and is provided with an arm 3 made of a shape memory alloy around the periphery. Since the rotating plate 4 itself is a gear, another gear 6 can be attached.
[0016]
The gear 6 is a device that is attached to the gear of the rotating plate 4 and transmits the rotational motion of the rotating plate 4 to the external power generator while changing the rotational speed.
[0017]
FIG. 3 is a cross-sectional view of the heat collecting apparatus according to the first embodiment. The heat collecting device includes a solar heat receiving device 42, a heat conductor 43, a heat backflow prevention heat conduction path blocking device 47, a temporary heat storage tank 44, a supply pipe 45 for supplying hot water to the hot water tank of the thermopower / thermoelectric generator, and the hot water tank. And a reflux pipe 46 for refluxing to the temporary heat storage tank 44.
[0018]
The solar heat receiving device 42 is a tile laid on the entire surface of the roof 41, and receives solar heat to store heat.
[0019]
The heat conductor 43 is a heat conductor made of a copper material having a high heat conductivity, and transfers the heat of the solar heat receiving device 42 to the temporary heat storage tank 44 via the mechanical heat backflow prevention heat conduction path blocking device 47. .
[0020]
The thermal backflow prevention heat conduction path blocking device 47 is a device made of a shape memory alloy. When the temperature of the heat conductor 43 is lowered, the heat of the temporary heat storage tank 44 is prevented from flowing back to the heat conductor 43. 43 is a device for mechanically separating 43 and the temporary heat storage tank 44. When the temperature of the heat conductor 43 rises and becomes equal to or higher than the set temperature of the shape memory alloy, the heat conductor 43 is brought into contact with the temporary heat storage tank 44 to supply heat to the temporary heat storage tank 44.
[0021]
The temporary heat storage tank 44 is a container made of a material having a low thermal conductivity, and supplies the solar heat transmitted by the heat conductor 43 to the water containing the antifreezing material in the container to warm the water.
[0022]
The pipe 45 is a pipe made of a material having low thermal conductivity, and since the specific gravity of the hot water in the temporary heat storage tank 44 becomes lighter as the temperature rises, the hot water flows into the hot water tank of the thermopower / thermoelectric generator. It is a pipe.
[0023]
The supply pipe 46 is a pipe made of a material having low thermal conductivity, and the hot water in the hot water tank of the thermal power / thermoelectric generator is deprived of heat, and the specific gravity increases as the temperature drops, so that the natural heat return to the temporary heat storage tank 44 It is a pipe for making it.
[0024]
Next, the operation of the thermopower / thermoelectric generator 1 according to this embodiment will be described.
[0025]
In FIG. 2, the arm 3 is given an inverted U-shaped shape at room temperature. This shape is long enough to pass between the two fixed columns 5. When the temperature rises and reaches the high temperature side martensitic phase transition temperature of the shape memory alloy that has been bi-directionally processed, the shape is deformed and becomes a U-shaped high temperature shape previously memorized by heat treatment via a linear shape. The length of the arm 3 in the linear shape is longer than the length between the two fixed columns 5. When the two fixed columns 5 are fixed and exist in a place where the hand of the breaststroke of the swim moves, the shape memory alloy relatively moves and thrust is generated. When the high temperature arm 3 is cooled and reaches the normal temperature side martensite phase transition temperature of the shape memory alloy which has been subjected to the two-way treatment, the shape is deformed to be an inverted U-shaped at normal temperature.
[0026]
In FIG. 1, when the arm 3 reaches a high temperature in the hot water tank 2, the rotating plate 4 is rotated because a pressing force is generated on the fixed column 6 due to the U-shaped high temperature shape. When the arm 3 finishes pushing the fixed column 5, the next arm 3 pushes the fixed column 5. On the other hand, when the rotating plate 4 rotates, the arm 3 comes out of the hot water tank 2. When the arm 3 goes out of the hot water tank 2, the arm 3 is cooled by air, becomes an inverted U-shaped room temperature shape, and can pass between the fixed columns 5. By repeating the above operation, the rotating plate continues to rotate, and power can be continuously supplied to the outside through the gear 6 combined with the gear provided outside the rotating plate. Since the arm 3 takes the heat of the hot water tank 2, the temperature of the hot water tank 2 decreases, but the heat can be maintained above the phase transition temperature while the heat is supplied from the heat collecting device described below, and power generation is continued. Can do. When the heat supply from the heat collecting device is stopped and the temperature of the hot water tank 2 is equal to or lower than the high temperature side transition temperature, the shape of the arm 3 does not change, so that the above action does not occur and no power is generated. Absent. A large force can be obtained by attaching a plurality of the rotating plates to the rotating shaft.
[0027]
In FIG. 3, the heat collecting operation of the heat collecting apparatus of this embodiment will be described.
The heat received and stored by the solar heat receiving device 42, which is a roof tile, is transmitted to the temporary heat storage tank 44 by the heat conductor 43 made of copper, and therefore, the water filling the temporary heat storage tank 44 becomes hot water. When the specific gravity of the hot water in the temporary heat storage tank 44 decreases as the temperature rises, the hot water flows into the hot water tank 2 of the thermopower / thermoelectric generator 44 through the pipe 45 to the hotwater tank 2 of the thermopower / thermoelectric generator. As a result, power is generated by the thermopower / thermoelectric generator 1. As a result of power generation, the specific gravity of water deprived of heat increases with decreasing temperature. As a result, heavy water returns from the hot water tank 2 through the pipe 46 to the temporary heat storage tank 44. In this way, power generation is continued by supplying heat from the sun and naturally circulating hot water. The circulation of warm water between the temporary heat storage tank and the thermopower / thermoelectric generator can be performed by forced circulation.
[0028]
Next, a second embodiment using water as the heat conductor of the present invention will be described. In the second embodiment, the thermopower / thermoelectric generator is the same, but the heat collecting device is different from the first embodiment and uses a road as a heat source. FIG. 4 is a cross-sectional view of a heat collecting apparatus using a road.
In the present embodiment, the heat conductive pipe 52 and the thermal power / thermoelectric generator having high thermal conductivity are formed under the paved road 51.
[0029]
The heat conduction pipe 52 exits from the lower part of the hot water tank of the thermal power / thermoelectric generator and returns to the upper part of the hot water tank of the thermal power / thermoelectric generator 1 via the pavement 51 and heats the heat conduction pipe 52. Fill with water containing antifreeze material as a conductor. When the water receives heat from the paved road 51, the specific gravity is reduced, so it moves to the upper part where the thermal power / thermoelectric generator is installed, enters the hot water tank of the thermal power / thermoelectric generator, and changes the shape of the shape memory alloy Power is generated by When power generation is performed, the hot water is deprived of heat by the shape memory alloy, so that the liquid deprived of heat has a higher specific gravity and is returned to the pavement road 51. By naturally circulating the liquid in this way, hot water is always supplied to the thermopower / thermoelectric generator to continue power generation. If you want to increase the heat collection effect and increase the amount of power generation, you can also implement the forced circulation method.
[0030]
【The invention's effect】
As is apparent from the above description, the present invention has the following effects.
[0031]
This thermal power / thermoelectric generator can obtain power / electric power by supplying heat.
Since this thermal power / thermoelectric generator does not use fossil fuels, it is a clean power source that does not generate environmental pollutants such as CO2, SOX, and NOX. It is clean.
[0032]
At the same time, energy costs are very low, because fossil fuels are not used, and unused heat such as solar heat or low-temperature waste heat from factories is used as the energy source. In particular, as seen in the second embodiment, there is an effect that power can be generated by using heat received by the road from the sun.
[0033]
[Brief description of the drawings]
FIG. 1 is a diagram showing a thermopower / thermoelectric generator using a shape memory alloy.
FIG. 2 is a diagram showing a memory shape of an arm at a normal temperature and a high temperature.
FIG. 3 is a diagram showing a method of collecting heat from a building.
FIG. 4 is a diagram showing a method of collecting heat from a road.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thermal power / thermoelectric generator 2 Hot water tank 3 Arm 4 Rotating plate 5 Fixed column 6 Gear 41 Roof 42 Solar heat receiving device 43 Thermal conductor 44 Temporary heat storage tank 45 Supply pipe 46 Recirculation pipe 47 Heat backflow prevention heat conduction path interruption device 51 Paved road 52 heat transfer pipe

Claims (3)

回転機構、形状記憶合金棒、温水槽、支柱、ギヤーにより構成され、回転機構の回りに形状記憶合金棒を配し、2方向処理された形状記憶合金が温度により変形・復元する原理を用い、形状記憶合金棒が温水槽に入ることにより高温形状に変形し支柱を押し回転運動を得、温水槽を出て冷却されると常温形状に変形することを利用した装置であって、ギヤーにより回転機構の回転数を増減させ、このギヤーを介して発電機に接続し、熱発電を行なうことができ、温水槽に熱を供給するエネルギー源として太陽熱、工場での低温廃熱起源等の常温より高い温度の液体を用い、馬力が必要である場合は回転機構の回転軸方向に並列に設置することにより行なう熱動力装置・熱発電装置。It is composed of a rotation mechanism, shape memory alloy rod, hot water tank, support column, gear, and a shape memory alloy rod is arranged around the rotation mechanism, and the shape memory alloy processed in two directions is deformed and restored by temperature, When the shape memory alloy rod enters the hot water tank, it deforms into a high temperature shape and pushes the support column to obtain a rotational motion. The number of rotations of the mechanism can be increased / decreased, and it can be connected to a generator through this gear to perform thermoelectric power generation. Solar energy is used as an energy source to supply heat to the hot water tank. A thermal power unit or thermoelectric generator that uses a high-temperature liquid and installs in parallel in the direction of the axis of rotation of the rotating mechanism when horsepower is required. 温水槽に熱を供給する収熱装置を備えたことを特徴とする請求項1記載の熱動力・熱発電装置。The thermopower / thermoelectric generator according to claim 1, further comprising a heat collecting device that supplies heat to the hot water tank. 前記収熱装置は道路、建築物、未利用土地から熱伝導体を用いて収熱することを特徴とする請求項2記載の熱動力・熱発電装置。The thermopower / thermoelectric generator according to claim 2, wherein the heat collecting device collects heat from a road, a building, or unused land using a heat conductor.
JP2003198086A 2003-06-13 2003-06-13 Thermal power unit/thermal power-generator Pending JP2005002978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198086A JP2005002978A (en) 2003-06-13 2003-06-13 Thermal power unit/thermal power-generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198086A JP2005002978A (en) 2003-06-13 2003-06-13 Thermal power unit/thermal power-generator

Publications (1)

Publication Number Publication Date
JP2005002978A true JP2005002978A (en) 2005-01-06

Family

ID=34100292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198086A Pending JP2005002978A (en) 2003-06-13 2003-06-13 Thermal power unit/thermal power-generator

Country Status (1)

Country Link
JP (1) JP2005002978A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062049A2 (en) * 2008-11-03 2010-06-03 Lee Jae In Power generating apparatus using shape memory alloy
CN102094774A (en) * 2009-11-20 2011-06-15 通用汽车环球科技运作有限责任公司 Vehicle energy harvesting device having a continuous loop of shape memory alloy
CN101782053B (en) * 2008-10-03 2014-03-19 通用汽车环球科技运作公司 Energy harvesting, storing, and conversion utilizing shape memory activation
US8707693B2 (en) 2009-11-20 2014-04-29 GM Global Technology Operations LLC Vehicle energy harvesting device having a continuous loop of shape memory alloy
US8800282B2 (en) 2009-11-20 2014-08-12 GM Global Technology Operations LLC Vehicle energy harvesting device having discrete sections of shape memory alloy
CN104912761A (en) * 2015-06-01 2015-09-16 安徽枫慧金属股份有限公司 Memory alloy generating set using waste heat of automobile
CN112984441A (en) * 2021-02-24 2021-06-18 深圳市博远科技创新发展有限公司 Multi-transmission channel gateway and multifunctional intelligent rod

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782053B (en) * 2008-10-03 2014-03-19 通用汽车环球科技运作公司 Energy harvesting, storing, and conversion utilizing shape memory activation
WO2010062049A2 (en) * 2008-11-03 2010-06-03 Lee Jae In Power generating apparatus using shape memory alloy
WO2010062049A3 (en) * 2008-11-03 2010-08-26 Lee Jae In Power generating apparatus using shape memory alloy
CN102094774A (en) * 2009-11-20 2011-06-15 通用汽车环球科技运作有限责任公司 Vehicle energy harvesting device having a continuous loop of shape memory alloy
US8707693B2 (en) 2009-11-20 2014-04-29 GM Global Technology Operations LLC Vehicle energy harvesting device having a continuous loop of shape memory alloy
US8800282B2 (en) 2009-11-20 2014-08-12 GM Global Technology Operations LLC Vehicle energy harvesting device having discrete sections of shape memory alloy
US9003788B2 (en) 2009-11-20 2015-04-14 GM Global Technology Operations LLC Vehicle energy harvesting device having a continuous loop of shape memory alloy
CN104912761A (en) * 2015-06-01 2015-09-16 安徽枫慧金属股份有限公司 Memory alloy generating set using waste heat of automobile
CN104912761B (en) * 2015-06-01 2017-12-22 安徽枫慧金属股份有限公司 One kind utilizes automobile waste heat memorial alloy TRT
CN112984441A (en) * 2021-02-24 2021-06-18 深圳市博远科技创新发展有限公司 Multi-transmission channel gateway and multifunctional intelligent rod
CN112984441B (en) * 2021-02-24 2023-03-31 深圳市博远科技创新发展有限公司 Multi-transmission channel gateway and multifunctional intelligent rod

Similar Documents

Publication Publication Date Title
Tian et al. A review of solar collectors and thermal energy storage in solar thermal applications
Romero et al. Solar thermal CSP technology
US7171812B2 (en) Electric generation facility and method employing solar technology
US7340899B1 (en) Solar power generation system
US3965683A (en) Solar electrical generating system
US20120111006A1 (en) Solar energy transfer and storage apparatus
Lovegrove et al. Solar thermal energy systems in Australia
US20050051208A1 (en) System for transferring heat in a thermoelectric generator system
EP1836068A2 (en) Solar energy power plant and method of producing electricity
Souliotis et al. Integrated collector storage solar water heaters: survey and recent developments
US10145365B2 (en) Integrated thermal storage, heat exchange, and steam generation
CN203476624U (en) Low-temperature organic Rankine cycle solar heat power generation system
CN101344020A (en) Solar tower type focusing high temperature heat collection steam boiler-turbine electric generating apparatus
JP2005002978A (en) Thermal power unit/thermal power-generator
Al-Sakaf Application possibilities of solar thermal power plants in Arab countries
JP6138495B2 (en) Power generation system
KR101234738B1 (en) Solar heating system
CN101532476A (en) Solar cylindrical focusing heat collection and storage steam boiler-steam turbine generating device
JP2003336573A (en) Novel heat cycle and composite power generation system and device thereof
CZ20001973A3 (en) Method of utilizing solar radiation energy and apparatus for making the same
CN103375918B (en) Energy gathering type outdoor cluster solar energy hot device
RU2749932C1 (en) Solar power plant
Md Shouquat Energy, exergy and economic analysis of phase change material based hybrid photovoltaic thermal systems/Md. Shouquat Hossain
Becker et al. Large-scale solar thermal plants (CSP)
JP2016017689A (en) Solar thermal power generation system