WO2010062049A2 - Power generating apparatus using shape memory alloy - Google Patents

Power generating apparatus using shape memory alloy Download PDF

Info

Publication number
WO2010062049A2
WO2010062049A2 PCT/KR2009/006387 KR2009006387W WO2010062049A2 WO 2010062049 A2 WO2010062049 A2 WO 2010062049A2 KR 2009006387 W KR2009006387 W KR 2009006387W WO 2010062049 A2 WO2010062049 A2 WO 2010062049A2
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat source
heat
power generating
shape memory
Prior art date
Application number
PCT/KR2009/006387
Other languages
French (fr)
Korean (ko)
Other versions
WO2010062049A3 (en
Inventor
이재인
Original Assignee
Lee Jae In
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080108235A external-priority patent/KR100900816B1/en
Application filed by Lee Jae In filed Critical Lee Jae In
Publication of WO2010062049A2 publication Critical patent/WO2010062049A2/en
Publication of WO2010062049A3 publication Critical patent/WO2010062049A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Definitions

  • the present invention relates to a power generator, and more particularly, to a power generator using a shape memory alloy to which elastic means made of a shape memory alloy material is restored to a shape stored under a specific temperature condition.
  • thermocouple power generation or an external combustion engine that is, a sterling engine
  • a management cost is very high.
  • An object of the present invention was devised to solve the above problems, using environmentally friendly natural energy such as solar heat, geothermal heat and waste energy such as fermentation heat and waste heat, and at the same time supplying such energy and specific temperature of shape memory alloy material. It is to provide a power generator using a shape memory alloy that can generate power by using the shape restoration characteristics of the E.
  • a power generator using the shape memory alloy comprises a heat source supply means for supplying an operating heat source to the power generating means; Power generation means alternately supplied from the heat source supply means at regular intervals and including elastic means of a shape memory alloy material capable of tension and compression; And a power converting means connected to the power generating means to convert the linear reciprocating motion of the power generating means by the tension and compression of the elastic means to convert the rotational movement.
  • Power generator using the shape memory alloy according to the second embodiment of the present invention devised to achieve the above object is supplied with a high heat source through heat exchange from any one or more of solar heat, geothermal heat, fermentation heat, waste heat
  • a power converting means connected to the power generating means to convert the linear reciprocating motion of the power generating means by the tension and compression of the elastic means to convert the rotational movement.
  • Power generating apparatus using the shape memory alloy according to the third embodiment of the present invention devised to achieve the object as described above is a cold storage tank for storing a low heat source of ambient temperature or the surrounding environment, constant heat source of the cold storage tank
  • the power generating means and the elastic means of the shape memory alloy material which can be tensioned and compressed through the supply of the low heat source and the natural temperature rise of the supplied low heat source and the tension and compression of the elastic means.
  • a power converting means connected to the power generating means to convert the linear reciprocating motion of the power generating means.
  • the heat source supply means may include: a heat storage tank configured to receive and store a high heat source through heat exchange from at least one of solar heat, geothermal heat, fermentation heat, and waste heat; And a cold storage tank for storing a low heat source of ambient temperature or ambient temperature lower than the high heat source is characterized in that it comprises.
  • the power generating means includes a plurality of springs formed of a shape memory alloy material as elastic means; Connecting rods connected to both ends of the spring; A tube tube formed to surround the spring; A suction valve mounted on the tube tube to open and close the high heat source and the low heat source of the at least one of the heat storage tank and the heat storage tank to have a period of a predetermined time difference therein; And a discharge valve mounted to the tube tube to open and close the tube so as to discharge one or more of the high heat source and the low heat source inside the tube tube each with a period of time difference.
  • one end of the connecting rod is rotatably fixed to the lower end of the support frame, the other end is connected to the power conversion means, or one end of the connecting rod is fixed to the lower end of the support frame, The other end is connected to the power conversion means via a connecting rod rotatably connected to the end.
  • the intake valve and the discharge valve is a check valve operated by the control unit
  • the control unit is characterized in that for opening and closing the intake valve and the discharge valve by transmitting the operation signal to the cam member or the electronic solenoid.
  • the power conversion means characterized in that it comprises a main shaft, any one end of the connecting rod and a crank connected to the main shaft, and a flywheel connected to the main shaft.
  • the power converting means may include a main shaft, a leg connected to an end of any one of the connecting rods, a gear part meshed with the leg and installed on the main shaft, and a flywheel connected to the main shaft provided with the gear part. Characterized in that made.
  • the high heat source discharged from the discharge valve is stored in a discharge heat storage tank and fed back to the heat storage tank, and the low heat source discharged from the discharge valve is stored in a discharge storage cooling tank and fed back to the storage heat storage tank.
  • a radiator is additionally connected to the storage cooling tank and installed in a circulation pipe connecting the storage cooling tank and the radiator, wherein any one of water, oil, and freon gas is accommodated.
  • the power generating apparatus using the shape memory alloy according to the present invention having the above-described configuration, since it uses heat sources such as solar heat, geothermal heat, fermentation heat and waste heat, and shape restoration power of the shape memory alloy material, it is environmentally friendly and generates pollution sources such as dust. This has the effect of providing power without it.
  • the use of a clean energy source can reduce the carbon emissions and bring about the substitution effect of energy imports such as crude oil.
  • FIG. 1 is a schematic diagram showing a power generator using a shape memory alloy according to a first embodiment of the present invention.
  • Figure 2 is a schematic diagram showing a power generator using a shape memory alloy according to a second embodiment of the present invention.
  • Figure 3 is a schematic diagram showing a power generating device using a shape memory alloy according to a third embodiment of the present invention.
  • FIGS. 4 is a front view illustrating an example of the power generating means and the power converting means in FIGS.
  • FIG. 5 is a side view of FIG. 4.
  • FIG. 6 is a perspective view of FIG. 4.
  • FIG. 7 is a perspective view showing another example of a portion of the power generating means in FIG.
  • FIG. 8 is a state diagram showing a state in which the power conversion means of another example in FIG.
  • FIG. 9 is a side view illustrating portions A and B of FIG. 8; FIG.
  • FIG. 1 is a schematic diagram showing a power generator using a shape memory alloy according to a first embodiment of the present invention
  • Figure 2 is a schematic diagram showing a power generator using a shape memory alloy according to a second embodiment of the present invention
  • 3 is a schematic view showing a power generator using a shape memory alloy according to a third embodiment of the present invention.
  • Power generating apparatus using a shape memory alloy according to an embodiment of the present invention, as shown in Figure 1, the heat storage tank 100, the cold storage tank 200, the power generating means 300 and the power conversion means 400 It is made to include.
  • the heat storage tank 100 receives and stores a high heat source through a heat exchange process using a heat exchange chamber from at least one of fermentation heat generated in the process of fermenting solar heat, geothermal heat, vegetable organic matter, and waste heat generated in an industrial facility such as a factory. Done.
  • the cold storage tank 200 is supplied with a low heat source of ambient temperature or ambient environment lower than the high heat source is stored.
  • the high heat source and the low heat source may be applied to the liquid or gaseous water, respectively.
  • the present invention is not limited thereto, and other liquids or gases other than water may be applied.
  • the power generating means 300 is configured to alternately supply the high heat source and the low heat source of the heat storage tank 100 and the heat storage cooling tank 200 at regular intervals of time.
  • one of the high heat source and the low heat source may be supplied and discharged at regular intervals.
  • FIG. 4 is a front view illustrating an example of the power generating means and the power conversion means in FIGS. 1 to 3,
  • FIG. 5 is a side view of FIG. 4
  • FIG. 6 is a perspective view of FIG. 4
  • FIG. 7 is power generation in FIG. 4.
  • FIG. 8 is a state diagram illustrating a state in which the power conversion means of another example is applied in FIG. 5, and FIG. 9 is a side view illustrating portions A and B of FIG. 8.
  • the power generating means 300 is alternately supplied with a high heat source and a low heat source of the heat storage tank 100 and the heat storage cooling tank 200 at regular intervals, the high heat source It comprises an elastic means, a connecting rod 320, a tube tube 330, a suction valve 340 and a discharge valve 350 of the shape memory alloy material that can be compressed and stretched by the periodical alternating supply of the low heat source.
  • the spring 310 is adopted as the elastic means.
  • the power generating means 300 receives a plurality of high heat sources and low heat sources, but as shown in FIGS. 2 and 3, one of the high heat sources and the low heat sources may be supplied at regular intervals.
  • the high heat source when only a high heat source is supplied to the power generating means 300, the high heat source is supplied and the natural cooling of the supplied high heat source is used to compress and tension the elastic means.
  • the compression and tension of the elastic means uses the supply of the low heat source and the natural temperature rise of the supplied low heat source.
  • the shape of the spring 310 is deformed by an external force above the elastic limit at a temperature lower than the shape memory temperature according to the ratio of the design and the combination element, the spring 310 is applied to a temperature higher than the shape memory temperature to return to the stored shape It is made of Shape Memory Alloy (SMA) material.
  • SMA Shape Memory Alloy
  • the spring 310 preferably has corrosion resistance so as not to be corroded by the contact of the high heat source and the low heat source in the liquid or gaseous phase.
  • the spring 310 is disposed spaced apart from each other and preferably at least two or more are provided so that it is possible to rotate the power conversion means 400 to be described later.
  • the connecting rods 320 are respectively connected to both ends of the spring 310, the tube 310 is formed so as to surround the spring 310.
  • the suction valve 340 is a valve which is mounted and opened and closed in the tube tube 330 to introduce the high heat source and the low heat source into the tube tube 330 with a period of time difference, and the heat storage tank 100 and the shaft
  • the cold tub 200 is connected to the suction pipe 360, and a pump (not shown) may be installed in the suction pipe 360 to smoothly supply a high heat source and a low heat source.
  • the discharge valve 350 has a period of time difference between the high heat source and the low heat source inside the tube tube 330 supplied through the suction valve 340 to discharge the tube tube 330 to the outside.
  • 330 is a valve that is opened and closed, the discharge valve 350 is connected to the discharge pipe 370.
  • the discharge valve 350 is preferably formed at the lower end of the tube tube 330 in order to naturally discharge the high heat source and the low heat source inside the tube tube 330, in order to expedite the discharge more quickly.
  • the discharge pipe 370 may be further installed with a pump (not shown).
  • each intake valve 340 and the discharge valve 350 are also provided in pairs, and each intake valve 340 is stored in the heat storage tank. It is connected to the 100 and the storage tank 200, respectively, and each discharge valve 350 is to be connected to the discharge storage tank 110 and the discharge storage cooling tank 210, which will be described later.
  • the intake valve 340 and the discharge valve 350 are provided one by one, respectively.
  • the discharge valve 350 is connected through a discharge heat storage tank 110 or a discharge storage cooling tank 210 and a discharge pipe 370 which will be described later.
  • the intake valve 340 and the discharge valve 350 is preferably applied as a check valve capable of only one-way flow, the cam member (not shown) by the operation signal of the control unit 380 including a PLC control program C) or electronic solenoid (not shown), it is preferable to open and close at regular intervals.
  • one end of the connecting rod 320 is fixed to the lower end of the support frame 390 to be rotatable, the other connecting rod is the end of the connecting rod 391 Interposed to be connected to the power conversion means (400).
  • the connecting rod 391 is connected to the other end of the connecting rod so as to be rotatable through a connecting member 392.
  • one end of the connecting rod 320 is rotatably fixed to the lower end of the support frame 390, the other end is the power conversion means 400 ) Can be connected.
  • FIG. 7 unlike FIGS. 4 to 6, this is not limited to the shape disclosed in the drawings, and six or more tube tubes 330 may be installed.
  • the connecting rod 320 is only a linear reciprocating motion and the connecting rod 391 is connected to the connecting rod 320
  • the connecting rod 320 rotates at an angle about the other end according to the tension and compression of the spring 310. do.
  • the power conversion means 400 is for converting the linear reciprocating motion of the connecting rod 320 by the tension and compression of the spring 310 to the rotational movement, as an example thereof is shown in FIGS. 4 to 6 and 7 As shown in the drawing, a main shaft 420, a crank 410 connected to one end of the connecting rod 320 and the main shaft 420, and a flywheel 430 connected to the main shaft 420 are included. It is done by
  • connecting rods 320 are connected to the crank 410 in three pairs so as to be symmetrical with respect to the center of the main shaft 420 of the crank 410, but the present disclosure is not limited thereto.
  • three or more pairs of connecting rods 320 may be combined.
  • the main shaft 420 of the crank 410 is supported to the support frame 390 through a bearing or the like.
  • the main shaft 420, the lecks 440 connected to an end of any one of the connecting rods 320, and the main shafts are engaged with the lecks 440.
  • It may include a gear unit 450 installed in the 420, and a flywheel 430 connected to the main shaft 420, the gear unit 450 is installed.
  • the high heat source discharged from the discharge valve 350 is stored in the discharge heat storage tank 110 and fed back to the heat storage tank 100, and the low heat source discharged from the discharge valve 350 is discharged to the discharge storage cooling tank 210. Stored to be fed back to the cold storage tank 200 to enable reuse without waste of heat source.
  • the control unit 380 when to discharge the heat source inside the tube tube 330, the control unit 380 is a discharge valve 350 connected to the discharge heat storage tank 110 in a state where a high heat source is accommodated in the tube tube 330.
  • the open / close signal is transmitted to the open / close signal, and the open / close signal is transmitted to the discharge valve 350 connected to the discharge storage cooling tank 210 when the low heat source is accommodated in the tube tube 330.
  • the radiator 220 is additionally installed in the storage cooling tank 200 so that the low heat source of the discharge storage cooling tank 210 is fed back to the storage cooling tank 200 and supplied to the storage cooling tank 200. It is possible to minimize the occurrence of the temperature rise of the low heat source stored in the.
  • any one of water, oil, and freon gas may be circulated in the circulation pipe 230 connecting the heat storage tank 200 and the radiator 220.
  • a device for changing the freon gas such as a compressor, a condenser, and an expansion valve should be installed in the circulation pipe 230.
  • the main shaft 420 connected to the main shaft 420 or the gear unit 450 of the crank 410 is rotated by the movement of the connecting rod 320 by the tension and compression of the spring 310 and Accordingly, the flywheel 430 also rotates at the same time.
  • the heat storage tank 100 stores a high heat source supplied through heat exchange from at least one of solar heat, geothermal heat, fermentation heat, and waste heat.
  • the cold storage tank 200 is stored at a low temperature of ambient temperature or ambient temperature lower than the high heat source.
  • the heat storage tank 100 and the cold storage tank 200 in which the high heat source and the low heat source are stored may be applied as a tank having excellent heat insulation to the outside.
  • the suction valve 340 is provided through an operation signal of the control unit 380 into the first tube tube 331 surrounding the first spring 311 among the plurality of springs 310. Is opened and a high heat source is introduced.
  • the end of the first connecting rod 321 connected to the first spring 311 and connected to the crank 410 is preferably in a state farthest from the support frame 390.
  • the first connecting rod 321 connected to the first spring 311 is in the opposite rotation period based on the rotation center of the flywheel 430
  • the low heat source of the cold storage tank 200 is supplied into the second tube tube 332.
  • the end of the first connecting rod 321 and the end of the second connecting rod 322 is rotated based on the center of rotation of the flywheel 430, so that the flywheel 430 is rotated.
  • a high heat source is introduced into the third tube tube 333 sequentially and a low heat source is introduced into the fourth tube tube 334 with a predetermined time difference.
  • a high heat source is introduced into the fifth tube tube 335 sequentially and a low heat source is introduced into the sixth tube tube 336 with a predetermined time difference.
  • Ends of the fourth connecting rods 324 connected to each other may be in opposite rotation periods based on the rotation center of the flywheel 430.
  • Ends of the sixth connecting rods 326 connected to the ends of the sixth connecting rods 326 may be in opposite rotation periods based on the rotation center of the flywheel 430.
  • the control unit 380 may discharge the discharge valve 350 connected to the discharge heat storage tank 110. Open to discharge the high heat source inside the first, third, fifth tube tubes (331, 333, 335) to the discharge heat storage tank (110).
  • the control unit 380 opens the suction valve 340 connected to the storage tank 200 to introduce a low heat source of the storage tank 200 into the first, third and fifth tube tubes 331, 333, 335. Accordingly, the first, third, and fifth springs 311, 313, 315 are sufficiently relaxed by the rotation of the second, fourth, sixth connecting rods 322, 324, 326 by the compressive force of the second, fourth, sixth springs 312, 314, 316 in relative rotation periods. .
  • control unit 380 opens the discharge valve 350 connected to the discharge storage cooling tank 210 to open the first, third, and fifth tube tubes 331, 333, 335.
  • the inner low heat source is discharged to the discharge storage cooling tank (210).
  • This continuous process is made of a cycle having a predetermined time difference, and thus the crank 410 or the rack 440 connected to the first, second, third, fourth, fifth, and sixth connecting rods 321, 322, 323, 324, 325, and 326 and the gear unit 450.
  • the flywheel 430 rotates to generate power.
  • the high heat source inside the tube tubes is discharged to the discharge heat storage tank 110 to be fed back to the heat storage tank 100 by a transfer pressure by a pump (not shown), and the low heat source inside the tube tubes is discharged. Discharged into the storage tank 210 to be fed back to the storage tank 200 by the transfer pressure by a pump (not shown).

Abstract

The present invention relates to a power generating apparatus using a shape memory alloy, comprising: heat supply means for supplying heat to power generating means to operate the power generating means; the power generating means for alternately receiving heat from the heat supply means by a predetermined cycle, and which contain stretchable and compressible elastic means made of a shape memory alloy; and power converting means connected to said power generating means to convert the linear reciprocating motion of the power generating means produced by the stretching and compression of the elastic means into a rotating motion. The power generating apparatus using a shape memory alloy according to the present invention uses heat sources such as solar heat, terrestrial heat, heat of fermentation, waste heat, and the like, and shape restoring force of the shape memory alloy to provide environment-friendly power which causes no contamination such as dust, and the like.

Description

형상기억합금을 이용한 동력발생장치Power generating device using shape memory alloy
본 발명은 동력발생장치에 관한 것으로서, 보다 상세하게는 특정한 온도조건에서 기억된 형상으로 형상이 복원되는 형상기억합금 소재로 이루어지는 탄성수단이 적용된 형상기억합금을 이용한 동력발생장치에 관한 것이다.The present invention relates to a power generator, and more particularly, to a power generator using a shape memory alloy to which elastic means made of a shape memory alloy material is restored to a shape stored under a specific temperature condition.
일반적으로, 인간이 도구를 사용하면서부터 발달된 기계요소 중 특히 동력발생장치는 눈부신 속도로 발달되어 왔다.In general, among the mechanical elements developed from the use of tools by humans, especially power generators have been developed at a remarkable speed.
이중, 내연기관은 자동차, 선박, 항공기 등의 발달과 더불어 급격한 발전을 이루었다. Among them, internal combustion engines made rapid progress with the development of automobiles, ships, and aircraft.
그러나, 근래에 이르러서는 화석연료의 무분별한 사용과 남용으로 인하여, 자연생태계가 파괴되는 등 적지 않은 문제점이 발생되고 있다.However, in recent years, due to the indiscriminate use and abuse of fossil fuels, there are many problems such as destruction of the natural ecosystem.
또한, 화석연료는 점차 고갈되어 가는 상황에서, 근자에는 바이오에너지 등의 대체에너지 수단들이 개발되어 사용되고 있으나, 이는 원료로써 식량자원을 주로 사용한다는 점에서 비난의 대상이 되고 있을 뿐만 아니라, 가격의 불안정을 초래하므로 만족스런 대안이 될 수 없다.In addition, as fossil fuels are gradually exhausted, alternative energy means such as bioenergy have been developed and used in recent years, but this is not only criticized for using food resources as raw materials, but also unstable price. This is not a satisfactory alternative.
이런 연유로 다양한 면에서 만족스러운 대체 에너지 수단을 확보하는 것이 전 지구적인 과제가 되고 있으며, 그 일례로 태양광 발전이 활발히 연구되고 있다.For this reason, securing a satisfactory alternative energy means in various aspects has become a global problem, and solar power is being actively researched as an example.
그러나, 이러한 태양광 발전은 지표면 도달에너지 대비 발전효율이 낮고, 시설비용이 매우 크게 소요되므로 투자대비 수익기대율이 매우 낮은 실정이다.However, such photovoltaic power generation has a low generation efficiency compared to the energy reaching the surface of the earth, and the cost of the facility is very high, so the expected return on investment is very low.
또한, 기존의 태양열발전의 경우에도 열전쌍발전이나 외연기관 즉, 스털링엔진 등에 의한 발전 역시 그 효율이 매우 저조하며 특히 관리비용이 매우 크게 소요되었다.In addition, in the case of conventional solar thermal power generation, the power generation by thermocouple power generation or an external combustion engine, that is, a sterling engine, also has a very low efficiency, and especially a management cost is very high.
본 발명의 목적은 상기한 문제점을 해결하기 위하여 안출된 것으로, 친환경적인 태양열, 지열 등의 자연에너지와 발효열 및 폐기열 등의 버려지는 에너지를 이용하는 동시에 이러한 에너지의 공급과 형상기억합금 소재의 특정온도에서의 형상복원 특성을 이용하여 동력을 발생시킬 수 있는 형상기억합금을 이용한 동력발생장치를 제공하는 것이다.An object of the present invention was devised to solve the above problems, using environmentally friendly natural energy such as solar heat, geothermal heat and waste energy such as fermentation heat and waste heat, and at the same time supplying such energy and specific temperature of shape memory alloy material. It is to provide a power generator using a shape memory alloy that can generate power by using the shape restoration characteristics of the E.
상기한 바와 같은 목적을 달성하기 위하여 안출된 본 발명의 제1실시예에 따른 형상기억합금을 이용한 동력발생장치는 동력발생수단에 동작 열원을 공급하는 열원 공급수단; 상기 열원 공급수단으로부터 열원을 일정 주기로 교대로 공급받으며, 인장 및 압축이 가능한 형상기억합금 소재의 탄성수단을 포함하여 이루어지는 동력발생수단; 및 상기 탄성수단의 인장 및 압축에 의한 동력발생수단의 직선왕복운동을 회전운동을 변환시키도록 상기 동력발생수단과 연결되는 동력변환수단을 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the above object, a power generator using the shape memory alloy according to the first embodiment of the present invention comprises a heat source supply means for supplying an operating heat source to the power generating means; Power generation means alternately supplied from the heat source supply means at regular intervals and including elastic means of a shape memory alloy material capable of tension and compression; And a power converting means connected to the power generating means to convert the linear reciprocating motion of the power generating means by the tension and compression of the elastic means to convert the rotational movement.
상기한 바와 같은 목적을 달성하기 위하여 안출된 본 발명의 제2실시예에 따른 형상기억합금을 이용한 동력발생장치는 태양열, 지열, 발효열, 폐기열 중 어느 하나 이상으로부터 열교환을 통해 고열원을 공급받아 저장하는 축열조, 상기 축열조의 고열원을 일정 주기로 공급받으며, 상기 고열원의 공급 및 공급된 고열원의 자연 냉각을 통해 인장 및 압축이 가능한 형상기억합금 소재의 탄성수단을 포함하여 이루어지는 동력발생수단 및 상기 탄성수단의 인장 및 압축에 의한 동력발생수단의 직선왕복운동을 회전운동을 변환시키도록 상기 동력발생수단과 연결되는 동력변환수단을 포함하여 이루어지는 것을 특징으로 한다.Power generator using the shape memory alloy according to the second embodiment of the present invention devised to achieve the above object is supplied with a high heat source through heat exchange from any one or more of solar heat, geothermal heat, fermentation heat, waste heat A heat generating tank for storing the high heat source of the heat storage tank, the power generating means including elastic means of a shape memory alloy material which can be stretched and compressed by supplying the high heat source and natural cooling of the supplied high heat source; And a power converting means connected to the power generating means to convert the linear reciprocating motion of the power generating means by the tension and compression of the elastic means to convert the rotational movement.
상기한 바와 같은 목적을 달성하기 위하여 안출된 본 발명의 제3실시예에 따른 형상기억합금을 이용한 동력발생장치는 상온 또는 주변환경의 저열원을 저장하는 축냉조, 상기 축냉조의 저열원을 일정 주기로 공급받으며, 상기 저열원의 공급 및 공급된 저열원의 자연적인 온도상승을 통해 인장 및 압축이 가능한 형상기억합금 소재의 탄성수단을 포함하여 이루어지는 동력발생수단 및 상기 탄성수단의 인장 및 압축에 의한 동력발생수단의 직선왕복운동을 회전운동을 변환시키도록 상기 동력발생수단과 연결되는 동력변환수단을 포함하여 이루어지는 것을 특징으로 한다.Power generating apparatus using the shape memory alloy according to the third embodiment of the present invention devised to achieve the object as described above is a cold storage tank for storing a low heat source of ambient temperature or the surrounding environment, constant heat source of the cold storage tank The power generating means and the elastic means of the shape memory alloy material which can be tensioned and compressed through the supply of the low heat source and the natural temperature rise of the supplied low heat source and the tension and compression of the elastic means. And a power converting means connected to the power generating means to convert the linear reciprocating motion of the power generating means.
그리고, 상기 열원 공급수단은 태양열, 지열, 발효열, 폐기열 중 어느 하나 이상으로부터 열교환을 통해 고열원을 공급받아 저장하는 축열조; 및 상기 고열원보다 온도가 낮은 상온 또는 주변환경의 저열원을 저장하는 축냉조를 포함하여 이루어지는 것을 특징으로 한다.The heat source supply means may include: a heat storage tank configured to receive and store a high heat source through heat exchange from at least one of solar heat, geothermal heat, fermentation heat, and waste heat; And a cold storage tank for storing a low heat source of ambient temperature or ambient temperature lower than the high heat source is characterized in that it comprises.
그리고, 상기 동력발생수단은, 탄성수단으로 형상기억합금 소재로 이루어지는 다수의 스프링; 상기 스프링의 양단에 각각 연결되는 연결봉; 상기 스프링을 감싸도록 형성되는 튜브관; 상기 축열조와 축냉조 중 어느 하나 이상의 고열원과 저열원을 각각 일정 시간차의 주기를 가지며 튜브관 내부로 유입시키도록 상기 튜브관에 장착되어 개폐되는 흡입밸브; 및 상기 튜브관 내부의 고열원과 저열원 중 어느 하나 이상을 각각 일정 시간차의 주기를 가지며 튜브관 외부로 배출시키도록 상기 튜브관에 장착되어 개폐되는 배출밸브를 포함하여 이루어지는 것을 특징으로 한다.The power generating means includes a plurality of springs formed of a shape memory alloy material as elastic means; Connecting rods connected to both ends of the spring; A tube tube formed to surround the spring; A suction valve mounted on the tube tube to open and close the high heat source and the low heat source of the at least one of the heat storage tank and the heat storage tank to have a period of a predetermined time difference therein; And a discharge valve mounted to the tube tube to open and close the tube so as to discharge one or more of the high heat source and the low heat source inside the tube tube each with a period of time difference.
또한, 상기 연결봉 중 어느 하나의 단부는 지지프레임의 하단부에 회전 가능하게 고정되며, 다른 하나의 단부는 상기 동력변환수단에 연결되거나, 상기 연결봉 중 어느 하나의 단부는 지지프레임의 하단부에 고정되며, 다른 하나의 단부는 그 단부에 회전 가능하게 연결되는 연결로드를 개재하여 상기 동력변환수단에 연결되는 것을 특징으로 한다.In addition, one end of the connecting rod is rotatably fixed to the lower end of the support frame, the other end is connected to the power conversion means, or one end of the connecting rod is fixed to the lower end of the support frame, The other end is connected to the power conversion means via a connecting rod rotatably connected to the end.
또한, 상기 흡입밸브와 배출밸브는 컨트롤부에 의해 동작되는 체크밸브이며, 상기 컨트롤부에서는 캠부재 또는 전자식 솔레노이드에 동작신호를 전달하여 흡입밸브와 배출밸브를 개폐하는 것을 특징으로 한다.In addition, the intake valve and the discharge valve is a check valve operated by the control unit, the control unit is characterized in that for opening and closing the intake valve and the discharge valve by transmitting the operation signal to the cam member or the electronic solenoid.
또한, 상기 동력변환수단은, 메인샤프트와, 상기 연결봉 중 어느 하나의 단부와 메인샤프트에 연결되는 크랭크와, 상기 메인샤프트에 연결되는 플라이휠을 포함하여 이루어지는 것을 특징으로 한다.In addition, the power conversion means, characterized in that it comprises a main shaft, any one end of the connecting rod and a crank connected to the main shaft, and a flywheel connected to the main shaft.
또한, 상기 동력변환수단은, 메인샤프트와, 상기 연결봉 중 어느 하나의 단부에 연결되는 레크와, 상기 레크와 맞물리며 메인샤프트에 설치된 기어부와, 상기 기어부가 설치된 메인샤프트에 연결되는 플라이휠을 포함하여 이루어지는 것을 특징으로 한다.The power converting means may include a main shaft, a leg connected to an end of any one of the connecting rods, a gear part meshed with the leg and installed on the main shaft, and a flywheel connected to the main shaft provided with the gear part. Characterized in that made.
또한, 상기 배출밸브로부터 배출된 고열원은 배출 축열조에 저장되어 상기 축열조로 피드백되고, 상기 배출밸브로부터 배출된 저열원은 배출 축냉조에 저장되어 상기 축냉조로 피드백되는 것을 특징으로 한다.The high heat source discharged from the discharge valve is stored in a discharge heat storage tank and fed back to the heat storage tank, and the low heat source discharged from the discharge valve is stored in a discharge storage cooling tank and fed back to the storage heat storage tank.
또한, 상기 축냉조에는 라디에이터가 추가적으로 연결되어 설치되고, 상기 축냉조와 라디에이터를 연결하는 순환배관 내부에는 물, 기름 및 프레온가스 중 어느 하나가 수용되는 것을 특징으로 한다.In addition, a radiator is additionally connected to the storage cooling tank and installed in a circulation pipe connecting the storage cooling tank and the radiator, wherein any one of water, oil, and freon gas is accommodated.
전술한 바와 같은 구성의 본 발명에 따른 형상기억합금을 이용한 동력발생장치에 의하면, 태양열, 지열, 발효열 및 폐기열 등의 열원과 형상기억합금 소재의 형상복원력을 이용하므로 친환경적이고 분진 등의 오염원 발생이 없는 동력을 제공할 수 있는 효과가 있다.According to the power generating apparatus using the shape memory alloy according to the present invention having the above-described configuration, since it uses heat sources such as solar heat, geothermal heat, fermentation heat and waste heat, and shape restoration power of the shape memory alloy material, it is environmentally friendly and generates pollution sources such as dust. This has the effect of providing power without it.
즉, 청정 에너지원을 사용함에 따라 탄소배출을 제로화시킬 수 있고 원유 등의 에너지 수입 대체 효과를 가져올 수 있다.In other words, the use of a clean energy source can reduce the carbon emissions and bring about the substitution effect of energy imports such as crude oil.
또한, 기존 사용하는 태양광 발전 설비에 비해 저비용으로 발전시설을 갖출 수 있고, 일기와 계절의 영향을 받지 않는 양호한 품질의 동력을 지속적으로 얻을 수 있는 효과가 있다.In addition, it is possible to equip the power generation facilities at a lower cost than the existing solar power generation facilities, and there is an effect of continuously obtaining a good quality power that is not affected by the weather and the season.
또한, 발효열을 사용함에 따라 별도의 에너지원이 부족한 농가 등에서 독립적인 전원으로 사용하는 것이 가능하게 된다.In addition, by using the fermentation heat it is possible to use as an independent power source in a farmhouse, etc. lacking a separate energy source.
도 1은 본 발명의 제1 실시예에 따른 형상기억합금을 이용한 동력발생장치를 나타내는 개략도.1 is a schematic diagram showing a power generator using a shape memory alloy according to a first embodiment of the present invention.
도 2는 본 발명의 제2 실시예에 따른 형상기억합금을 이용한 동력발생장치를 나타내는 개략도.Figure 2 is a schematic diagram showing a power generator using a shape memory alloy according to a second embodiment of the present invention.
도 3은 본 발명의 제3 실시예에 따른 형상기억합금을 이용한 동력발생장치를 나타내는 개략도.Figure 3 is a schematic diagram showing a power generating device using a shape memory alloy according to a third embodiment of the present invention.
도 4는 도 1 내지 도 3에서의 동력발생수단과 동력변환수단의 일례를 나타내는 정면도.4 is a front view illustrating an example of the power generating means and the power converting means in FIGS.
도 5는 도 4의 측면도.5 is a side view of FIG. 4.
도 6은 도 4의 사시도.6 is a perspective view of FIG. 4.
도 7은 도 4에서 동력발생수단 일부분의 다른 예를 나타내는 사시도.7 is a perspective view showing another example of a portion of the power generating means in FIG.
도 8은 도 5에서 다른 예의 동력변환수단이 적용된 상태를 나타내는 상태도.8 is a state diagram showing a state in which the power conversion means of another example in FIG.
도 9는 도 8의 A, B부분을 나타내는 측면도.FIG. 9 is a side view illustrating portions A and B of FIG. 8; FIG.
이하, 본 발명의 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 제1 실시예에 따른 형상기억합금을 이용한 동력발생장치를 나타내는 개략도이고, 도 2는 본 발명의 제2 실시예에 따른 형상기억합금을 이용한 동력발생장치를 나타내는 개략도이며, 도 3은 본 발명의 제3 실시예에 따른 형상기억합금을 이용한 동력발생장치를 나타내는 개략도이다.1 is a schematic diagram showing a power generator using a shape memory alloy according to a first embodiment of the present invention, Figure 2 is a schematic diagram showing a power generator using a shape memory alloy according to a second embodiment of the present invention, 3 is a schematic view showing a power generator using a shape memory alloy according to a third embodiment of the present invention.
본 발명의 실시예에 따른 형상기억합금을 이용한 동력발생장치는, 도 1에 도시된 바와 같이, 축열조(100), 축냉조(200), 동력발생수단(300) 및 동력변환수단(400)을 포함하여 이루어진다.Power generating apparatus using a shape memory alloy according to an embodiment of the present invention, as shown in Figure 1, the heat storage tank 100, the cold storage tank 200, the power generating means 300 and the power conversion means 400 It is made to include.
상기 축열조(100)는 태양열, 지열, 식물성 유기물을 발효시키는 과정에서 발생하는 발효열, 공장 등 산업시설에서 발생하는 폐기열 중 어느 하나 이상으로부터 열교환챔버 등을 이용한 열교환 과정을 통해 고열원을 공급받아 저장하게 된다.The heat storage tank 100 receives and stores a high heat source through a heat exchange process using a heat exchange chamber from at least one of fermentation heat generated in the process of fermenting solar heat, geothermal heat, vegetable organic matter, and waste heat generated in an industrial facility such as a factory. Done.
상기 축냉조(200)는 상기 고열원보다 온도가 낮은 상온 또는 주변환경의 저열원을 공급받아 저장하게 된다.The cold storage tank 200 is supplied with a low heat source of ambient temperature or ambient environment lower than the high heat source is stored.
여기서, 상기 고열원과 저열원은 각각 액상 또는 기상의 물이 적용될 수 있다. 그러나, 반드시 이에 한정되지 않으며 물 이외의 다른 액체 또는 기체도 적용이 가능하다.Here, the high heat source and the low heat source may be applied to the liquid or gaseous water, respectively. However, the present invention is not limited thereto, and other liquids or gases other than water may be applied.
또한, 상기 동력발생수단(300)은 축열조(100)와 축냉조(200)의 고열원과 저열원을 일정 시간차의 주기로 교대로 공급받아 배출하도록 이루어져 있다.In addition, the power generating means 300 is configured to alternately supply the high heat source and the low heat source of the heat storage tank 100 and the heat storage cooling tank 200 at regular intervals of time.
그러나, 반드시 이에 한정하지는 않으며, 도 2 및 도 3에 도시한 바와 같이, 상기 고열원과 저열원 중 어느 하나를 일정 시간차의 주기로 공급 및 배출되도록 이루어져도 된다.However, the present invention is not limited thereto, and as shown in FIGS. 2 and 3, one of the high heat source and the low heat source may be supplied and discharged at regular intervals.
이러한 차이에 따른 이하 설명하는 구성요소의 동작관계 및 작용에 대해서는 아래에서 설명하기로 한다.The operation relations and actions of the components described below according to these differences will be described below.
도 4는 도 1 내지 도 3에서의 동력발생수단과 동력변환수단의 일례를 나타내는 정면도이고, 도 5는 도 4의 측면도이며, 도 6은 도 4의 사시도이고, 도 7은 도 4에서 동력발생수단 일부분의 다른 예를 나타내는 사시도이다.4 is a front view illustrating an example of the power generating means and the power conversion means in FIGS. 1 to 3, FIG. 5 is a side view of FIG. 4, FIG. 6 is a perspective view of FIG. 4, and FIG. 7 is power generation in FIG. 4. A perspective view showing another example of a part of the means.
도 8은 도 5에서 다른 예의 동력변환수단이 적용된 상태를 나타내는 상태도이고, 도 9는 도 8의 A, B부분을 나타내는 측면도이다.FIG. 8 is a state diagram illustrating a state in which the power conversion means of another example is applied in FIG. 5, and FIG. 9 is a side view illustrating portions A and B of FIG. 8.
도 1 및 도 4 내지 도 6에 도시한 바와 같이, 상기 동력발생수단(300)은 상기 축열조(100)와 축냉조(200)의 고열원과 저열원을 일정 주기로 교대로 공급받으며, 상기 고열원과 저열원의 주기적인 교대 공급에 의해 압축 및 인장이 가능한 형상기억합금 소재의 탄성수단, 연결봉(320), 튜브관(330), 흡입밸브(340) 및 배출밸브(350)를 포함하여 이루어진다.1 and 4 to 6, the power generating means 300 is alternately supplied with a high heat source and a low heat source of the heat storage tank 100 and the heat storage cooling tank 200 at regular intervals, the high heat source It comprises an elastic means, a connecting rod 320, a tube tube 330, a suction valve 340 and a discharge valve 350 of the shape memory alloy material that can be compressed and stretched by the periodical alternating supply of the low heat source.
본 실시예에서 상기 탄성수단으로 스프링(310)이 채택되었다.In this embodiment, the spring 310 is adopted as the elastic means.
도면에서는 상기 동력발생수단(300)이 다수의 고열원과 저열원을 공급받으나, 도 2 및 도 3에 도시한 바와 같이, 상기 고열원과 저열원 중 어느 하나를 일정 주기로 공급받을 수도 있다.In the drawing, the power generating means 300 receives a plurality of high heat sources and low heat sources, but as shown in FIGS. 2 and 3, one of the high heat sources and the low heat sources may be supplied at regular intervals.
여기서, 동력발생수단(300)에 고열원만이 공급되는 경우, 상기 탄성수단의 압축 및 인장을 위해서는 고열원의 공급과 공급된 고열원의 자연 냉각을 이용하게 된다.Here, when only a high heat source is supplied to the power generating means 300, the high heat source is supplied and the natural cooling of the supplied high heat source is used to compress and tension the elastic means.
또한, 동력발생수단(300)에 저열원만이 공급되는 경우, 상기 탄성수단의 압축 및 인장을 위해서는 저열원의 공급과 공급된 저열원의 자연적인 온도 상승을 이용하게 된다.In addition, when only a low heat source is supplied to the power generating means 300, the compression and tension of the elastic means uses the supply of the low heat source and the natural temperature rise of the supplied low heat source.
한편, 상기 스프링(310)은 설계와 조합원소의 비율에 따라 형상기억온도보다 낮은 온도에서 탄성한계 이상으로 외부 힘에 의해 형상이 변형되었을 때, 형상기억온도보다 높은 온도를 가하여 기억된 형상으로 되돌아오는 성질을 가지는 형상기억합금(SMA,Shape Memory Alloy) 소재로 이루어진다.On the other hand, when the shape of the spring 310 is deformed by an external force above the elastic limit at a temperature lower than the shape memory temperature according to the ratio of the design and the combination element, the spring 310 is applied to a temperature higher than the shape memory temperature to return to the stored shape It is made of Shape Memory Alloy (SMA) material.
여기서, 스프링(310)은 액상 또는 기상의 고열원과 저열원의 접촉에 의해 부식되지 않도록 내부식성을 가지는 것이 바람직하다.Here, the spring 310 preferably has corrosion resistance so as not to be corroded by the contact of the high heat source and the low heat source in the liquid or gaseous phase.
또한, 상기 스프링(310)은 상호간에 이격되어 배치되며 후술하는 동력변환수단(400)을 회전시키는 것이 가능하도록 적어도 2개 이상이 구비되는 것이 바람직하다.In addition, the spring 310 is disposed spaced apart from each other and preferably at least two or more are provided so that it is possible to rotate the power conversion means 400 to be described later.
한편, 상기 연결봉(320)은 스프링(310)의 양단에 각각 연결되며, 이러한 스프링(310)을 튜브관(330)이 감싸도록 이루어져 있다.On the other hand, the connecting rods 320 are respectively connected to both ends of the spring 310, the tube 310 is formed so as to surround the spring 310.
상기 흡입밸브(340)는 상기 고열원과 저열원을 일정 시간차의 주기를 가지며 튜브관(330) 내부로 유입시키도록 튜브관(330)에 장착되어 개폐되는 밸브로서, 상기 축열조(100)와 축냉조(200)와는 흡입배관(360)을 통해 연결되며 이러한 흡입배관(360)에는 고열원과 저열원의 공급을 원활히 하도록 펌프(미도시)가 설치될 수 있다.The suction valve 340 is a valve which is mounted and opened and closed in the tube tube 330 to introduce the high heat source and the low heat source into the tube tube 330 with a period of time difference, and the heat storage tank 100 and the shaft The cold tub 200 is connected to the suction pipe 360, and a pump (not shown) may be installed in the suction pipe 360 to smoothly supply a high heat source and a low heat source.
반대로, 상기 배출밸브(350)는 흡입밸브(340)를 통해 공급된 튜브관(330) 내부의 고열원과 저열원을 일정 시간차의 주기를 가지며 튜브관(330) 외부로 배출시키도록 튜브관(330)에 장착되어 개폐되는 밸브로서, 이러한 배출밸브(350)에는 배출배관(370)이 연결되어 있다.On the contrary, the discharge valve 350 has a period of time difference between the high heat source and the low heat source inside the tube tube 330 supplied through the suction valve 340 to discharge the tube tube 330 to the outside. 330 is a valve that is opened and closed, the discharge valve 350 is connected to the discharge pipe 370.
여기서, 상기 튜브관(330) 내부의 고열원 및 저열원을 자연적으로 배출시키기 위해서 배출밸브(350)는 튜브관(330)의 하단부에 형성되는 것이 바람직하며, 상기의 배출을 더욱 신속하게 하기 위해서 배출배관(370)에는 펌프(미도시)가 더 설치될 수 있다.Here, the discharge valve 350 is preferably formed at the lower end of the tube tube 330 in order to naturally discharge the high heat source and the low heat source inside the tube tube 330, in order to expedite the discharge more quickly. The discharge pipe 370 may be further installed with a pump (not shown).
전술한 바대로, 상기 축열조(100)와 축냉조(200) 모두가 구비되는 경우에는 상기 흡입밸브(340)와 배출밸브(350)도 각각 한 쌍씩 구비되며, 각각의 흡입밸브(340)는 축열조(100)와 축냉조(200)에 각각 연결되고, 각각의 배출밸브(350)도 후술하는 배출 축열조(110)와 배출 축냉조(210)에 각각 연결되도록 한다.As described above, when both the heat storage tank 100 and the heat storage cooling tank 200 are provided, the intake valve 340 and the discharge valve 350 are also provided in pairs, and each intake valve 340 is stored in the heat storage tank. It is connected to the 100 and the storage tank 200, respectively, and each discharge valve 350 is to be connected to the discharge storage tank 110 and the discharge storage cooling tank 210, which will be described later.
그러나, 도 2 및 도 3에 도시한 바와 같이, 상기 축열조(100)와 축냉조(200) 중 어느 하나만이 구비되는 경우에는 상기 흡입밸브(340)와 배출밸브(350)는 각각 하나씩 구비되며, 마찬가지로 상기 배출밸브(350)는 후술하는 배출 축열조(110) 또는 배출 축냉조(210)와 배출배관(370)을 통해 연결된다.However, as shown in FIGS. 2 and 3, when only one of the heat storage tank 100 and the heat storage cooling tank 200 is provided, the intake valve 340 and the discharge valve 350 are provided one by one, respectively. Similarly, the discharge valve 350 is connected through a discharge heat storage tank 110 or a discharge storage cooling tank 210 and a discharge pipe 370 which will be described later.
여기서, 상기 흡입밸브(340)와 배출밸브(350)는 일방향 유동만이 가능한 체크밸브로 적용되는 것이 바람직하며, PLC 제어프로그램이 포함되어 있는 컨트롤부(380)의 동작신호에 의한 캠부재(미도시) 또는 전자식 솔레노이드(미도시)의 동작에 의해 일정 주기로 개폐가 이루어지도록 하는 것이 바람직하다.Here, the intake valve 340 and the discharge valve 350 is preferably applied as a check valve capable of only one-way flow, the cam member (not shown) by the operation signal of the control unit 380 including a PLC control program C) or electronic solenoid (not shown), it is preferable to open and close at regular intervals.
도 4 내지 도 6에 도시한 바와 같이, 상기 연결봉(320) 중 어느 하나의 단부는 지지프레임(390)의 하단부에 회전 불가하도록 고정되며, 다른 하나의 연결봉은 그 단부가 연결로드(391)를 개재하여 동력변환수단(400)에 연결되도록 한다.4 to 6, one end of the connecting rod 320 is fixed to the lower end of the support frame 390 to be rotatable, the other connecting rod is the end of the connecting rod 391 Interposed to be connected to the power conversion means (400).
이때, 상기 연결로드(391)는 상기 다른 하나의 연결봉의 단부에 커넥팅부재(392)를 개재하여 회전이 가능하도록 연결되어 있다.In this case, the connecting rod 391 is connected to the other end of the connecting rod so as to be rotatable through a connecting member 392.
다른 실시예로, 도 7에 도시한 바와 같이, 상기 연결봉(320) 중 어느 하나의 단부는 지지프레임(390)의 하단부에 회전 가능하게 고정되도록 하고, 다른 하나의 단부는 상기 동력변환수단(400)에 연결되도록 할 수 있다.In another embodiment, as shown in Figure 7, one end of the connecting rod 320 is rotatably fixed to the lower end of the support frame 390, the other end is the power conversion means 400 ) Can be connected.
여기서, 도 7에는 도 4 내지 도 6과는 달리 3개의 튜브관(330)이 도시되어 있지만, 이는 도면에 개시된 형상에 한정되지 않으며 6개 또는 그 이상의 튜브관(330)이 설치될 수 있다.Here, although three tube tubes 330 are shown in FIG. 7 unlike FIGS. 4 to 6, this is not limited to the shape disclosed in the drawings, and six or more tube tubes 330 may be installed.
전술한 첫번째의 실시예에서는 도 4 내지 도 6에 도시한 바와 같이, 스프링(310)의 인장 및 압축에 따라 연결봉(320)은 직선 왕복운동만 하고 연결로드(391)가 연결봉(320)과 연결되는 부분을 중심으로 일정 각도 회전을 하게 되며, 두번째의 실시예에서는 도 7에 도시한 바와 같이, 스프링(310)의 인장 및 압축에 따라 연결봉(320)이 그 타단을 중심으로 일정 각도 회전을 하게 된다.In the first embodiment described above, as shown in Figures 4 to 6, according to the tension and compression of the spring 310, the connecting rod 320 is only a linear reciprocating motion and the connecting rod 391 is connected to the connecting rod 320 In the second embodiment, as shown in FIG. 7, the connecting rod 320 rotates at an angle about the other end according to the tension and compression of the spring 310. do.
상기 동력변환수단(400)은 스프링(310)의 인장 및 압축에 의한 연결봉(320)의 직선왕복운동을 회전운동으로 변환하기 위한 것으로서, 그 일례로는 도 4 내지 도 6 및 도 7에 도시한 바와 같이, 메인샤프트(420)와, 상기 연결봉(320) 중 어느 하나의 단부와 메인샤프트(420)에 연결되는 크랭크(410)와, 상기 메인샤프트(420)에 연결되는 플라이휠(430)을 포함하여 이루어진다.The power conversion means 400 is for converting the linear reciprocating motion of the connecting rod 320 by the tension and compression of the spring 310 to the rotational movement, as an example thereof is shown in FIGS. 4 to 6 and 7 As shown in the drawing, a main shaft 420, a crank 410 connected to one end of the connecting rod 320 and the main shaft 420, and a flywheel 430 connected to the main shaft 420 are included. It is done by
도 4 내지 도 6에 도시한 바와 같이, 상기 크랭크(410)에는 6개의 연결봉(320)이 크랭크(410)의 메인샤프트(420) 중심에 대하여 대칭을 이루도록 3쌍으로 연결되지만 반드시 이에 한정되지는 않으며 플라이휠(430)의 회전속도를 증가하기 위해서 3쌍 이상의 쌍을 이루는 연결봉(320)이 결합될 수도 있다.As shown in FIGS. 4 to 6, six connecting rods 320 are connected to the crank 410 in three pairs so as to be symmetrical with respect to the center of the main shaft 420 of the crank 410, but the present disclosure is not limited thereto. In order to increase the rotational speed of the flywheel 430, three or more pairs of connecting rods 320 may be combined.
여기서, 상기 크랭크(410)의 메인샤프트(420)는 지지프레임(390)에 베어링 등을 통해 지지되도록 한다.Here, the main shaft 420 of the crank 410 is supported to the support frame 390 through a bearing or the like.
다른 예로는, 도 8 및 도 9에 도시한 바와 같이, 메인샤프트(420)와, 상기 연결봉(320) 중 어느 하나의 단부에 연결되는 레크(440)와, 상기 레크(440)와 맞물리며 메인샤프트(420)에 설치된 기어부(450)와, 상기 기어부(450)가 설치된 메인샤프트(420)에 연결되는 플라이휠(430)을 포함하여 이루어질 수 있다.As another example, as shown in FIGS. 8 and 9, the main shaft 420, the lecks 440 connected to an end of any one of the connecting rods 320, and the main shafts are engaged with the lecks 440. It may include a gear unit 450 installed in the 420, and a flywheel 430 connected to the main shaft 420, the gear unit 450 is installed.
그러나, 반드시 전술한 예의 구성만을 한정하지는 않으며, 연결봉의 단부에 연결되는 캠부재 등 상기 플라이휠(430)과 연결되는 메인샤프트(420)에 편심되게 설치되어 상기 연결봉(320)의 직선왕복운동을 회전운동으로 변환하여 플라이휠(430)을 회전시킬수 있는 구성이면 적용이 가능하다.However, it is not necessarily limited to the configuration of the above-described example, it is installed eccentrically to the main shaft 420 connected to the flywheel 430, such as a cam member connected to the end of the connecting rod rotates the linear reciprocating motion of the connecting rod 320 If the configuration can be converted to the movement of the flywheel 430 can be applied.
한편, 상기 배출밸브(350)로부터 배출된 고열원은 배출 축열조(110)에 저장되어 상기 축열조(100)로 피드백되고, 상기 배출밸브(350)로부터 배출된 저열원은 배출 축냉조(210)에 저장되어 상기 축냉조(200)로 피드백되도록 하여 열원의 낭비없이 재사용이 가능하도록 한다.Meanwhile, the high heat source discharged from the discharge valve 350 is stored in the discharge heat storage tank 110 and fed back to the heat storage tank 100, and the low heat source discharged from the discharge valve 350 is discharged to the discharge storage cooling tank 210. Stored to be fed back to the cold storage tank 200 to enable reuse without waste of heat source.
여기서, 상기 튜브관(330) 내부의 열원을 배출시키고자 할 때, 상기 컨트롤부(380)는 튜브관(330) 내부에 고열원이 수용된 상태에서는 배출 축열조(110)와 연결되는 배출밸브(350)에 개폐신호를 전달하고, 튜브관(330) 내부에 저열원이 수용된 상태에서는 배출 축냉조(210)와 연결되는 배출밸브(350)에 개폐신호를 전달하도록 한다.Here, when to discharge the heat source inside the tube tube 330, the control unit 380 is a discharge valve 350 connected to the discharge heat storage tank 110 in a state where a high heat source is accommodated in the tube tube 330. The open / close signal is transmitted to the open / close signal, and the open / close signal is transmitted to the discharge valve 350 connected to the discharge storage cooling tank 210 when the low heat source is accommodated in the tube tube 330.
한편, 도 1에 도시한 바와 같이, 상기 축냉조(200)에는 라디에이터(220)를 추가적으로 설치하여 배출 축냉조(210)의 저열원이 축냉조(200)로 피드백되어 공급되면서 축냉조(200)에 저장된 저열원의 온도 상승을 발생시키는 것을 최소화할 수 있다.Meanwhile, as illustrated in FIG. 1, the radiator 220 is additionally installed in the storage cooling tank 200 so that the low heat source of the discharge storage cooling tank 210 is fed back to the storage cooling tank 200 and supplied to the storage cooling tank 200. It is possible to minimize the occurrence of the temperature rise of the low heat source stored in the.
여기서, 상기 축냉조(200)와 라디에이터(220)를 연결하는 순환배관(230) 내부에는 물, 기름 및 프레온가스 중 어느 하나가 순환되도록 할 수 있다.Here, any one of water, oil, and freon gas may be circulated in the circulation pipe 230 connecting the heat storage tank 200 and the radiator 220.
이때, 프레온가스가 적용되는 경우에는 순환배관(230)에 압축기, 응축기, 팽창밸브 등의 프레온가스를 상변화시키는 장치가 설치되어야 한다.In this case, when the freon gas is applied, a device for changing the freon gas such as a compressor, a condenser, and an expansion valve should be installed in the circulation pipe 230.
전술한 바대로, 스프링(310)의 인장 및 압축에 의한 연결봉(320)의 움직임에 의해 크랭크(410)의 메인샤프트(420) 또는 기어부(450)에 연결된 메인샤프트(420)가 회전하게 되고, 이에 따라 상기 플라이휠(430)도 동시에 회전하게 된다.As described above, the main shaft 420 connected to the main shaft 420 or the gear unit 450 of the crank 410 is rotated by the movement of the connecting rod 320 by the tension and compression of the spring 310 and Accordingly, the flywheel 430 also rotates at the same time.
이하에서는, 본 발명의 실시예에 따른 형상기억합금을 이용한 동력발생장치의 구체적인 작동관계에 대해 도 1 및 도 4 내지 도 6을 참조하여 설명하기로 한다.Hereinafter, a specific operation relationship of the power generator using the shape memory alloy according to an embodiment of the present invention will be described with reference to FIGS. 1 and 4 to 6.
먼저, 상기 축열조(100)에는 태양열, 지열, 발효열, 폐기열 중 어느 하나 이상으로부터 열교환을 통해 공급받은 고열원이 저장된다.First, the heat storage tank 100 stores a high heat source supplied through heat exchange from at least one of solar heat, geothermal heat, fermentation heat, and waste heat.
한편, 상기 축냉조(200)에는 상기 고열원보다 온도가 낮은 상온 또는 주변환경의 저열원이 저장된다.On the other hand, the cold storage tank 200 is stored at a low temperature of ambient temperature or ambient temperature lower than the high heat source.
이러한 고열원 및 저열원이 저장되는 축열조(100)와 축냉조(200)는 외부에 대해 단열성이 우수한 탱크 등으로 적용될 수 있다.The heat storage tank 100 and the cold storage tank 200 in which the high heat source and the low heat source are stored may be applied as a tank having excellent heat insulation to the outside.
이어서, 도 1에 도시한 바와 같이, 다수의 스프링(310) 중 제1 스프링(311)을 감싸고 있는 제1 튜브관(331) 내부로 컨트롤부(380)의 동작신호를 통해 흡입밸브(340)가 개방되어 고열원이 유입된다.Subsequently, as shown in FIG. 1, the suction valve 340 is provided through an operation signal of the control unit 380 into the first tube tube 331 surrounding the first spring 311 among the plurality of springs 310. Is opened and a high heat source is introduced.
이때, 상기 제1 스프링(311)과 연결되고 크랭크(410)에 연결되는 제1 연결봉(321)의 단부는 지지프레임(390)으로부터 가장 먼 위치에 있는 상태인 것이 바람직하다.At this time, the end of the first connecting rod 321 connected to the first spring 311 and connected to the crank 410 is preferably in a state farthest from the support frame 390.
따라서, 상기 제1 스프링(311)은 고열원과 접촉함에 따라 형상기억합금 소재의 특성에 따라 원상태로 복원하고자 압축력이 발생하게 된다.Therefore, as the first spring 311 is in contact with the high heat source, a compressive force is generated to restore it to its original state according to the characteristics of the shape memory alloy material.
이때, 도 1 및 도 4 내지 도 6에 도시한 바와 같이, 상기 제1 스프링(311)과 연결되는 제1 연결봉(321)에 대하여 플라이휠(430)의 회전중심을 기준으로 반대의 회전 주기에 있는 제2 튜브관(332) 내부에는 축냉조(200)의 저열원이 공급되도록 한다.At this time, as shown in Figures 1 and 4 to 6, the first connecting rod 321 connected to the first spring 311 is in the opposite rotation period based on the rotation center of the flywheel 430 The low heat source of the cold storage tank 200 is supplied into the second tube tube 332.
따라서, 상기 제1 연결봉(321)의 단부와 제2 연결봉(322)의 단부는 플라이휠(430)의 회전중심을 기준으로 회전하게 되고 이에 따라 플라이휠(430)이 회전하게 된다.Therefore, the end of the first connecting rod 321 and the end of the second connecting rod 322 is rotated based on the center of rotation of the flywheel 430, so that the flywheel 430 is rotated.
그다음, 일정 시간차의 주기를 가지고 순차적으로 제3 튜브관(333) 내부에 고열원을 유입시키고 제4 튜브관(334) 내부에 저열원을 유입시킨다.Then, a high heat source is introduced into the third tube tube 333 sequentially and a low heat source is introduced into the fourth tube tube 334 with a predetermined time difference.
마찬가지로, 일정 시간차의 주기를 가지고 순차적으로 제5 튜브관(335) 내부에 고열원을 유입시키고 제6 튜브관(336) 내부에 저열원을 유입시킨다.Likewise, a high heat source is introduced into the fifth tube tube 335 sequentially and a low heat source is introduced into the sixth tube tube 336 with a predetermined time difference.
여기서, 상기 제3 튜브관(333) 내부에 배치된 제3 스프링(313)에 연결되는 제3 연결봉(323)의 단부와 상기 제4 튜브관(334) 내부에 배치된 제4 스프링(314)에 연결되는 제4 연결봉(324)의 단부는 플라이휠(430)의 회전중심을 기준으로 서로 반대의 회전주기에 있게 된다.Here, the end of the third connecting rod 323 connected to the third spring 313 disposed inside the third tube tube 333 and the fourth spring 314 disposed inside the fourth tube tube 334. Ends of the fourth connecting rods 324 connected to each other may be in opposite rotation periods based on the rotation center of the flywheel 430.
마찬가지로, 상기 제5 튜브관(335) 내부에 배치된 제5 스프링(315)에 연결되는 제5 연결봉(325)의 단부와 상기 제6 튜브관(336) 내부에 배치된 제6 스프링(316)에 연결되는 제6 연결봉(326)의 단부는 플라이휠(430)의 회전중심을 기준으로 서로 반대의 회전주기에 있게 된다.Similarly, an end of the fifth connecting rod 325 connected to the fifth spring 315 disposed inside the fifth tube tube 335 and the sixth spring 316 disposed inside the sixth tube tube 336. Ends of the sixth connecting rods 326 connected to the ends of the sixth connecting rods 326 may be in opposite rotation periods based on the rotation center of the flywheel 430.
한편, 상기 제1 스프링(311), 제3 스프링(313) 및 제5 스프링(315)이 최대로 압축된 상태가 되면 상기 컨트롤부(380)에서는 배출 축열조(110)와 연결된 배출밸브(350)를 열어서 제1,3,5 튜브관(331,333,335) 내부의 고열원을 배출 축열조(110)로 방출시킨다.Meanwhile, when the first spring 311, the third spring 313, and the fifth spring 315 are in the maximum compressed state, the control unit 380 may discharge the discharge valve 350 connected to the discharge heat storage tank 110. Open to discharge the high heat source inside the first, third, fifth tube tubes (331, 333, 335) to the discharge heat storage tank (110).
이와 동시에, 상기 컨트롤부(380)에서는 상기 축냉조(200)와 연결된 흡입밸브(340)를 열어서 축냉조(200)의 저열원을 제1,3,5 튜브관(331,333,335) 내부로 유입시키고, 이에 따라 제1,3,5 스프링(311,313,315)이 상대적인 회전주기에 있는 제2,4,6 스프링(312,314,316)의 압축력에 의한 제2,4,6 연결봉(322,324,326)의 회전에 의해 충분히 이완되도록 한다.At the same time, the control unit 380 opens the suction valve 340 connected to the storage tank 200 to introduce a low heat source of the storage tank 200 into the first, third and fifth tube tubes 331, 333, 335. Accordingly, the first, third, and fifth springs 311, 313, 315 are sufficiently relaxed by the rotation of the second, fourth, sixth connecting rods 322, 324, 326 by the compressive force of the second, fourth, sixth springs 312, 314, 316 in relative rotation periods. .
상기 제1,3,5 스프링(311,313,315)이 충분히 이완된 상태가 되면 상기 컨트롤부(380)에서는 배출 축냉조(210)와 연결된 배출밸브(350)를 열어서 제1,3,5 튜브관(331,333,335) 내부의 저열원을 배출 축냉조(210)로 방출시킨다.When the first, third, and fifth springs 311, 313, and 315 are sufficiently relaxed, the control unit 380 opens the discharge valve 350 connected to the discharge storage cooling tank 210 to open the first, third, and fifth tube tubes 331, 333, 335. The inner low heat source is discharged to the discharge storage cooling tank (210).
이러한 연속적인 과정이 일정의 시간차를 가지는 주기로 이루어지며, 이에 따라 제1,2,3,4,5,6 연결봉(321,322,323,324,325,326)과 연결된 크랭크(410) 또는 레크(440)와 기어부(450)의 회전에 의해 플라이휠(430)이 회전하여 동력을 발생하게 된다.This continuous process is made of a cycle having a predetermined time difference, and thus the crank 410 or the rack 440 connected to the first, second, third, fourth, fifth, and sixth connecting rods 321, 322, 323, 324, 325, and 326 and the gear unit 450. By rotation, the flywheel 430 rotates to generate power.
한편, 상기 튜브관 들 내부의 고열원은 배출 축열조(110)로 배출되어 상기 축열조(100)로 펌프(미도시) 등에 의한 이송압에 의해 피드백되도록 하며, 상기 튜브관 들 내부의 저열원은 배출 축냉조(210)로 배출되어 상기 축냉조(200)로 펌프(미도시) 등에 의한 이송압에 의해 피드백되도록 한다.Meanwhile, the high heat source inside the tube tubes is discharged to the discharge heat storage tank 110 to be fed back to the heat storage tank 100 by a transfer pressure by a pump (not shown), and the low heat source inside the tube tubes is discharged. Discharged into the storage tank 210 to be fed back to the storage tank 200 by the transfer pressure by a pump (not shown).
이상에서는 본 발명의 바람직한 실시예를 설명하였으나, 본 발명의 범위는 이같은 특정 실시예에만 한정되지 않으며, 해당분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위 내에 기재된 범주 내에서 적절하게 변경 또는 수정이 가능할 것이다.Although the preferred embodiments of the present invention have been described above, the scope of the present invention is not limited to such specific embodiments, and those skilled in the art may appropriately change within the scope described in the claims of the present invention. Or modifications may be possible.

Claims (8)

  1. 동력발생수단에 동작 열원을 공급하는 열원 공급수단과, 상기 열원 공급수단으로부터 열원을 일정 주기로 교대로 공급받으며, 인장 및 압축이 가능한 형상기억합금 소재의 탄성수단을 포함하여 이루어지는 동력발생수단과, 상기 탄성수단의 인장 및 압축에 의한 동력발생수단의 직선왕복운동을 회전운동을 변환시키도록 상기 동력발생수단과 연결되는 동력변환수단을 포함하여 이루어지되,A heat generating means for supplying an operating heat source to the power generating means, a power generating means including alternately supplied heat sources from the heat source supplying means at regular intervals, and elastic means of a shape memory alloy material which can be stretched and compressed; It comprises a power conversion means connected to the power generating means to convert the linear reciprocating motion of the power generating means by the tension and compression of the elastic means to convert the rotational movement,
    상기 열원 공급수단은,The heat source supply means,
    태양열, 지열, 발효열, 폐기열 중 어느 하나 이상으로부터 열교환을 통해 고열원을 공급받아 저장하는 축열조와, 상기 고열원보다 온도가 낮은 상온 또는 주변환경의 저열원을 저장하는 축냉조를 포함하여 이루어지고,It includes a heat storage tank for receiving and storing a high heat source through heat exchange from any one or more of solar heat, geothermal heat, fermentation heat, waste heat, and a cold storage tank for storing a low heat source of ambient temperature or ambient environment lower than the high heat source; ,
    상기 동력발생수단은,The power generating means,
    탄성수단으로 형상기억합금 소재로 이루어지는 다수의 스프링과, 상기 스프링의 양단에 각각 연결되는 연결봉과, 상기 스프링을 감싸도록 형성되는 튜브관과, 상기 축열조와 축냉조 중 어느 하나 이상의 고열원과 저열원을 각각 일정 시간차의 주기를 가지며 튜브관 내부로 유입시키도록 상기 튜브관에 장착되어 개폐되는 흡입밸브와, 상기 튜브관 내부의 고열원과 저열원 중 어느 하나 이상을 각각 일정 시간차의 주기를 가지며 튜브관 외부로 배출시키도록 상기 튜브관에 장착되어 개폐되는 배출밸브를 포함하여 이루어지며,A plurality of springs made of a shape memory alloy material as elastic means, connecting rods connected to both ends of the springs, a tube tube formed to surround the springs, and one or more high heat sources and low heat sources of the heat storage tank and the cold storage tank. Each has a period of time difference and each of the suction valve is mounted on the tube tube to open and close to flow into the tube tube, and any one or more of the high heat source and low heat source inside the tube tube has a period of time difference, respectively It is made to include a discharge valve which is mounted on the tube tube to open and close to discharge to the outside of the tube,
    상기 연결봉 중 어느 하나의 단부는 지지프레임의 하단부에 회전 가능하게 고정되며, 다른 하나의 단부는 상기 동력변환수단에 연결되거나,One end of the connecting rod is rotatably fixed to the lower end of the support frame, the other end is connected to the power conversion means,
    상기 연결봉 중 어느 하나의 단부는 지지프레임의 하단부에 고정되며, 다른 하나의 단부는 그 단부에 회전 가능하게 연결되는 연결로드를 개재하여 상기 동력변환수단에 연결되는 것을 특징으로 하는 형상기억합금을 이용한 동력발생장치.One end of the connecting rod is fixed to the lower end of the support frame, the other end is connected to the power conversion means via a connecting rod rotatably connected to the end using the shape memory alloy Power generator.
  2. 태양열, 지열, 발효열, 폐기열 중 어느 하나 이상으로부터 열교환을 통해 고열원을 공급받아 저장하는 축열조와, 상기 축열조의 고열원을 일정 주기로 공급받으며, 상기 고열원의 공급 및 공급된 고열원의 자연 냉각을 통해 인장 및 압축이 가능한 형상기억합금 소재의 탄성수단을 포함하여 이루어지는 동력발생수단과, 상기 탄성수단의 인장 및 압축에 의한 동력발생수단의 직선왕복운동을 회전운동을 변환시키도록 상기 동력발생수단과 연결되는 동력변환수단을 포함하여 이루어지되,A heat storage tank that receives and stores a high heat source through heat exchange from any one or more of solar heat, geothermal heat, fermentation heat, and waste heat, and receives a high heat source of the heat storage tank at regular intervals, and supplies the high heat source and naturally cools the supplied high heat source. The power generating means comprising an elastic means of a shape memory alloy material which can be tensioned and compressed through the power generating means, and the power generating means to convert the linear reciprocation of the power generating means by the tension and compression of the elastic means to convert the rotational motion. It includes a power conversion means connected to,
    상기 동력발생수단은,The power generating means,
    탄성수단으로 형상기억합금 소재로 이루어지는 다수의 스프링과, 상기 스프링의 양단에 각각 연결되는 연결봉과, 상기 스프링을 감싸도록 형성되는 튜브관과, 상기 축열조와 축냉조 중 어느 하나 이상의 고열원과 저열원을 각각 일정 시간차의 주기를 가지며 튜브관 내부로 유입시키도록 상기 튜브관에 장착되어 개폐되는 흡입밸브와, 상기 튜브관 내부의 고열원과 저열원 중 어느 하나 이상을 각각 일정 시간차의 주기를 가지며 튜브관 외부로 배출시키도록 상기 튜브관에 장착되어 개폐되는 배출밸브를 포함하여 이루어지며,A plurality of springs made of a shape memory alloy material as elastic means, connecting rods connected to both ends of the springs, a tube tube formed to surround the springs, and one or more high heat sources and low heat sources of the heat storage tank and the cold storage tank. Each has a period of time difference and each of the suction valve is mounted on the tube tube to open and close to flow into the tube tube, and any one or more of the high heat source and low heat source inside the tube tube has a period of time difference, respectively It is made to include a discharge valve which is mounted on the tube tube to open and close to discharge to the outside of the tube,
    상기 연결봉 중 어느 하나의 단부는 지지프레임의 하단부에 회전 가능하게 고정되며, 다른 하나의 단부는 상기 동력변환수단에 연결되거나,One end of the connecting rod is rotatably fixed to the lower end of the support frame, the other end is connected to the power conversion means,
    상기 연결봉 중 어느 하나의 단부는 지지프레임의 하단부에 고정되며, 다른 하나의 단부는 그 단부에 회전 가능하게 연결되는 연결로드를 개재하여 상기 동력변환수단에 연결되는 것을 특징으로 하는 형상기억합금을 이용한 동력발생장치.One end of the connecting rod is fixed to the lower end of the support frame, the other end is connected to the power conversion means via a connecting rod rotatably connected to the end using the shape memory alloy Power generator.
  3. 상온 또는 주변환경의 저열원을 저장하는 축냉조와, 상기 축냉조의 저열원을 일정 주기로 공급받으며, 상기 저열원의 공급 및 공급된 저열원의 자연적인 온도상승을 통해 인장 및 압축이 가능한 형상기억합금 소재의 탄성수단을 포함하여 이루어지는 동력발생수단과, 상기 탄성수단의 인장 및 압축에 의한 동력발생수단의 직선왕복운동을 회전운동을 변환시키도록 상기 동력발생수단과 연결되는 동력변환수단을 포함하여 이루어지되,A shape memory capable of being stretched and compressed by receiving a low temperature source of a low temperature source at ambient temperature or the surrounding environment, and a low temperature source of the low temperature source at regular intervals, and by supplying the low heat source and a natural temperature rise of the supplied low heat source. A power generating means including elastic means of an alloy material, and a power converting means connected with the power generating means to convert the rotational movement of the linear reciprocating motion of the power generating means by the tension and compression of the elastic means. It's done,
    상기 동력발생수단은,The power generating means,
    탄성수단으로 형상기억합금 소재로 이루어지는 다수의 스프링과, 상기 스프링의 양단에 각각 연결되는 연결봉과, 상기 스프링을 감싸도록 형성되는 튜브관과, 상기 축열조와 축냉조 중 어느 하나 이상의 고열원과 저열원을 각각 일정 시간차의 주기를 가지며 튜브관 내부로 유입시키도록 상기 튜브관에 장착되어 개폐되는 흡입밸브와, 상기 튜브관 내부의 고열원과 저열원 중 어느 하나 이상을 각각 일정 시간차의 주기를 가지며 튜브관 외부로 배출시키도록 상기 튜브관에 장착되어 개폐되는 배출밸브를 포함하여 이루어지며,A plurality of springs made of a shape memory alloy material as elastic means, connecting rods connected to both ends of the springs, a tube tube formed to surround the springs, and one or more high heat sources and low heat sources of the heat storage tank and the cold storage tank. Each has a period of time difference and each of the suction valve is mounted to the tube tube to open and close to flow into the tube tube, and any one or more of the high heat source and low heat source inside the tube tube has a period of time difference, respectively It is made to include a discharge valve which is mounted on the tube tube to open and close to discharge to the outside of the tube,
    상기 연결봉 중 어느 하나의 단부는 지지프레임의 하단부에 회전 가능하게 고정되며, 다른 하나의 단부는 상기 동력변환수단에 연결되거나,One end of the connecting rod is rotatably fixed to the lower end of the support frame, the other end is connected to the power conversion means,
    상기 연결봉 중 어느 하나의 단부는 지지프레임의 하단부에 고정되며, 다른 하나의 단부는 그 단부에 회전 가능하게 연결되는 연결로드를 개재하여 상기 동력변환수단에 연결되는 것을 특징으로 하는 형상기억합금을 이용한 동력발생장치.One end of the connecting rod is fixed to the lower end of the support frame, the other end is connected to the power conversion means via a connecting rod rotatably connected to the end using the shape memory alloy Power generator.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 흡입밸브와 배출밸브는 컨트롤부에 의해 동작되는 체크밸브이며, 상기 컨트롤부에서는 캠부재 또는 전자식 솔레노이드에 동작신호를 전달하여 흡입밸브와 배출밸브를 개폐하는 것을 특징으로 하는 형상기억합금을 이용한 동력발생장치.The suction valve and the discharge valve are check valves operated by a control unit, and the control unit transmits an operation signal to a cam member or an electronic solenoid to open and close the suction valve and the discharge valve. Generator.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 동력변환수단은, 메인샤프트와, 상기 연결봉 중 어느 하나의 단부와 메인샤프트에 연결되는 크랭크와, 상기 메인샤프트에 연결되는 플라이휠을 포함하여 이루어지는 것을 특징으로 하는 형상기억합금을 이용한 동력발생장치.The power converting means, the power generating device using a shape memory alloy, characterized in that it comprises a main shaft, any one end of the connecting rod and a crank connected to the main shaft, and a flywheel connected to the main shaft.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 동력변환수단은, 메인샤프트와, 상기 연결봉 중 어느 하나의 단부에 연결되는 레크와, 상기 레크와 맞물리며 메인샤프트에 설치된 기어부와, 상기 기어부가 설치된 메인샤프트에 연결되는 플라이휠을 포함하여 이루어지는 것을 특징으로 하는 형상기억합금을 이용한 동력발생장치.The power converting means includes a main shaft, a rack connected to one end of the connecting rod, a gear portion meshed with the rack and installed on the main shaft, and a flywheel connected to the main shaft provided with the gear portion. Power generating device using a shape memory alloy characterized in that.
  7. 제5항에 있어서,The method of claim 5,
    상기 배출밸브로부터 배출된 고열원은 배출 축열조에 저장되어 상기 축열조로 피드백되고, 상기 배출밸브로부터 배출된 저열원은 배출 축냉조에 저장되어 상기 축냉조로 피드백되는 것을 특징으로 하는 형상기억합금을 이용한 동력발생장치.The high heat source discharged from the discharge valve is stored in a discharge heat storage tank and fed back to the heat storage tank, and the low heat source discharged from the discharge valve is stored in a discharge heat storage tank and fed back to the heat storage cooling tank. Power generator.
  8. 제6항에 있어서,The method of claim 6,
    상기 축냉조에는 라디에이터가 추가적으로 연결되어 설치되고, 상기 축냉조와 라디에이터를 연결하는 순환배관 내부에는 물, 기름 및 프레온가스 중 어느 하나가 수용되는 것을 특징으로 하는 형상기억합금을 이용한 동력발생장치.The radiator is connected to the radiator is additionally installed, the power generator using a shape memory alloy, characterized in that any one of water, oil and freon gas is accommodated in the circulation pipe connecting the radiator and the radiator.
PCT/KR2009/006387 2008-11-03 2009-11-02 Power generating apparatus using shape memory alloy WO2010062049A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0108235 2008-11-03
KR1020080108235A KR100900816B1 (en) 2008-08-18 2008-11-03 An apparatus for generating power using shape memory alloy

Publications (2)

Publication Number Publication Date
WO2010062049A2 true WO2010062049A2 (en) 2010-06-03
WO2010062049A3 WO2010062049A3 (en) 2010-08-26

Family

ID=42226431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006387 WO2010062049A2 (en) 2008-11-03 2009-11-02 Power generating apparatus using shape memory alloy

Country Status (1)

Country Link
WO (1) WO2010062049A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357259A (en) * 2011-07-28 2012-02-22 王珊珊 Bioprotein sponge and preparation method thereof
WO2017156371A1 (en) * 2016-03-10 2017-09-14 Kellogg's Research Labs Modular power generator
IT201800010605A1 (en) * 2018-11-27 2020-05-27 Gaetano Cavedon Mechanism that produces rotary motion by exploiting the thermal expansion of materials
CN115342566A (en) * 2022-08-12 2022-11-15 西安交通大学 Water dispenser cold accumulation device and method based on shape memory alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137594B2 (en) * 1997-03-31 2001-02-26 ババカル ンゴム Power generation mechanism
JP2005002978A (en) * 2003-06-13 2005-01-06 Yoshinori Shinohara Thermal power unit/thermal power-generator
JP2005248886A (en) * 2004-03-05 2005-09-15 Actment Co Ltd Drive device, rotary power generating device and generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280158A (en) * 1996-04-12 1997-10-28 Takashi Kato Device for generating driving force

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137594B2 (en) * 1997-03-31 2001-02-26 ババカル ンゴム Power generation mechanism
JP2005002978A (en) * 2003-06-13 2005-01-06 Yoshinori Shinohara Thermal power unit/thermal power-generator
JP2005248886A (en) * 2004-03-05 2005-09-15 Actment Co Ltd Drive device, rotary power generating device and generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357259A (en) * 2011-07-28 2012-02-22 王珊珊 Bioprotein sponge and preparation method thereof
US9439999B2 (en) 2011-07-28 2016-09-13 Harbin Peiqilong Biopharmaceutical Co., Ltd Composite collagen sponge and preparation method thereof
WO2017156371A1 (en) * 2016-03-10 2017-09-14 Kellogg's Research Labs Modular power generator
IT201800010605A1 (en) * 2018-11-27 2020-05-27 Gaetano Cavedon Mechanism that produces rotary motion by exploiting the thermal expansion of materials
CN115342566A (en) * 2022-08-12 2022-11-15 西安交通大学 Water dispenser cold accumulation device and method based on shape memory alloy
CN115342566B (en) * 2022-08-12 2023-08-15 西安交通大学 Water dispenser cold accumulation device and cold accumulation method based on shape memory alloy

Also Published As

Publication number Publication date
WO2010062049A3 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
US7823381B2 (en) Power plant with heat transformation
WO2010062049A2 (en) Power generating apparatus using shape memory alloy
Abbas et al. Biomass cogeneration technologies: A review
WO2016167445A1 (en) Hybrid generation system using supercritical carbon dioxide cycle
JP2023082139A (en) Efficient heat recovery engine
KR100900816B1 (en) An apparatus for generating power using shape memory alloy
Fula et al. In-cylinder heat transfer in an ericsson engine prototype
CN217584591U (en) Combined heat, power, gas and fertilizer supply system taking biomass energy as input
Zhang et al. Analysis of a solar assisted combined cooling, heating and power (SCCHP) system
US6220033B1 (en) Universal thermochemical energy converter
CN113482889A (en) Underwater isobaric compressed air hybrid energy storage system and method
RU144013U1 (en) AUTONOMOUS Cogeneration Unit with Intra-Cycle Pyrolysis of Solid Carbon-Containing Fuels
Ansari et al. Hybrid CSP biomass CO2-gasification process for power production: ASPEN plus simulation
Bruno et al. Distributed Generation of Energy using Micro Gas Turbines: Poly Generation Systems and Fuel Flexibility
CN202055932U (en) Jugum sphenoidale type heat burning device
CN217483010U (en) Solar heat storage power generation system
CN112523868B (en) Combined system applied to ocean platform gas turbine power generation and thermoelectric power generation
ITBO20110120A1 (en) COGENERATION PLANT
RU2163684C1 (en) Off-line heat-and-power cogeneration plant
CN210068339U (en) Waste incineration waste heat utilization Stirling power generation system
RU2201517C2 (en) Externally heated engine
Semančík et al. Solar dish engine
CN201628471U (en) Novel tunnel-kiln waste-heat power generating device
KR20090055047A (en) Power occurrence boiler
Gao et al. Proposal design and thermodynamic analysis on a novel coal-based power generation system integrated with CO 2 capture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829256

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.11.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09829256

Country of ref document: EP

Kind code of ref document: A2