JP2005002932A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2005002932A
JP2005002932A JP2003168665A JP2003168665A JP2005002932A JP 2005002932 A JP2005002932 A JP 2005002932A JP 2003168665 A JP2003168665 A JP 2003168665A JP 2003168665 A JP2003168665 A JP 2003168665A JP 2005002932 A JP2005002932 A JP 2005002932A
Authority
JP
Japan
Prior art keywords
intake air
klta
air amount
map
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003168665A
Other languages
English (en)
Inventor
Toshinari Nagai
俊成 永井
Naoto Kato
直人 加藤
Yasuhiro Oi
康広 大井
Koji Ide
宏二 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003168665A priority Critical patent/JP2005002932A/ja
Publication of JP2005002932A publication Critical patent/JP2005002932A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Navigation (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Details Of Flowmeters (AREA)

Abstract

【課題】運転状態量に基づいて基準吸入空気量を取得するためのマップを、実際の機関毎に、且つ、車両が走行している環境の変化に応じて補正すること。
【解決手段】この内燃機関の制御装置は、標準状態(25℃、1気圧)において機関を定常運転させたときの吸入空気量である基準吸入空気量KLTAをスロットル弁開度TAとエンジン回転速度NEとに基づいて求めるためのKLTAマップを備えている。そして、所定のKLTAマップ補正条件が成立する毎に、ナビゲーション装置から得られる現在地の高度Hに応じた高度補正係数KHと、KLTAマップから得られるマップ値である標準状態における基準吸入空気量KLTAとから現在地の高度Hにおける基準吸入空気量である補正基準吸入空気量KH・KLTAを求める。一方、エアフローメータの出力に基づいて実吸入空気量KLACTを求め、補正基準吸入空気量KH・KLTAと実吸入空気量KLACTとの偏差ΔKLが小さくなるようにKLTAマップを補正する。
【選択図】 図6

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の運転状態量に基づいて車両が基準環境下にある場合の基準吸入空気量を取得するためのデータを記憶していて、同運転状態量と同データとに基づいて取得された基準吸入空気量を内燃機関の制御に使用する内燃機関の制御装置に関する。
【0002】
【従来の技術】
一般に、内燃機関が定常運転状態にある場合、即ち、スロットル弁開度と機関の回転速度とが共に一定に維持されている場合、機関に吸入される吸入空気量はスロットル弁開度と機関の回転速度に依存し、スロットル弁開度と機関の回転速度とが定まれば一義的に決定される。
【0003】
また、内燃機関においては、機関に供給される混合気の空燃比が目標空燃比(例えば、理論空燃比)となるように噴射すべき燃料噴射量を制御するため、同機関が吸入する吸入空気量を正確に取得する必要がある。
【0004】
このため、例えば、下記特許文献1に開示された内燃機関の制御装置は、予め実験等を通じて、スロットル弁開度と機関の回転速度の組み合わせを種々変更した各々の条件下で、機関を定常運転させたときの基準吸入空気量をそれぞれ計測しておき、各基準吸入空気量の値をスロットル弁開度と機関の回転速度とに基づくデータ(マップ、テーブル)として記憶している。そして、この装置は、センサにより検出されるスロットル弁開度、及び機関の回転速度と、前記マップとに基づいて定常運転時の基準吸入空気量を求め、この基準吸入空気量に所定の一次遅れ処理を施すこと等により時々刻々と変化し得る吸入空気量を正確に計算するとともに、同計算による吸入空気量に基づいて目標空燃比を得るための燃料噴射量を算出するようになっている。
【0005】
【特許文献1】
特開2001−98998号公報
【0006】
【発明が解決しようとする課題】
ところで、かかるマップとして記憶されている基準吸入空気量は、基準吸入空気量計測用の機関の試験品(マスター品)を稼動させたときに計測される値である。一方、このマスター品と実際の機関との間には、構成部品の各形状、センサ出力値等において不可避的に誤差(以下、「形状等の誤差」と云うこともある。)が存在するから、前記マップにより得られる基準吸入空気量は、実際の機関を前記マスター品と同一の環境、条件にて稼動させたときに計測される実際の基準吸入空気量とは異なる。従って、上記開示された装置においては、かかる形状等の誤差に起因して正確な基準吸入空気量を得ることができない場合があり、この結果、上記計算により得られる吸入空気量と実際の吸入吸気量に差が生じる場合がある。
【0007】
また、上記マップとして記憶されている基準吸入空気量は、或る所定の基準環境下(例えば、標準状態(25℃、1気圧))で計測された値である。従って、車両が走行している現在地の高度や、天候などによる環境(気圧、温度等)の変化によっても正確な基準吸入空気量を得ることができない場合があり、この結果、上記計算により得られる吸入空気量と実際の吸入吸気量に差が生じる場合がある。
【0008】
即ち、上記開示された装置においては、形状等の誤差、車両が走行している現在地の高度、天候などによる気圧等の変化に起因して上記計算による吸入空気量と実際の吸入吸気量に差が生じ、この結果、同計算による吸入空気量に基づいて算出される燃料噴射量が適切な値と異なる値となって空燃比が乱れるという問題がある。
【0009】
従って、本発明の目的は、内燃機関の運転状態量に基づいて前記車両が基準環境下にある場合の基準吸入空気量を取得するためのデータを記憶している内燃機関の制御装置において、実際の機関毎に、且つ、車両が走行している環境の変化に応じて同データを適切な値に補正し得るものを提供することにある。
【0010】
【本発明の概要】
本発明の特徴は、車両に搭載された内燃機関の運転状態量を取得する運転状態量取得手段と、前記取得された運転状態量に基づいて前記車両が基準環境下にある場合に(定常運転状態における)前記内燃機関が吸入する基準吸入空気量を取得するためのデータを記憶する基準吸入空気量取得用データ記憶手段と、を備えた内燃機関の制御装置が、前記車両が走行している現在地の高度を取得する高度取得手段と、前記内燃機関が吸入する実際の吸入空気量を計測するエアフローメータと、前記取得された運転状態量、及び前記データに基づいて取得された前記基準吸入空気量と、前記取得された高度とから補正基準吸入空気量を求めるとともに、同補正基準吸入空気量と前記計測された実際の吸入空気量との比較結果に基づいて前記基準吸入空気量を補正するために前記データを補正するデータ補正手段とを備えたことにある。ここにおいて、前記データは、基準吸入空気量そのもののデータ(マップ、テーブル)であってもよいし、基準吸入空気量を求めるための関数に使用される係数等のデータ(マップ、テーブル)であってもよい。また、前記基準環境は、例えば、標準状態(25℃、1気圧)であって、これに限定されない。
【0011】
この場合、前記運転状態量取得手段は、前記運転状態量として、スロットル弁の開度と、前記内燃機関の回転速度を取得するように構成されることが好適である。また、前記高度取得手段は、ナビゲーション装置を含んで構成されることが好ましい。
【0012】
高度が高くなると、気圧が低下して空気密度が小さくなることで、同一のスロットル弁開度、及び同一の回転速度における機関の吸入空気量(質量)は少なくなる。ここで、高度の変化量と気圧の変化量との間には所定の関係があることが知られている。また、気圧と空気密度、空気密度と吸入空気量とはそれぞれ比例関係にある。換言すれば、高度の変化量と吸入空気量の変化量との間にも所定の関係がある。
【0013】
従って、前記基準吸入空気量を取得するためのデータが計測された基準環境(例えば、標準状態)に相当する高度を基準高度とした場合、上記構成によれば、高度取得手段により車両が走行している現在地の同基準高度からの高度を正確に得ることができることから、同現在地の高度に基づいて前記データを補正することで同現在地の高度における基準吸入空気量である補正基準吸入空気量を求めることができる。
【0014】
一方、実際の吸入空気量は、(内燃機関が定常運転状態にある場合)車両が走行している位置の高度にかかわらずエアフローメータにより正確に計測され得る。従って、上記補正基準吸入空気量とエアフローメータにより計測された実際の吸入空気量との間に差(計算誤差)が生じていれば、かかる計算誤差は、前記現在地の高度の影響を除いた、上記形状等の誤差、及び天候などによる環境(気圧等)の変化に基づくものであると云うことができる。
【0015】
以上のことから、上記のように、前記補正基準吸入空気量と前記計測された実際の吸入空気量との比較結果に基づいて前記基準吸入空気量を補正するために前記データを補正するように構成すれば、上記形状等の誤差、及び天候などによる環境の変化に基づく上記計算誤差を補償することができる。この結果、実際の機関毎に、且つ、天候などによる環境の変化に応じて、前記データが適切な値に補正され得るとともに同補正されたデータに基づいて正確な基準吸入空気量が取得され得る。
【0016】
また、上記本発明による内燃機関の制御装置においては、前記データ補正手段は、前記データが補正された延べ回数に関連する値に基づいて、同データを補正する程度を変更するように構成されることが好適である。ここにおいて、前記データが補正された延べ回数に関連する値は、例えば、同データが補正された延べ回数そのもの、或いは、この制御装置(実際には、マイクロコンピュータ)の新品の時点、又はリセットされた時点からの積算稼動時間であって、これらに限定されない。
【0017】
一般に、エアフローメータの計測誤差、及び高度取得手段により得られる高度の誤差等は不可避的に発生することから、上記計算誤差が生じていても、上記補正基準吸入空気量とエアフローメータにより計測された実際の吸入空気量との差が完全に消滅する程度まで前記データを補正することは行われない。しかしながら、この制御装置(実際には、マイクロコンピュータ)の新品の時点、又はリセットされた時点からの積算稼動時間が比較的短い間は、前記データが補正された延べ回数が少なく、従って、上記形状等の誤差、及び天候などによる環境の変化に基づく上記計算誤差が充分に補償されていないことから、前記データを補正する程度を比較的大きくすることが好ましいと考えられる。
【0018】
従って、上記のように、前記データが補正された延べ回数に関連する値に基づいて同データを補正する程度を変更するように構成すれば、同データを補正する程度を同データが補正された延べ回数に応じて変化する適切な程度に一致させることができる。
【0019】
【発明の実施の形態】
以下、本発明による内燃機関の制御装置の実施形態について図面を参照しつつ説明する。
【0020】
図1は、この実施形態による制御装置を火花点火式多気筒(4気筒)内燃機関10に適用したシステムの概略構成を示している。この内燃機関10は、シリンダブロック、シリンダブロックロワーケース、及びオイルパン等を含むシリンダブロック部20と、シリンダブロック部20の上に固定されるシリンダヘッド部30と、シリンダブロック部20にガソリン混合気を供給するための吸気系統40と、シリンダブロック部20からの排気ガスを外部に放出するための排気系統50とを含んでいる。
【0021】
シリンダブロック部20は、シリンダ21、ピストン22、コンロッド23、及びクランク軸24を含んでいる。ピストン22はシリンダ21内を往復動し、ピストン22の往復動がコンロッド23を介してクランク軸24に伝達され、これにより同クランク軸24が回転するようになっている。シリンダ21とピストン22のヘッドは、シリンダヘッド部30とともに燃焼室25を形成している。
【0022】
シリンダヘッド部30は、燃焼室25に連通した吸気ポート31、吸気ポート31を開閉する吸気弁32、吸気弁32を駆動するインテークカムシャフトを含むとともに同インテークカムシャフトの位相角を連続的に変更する可変吸気タイミング装置33、可変吸気タイミング装置33のアクチュエータ33a、燃焼室25に連通した排気ポート34、排気ポート34を開閉する排気弁35、排気弁35を駆動するエキゾーストカムシャフト36、点火プラグ37、点火プラグ37に与える高電圧を発生するイグニッションコイルを含むイグナイタ38、及び燃料を吸気ポート31内に噴射するインジェクタ(燃料噴射手段)39を備えている。
【0023】
吸気系統40は、吸気ポート31に連通し同吸気ポート31とともに吸気通路を形成するインテークマニホールドを含む吸気管41、吸気管41の端部に設けられたエアフィルタ42、吸気管41内にあって吸気通路の開口断面積を可変とするスロットル弁43、及びスロットル弁駆動手段を構成するDCモータからなるスロットル弁アクチュエータ43aを備えている。
【0024】
排気系統50は、排気ポート34に連通したエキゾーストマニホールド51、エキゾーストマニホールド51(実際には、各排気ポート34に連通した各々のエキゾーストマニホールド51の下流端部が集合した集合部)に接続されたエキゾーストパイプ(排気管)52、エキゾーストパイプ52に配設(介装)された上流側の三元触媒53(上流側触媒コンバータ、又はスタート・キャタリティック・コンバータとも云うが、以下「第1触媒53」と称呼する。)、及びこの第1触媒53の下流のエキゾーストパイプ52に配設(介装)された下流側の三元触媒54(車両のフロア下方に配設されるため、アンダ・フロア・キャタリティック・コンバータとも云うが、以下「第2触媒54」と称呼する。)を備えている。排気ポート34、エキゾーストマニホールド51、及びエキゾーストパイプ52は、排気通路を構成している。
【0025】
一方、このシステムは、熱線式エアフローメータ61、運転状態量取得手段としてのスロットルポジションセンサ62、カムポジションセンサ63、運転状態量取得手段としてのクランクポジションセンサ64、水温センサ65、第1触媒53の上流の排気通路(本例では、上記各々のエキゾーストマニホールド51が下流端部が集合した集合部)に配設された空燃比センサ66(以下、「上流側空燃比センサ66」と称呼する。)、第1触媒53の下流であって第2触媒54の上流の排気通路に配設された空燃比センサ67(以下、「下流側空燃比センサ67」と称呼する。)、及びアクセル開度センサ68を備えている。
【0026】
熱線式エアフローメータ61は、吸気管41内を流れる吸入空気の単位時間あたりの質量流量に応じた電圧Vgを出力するようになっている。かかるエアフローメータ61の出力Vgと、計測された吸入空気量流量Gaとの関係は、図2に示したとおりである。スロットルポジションセンサ62は、スロットル弁43の開度を検出し、運転状態量としてのスロットル弁開度TAを表す信号を出力するようになっている。カムポジションセンサ63は、インテークカムシャフトが90°回転する毎に(即ち、クランク軸24が180°回転する毎に)一つのパルスを有する信号(G2信号)を発生するようになっている。
【0027】
クランクポジションセンサ64は、クランク軸24が10°回転する毎に幅狭のパルスを有するとともに同クランク軸24が360°回転する毎に幅広のパルスを有する信号を出力するようになっている。この信号は、運転状態量としてのエンジン回転速度NEを表す。水温センサ65は、内燃機関10の冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。アクセル開度センサ68は、運転者によって操作されるアクセルペダル81の操作量を検出し、同アクセルペダル81の操作量Accpを表す信号を出力するようになっている。
【0028】
電気制御装置70は、互いにバスで接続されたCPU71、CPU71が実行するルーチン(プログラム)、テーブル(ルックアップテーブル、マップ)、及び定数等を予め記憶したROM72、CPU71が必要に応じてデータを一時的に格納するRAM73、電源が投入された状態でデータを格納するとともに同格納したデータを電源が遮断されている間も保持するバックアップRAM74、並びにADコンバータを含むインターフェース75等からなるマイクロコンピュータである。インターフェース75は、前記センサ61〜68と接続され、CPU71にセンサ61〜68からの信号を供給するとともに、同CPU71の指示に応じて可変吸気タイミング装置33のアクチュエータ33a、イグナイタ38、インジェクタ39、及びスロットル弁アクチュエータ43aに駆動信号を送出するようになっている。
【0029】
また、インターフェース75は、この内燃機関10を搭載した車両に備えられている高度取得手段としてのナビゲーション装置90にも接続されている。ナビゲーション装置90は、車両が走行している現在地を人口衛星等から得られる情報に基づいて特定し、同現在地から運転者が指定する目的地までの経路を案内する周知の経路案内装置である。
【0030】
このナビゲーション装置90は、所定の領域内に存在する道路上の多数の地点での高度、及びその他の情報を記憶していて、これらの情報、特定された現在地、及び図示しない車速センサから得られる車速等に基づいて、現在地の高度H、及び、現在から所定時間経過後までの間に車両が走行するであろう道路上の高度(の変化)に関する情報等を示す信号をインターフェース75を介してCPU71に供給するようになっている。
【0031】
(基準吸入空気量取得用マップ(KLTAマップ)の補正の概要)
次に、上記のように構成された本発明の実施形態による制御装置(以下、「本装置」と云うこともある。)が行う、基準吸入空気量を取得するためのデータを記憶する基準吸入空気量取得用データ記憶手段としてのKLTAマップの補正の概要について説明する。
【0032】
内燃機関10においては、機関に供給される混合気の空燃比が目標空燃比(例えば、理論空燃比)となるように噴射すべき燃料噴射量Fiを制御するため、同機関が吸入する吸入空気量を正確に取得する必要がある。
【0033】
一方、一般に、内燃機関10が定常運転状態にある場合、即ち、スロットル弁開度TAとエンジン回転速度NEとが共に一定に維持されている場合、機関に吸入される吸入空気量はスロットル弁開度TAとエンジン回転速度NEとが定まれば一義的に決定される。
【0034】
図3は、内燃機関10の試験品(マスター品)を標準状態(25℃、1気圧)下に置き、スロットル弁開度TAとエンジン回転速度NEの組み合わせを種々変更した各々の条件下で機関を定常運転させたときの各吸入空気量をそれぞれエアフローメータ61により計測した場合における、一気筒あたりの基準吸入空気量に相当する値KLTA(以下、単に「基準吸入空気量KLTA」と云うこともある。)と、スロットル弁開度TA及びエンジン回転速度NEとの関係を示したグラフである。
【0035】
従って、本装置は、上記各基準吸入空気量KLTAをスロットル弁開度TA及びエンジン回転速度NEとに基づく図3に示したグラフに相当するマップ(マップ値)としてバックアップRAM74に記憶し、このKLTAマップにより得られる基準吸入空気量KLTAに基づいて後述するように時々刻々と変化し得る吸入空気量を計算する。よって、時々刻々と変化し得る吸入空気量を正確に求めるためには、基準吸入空気量KLTAを得るためのKLTAマップ(マップ値)が正確でなければならない。
【0036】
しかしながら、かかるKLTAマップとして記憶されている基準吸入空気KLTAは、上記マスター品を稼動させたときに計測された値であってこのマスター品と個々の実際の機関との間には前述の形状等の誤差が不可避的に存在するから、KLTAマップにより得られる基準吸入空気量KLTAは、実際の基準吸入空気量とは異なる。従って、かかる形状等の誤差に起因して正確な基準吸入空気量KLTAを得ることができない場合がある。
【0037】
また、上記KLTAマップとして記憶されている基準吸入空気量KLTAは上記標準状態にて計測された値である一方、実際の基準吸入空気量は気圧、温度等に応じて変化し得る。従って、天候などによる環境(気圧、温度等)の変化によっても正確な基準吸入空気量KLTAを得ることができない場合がある。更には、車両が走行している現在地の高度Hが変化すると同高度Hに応じて気圧が変化するから、このことによっても正確な基準吸入空気量KLTAを得ることができない場合がある。
【0038】
以上のように、本装置がバックアップRAM74に記憶しているKLTAマップにより得られる基準吸入空気量KLTAは、上記形状等の誤差、天候などによる環境の変化、及び車両が走行している現在地の高度H、の主に3つの影響に基づいて、実際の基準吸入空気量と異なる場合がある。従って、正確な空燃比制御を行うためには、これら3つの影響を補償できるようにKLTAマップを逐次補正していく必要がある。
【0039】
ここで、車両が走行している現在地の高度Hはナビゲーション装置90から正確に取得され得るから、KLTAマップにより得られる基準吸入空気量KLTAから同高度Hにおける基準吸入空気量を求めることが可能である。即ち、高度の変化量と気圧の変化量との間には所定の関係(具体的には、高度が所定量だけ高くなると気圧が所定量だけ低くなる関係)があることが知られている。また、気圧と空気密度は比例関係にあり、気圧が所定量だけ低下すると空気密度が所定量だけ低下する。更には、空気密度と吸入空気量も比例関係にあり、空気密度が所定量だけ低下すると吸入空気量も所定量だけ少なくなる。
【0040】
以上のことから、現在地の高度Hの変化量と基準吸入空気量KLTAの変化量との間にも所定の関係があり、基準吸入空気量KLTAは現在地の高度Hの増大に応じて同所定の関係に従って少なくなることになる。従って、この所定の関係に対応する図4に示す高度補正係数KHを導入すると、現在地の高度Hにおける基準吸入空気量(以下、「補正基準吸入空気量」と称呼する。)は、ナビゲーション装置90から得られる現在地の高度Hと図4の関係とから求められる高度補正係数KHと、KLTAマップにより得られる(標準状態における)基準吸入空気量KLTA(TAc,NEc)とを用いて、「KH・KLTA(TAc,NEc)」として表すことができる。ここで、KLTA(TAc,NEc)は、スロットル弁開度がTAc、且つエンジン回転速度がNEcである場合にKLTAマップから得られるマップ値である基準吸入空気量KLTAを表す。
【0041】
図4において、Hstdは基準高度であって、標準状態における気圧である1気圧に相当する高度である。即ち、高度補正係数KHの値は、基準高度Hstdでの気圧が1気圧である場合における、1気圧に対する現在地の高度Hにおける気圧の割合を表す値である。このように補正基準吸入空気量KH・KLTA(TAc,NEc)を求めることは、現在地の高度Hの影響を補償できるようにKLTAマップを補正することに相当する。
【0042】
一方、機関が吸入する実際の吸入空気量は、内燃機関10が定常運転状態にある場合、車両が走行している現在地の高度Hにかかわらずエアフローメータ61により正確に計測され得る。一気筒あたりの実際の吸入空気量に相当する値KLACT(以下、単に「実吸入空気量KLACT」と云うこともある。)は、エアフローメータ61により計測される前記吸入空気流量Ga及びエンジン回転速度NEと、関数fとにより下記数1に従って計算することができる。
【0043】
【数1】
KLACT=f(Ga,NE)
【0044】
上記数1に従って計算される実吸入空気量KLACTと前記補正基準吸入空気量KH・KLTA(TAc,NEc)とは本来一致するはずである。一方、前記補正基準吸入空気量KH・KLTA(TAc,NEc)と実吸入空気量KLACTとの間に差(計算誤差)があれば、即ち、下記数2に従って、補正基準吸入空気量KH・KLTA(TAc,NEc)と実吸入空気量KLACTとの偏差ΔKLを求めたとき、同偏差ΔKLが「0」でなければ、かかる計算誤差は、前記現在地の高度Hの影響を除いた、上記形状等の誤差、及び天候などによる環境の変化の影響に基づくものである。
【0045】
【数2】
ΔKL=KH・KLTA(TAc,NEc)−KLACT
【0046】
この場合、かかる計算誤差を少なくする方向に、従って、前記ΔKLを小さくする方向にKLTAマップ(のマップ値、即ち、データ)を補正することは、上記形状等の誤差、及び天候などによる環境の変化の影響を補償することに繋がる。
【0047】
ここで、エアフローメータ61による吸入空気流量Ga(従って、実吸入空気量KLACT)の計測誤差、及びナビゲーション装置90により得られる高度Hの誤差等は不可避的に発生することから、上記偏差ΔKLが「0」でない場合であっても、同偏差ΔKLが「0」になる程度までKLTAマップのマップ値を補正するべきではない。しかしながら、KLTAマップのマップ値が補正された延べ回数Ntotal(以下、「延べ補正回数Ntotal」と称呼する。)が少ない間は、上記形状等の誤差、及び天候などによる環境の変化に基づく上記計算誤差が充分に補償されていないことから、同マップ値を補正する程度を比較的大きくすることが好ましいと考えられる。換言すれば、延べ補正回数Ntotalが少ないほどKLTAマップのマップ値を補正する程度を大きくすることが好ましい。
【0048】
また、KLTAマップ中の多数のマップ値である各基準吸入空気量KLTA(TA,NE)をそれぞれ補正する場合、同基準吸入空気量KLTA(TA,NE)に対応するスロットル弁開度TAが上記偏差ΔKLを求める際の上記スロットル弁開度TAcから離れるほど、且つ、同基準吸入空気量KLTA(TA,NE)に対応するエンジン回転速度NEが同偏差ΔKLを求める際の上記エンジン回転速度NEcから離れるほど、同基準吸入空気量KLTA(TA,NE)を補正する程度を小さくすることが好適である。
【0049】
以上のことから、本装置は、所定のKLTAマップ補正条件が成立したとき、先ず、上記数1に従って実吸入空気量KLACTを求めるとともに、その時点でのスロットル弁開度TAcと、エンジン回転速度NEcと、KLTAマップとに基づいて基準吸入空気量KLTA(TAc,NEc)を求める。また、本装置は、ナビゲーション装置90からの信号に基づく現在地の高度Hと図4に相当するマップとから高度補正係数KHを求め、上記数2に従って、偏差ΔKLを求める。そして、本装置は、下記数3に従って、KLTAマップ中の多数のマップ値である各基準吸入空気量KLTA(TA,NE)をそれぞれ補正するとともに、バックアップRAM74に記憶されている補正前の各基準吸入空気量KLTA(TA,NE)の値を対応する補正後の値に更新する。
【0050】
【数3】
KLTA(TA,NE)=KLTA(TA,NE)−(ΔKL・KG/KH)・g(|TA−TAc|,|NE−NEc|)
【0051】
上記数3において、KGは補正ゲインであって、図5に示すように、延べ補正回数Ntotalの増加に伴って減少する正の値(<1)である。なお、延べ補正回数Ntotalは、例えば、電気制御装置70が新品である時点、又は同電気制御装置70がリセットされた時点等において「0」にクリアされるとともに、その後においてKLTAマップが補正される毎に「1」ずつ増大されていく値である。
【0052】
また、上記数3において、関数gは、TAとTAcとの偏差の絶対値|TA−TAc|が「0」であって、且つ、NEとNEcとの偏差の絶対値|NE−NEc|が「0」のとき(即ち、TA=TAc、且つ、NE=NEcのとき)に「1」となるとともに、絶対値|TA−TAc|が大きくなるほど、且つ、絶対値|NE−NEc|が大きくなるほど、小さい値(>0)となる関数である。
【0053】
このようにして、本装置は、前記所定のKLTAマップ補正条件が成立する毎に、補正基準吸入空気量KH・KLTA(TAc,NEc)と実吸入空気量KLACTとの比較結果に基づいて、上記3つの影響、即ち、上記形状等の誤差、天候などによる環境の変化、及び車両が走行している現在地の高度Hの影響を補償できるようにKLTAマップのマップ値を補正していく。このようにしてKLTAマップのマップ値を補正する手段がデータ補正手段に相当する。
【0054】
(予測吸入空気量KLFWDの計算の概要)
先に述べたように、本装置は、上述のようにマップ値が補正されていくKLTAマップにより得られる基準吸入空気量KLTAに基づいて時々刻々と変化し得る吸入空気量を計算する。以下、この吸入空気量の計算について簡単に説明する。
【0055】
内燃機関10においては、吸気行程にある気筒の吸気弁32が閉じる前に同気筒に対して燃料を噴射しなければならないから、吸気弁32が閉じた時点で(即ち、吸気弁閉弁時に)同気筒内に吸入されているであろう吸入空気量(筒内吸入空気量)を前もって予測する必要がある。
【0056】
一方、吸気弁閉弁時の吸気管41内の空気圧力は、吸入空気量と密接な関係がある。また、吸気弁閉弁時の吸気管内空気圧力は、吸気弁閉弁時のスロットル弁開度に依存する。従って、吸気弁閉弁時の予測スロットル弁開度TAvを予測できれば、吸気弁閉弁時の吸入空気量(吸気弁閉弁時の一気筒あたりの吸入空気量に相当する値KLFWD(以下、単に「予測吸入空気量KLFWD」と云うこともある。))を精度良く予測することができる。
【0057】
そこで、本装置は、吸気弁閉弁時を含む将来における予測スロットル弁開度TAestを以下のように予測する。即ち、本装置は、先ず、演算周期Δtの経過毎にアクセル開度センサ68の出力に基づいてアクセル操作量Accpを読み込み、読み込んだアクセル操作量Accpから今回の暫定目標スロットル弁開度を求め、この暫定目標スロットル弁開度を所定時間Dだけ遅延し、この遅延した暫定目標スロットル弁開度を目標スロットル弁開度TAtとして設定してスロットル弁アクチュエータ43aに出力する。
【0058】
この結果、実際のスロットル弁開度TAは、スロットル弁アクチュエータ43aの遅れやスロットル弁43そのものの慣性などにより、ある遅れをもってこの目標スロットル弁開度TAtに追従していく。よって、本装置は、この目標スロットル弁開度TAtに所定の一次遅れ処理等を施すことにより、予測スロットル弁開度TAestを求める。そして、本装置は、現時点から遅延時間D経過後までの間において演算周期Δt毎に得られる目標スロットル弁開度TAtと予測スロットル弁開度TAestとを、現時点からの時間経過に対応させながらRAM73に記憶・格納していく。
【0059】
このようにして、演算周期Δtの経過毎に、遅延時間D後の目標スロットル弁開度TAtが新たに決定されていくとともに、遅延時間D後の予測スロットル弁開度TAestが新たに予測されていく。
【0060】
そして、本装置は、燃料噴射量算出タイミングが到来する毎(具体的には、各気筒のクランク角が各吸気上死点前の所定クランク角度(例えば、BTDC90°CA)となる毎)に、現時点でのエンジン回転速度NE等に基づいて現時点から吸気行程にある気筒の吸気弁閉弁時までの時間Tvを求めることで吸気弁閉弁時の予測スロットル弁開度TAvを求め、下記数4に従って、吸気弁閉弁時の予測吸入空気量KLFWDを予測していく。
【0061】
【数4】
KLFWD=KLSM+(KLVLV−KLCRT)
【0062】
上記数4において、KLSMは平滑化処理後実吸入空気量であって、上記数1に従って計算される実吸入空気量KLACTに所定の平滑化処理を施した値である。KLCRTは一次遅れ処理後基準吸入空気量であって、現時点でのエンジン回転速度NE、吸気弁閉弁時の予測スロットル弁開度TAv、現時点での高度H、及びKLTAマップに基づいて得られる補正基準吸入空気量KH・KLTA(TAv,NE)を、下記数5に従って一次遅れ処理した値である。下記数5において、Nは重み係数である。
【0063】
【数5】
KLCRT=KLCRT+(KH・KLTA(TAv,NE)−KLCRT)・(1/N)
【0064】
また、上記数4において、KLVLVは吸気弁閉弁時一次遅れ処理後基準吸入空気量であって、上記数5における現時点での補正基準吸入空気量KH・KLTA(TAv,NE)の値が現時点から吸気弁閉弁時まで一定であると仮定した場合において、数5の計算を(Tv/Δt)回繰り返すことで得られる吸気弁閉弁時におけるKLCRTの値である。
【0065】
以上のようにして、本装置は、KLTAマップにより得られる基準吸入空気量KLTAに基づいて時々刻々と変化し得る予測吸入空気量KLFWDを計算するとともに、この予測吸入空気量KLFWDに基づいて燃料噴射量Fiを計算する。
【0066】
(実際の作動)
次に、上記内燃機関の制御装置の実際の作動について説明する。
<KLTAマップの補正>
CPU71は、図6にフローチャートにより示したKLTAマップの補正を行うルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU71はステップ600から処理を開始し、ステップ605に進んで、ナビゲーション装置90から、現在地の高度H、及び、現在から所定時間経過後までの間に車両が走行するであろう道路上の高度の変化に関する情報を含んだ現在地情報を取得する。
【0067】
次に、CPU71はステップ610に進んで、前記所定のKLTAマップ補正条件が成立しているか否かを判定し、KLTAマップ補正条件が成立していない場合にはステップ695に直ちに進んで本ルーチンを一旦終了する。ここで、KLTAマップ補正条件は、例えば、図示しない車速センサにより得られる車速が所定車速以上であり、スロットル弁開度TAの単位時間あたりの変化量が所定量以下である等の機関が定常運転されている条件が成立し、且つ、現在から所定時間経過後までの間に車両が走行するであろう道路上の高度の最大値と最小値との差が所定値以下である等の車両が平坦な道路上を走行している条件が成立している場合等に成立する。このKLTAマップ補正条件に、前回のKLTAマップ補正時点から所定時間が経過していることを加えてもよい。
【0068】
いま、KLTAマップ補正条件が成立しているものとして説明を続けると、CPU71はステップ610にて「Yes」と判定してステップ615に進み、エアフローメータ61により計測されている現時点での吸入空気流量Gaと、現時点でのエンジン回転速度NEと、前記関数fとに基づいて、上記数1に相当するステップ615内に記載の式に従って実吸入空気量KLACTを計算する。
【0069】
次いで、CPU71はステップ620に進み、スロットルポジションセンサ62が検出する現時点でのスロットル弁開度TAの値を補正用スロットル弁開度TAcに格納するとともに、現時点でのエンジン回転速度NEの値を補正用エンジン回転速度NEcに格納する。
【0070】
続いて、CPU71はステップ625に進んで、前記補正用スロットル弁開度TAc、前記補正用エンジン回転速度NEc、及びKLTAマップに基づいてマップ値である基準吸入空気量KLTA(TAc,NEc)を求め、続くステップ630にて、ステップ605にて得られた現在地の高度Hと、図4に示したグラフに相当するマップとに基づいて高度補正係数KHを求める。
【0071】
次に、CPU71はステップ635に進み、補正基準吸入空気量KH・KLTA(TAc,NEc)とステップ615にて求めた実吸入空気量KLACTと、上記数2に相当するステップ635内に記載の式に従って偏差ΔKLを求め、続くステップ640にて、現時点での延べ補正回数Ntotalと、図5に示したグラフに相当するマップとに基づいて補正ゲインKGを求める。ここで、延べ補正回数Ntotalは、前回本ルーチン実行時において後述するステップ650の処理に基づいて更新されている最新値である。
【0072】
続いて、CPU71はステップ645に進み、上記数3に相当するステップ645内に記載の式に従って、KLTAマップ中の多数のマップ値である各基準吸入空気量KLTA(TA,NE)の値をそれぞれ補正するとともに、バックアップRAM74に記憶されている補正前の各基準吸入空気量KLTA(TA,NE)の値を対応する補正後の値に更新する。そして、CPU71はステップ650に進んでその時点での延べ補正回数Ntotalの値を「1」だけ増大した値を新たな延べ補正回数Ntotalとして設定した後、ステップ695に進んで本ルーチンを一旦終了する。このようにして、KLTAマップ補正条件が成立する毎に、KLTAマップのマップ値KLTA(TA,NE)が補正されていく。
【0073】
<KLFWDの計算、及び、Fi噴射>
また、CPU71は、図7にフローチャートにより示した予測吸入空気量KLFWDの計算、及び燃料噴射量Fiの計算・噴射指示を行うルーチンを、各気筒のクランク角が各吸気上死点前の所定クランク角度(例えば、BTDC90°CA)となる毎に、繰り返し実行するようになっている。従って、任意の気筒のクランク角度が前記所定クランク角度になると、CPU71はステップ700から処理を開始してステップ705に進み、現時点でのエンジン回転速度NEと、クランク軸24の回転位置とに基づいて現時点から次の吸気行程にある気筒の吸気弁閉弁時までの時間Tvを求める。
【0074】
次に、CPU71はステップ710に進み、ステップ705にて求めた時間Tvと略一致する遅延時間後の予測スロットル弁開度TAestをRAM73から読み出し、これを吸気弁閉弁時の予測スロットル弁開度TAvとして設定する。
【0075】
次いで、CPU71はステップ715に進んで、ステップ710にて求めた予測スロットル弁開度TAv、現時点でのエンジン回転速度NE、ナビゲーション装置90から得られる現時点での高度H、及び、補正後の(最新の)KLTAマップに基づいて得られる補正基準吸入空気量KH・KLTA(TAv,NE)を使用して、上記数4、及び上記数5等に基づいて、吸気弁閉弁時の予測吸入空気量KLFWDを計算する。続いて、CPU71はステップ720に進み、下記数6に従って、燃料噴射量Fiを求める。
【0076】
【数6】
Fi=KLFWD・Kinj・FAF
【0077】
上記数6において、Kinjは、ステップ715にて計算された予測吸入空気量KLFWDに対して機関に供給される混合気の空燃比を目標空燃比(例えば、理論空燃比)とするために必要な燃料の量を算出するための係数であって、目標空燃比に応じて変化する係数である。即ち、「KLFWD・Kinj」は、機関に供給される混合気の空燃比を目標空燃比とするために必要な基本燃料噴射量Fbaseを表している。
【0078】
また、上記数6において、FAFは空燃比補正係数であって、上流側空燃比センサ66の出力、及び下流側空燃比センサ67の出力に基づいて排ガスの空燃比(従って、機関に供給される混合気の空燃比)が目標空燃比になるように燃料噴射量Fiをフィードバック制御するための補正係数である。
【0079】
そして、CPU71はステップ725に進んで、燃料噴射量Fiの燃料を噴射するための指示をインジェクタ39に対して行った後、ステップ795に進み、本ルーチンを一旦終了する。以上により、ステップ720にて計算された燃料噴射量Fiの燃料が吸気行程を迎える気筒に対して噴射される。このようにして、KLTAマップに基づいて得られる基準吸入空気量KLTAに基づいて計算される予測吸入空気量KLFWDを使用して燃料噴射量Fiが算出されていく。
【0080】
以上、説明したように、本発明による内燃機関の制御装置の実施形態によれば、標準状態(25℃、1気圧)において機関を定常運転させたときの吸入空気量である基準吸入空気量KLTAをスロットル弁開度TAとエンジン回転速度NEとに基づいて求めるためのKLTAマップを備えている。そして、所定のKLTAマップ補正条件が成立する毎に、ナビゲーション装置90から得られる現在地の高度Hに応じた高度補正係数KHと、KLTAマップから得られるマップ値である標準状態における基準吸入空気量KLTAとから現在地の高度Hにおける基準吸入空気量である補正基準吸入空気量KH・KLTAを求める。一方、エアフローメータ61の出力に基づいて実吸入空気量KLACTを求め、補正基準吸入空気量KH・KLTAと実吸入空気量KLACTとの偏差ΔKLが小さくなるようにKLTAマップを補正する。
【0081】
従って、実際の機関毎に、且つ、車両が走行している環境(気圧、温度等)の変化に応じてKLTAマップのマップ値が適切な値に補正され得、この結果、上記形状等の誤差、天候などによる環境の変化、及び車両が走行している現在地の高度Hの影響を補償できるようにKLTAマップのマップ値が補正され得る。
【0082】
また、車両が走行している現在地の高度HにかかわらずKLTAマップが補正され得るから、KLTAマップの補正頻度を高くすることができ、この結果、車両が走行している環境の変化に応じたより一層正確なKLTAマップを得ることができる。
【0083】
また、このように適宜補正されていくKLTAマップから得られる基準吸入空気量KLTAに基づいて吸気弁閉弁時における予測吸入空気量KLFWDが求められ、この予測吸入空気量KLFWDに基づいて燃料噴射量Fiが計算される。従って、燃料噴射量Fiがより安定して適切な値となり、この結果、機関に供給される混合気の空燃比を安定して目標空燃比近傍に維持することができた。
【0084】
本発明は上記各実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記各実施形態においては、ナビゲーション装置を使用して車両が走行している現在地の高度を取得しているが、所定の領域内に存在する道路上の多数の地点での高度に関する情報を記憶していて、人口衛星から得られる情報に基づいて車両が走行している現在地を特定するとともに、同特定された現在地に対応する前記道路上の地点での高度を取得する(経路案内装置を有さない)手段を使用して、車両が走行している現在地の高度を取得するように構成してもよい。
【0085】
また、上記実施形態においては、補正基準吸入空気量KH・KLTAと実吸入空気量KLACTとの比較結果に基づいてKLTAマップを補正する際、延べ補正回数Ntotalに応じて補正の程度を変更しているが、補正基準吸入空気量KH・KLTAと実吸入空気量KLACTとの比較結果に基づいてその偏差ΔKLが常に「0」になるようにKLTLマップを補正するように構成してもよい。
【図面の簡単な説明】
【図1】本発明の実施形態に係る内燃機関の制御装置を内燃機関に適用したシステムの概略図である。
【図2】図1に示したエアフローメータの出力電圧と計測された吸入空気流量との関係を示したグラフである。
【図3】図1に示したCPUが参照する基準吸入空気量を求めるためのマップを示したグラフである。
【図4】図1に示したCPUが参照する高度補正係数を求めるためのマップである。
【図5】図1に示したCPUが参照する補正ゲインを求めるためのマップである。
【図6】図1に示したCPUが実行するKLTAマップを補正するためのルーチンを示したフローチャートである。
【図7】図1に示したCPUが実行する予測吸入空気量の計算、燃料噴射量の計算のためのルーチンを示したフローチャートである。
【符号の説明】
10…内燃機関、25…燃焼室、39…インジェクタ、43…スロットル弁、52…エキゾーストパイプ(排気管)、61…エアフローメータ、64…クランクポジションセンサ、70…電気制御装置、71…CPU、74…バックアップRAM、90…ナビゲーション装置

Claims (4)

  1. 車両に搭載された内燃機関の運転状態量を取得する運転状態量取得手段と、
    前記取得された運転状態量に基づいて前記車両が基準環境下にある場合に前記内燃機関が吸入する基準吸入空気量を取得するためのデータを記憶する基準吸入空気量取得用データ記憶手段と、を備えた内燃機関の制御装置であって、
    前記車両が走行している現在地の高度を取得する高度取得手段と、
    前記内燃機関が吸入する実際の吸入空気量を計測するエアフローメータと、
    前記取得された運転状態量、及び前記データに基づいて取得された前記基準吸入空気量と、前記取得された高度とから補正基準吸入空気量を求めるとともに、同補正基準吸入空気量と前記計測された実際の吸入空気量との比較結果に基づいて前記基準吸入空気量を補正するために前記データを補正するデータ補正手段と、を備えた内燃機関の制御装置。
  2. 請求項1に記載の内燃機関の制御装置において、
    前記運転状態量取得手段は、前記運転状態量として、スロットル弁の開度と、前記内燃機関の回転速度を取得するように構成された内燃機関の制御装置。
  3. 請求項1又は請求項2に記載の内燃機関の制御装置において、
    前記高度取得手段は、ナビゲーション装置を含んで構成された内燃機関の制御装置。
  4. 請求項1乃至請求項3のいずれか一項に記載の内燃機関の制御装置において、
    前記データ補正手段は、前記データが補正された延べ回数に関連する値に基づいて、同データを補正する程度を変更するように構成された内燃機関の制御装置。
JP2003168665A 2003-06-13 2003-06-13 内燃機関の制御装置 Withdrawn JP2005002932A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168665A JP2005002932A (ja) 2003-06-13 2003-06-13 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168665A JP2005002932A (ja) 2003-06-13 2003-06-13 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2005002932A true JP2005002932A (ja) 2005-01-06

Family

ID=34094032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168665A Withdrawn JP2005002932A (ja) 2003-06-13 2003-06-13 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2005002932A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2453159A (en) * 2006-10-03 2009-04-01 Ford Global Tech Llc Estimating mass air flow rates for multiple intake internal combustion engines
CN102691585A (zh) * 2011-03-24 2012-09-26 株式会社京浜 发动机控制装置
KR101262413B1 (ko) 2007-12-05 2013-05-08 현대자동차주식회사 엔진 토크 계산 방법
JP2017061874A (ja) * 2015-09-24 2017-03-30 川崎重工業株式会社 乗物及び乗物の製造方法
JP2021183842A (ja) * 2014-12-29 2021-12-02 ダグラス デイヴィッド ブンジェス 内燃機関、燃焼システム、及び関連する方法、並びに、制御方法及びシステム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2453159A (en) * 2006-10-03 2009-04-01 Ford Global Tech Llc Estimating mass air flow rates for multiple intake internal combustion engines
GB2453159B (en) * 2006-10-03 2012-04-25 Ford Global Tech Llc Estimating mass air flow rates for multiple intake internal combustion engines
KR101262413B1 (ko) 2007-12-05 2013-05-08 현대자동차주식회사 엔진 토크 계산 방법
CN102691585A (zh) * 2011-03-24 2012-09-26 株式会社京浜 发动机控制装置
JP2021183842A (ja) * 2014-12-29 2021-12-02 ダグラス デイヴィッド ブンジェス 内燃機関、燃焼システム、及び関連する方法、並びに、制御方法及びシステム
US11773765B2 (en) 2014-12-29 2023-10-03 Douglas David Bunjes Internal combustion engine, combustion systems, and related methods and control methods and systems
JP2017061874A (ja) * 2015-09-24 2017-03-30 川崎重工業株式会社 乗物及び乗物の製造方法

Similar Documents

Publication Publication Date Title
JP4144272B2 (ja) 内燃機関の燃料噴射量制御装置
US7278394B2 (en) Air-fuel-ratio control apparatus for internal combustion engine
US7698886B2 (en) Catalyst deterioration degree acquiring apparatus in internal combustion engine
JP4315179B2 (ja) 内燃機関の空燃比制御装置
JP5858159B2 (ja) 内燃機関
US20080319633A1 (en) Device and Method for Controlling Internal Combustion Engine
US8676472B2 (en) Atmospheric pressure estimating apparatus
JP5949218B2 (ja) エンジンの制御装置
JP2007100575A (ja) 内燃機関の制御装置
US6820595B2 (en) Fuel injection amount control method and apparatus of internal combustion engine
EP2527634B1 (en) Device for estimating pressure and temperature of gas in a gas passage of an internal combustion engine
JP2005002932A (ja) 内燃機関の制御装置
US6536414B2 (en) Fuel injection control system for internal combustion engine
JPH08232751A (ja) 内燃機関の吸入空気量推定装置
JP4710716B2 (ja) 内燃機関の空燃比制御装置
JP3817648B2 (ja) 内燃機関の燃料噴射量制御装置
JP3945298B2 (ja) 内燃機関の燃料噴射量制御装置
JP2005090325A (ja) 燃料噴射量制御装置
JP4000972B2 (ja) 内燃機関の筒内ガス状態取得装置
JP4396076B2 (ja) 内燃機関の制御装置
US11913399B2 (en) Method for adjusting a fuel mass to be injected
JP4412164B2 (ja) 内燃機関の燃料性状取得装置
JP5067191B2 (ja) 内燃機関の燃料噴射量制御装置
JPH06185396A (ja) 基本燃料噴射方法
JP3838357B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061219