JP2005001393A - Coated element for electronic instrument member showing excellence in heat radiation and self-cooling, and electronic instrument part - Google Patents

Coated element for electronic instrument member showing excellence in heat radiation and self-cooling, and electronic instrument part Download PDF

Info

Publication number
JP2005001393A
JP2005001393A JP2004216376A JP2004216376A JP2005001393A JP 2005001393 A JP2005001393 A JP 2005001393A JP 2004216376 A JP2004216376 A JP 2004216376A JP 2004216376 A JP2004216376 A JP 2004216376A JP 2005001393 A JP2005001393 A JP 2005001393A
Authority
JP
Japan
Prior art keywords
coating film
coating
coated
heat dissipation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004216376A
Other languages
Japanese (ja)
Other versions
JP3796257B2 (en
Inventor
Takeshi Watase
岳史 渡瀬
Yasuo Hirano
康雄 平野
Tetsuya Yamamoto
哲也 山本
Kazuo Okumura
和生 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004216376A priority Critical patent/JP3796257B2/en
Publication of JP2005001393A publication Critical patent/JP2005001393A/en
Application granted granted Critical
Publication of JP3796257B2 publication Critical patent/JP3796257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated element for an electronic instrument member which can reduce a temperature of an inner portion of an electronic instrument and control a temperature increase of the coated element itself while satisfying the intrinsic properties required for the electronic instrument member (such as air-tightness for water proof, dust proof, and the like), small-sized and light-weighted. <P>SOLUTION: In the coated element for the electronic instrument member, both the right and reverse surfaces are covered with coating films, and at least the right surface of the substrate is covered with a heat radiation film having a heat radiation property or a heat radiation film containing no conductive filler characterized in that the integration emissivity (wave length of 4.5 to 15.4μm) of infrared radiation of the coated element heated at 100°C satisfies the following formula (4): b≤0.9(a-0.05), and the formula(5):(a-0.05)×(b-0.05)≥0.08 excluding a×b≥0.42 wherein a is the integration emissivity of infrared radiation of the coated element the right surface of which is covered with the heat radiation film, and b is the integration emissivity of infrared radiation of the coated element the reverse surface of which is covered with the heat radiation film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子・電気・光学機器(以下、電子機器で代表させる場合がある)等の筺体として有用な、放熱性及び自己冷却性に優れた電子機器部材用塗装体;これらの特性に優れた電子機器部品;及びこれらの特性に優れた塗装体を形成するのに有用な塗料組成物に関するものである。本発明の塗装体は、放熱特性及び自己冷却性に極めて優れており、CD、LD、DVD、CD−ROM、CD−RAM、PDP、LCD等の情報記録分野;パソコン、カーナビ、カーAV等の電気・電子・通信関連分野等に好適であり、更にプロジェクター、テレビ、ビデオ、ゲーム機等のAV機器;コピー機、プリンター等の複写機;エアコン室外機等の電源ボックスカバー、制御ボックスカバー、自動販売機、冷蔵庫等、種々の電子機器部材用筺体として用いることができる。更に本発明の塗装体は、有害な6価クロムを一切含まないクロムフリー塗装体としても使用することができ、しかもクロメート処理鋼板に匹敵する耐食性及び塗膜密着性を有し、更には良好な加工性も兼ね備えたクロムフリー塗装体を提供できる点で、極めて有用である。   The present invention is a coating body for an electronic device member that is useful as a housing for electronic, electrical, and optical equipment (hereinafter, may be represented by electronic equipment) and that has excellent heat dissipation and self-cooling properties; The present invention relates to a coating composition useful for forming a coated body excellent in these characteristics. The coated body of the present invention is extremely excellent in heat dissipation characteristics and self-cooling properties, and is in the information recording field such as CD, LD, DVD, CD-ROM, CD-RAM, PDP, LCD; personal computers, car navigation systems, car AVs, etc. Suitable for electrical / electronic / communication-related fields, AV equipment such as projectors, televisions, videos, game machines, etc .; copiers such as copiers and printers; power supply box covers for air conditioner outdoor units, control box covers, automatic It can be used as a housing for various electronic equipment members such as a vending machine and a refrigerator. Furthermore, the coated body of the present invention can be used as a chromium-free coated body containing no harmful hexavalent chromium, and has corrosion resistance and coating film adhesion comparable to a chromate-treated steel sheet. This is extremely useful in that it can provide a chromium-free painted body that also has processability.

近年、電子・電気・光学機器等の高性能化・小型化に伴い、電子機器等のシャーシ内部における発熱量が増大(高温化)し、高熱化する等の問題が生じている(電子機器内部の高熱化)。電子機器の内部温度は通常雰囲気温度で約40〜70℃、最高で100℃程度の高温になることがあるが、そうすると、IC、CPU(半導体素子)、ディスク、モーター等の耐熱温度を超える為、安定操業に支障をもたらすことが指摘されている。更に温度が上昇すると半導体素子が壊れて故障する等し、電子機器部品の寿命が低下するといった問題を抱えている。   In recent years, with higher performance and smaller size of electronic / electrical / optical equipment, etc., the amount of heat generated inside the chassis of electronic equipment has increased (higher temperature), causing problems such as higher temperature (inside electronic equipment) Higher heat). The internal temperature of electronic equipment is usually about 40 to 70 ° C at ambient temperature, and may be as high as about 100 ° C. However, this will exceed the heat resistance temperature of ICs, CPUs (semiconductor elements), disks, motors, etc. It has been pointed out that this will hinder stable operation. Further, when the temperature rises, the semiconductor element breaks and breaks down, and there is a problem that the life of the electronic equipment component is reduced.

そこで、電子機器の内部温度を低減化(放熱化)させる為の放熱手段として、電子機器の筺体(筺体本体、フレーム、シールドケース、液晶等のバックパネル等)に、ヒートシンクやヒートパイプ等の放熱部品を取り付ける方法が提案されている。しかしながら、この方法では、電子機器内部の熱源(発熱体)から放出される熱を、せいぜい、筺体内全体へ拡散させる程度の効果しか得られず、特に筺体の容積が小さい場合、所望の放熱効果が得られない。更に、当該放熱部品の取り付けに手間がかかり、設置場所を別途確保しなければならない、コストが高くつくといった不利不便がある等、小型化・低廉化が進む電子機器用途に適用するには不適切である。   Therefore, as a heat dissipation means to reduce the internal temperature of the electronic equipment (heat dissipation), heat dissipation from the heat sink, heat pipe, etc. to the housing of the electronic equipment (case body, frame, shield case, back panel of liquid crystal etc.) A method of attaching parts has been proposed. However, this method can only obtain an effect of diffusing the heat released from the heat source (heating element) inside the electronic device to the entire housing, and in particular, when the volume of the housing is small, the desired heat dissipation effect. Cannot be obtained. In addition, it takes time to install the heat-dissipating parts, and it is inappropriate to apply to electronic devices that are becoming smaller and cheaper. It is.

また、電子機器の筺体に金属板(塗装体)を用い、この金属板に穴をあけてファンを取り付け、対流を利用して放熱させる方法も提案されている。しかしながら、一般に電子機器は水や埃に弱い為、用途によっては適用が困難である他、前述したヒートシンク等の場合と同様、部品のコスト増、取り付けの手間及び取り付け場所の確保等の点で問題がある。   In addition, a method has been proposed in which a metal plate (painted body) is used for a housing of an electronic device, a hole is formed in the metal plate, a fan is attached, and heat is radiated using convection. However, since electronic devices are generally vulnerable to water and dust, they are difficult to apply depending on the application, and, as with the heat sinks described above, there are problems in terms of increasing the cost of components, securing labor and securing the mounting location, etc. There is.

従って、電子機器に要求される本来の特性(防水・防塵等に伴う気密性確保、小型化・軽量化)を満足しつつ、当該電子機器内部温度の低減化(放熱特性)をも達成し得る新規な電子機器部材用筺体の提供が切望されている。   Therefore, it is possible to achieve a reduction in internal temperature of the electronic equipment (heat dissipation characteristics) while satisfying the original characteristics required for the electronic equipment (ensure airtightness associated with waterproofing / dustproofing, miniaturization / lightening). There is an urgent need to provide a new housing for electronic device members.

一方、電子機器の筺体には、上述した放熱特性に加え、当該筺体自体の温度上昇を抑えることも要求されている。これにより、電子機器製品の稼動中に、消費者が当該筺体に触れてやけど等する危険を防止でき、安全な製品を提供できるからである。この「電子機器の筺体自体の温度上昇を抑える特性」を、前述した「放熱性」と区別する目的で、本発明では特に、「自己冷却性」と呼ぶ。これらの両特性に優れた筺体を得るに当たり、前述した放熱対策(ヒートシンクやヒートパイプ等の放熱部品を取り付ける方法や、金属板に穴をあけてファンを取り付ける方法等)を採用したのでは、やはり、同様の問題が見られる。従って、これらの両特性を備えた筺体の提供も切望されている。   On the other hand, in addition to the heat dissipation characteristics described above, the housing of the electronic device is also required to suppress the temperature rise of the housing itself. This is because it is possible to prevent the risk of burns from being touched by the consumer while the electronic device product is in operation, and to provide a safe product. This “characteristic for suppressing the temperature rise of the housing of the electronic device itself” is called “self-cooling” in the present invention in order to distinguish it from the “heat dissipation” described above. In order to obtain a housing that is excellent in both of these characteristics, the heat dissipation measures described above (such as attaching heat sinks and heat pipes and heat sinks, and mounting fans by drilling holes in metal plates) A similar problem is seen. Therefore, provision of a housing having both of these characteristics is also eagerly desired.

加えて、基板側に着目すると、従来は、耐食性、塗膜密着性等の観点から、基板にクロメート処理が施されているが、有害な6価クロムを多量使用することから環境汚染の問題が深刻化している。そこで、有害なクロメート処理に代わり、クロムフリーのノンクロメート処理への対応が要請されている。しかしながら、クロメート処理を施さない場合には、耐食性や塗膜密着性、更には加工性も劣ることが知られている。従って、クロメート処理を施さなくとも、耐食性、塗膜密着性、更には加工性にも優れたクロムフリーの塗装体であって、しかも前述した放熱性、更には自己冷却性にも優れた電子機器部材用筺体の提供が切望されている。   In addition, focusing on the substrate side, conventionally, the substrate has been subjected to chromate treatment from the viewpoint of corrosion resistance, coating film adhesion, etc. However, there is a problem of environmental pollution due to the use of a large amount of harmful hexavalent chromium. It is getting serious. Therefore, instead of harmful chromate treatment, it is required to cope with chromium-free non-chromate treatment. However, it is known that when the chromate treatment is not performed, the corrosion resistance, coating film adhesion, and workability are also poor. Therefore, it is a chromium-free coated body that is excellent in corrosion resistance, coating film adhesion, and workability without being subjected to chromate treatment, and also has excellent heat dissipation and self-cooling properties as described above. The provision of a housing for members is eagerly desired.

本発明は上記事情に着目してなされたものであり、その目的は、電子機器の筺体として使用される塗装体であって、電子機器部材に要求される本来の特性(防水・防塵等に伴う気密性確保、小型化・軽量化)を満足しつつ、当該電子機器内部温度の低減化(放熱特性)をも達成し得る新規な塗装体;更には、当該塗装体自体の温度上昇を抑える特性(自己冷却性)にも優れた電子機器部材用塗装体;更には、耐食性及び塗膜密着性に優れており、加工性も良好なクロムフリーの電子機器部材用塗装体;この様な優れた特性を兼ね備えた塗装体で被覆された電子機器部品;クロムフリー系下地処理の施された基板に適用される塗料組成物であって、放熱性、耐食性、塗膜密着性、及び加工性に優れた塗料組成物;及び被験体の放熱性を評価する為の放熱性評価装置を提供することにある。   The present invention has been made by paying attention to the above circumstances, and its purpose is a coated body used as a casing of an electronic device, which is associated with the original characteristics (waterproof / dustproof, etc.) required for an electronic device member. A new painted body that can achieve a reduction in internal temperature of the electronic equipment (heat dissipation characteristics) while satisfying airtightness, miniaturization, and weight reduction; and a characteristic that suppresses the temperature rise of the painted body itself Coated body for electronic equipment members with excellent (self-cooling); Furthermore, it has excellent corrosion resistance and coating film adhesion, and has good workability, and is a chromium-free coated body for electronic equipment parts; Electronic equipment parts coated with a coated body with characteristics; a coating composition applied to a substrate with a chromium-free base treatment, excellent in heat dissipation, corrosion resistance, coating adhesion, and workability Paint composition; and assessing the heat dissipation of the subject And to provide a heat dissipation property evaluation apparatus.

上記課題を解決し得た本発明に係る「放熱性及び自己冷却性に優れた電子機器部材用塗装体」は、基板の表裏面に塗膜が被覆されており、且つ、基板の少なくとも表面に、放熱性を有する放熱塗膜であって導電性フィラーを含有しない放熱塗膜が被覆された塗装体であって、
該塗装体を100℃に加熱したときの赤外線(波長:4.5〜15.4μm)の積分放射率が、下式(4)及び(5)を満足する(但し、a×b≧0.42を除く)ところに要旨を有するものである。
b≦0.9(a−0.05) … (4)
(a−0.05)×(b−0.05)≧0.08… (5)
a:表面に放熱塗膜が被覆された塗装体の赤外線積分放射率
b:裏面に放熱塗膜が被覆された塗装体の赤外線積分放射率
The “coating body for electronic device members having excellent heat dissipation and self-cooling properties” according to the present invention that has solved the above problems has a coating film coated on the front and back surfaces of the substrate, and at least the surface of the substrate. , A heat-dissipating coating film having a heat dissipation property and coated with a heat-dissipating coating film that does not contain a conductive filler,
The integral emissivity of infrared rays (wavelength: 4.5 to 15.4 μm) when the coated body is heated to 100 ° C. satisfies the following expressions (4) and (5) (provided that a × b ≧ 0. (Excluding 42).
b ≦ 0.9 (a−0.05) (4)
(A−0.05) × (b−0.05) ≧ 0.08 (5)
a: Infrared integrated emissivity of a coated body with a heat dissipation coating coated on the surface
b: Infrared integrated emissivity of a coated body having a heat radiation coating coated on the back surface

上記本発明の塗装体においては、放熱皮膜は、放熱性添加剤として、少なくとも酸化チタンを50〜70質量%含有し、膜厚25〜30μmを満足するものが、好ましい態様として推奨される。   In the coated body of the present invention, it is recommended as a preferred embodiment that the heat dissipation film contains at least 50 to 70% by mass of titanium oxide as a heat dissipation additive and satisfies a film thickness of 25 to 30 μm.

この様な「放熱性及び自己冷却性」に優れた塗装体を得る為の具体的構成は、基板の表裏面に塗膜が被覆されており、且つ、基板の少なくとも表面に、放熱性を有する放熱塗膜であって導電性フィラーを含有しない放熱塗膜が被覆された塗装体であって、
前記放熱塗膜は黒色の放熱性添加剤を含有しており、且つ、下式(6)を満足するところに要旨を有するものである。
(X−3)×(Y−0.5)≧3 … (6)
式中、Xは放熱塗膜に含まれる黒色の放熱性添加剤の含有量(質量%)を、
Yは放熱塗膜厚さ(μm)を、夫々、意味する。
A specific configuration for obtaining such a coated body excellent in “heat dissipation and self-cooling” is that the front and back surfaces of the substrate are coated with a coating film, and at least the surface of the substrate has heat dissipation. It is a coated body coated with a heat dissipation coating that is a heat dissipation coating and does not contain a conductive filler,
The said heat-radiation coating film contains a black heat-radiative additive, and has a summary in the place which satisfies the following Formula (6).
(X-3) × (Y−0.5) ≧ 3 (6)
In formula, X is content (mass%) of the black heat dissipation additive contained in a heat dissipation coating film,
Y means the thickness of the heat radiation coating film (μm).

ここで、X(放熱塗膜に含まれる黒色の放熱性添加剤の含有量)が4≦X<15[式(7)]を満足するもの;Y(塗膜厚さ)がY>1μmを満足するもの;更に黒色添加剤の平均粒径が5〜100nmを満足するもの;黒色添加剤がカーボンブラックであるものは、より優れた放熱性を得るのに有用である。   Here, X (content of black heat dissipating additive contained in heat dissipation coating) satisfies 4 ≦ X <15 [formula (7)]; Y (coating thickness) satisfies Y> 1 μm. What is satisfied: Further, the average particle size of the black additive satisfies 5 to 100 nm; and the black additive is carbon black is useful for obtaining better heat dissipation.

上述した本発明の塗装体において、放熱塗膜を形成する樹脂として、非親水性樹脂(好ましくはポリエステル系樹脂)を用いれば、耐食性が向上するので好ましい態様である。   In the above-described coated body of the present invention, if a non-hydrophilic resin (preferably a polyester resin) is used as the resin for forming the heat radiation coating film, the corrosion resistance is improved, which is a preferable embodiment.

更に本発明において、上記放熱塗膜にクリアー塗膜が被覆されたものは、耐疵付き性及び耐指紋性が高められるので有用である。   Furthermore, in the present invention, the above-described heat-dissipating coating film coated with a clear coating film is useful because it can improve the anti-fouling property and fingerprint resistance.

本発明の塗装体は、クロムフリー塗装体にも適用することができる。即ち、上記基板はクロムフリーの下地処理がなされており、且つ、放熱塗膜は、更に防錆剤を含有するものは好ましい態様である。具体的には、上記放熱塗膜の形成成分は、エポキシ変性ポリエステル系樹脂及び/又はフェノール誘導体を骨格に導入したポリエステル系樹脂、及び架橋剤(好ましくはイソシアネート系樹脂及び/又はメラミン系樹脂、より好ましくは両者を併用したもの)を含有することが推奨され、これにより、優れた耐食性[JIS−Z−2371に規定されている塩水噴霧試験耐食性試験(72時間)における外観異常部の面積率:10%以下]、塗膜密着性(曲げ部をテーピングした後における塗膜の剥離状況)、加工性(JIS K 5400に規定されている密着曲げ試験におけるクラック数:5個以下)を確保することができる。更に、上記塗膜の上に塗膜が被覆された二層塗膜構成とすれば、防錆剤の溶出を防止し得るので一層優れた耐食性[JIS−Z−2371に規定されている塩水噴霧試験耐食性試験(120時間)における外観異常部の面積率:10%以下]が得られるので非常に有用である。ここで、上記塗膜の上に被覆される塗膜を、クリヤー塗膜とすれば、更に耐疵付き性及び耐指紋性も高められる。   The painted body of the present invention can also be applied to a chromium-free painted body. That is, it is a preferable aspect that the substrate is subjected to a chromium-free ground treatment, and the heat radiation coating further contains a rust preventive agent. Specifically, the component for forming the heat radiation coating film is composed of a polyester resin in which an epoxy-modified polyester resin and / or a phenol derivative is introduced into a skeleton, and a crosslinking agent (preferably an isocyanate resin and / or a melamine resin). It is recommended to contain a combination of both of them), whereby excellent corrosion resistance [area ratio of appearance abnormal part in salt spray test corrosion resistance test (72 hours) defined in JIS-Z-2371]: 10% or less], coating film adhesion (the state of peeling of the coating film after taping the bent portion), workability (number of cracks in the adhesion bending test defined in JIS K 5400: 5 or less) Can do. Furthermore, if the coating film is coated on the coating film, the anticorrosive agent can be prevented from being eluted, so that the corrosion resistance [salt spray specified in JIS-Z-2371 is improved. This is very useful because an area ratio of an appearance abnormality portion in a test corrosion resistance test (120 hours): 10% or less] is obtained. Here, if the coating film coated on the coating film is a clear coating film, the scratch resistance and fingerprint resistance can be further improved.

上記のような各種塗装体は、電子機器部品の筐体として使用されるものとして有用である。   The various coated bodies as described above are useful as those used as housings for electronic device parts.

一方、上記課題を解決し得た本発明の電子機器部材用塗料組成物は、上記のような塗装体に用いられる塗料組成物であって、塗膜形成成分に対し、黒色添加剤を3質量%超含有し、導電性フィラーを含有しないものであるところに要旨を有するものであり、この様な塗料組成物を用いれば、放熱性及び自己冷却性に優れた塗膜を形成することができる。ここで、上記黒色添加剤の平均粒径が5〜100nmであるものは好ましい態様である。   On the other hand, the coating composition for electronic device members of the present invention that has solved the above-mentioned problems is a coating composition used for the coating body as described above, and contains 3 mass of black additive with respect to the coating film forming component. The coating composition is excellent in heat dissipation and self-cooling properties if such a coating composition is used. . Here, what the average particle diameter of the said black additive is 5-100 nm is a preferable aspect.

更に本発明には、クロムフリー系下地処理の施された基板に適用される塗料組成物であって、塗膜形成成分に対し、エポキシ変性ポリエステル系樹脂及び/又はフェノール誘導体を骨格に導入したポリエステル系樹脂を35質量%以上、防錆剤を2〜25質量%、架橋剤を1〜20質量%、及び黒色添加剤を3質量%超、含有する電子機器部材用塗料組成物も本発明の範囲内に包含される。ここで、上記架橋剤は、イソシアネート系樹脂100質量部に対し、メラミン系樹脂を5〜80質量部の比率で含有することが好ましい。また、上記黒色添加剤の平均粒径は5〜100nmであり、カーボンブラックの使用が推奨される。この様な組成を満足する塗料組成物を使用すれば、放熱性、自己冷却性、耐食性、塗膜密着性、及び加工性に優れたクロムフリー系塗膜を形成することができる。   Furthermore, the present invention relates to a coating composition applied to a substrate subjected to a chromium-free base treatment, and a polyester in which an epoxy-modified polyester resin and / or a phenol derivative is introduced into a skeleton with respect to a coating film forming component A coating composition for electronic device members containing 35% by mass or more of a resin, 2 to 25% by mass of a rust inhibitor, 1 to 20% by mass of a crosslinking agent, and more than 3% by mass of a black additive is also included in the present invention. Included within range. Here, it is preferable that the said crosslinking agent contains a melamine type resin in the ratio of 5-80 mass parts with respect to 100 mass parts of isocyanate type resins. Moreover, the average particle diameter of the black additive is 5 to 100 nm, and the use of carbon black is recommended. If a coating composition satisfying such a composition is used, a chromium-free coating film excellent in heat dissipation, self-cooling property, corrosion resistance, coating film adhesion, and workability can be formed.

更に本発明には、閉じられた空間に発熱体を内臓する電子機器部品であって、その外壁の全部または一部が前述した本発明の電子機器部材用塗装体で構成されている電子機器部品(例えばCD、LD、DVD、CD−ROM、CD−RAM、PDP、LCD等の情報記録製品;パソコン、カーナビ、カーAV等の電気・電子・通信関連製品;プロジェクター、テレビ、ビデオ、ゲーム機等のAV機器;コピー機、プリンター等の複写機;エアコン室外機等の電源ボックスカバー、制御ボックスカバー、自動販売機、冷蔵庫等)も本発明の範囲内に包含される。   Further, according to the present invention, there is provided an electronic device component having a heating element in a closed space, wherein the whole or a part of the outer wall of the electronic device component is composed of the above-described coated body for an electronic device member of the present invention. (For example, information recording products such as CD, LD, DVD, CD-ROM, CD-RAM, PDP, LCD, etc .; electrical / electronic / communication related products such as personal computers, car navigation systems, car AVs; projectors, televisions, videos, game machines, etc. AV equipment; copiers such as copiers and printers; power supply box covers such as air conditioner outdoor units, control box covers, vending machines, refrigerators, etc.) are also included within the scope of the present invention.

本発明の塗装体は以上の様に構成されているので、電子機器部材に要求される本来の特性(防水・防塵等に伴う気密性確保、小型化・軽量化)を満足しつつ、当該電子機器部材の内部温度の低減化(放熱特性)をも具備し得ると共に、電子機器部材用塗装体自体の温度上昇を抑える特性(自己冷却性)にも優れた電子機器部材用塗装を提供することができた。本発明の塗装体は、特に、CD、LD、DVD、CD−ROM、CD−RAM、PDP、LCD等の情報記録分野;パソコン、カーナビ、カーAV等の電気・電子・通信関連分野等の他、プロジェクター、テレビ、ビデオ、ゲーム機等のAV機器;コピー機、プリンター等の複写機;エアコン室外機等の電源ボックスカバー、制御ボックスカバー、自動販売機、冷蔵庫等、様々な電子機器部材に用いることができる。   Since the coated body of the present invention is configured as described above, while satisfying the original characteristics required for electronic device members (ensure airtightness associated with waterproofing / dustproofing, miniaturization / weight reduction), To provide a coating for an electronic device member that can also have a reduced internal temperature of the device member (heat dissipation property) and also has an excellent property (self-cooling property) that suppresses the temperature rise of the coating body for the electronic device member itself. I was able to. The coated body of the present invention is particularly in the field of information recording such as CD, LD, DVD, CD-ROM, CD-RAM, PDP, LCD, etc .; other fields related to electrical / electronic / communication such as personal computer, car navigation system, car AV, etc. AV equipment such as projectors, TVs, videos, game machines; copiers such as copiers and printers; power supply box covers for air conditioner outdoor units, control box covers, vending machines, refrigerators, etc. be able to.

本発明者らは、電子機器に要求される本来の特性(防水・防塵等に伴う気密性確保、小型化・軽量化、低コスト等)を満足しつつ、当該電子機器内部温度の低減化(放熱特性)をも達成し得る新規な電子機器部材用塗装体を提供すべく、特に、当該塗装体自体の放熱性改善を中心に鋭意検討してきた。その結果、基板の表裏面に、所定の塗膜を被覆すれば所期の目的が達成されることを見出した。   The present inventors have reduced the internal temperature of the electronic device while satisfying the original characteristics required for the electronic device (sealing, dustproof, etc., ensuring airtightness, miniaturization / weight reduction, low cost, etc.) In order to provide a new coated body for electronic equipment members that can also achieve heat dissipation characteristics), in particular, it has been intensively studied focusing on improving the heat dissipation of the coated body itself. As a result, it was found that the intended purpose can be achieved if a predetermined coating film is coated on the front and back surfaces of the substrate.

そのメカニズムは、「電子機器内部の熱源(発熱体)から放出される熱(輻射熱)を、裏面の塗膜で吸収(放射)し、この熱を、表面の放熱塗膜から放射させる」というものであり、所謂『熱スルー方式』の考えを、電子機器部材にうまく適用したところに最大の特徴がある。この様な『熱スルー方式』の考えを、電子機器部材に適用し、電子機器から放出される熱量を、「基板の裏面」→「基板の表面」へと吸収→放射させた塗装体は従来知られておらず、新規である。尚、本発明では、当該塗装体から見て外気側を「表面」、当該塗装体の内側を「裏面」と呼ぶ。   The mechanism is that "the heat (radiant heat) emitted from the heat source (heating element) inside the electronic device is absorbed (radiated) by the coating film on the back surface, and this heat is radiated from the heat radiation coating film on the surface". The greatest feature is that the idea of the so-called “heat-through method” has been successfully applied to electronic device members. Such a “heat-through method” concept is applied to electronic equipment members, and the amount of heat released from the electronic equipment is absorbed from the back side of the board to the front side of the board and then radiated. It is not known and is new. In the present invention, the outside air side as viewed from the painted body is referred to as “front surface”, and the inside of the painted body is referred to as “back surface”.

本発明の塗装体は、基板の表裏面に塗膜が被覆され、且つ、基板の少なくとも表面に、放熱性を有する放熱塗膜であって導電性フィラーを含有しない放熱塗膜が被覆された塗装体であり、「優れた自己冷却性」を表す指標として、下記(III)に示すΔT2(塗装体自体の温度上昇抑制の程度)若しくは下記(IV)に示す式(4)[b≦0.9(a−0.05)]を;また、上記第二の塗装体における「優れた放熱性」を表す指標として、下記(V)に示す式(5)[(a−0.05)×(b−0.05)≧0.08]を満足するものである。   The coated body of the present invention is a coating in which a coating film is coated on the front and back surfaces of the substrate, and at least the surface of the substrate is coated with a heat radiation coating film having a heat dissipation property and containing no conductive filler. As an index representing “excellent self-cooling”, ΔT2 (degree of suppression of temperature rise of the coated body itself) shown in the following (III) or the formula (4) shown in the following (IV) [b ≦ 0. 9 (a-0.05)]; and as an index representing “excellent heat dissipation” in the second coated body, the following formula (5) [(a−0.05) × (B−0.05) ≧ 0.08] is satisfied.

まず、自己冷却性の指標について説明する。   First, the self-cooling index will be described.

このうち式(4)は、裏面の赤外線放射率に比べ、表面の赤外線放射率を高くし、塗装体に吸収された熱を外気側へ移動させる放熱効果を示す指標として定めたものであり;一方、ΔT2は、電子機器部材用途を模擬した実用レベルの塗装体での放熱効果を定めたものである。   Among these, the formula (4) is defined as an index indicating a heat dissipation effect that increases the infrared emissivity of the front surface compared to the infrared emissivity of the back surface and moves the heat absorbed by the coated body to the outside air; On the other hand, ΔT2 defines the heat dissipation effect in a practical level painted body that simulates the use of electronic equipment members.

この様に両者は、いずれも「自己冷却性」を表す指標として有用であり、良好な相関関係を有している。参考までに、後記する実施例の結果をプロットしたグラフを図3に示す。図3の縦軸は、上式(4)を変形した式(0.9a−b≧0.05)中、左辺(0.9a−b)の計算値(以下、Q値で代表させる場合がある)である。   Thus, both of them are useful as indexes representing “self-cooling” and have a good correlation. For reference, FIG. 3 shows a graph in which the results of Examples described later are plotted. The vertical axis in FIG. 3 represents the calculated value of the left side (0.9a-b) (hereinafter referred to as the Q value) in the equation (0.9a−b ≧ 0.05) obtained by modifying the above equation (4). Yes).

この様な自己冷却性を満足するものは、塗装体自体の温度上昇が抑えられるので、当該塗装体を電子機器の筺体として使用したとき、電子機器稼動時に、取扱者が触れたとしても「熱くない」と感じる等、取扱者側から見て安全な電子機器を提供することができる。しかも上記塗装体は、良好な放熱性も兼ね備えているので、これらの両特性を兼ね備えた電子機器部材は、更なる用途の拡大をもたらす点で非常に有用である。   For those satisfying such self-cooling properties, the temperature rise of the coated body itself can be suppressed. Therefore, even when the painted body is used as a housing for an electronic device, It is possible to provide electronic devices that are safe from the viewpoint of the operator. And since the said coating body also has favorable heat dissipation, the electronic device member which has these both characteristics is very useful at the point which brings further expansion of a use.

以下、(III)〜(V)の各特性について説明する。   Hereinafter, the characteristics (III) to (V) will be described.

(III)ΔT2(=T2 B −T2 A )≧0.5℃
ここで、T2Aは、後記する図1に示す放熱性評価装置を用い、供試材として本発明塗装体を測定したときの塗装体温度を;T2Bは、同様に上記図1の放熱性評価装置を用い、供試材として塗膜が被覆されていない基板を使用したときの基板温度を、夫々、意味する。また、供試材を用いたときの温度と、塗膜を施さない無塗装原板を用いたときの温度の差(ΔT2)を算出した。
(III) ΔT2 (= T2 B −T2 A ) ≧ 0.5 ° C.
Here, T2 A uses the heat dissipation evaluation apparatus shown in FIG. 1 below, the present invention coated body paint body temperature when measured as a test material; T2 B is similarly heat dissipation of the FIG. 1 It means the substrate temperature when using an evaluation apparatus and using a substrate not coated with a coating film as a test material. Moreover, the difference ((DELTA) T2) of the temperature when using a test material and the temperature when using the uncoated original board which does not give a coating film was computed.

尚、ΔT2は、各供試材につき5回ずつ測定し、そのうち上限、下限を除いた3点のデータの平均値を、本発明におけるΔT2と定めた。   ΔT2 was measured five times for each specimen, and the average value of three points of data excluding the upper limit and the lower limit was determined as ΔT2 in the present invention.

上記ΔT2は、基板(塗膜が被覆されていない裸ままの原板)を用いた場合に比べ、本発明塗装体を用いた場合には、電子機器稼動時における塗装体自体の温度上昇を如何に抑えられるかという指標(自己冷却性)を定めたものであり、本発明では、ΔT2を測定する装置として、特に、図1に示す本発明独自の放熱性評価装置を用いた。   The above ΔT2 shows how the temperature rise of the coated body itself when the electronic device is in operation when the coated body of the present invention is used as compared with the case of using the substrate (the bare original plate not coated with the coating film). An index (self-cooling property) indicating whether it can be suppressed is determined. In the present invention, as the device for measuring ΔT2, in particular, the heat dissipation evaluation device unique to the present invention shown in FIG. 1 is used.

優れた自己冷却性を得る為には、上記ΔT2は大きい程、好ましい。ΔT2の好ましい順に1.0℃以上、1.5℃以上、2.0℃以上、2.5℃以上である。   In order to obtain excellent self-cooling properties, the larger ΔT2 is more preferable. They are 1.0 degreeC or more, 1.5 degreeC or more, 2.0 degreeC or more, and 2.5 degreeC or more in the preferable order of (DELTA) T2.

(IV)式(4):b≦0.9(a−0.05)
式中、a及びbは、基板の表裏面に塗膜が被覆された塗装体を100℃に加熱したときの赤外線(波長:4.5〜15.4μm)の積分放射率(以下、単に「赤外線積分放射率」若しくは「赤外線放射率」と略記することがある)において、表面の赤外線積分放射率(a)及び裏面の赤外線積分放射率(b)を夫々、意味する。この赤外線積分照射率は、後述する方法で測定され、表面若しくは裏面の赤外線積分照射率を夫々、別々に測定することができる。
(IV) Formula (4): b ≦ 0.9 (a−0.05)
In the formula, a and b are integral emissivities of infrared rays (wavelength: 4.5 to 15.4 μm) (hereinafter simply referred to as “ In the case of “infrared integrated emissivity” or “infrared emissivity”, the infrared integrated emissivity (a) on the front surface and the infrared integrated emissivity (b) on the back surface are meant respectively. This infrared integrated irradiation rate is measured by the method described later, and the infrared integrated irradiation rate on the front surface or the back surface can be measured separately.

上記「赤外線積分放射率」とは、換言すれば、赤外線(熱エネルギー)の放出し易さ(吸収し易さ)を意味する。従って、上記赤外線放射率が高い程、放出(吸収)される熱エネルギー量は大きくなることを示す。例えば物体(本発明では塗装体)に与えられた熱エネルギーを100%放射する場合には、当該赤外線積分放射率は1となる。   The above-mentioned “infrared integrated emissivity” means, in other words, ease of emission (easy absorption) of infrared rays (thermal energy). Therefore, the higher the infrared emissivity, the greater the amount of heat energy released (absorbed). For example, when 100% of the thermal energy applied to an object (in the present invention, a painted body) is emitted, the infrared integrated emissivity is 1.

尚、本発明では、100℃に加熱したときの赤外線積分放射率を定めているが、これは、本発明塗装体が電気機器用途(部材等によっても相違するが、通常の雰囲気温度は概ね、50〜70℃で、最高で約100℃)に適用されることを考慮し、当該実用レベルの温度と一致させるべく、加熱温度を100℃に定めたものである。但し、200℃に加熱しても赤外線積分放射率は殆ど変化せず、200℃に加熱したときの赤外線積分放射率は、100℃の赤外線積分放射率に比べ、概ね0.02程度高いものの、略一致することを実験により確認している。   In addition, in the present invention, the infrared integrated emissivity when heated to 100 ° C. is determined, but this is because the coated body of the present invention is used for electrical equipment (although it differs depending on members, etc., the normal ambient temperature is generally The heating temperature is set to 100 ° C. in consideration of the application to 50 to 70 ° C. and a maximum of about 100 ° C.). However, the infrared integrated emissivity hardly changes even when heated to 200 ° C., and the infrared integrated emissivity when heated to 200 ° C. is generally about 0.02 higher than the infrared integrated emissivity of 100 ° C., It is confirmed by experiments that they are almost identical.

本発明における赤外線積分放射率の測定方法は以下の通りである。
装置:日本電子(株)製「JIR−5500型フーリエ変換赤外分光
光度計」及び放射測定ユニット「IRR−200」
測定波長範囲:4.5〜15.4μm
測定温度:試料の加熱温度を100℃に設定する
積算回数:200回
分解能 :16cm-1
The method for measuring the infrared integrated emissivity in the present invention is as follows.
Apparatus: “JIR-5500 type Fourier transform infrared spectroscopy” manufactured by JEOL Ltd.
Photometer "and radiation measurement unit" IRR-200 "
Measurement wavelength range: 4.5 to 15.4 μm
Measurement temperature: set the heating temperature of the sample to 100 ° C. Integration count: 200 times Resolution: 16 cm −1

上記装置を用い、赤外線波長域(4.5〜15.4μm)における試料の分光放射強度(実測値)を測定した。尚、上記試料の実測値は、バックグラウンドの放射強度及び装置関数が加算/付加された数値として測定される為、これらを補正する目的で、放射率測定プログラム[日本電子(株)製放射率測定プログラム]を用い、積分放射率を算出した。算出方法の詳細は以下の通りである。   Using the above apparatus, the spectral radiant intensity (measured value) of the sample in the infrared wavelength region (4.5 to 15.4 μm) was measured. In addition, since the measured value of the sample is measured as a numerical value obtained by adding / adding the background radiation intensity and the instrument function, an emissivity measurement program [emissivity manufactured by JEOL Ltd.] is used for the purpose of correcting these values. The integral emissivity was calculated using a measurement program. Details of the calculation method are as follows.

Figure 2005001393
Figure 2005001393

式中、
ε(λ) :波長λにおける試料の分光放射率(%)
E(T) :温度T(℃)における試料の積分放射率(%)
M(λ,T) :波長λ、温度T(℃)における試料の分光放射強度
(実測値)
A(λ) :装置関数
FB(λ) :波長λにおける固定バックグラウンド(試料によって
変化しないバックグラウンド)の分光放射強度
TB(λ,TTB):波長λ、温度TTB(℃)におけるトラップ黒体の
分光放射強度
B(λ,T) :波長λ、温度T(℃)における黒体の分光放射強度
(ブランクの理論式からの計算値)
λ1,λ2 :積分する波長の範囲
を夫々、意味する。
Where
ε (λ): Spectral emissivity of sample at wavelength λ (%)
E (T): Integrated emissivity (%) of sample at temperature T (° C.)
M (λ, T): Spectral radiant intensity of sample at wavelength λ and temperature T (° C)
(Actual value)
A (λ): Instrument function K FB (λ): Fixed background at wavelength λ (depending on sample)
Spectral radiant intensity of unchanging background K TB (λ, T TB ): Wavelength of λ, trap black body at temperature T TB (° C)
Spectral radiant intensity K B (λ, T): Spectral radiant intensity of a black body at wavelength λ and temperature T (° C.)
(Calculated value from blank theoretical formula)
λ 1 , λ 2 : Means the range of wavelengths to be integrated, respectively.

ここで、上記A(λ:装置関数)、及び上記KFB(λ:固定バックグラウンドの分光放射強度)は、2つの黒体炉(80℃、160℃)の分光放射強度の実測値、及び当該温度域における黒体の分光放射強度(ブランクの理論式からの計算値)に基づき、下記式によって算出したものである。 Here, A (λ: instrument function) and K FB (λ: spectral radiant intensity of fixed background) are measured values of spectral radiant intensity of two blackbody furnaces (80 ° C., 160 ° C.), and Based on the spectral radiant intensity of the black body in the temperature range (calculated value from the theoretical formula of the blank), it is calculated by the following formula.

Figure 2005001393
Figure 2005001393

式中、
160℃(λ,160℃):
波長λにおける160℃の黒体炉の分光放射強度(実測値)
80℃(λ,80℃):
波長λにおける80℃の黒体炉の分光放射強度(実測値)
160℃(λ,160℃):
波長λにおける160℃の黒体炉の分光放射強度
(ブランクの理論式からの計算値)
80℃(λ,80℃):
波長λにおける80℃の黒体炉の分光放射強度
(ブランクの理論式からの計算値)
を夫々、意味する。
Where
M 160 ° C. (λ, 160 ° C.):
Spectral radiant intensity of 160 ° C blackbody furnace at wavelength λ (actual measurement)
M 80 ° C (λ, 80 ° C):
Spectral radiation intensity of 80 ° C blackbody furnace at wavelength λ (actual measurement)
K 160 ° C. (λ, 160 ° C.):
Spectral radiation intensity of 160 ° C blackbody furnace at wavelength λ
(Calculated value from blank theoretical formula)
K 80 ° C (λ, 80 ° C):
Spectral radiant intensity of black body furnace at 80 ° C at wavelength λ
(Calculated value from blank theoretical formula)
Means each.

尚、積分放射率E(T=100℃)の算出に当たり、KTB(λ,TTB)を考慮しているのは、測定に当たり、試料の周囲に、水冷したトラップ黒体を配置している為である。上記トラップ黒体の設置により、変動バックグランド放射(試料によって変化するバックグラウンド放射を意味する。試料の周囲からの放射が試料表面で反射される為、試料の分光放射強度の実測値は、このバックグランド放射が加算された数値として表れる)の分光放射強度を低くコントロールすることができる。上記のトラップ黒体は、放射率0.96の疑似黒体を使用しており、前記KTB[(λ,TTB):波長λ、温度TTB(℃)におけるトラップ黒体の分光放射強度]は、以下の様にして算出する。
TB(λ,TTB)=0.96×KB(λ,TTB
式中、KB(λ,TTB)は、波長λ、温度TTB(℃)における黒体の
分光放射強度を意味する。
In calculating the integral emissivity E (T = 100 ° C.), K TB (λ, T TB ) is taken into consideration when a trapped black body cooled with water is placed around the sample. Because of that. By installing the trap black body, variable background radiation (meaning background radiation that varies depending on the sample. Since the radiation from the periphery of the sample is reflected on the sample surface, the measured value of the spectral radiant intensity of the sample is Spectral radiation intensity (which appears as a numerical value with background radiation added) can be controlled low. The above trap black body uses a pseudo black body with an emissivity of 0.96, and K TB [(λ, T TB ): spectral radiant intensity of the trap black body at wavelength λ and temperature T TB (° C.). ] Is calculated as follows.
K TB (λ, T TB ) = 0.96 × K B (λ, T TB )
Where K B (λ, T TB ) is the black body at wavelength λ and temperature T TB (° C.).
Means spectral radiant intensity.

前述した通り、上式(4)も、塗装体自体の温度上昇を抑制する「自己冷却性」の指標として有用である。上式は、「基板の裏面(電子機器内部側)に比べ、基板の表面(外気側)の赤外線放射率を高くした塗膜を施すことにより、塗装体自体の温度上昇を抑制しよう」という思想のもと、所望の自己冷却性(ΔT2≧0.5℃)を確保できる表面・裏面の赤外線放射率の関係式を特定したものである。   As described above, the above formula (4) is also useful as an index of “self-cooling property” that suppresses the temperature rise of the coated body itself. The above equation is the idea that “the temperature rise of the coated body itself should be suppressed by applying a coating with a higher infrared emissivity on the surface (outside air side) of the substrate than on the back side of the substrate (inside the electronic device)” Based on the above, the relational expression of the infrared emissivity of the front and back surfaces that can ensure the desired self-cooling property (ΔT2 ≧ 0.5 ° C.) is specified.

塗装体を電子機器の筺体に使用する場合、筺体内部面(裏面)の赤外線放射率を高めると、電子機器内熱源から放出される赤外線吸収量が増加し、塗装体自体の温度は上昇してしまう。一方、筺体外部面(表面)の放射率を高めれば、塗装体から外気に向けて放出する赤外線放出量が増加し、塗装体の温度も低下する。本発明は、この様な知見に基づき、種々の実験を重ねて上式を定めたものであり、本発明によれば、基板の裏面側で吸収(放射)される熱量よりも、基板の表面側から放射される熱量が大きくなるので、塗装体自体の温度上昇を効率よく抑えることが可能になる。   When using a painted body for the housing of an electronic device, increasing the infrared emissivity of the inner surface (back surface) of the housing increases the amount of infrared radiation emitted from the heat source inside the electronic device, and the temperature of the painted body itself increases. End up. On the other hand, if the emissivity of the outer surface (surface) of the housing is increased, the amount of infrared rays emitted from the paint body toward the outside air increases, and the temperature of the paint body also decreases. The present invention is based on such knowledge, and various experiments are repeated to define the above equation. According to the present invention, the surface of the substrate is more than the amount of heat absorbed (radiated) on the back side of the substrate. Since the amount of heat radiated from the side increases, the temperature rise of the coated body itself can be efficiently suppressed.

この様に基板の表面と裏面に放熱特性の異なる塗膜を設け、放熱特性の水準を或る程度維持しつつ、しかも塗装体の温度上昇をも抑制させた塗装体は従来知られておらず、新規であると考える。   In this way, there is no known coating body that has a coating film with different heat dissipation characteristics on the front and back surfaces of the substrate, maintains a certain level of heat dissipation characteristics, and suppresses the temperature rise of the coating body. Think of it as new.

従って、本発明の塗装体では、aとbの赤外線放射率の差が大きい程、優れた自己冷却性が得られる。具体的には、上記Q値(=0.9a−b)が大きい程好ましく、好ましい順に、0.13以上、0.24以上、0.35以上、0.47以上である。   Therefore, in the coated body of the present invention, the greater the difference in the infrared emissivity between a and b, the better the self-cooling property. Specifically, the Q value (= 0.9a−b) is preferably as large as possible, and in a preferable order, 0.13 or more, 0.24 or more, 0.35 or more, or 0.47 or more.

次に、「優れた放熱性」を表す指標について説明する。本発明では、ΔT1(=T1B−T1A)≧2.6℃、若しくは下記(V)式(5)[(a−0.05)×(b−0.05)≧0.08]を満足するものである。 Next, an index representing “excellent heat dissipation” will be described. In the present invention, ΔT1 (= T1 B −T1 A ) ≧ 2.6 ° C., or the following (V) formula (5) [(a−0.05) × (b−0.05) ≧ 0.08] Satisfied.

ここで、T1Aは、後記する図1に示す放熱性評価装置を用い、供試材として本発明塗装体を使用したときのT1位置の温度を;T1Bは、同様に上記図1の放熱性評価装置を用い、供試材として塗膜が被覆されていない基板を使用したときのT1位置の温度を、夫々、意味する。 Here, T1 A is the temperature at the T1 position when the coated body of the present invention is used as a test material using the heat dissipation evaluation apparatus shown in FIG. 1 to be described later; T1 B is the heat dissipation of FIG. This means the temperature at the T1 position when using a property evaluation apparatus and using a substrate that is not coated with a coating film as a test material.

上記ΔT1は、基板(塗膜が被覆されていない裸ままの原板)を用いた場合に比べ、本発明塗装体を用いた場合には、如何に電子機器の内部温度を低減できるかという指標を定めたものであり、本発明では、ΔT1を測定する装置として、特に、図1に示す本発明独自の放熱性評価装置を用いた。図1の装置は、電子機器等の用途で想定される雰囲気温度(電子機器部材の種類等によって雰囲気温度は異なるが、概ね50〜70℃、最高で100℃程度)の放熱特性を評価し得る装置として極めて有用であり、これにより、電子機器用途を模擬した実用レベルでの放熱効果を正しく評価することが可能となる。   The ΔT1 is an index of how the internal temperature of the electronic device can be reduced when the coated body of the present invention is used, compared to the case where a substrate (a bare original plate not coated with a coating film) is used. In the present invention, as the apparatus for measuring ΔT1, in particular, the heat radiation evaluation apparatus unique to the present invention shown in FIG. 1 was used. The apparatus of FIG. 1 can evaluate the heat radiation characteristics of the ambient temperature assumed for applications such as electronic devices (although the ambient temperature varies depending on the type of electronic device member, etc., it is generally about 50 to 70 ° C. and about 100 ° C. at the maximum). It is extremely useful as a device, and this makes it possible to correctly evaluate the heat dissipation effect at a practical level simulating the use of electronic equipment.

図1は、内部空間が100mm(縦)×130mm(横)×100mm(高さ)である直方体の装置である。図1中、1は供試材(被験体、測定面積は100×130mm)、2は断熱材、3は発熱体[底面積は1300mm2、当該発熱体面積内で引ける最も長い直線の長さ(図1では、対角線の長さ)は164mm]、5は測温装置である。 FIG. 1 shows a rectangular parallelepiped device having an internal space of 100 mm (vertical) × 130 mm (horizontal) × 100 mm (height). In FIG. 1, 1 is a test material (subject, measurement area is 100 × 130 mm), 2 is a heat insulating material, 3 is a heating element [the bottom area is 1300 mm 2 , and the length of the longest straight line that can be drawn within the heating element area. (In FIG. 1, the length of the diagonal line is 164 mm), 5 is a temperature measuring device.

このうち発熱体3には、シリコンラバーヒーターを用い、その上にアルミ板(赤外線放射率は0.1以下)を密着したものを使用する。また、図1のT1位置[内部空間の中央部(発熱体3から50mm上方)]に、測温装置5として熱電対を固定する。尚、発熱体からの熱輻射の影響を排除する目的で、熱電対の下部をカバーしておく。また、断熱材2は、その種類や使用態様等によって箱内雰囲気温度が変化する(放熱性にも影響する)為、赤外線放射率が0.03〜0.06の金属板[例えば電気亜鉛めっき鋼板(JIS SECC等)]を用い、後記する方法によってT1位置の雰囲気温度(絶対値温度)が約73〜74℃の範囲になる様、断熱材の張り方等を調整する。その他、放熱性に影響を及ぼす因子(例えば供試材の固定法等)についても、同様にT1位置の雰囲気温度(絶対値温度)が約73〜74℃の範囲になる様に調整する。   Of these, a silicon rubber heater is used as the heating element 3 and an aluminum plate (infrared emissivity is 0.1 or less) is used on the silicon rubber heater. In addition, a thermocouple is fixed as the temperature measuring device 5 at a position T1 in FIG. 1 [central portion of the internal space (above 50 mm from the heating element 3)]. The lower part of the thermocouple is covered for the purpose of eliminating the influence of heat radiation from the heating element. Moreover, since the heat insulating material 2 changes the atmospheric temperature in the box depending on the type and usage mode (which also affects heat dissipation), a metal plate having an infrared emissivity of 0.03 to 0.06 [for example, electrogalvanizing Using a steel plate (JIS SECC, etc.), the method of tensioning the heat insulating material is adjusted so that the atmosphere temperature (absolute value temperature) at the T1 position is in the range of about 73 to 74 ° C. by the method described later. In addition, the factors affecting the heat dissipation (for example, the fixing method of the test material) are similarly adjusted so that the ambient temperature (absolute temperature) at the T1 position is in the range of about 73 to 74 ° C.

次に上記装置を用いて放熱特性を評価する方法について説明する。   Next, a method for evaluating heat dissipation characteristics using the above apparatus will be described.

測定に当たっては、外気条件(風等)によるデータのバラツキをなくす目的で、測定条件を、温度:23℃、相対湿度:60%に制御しておく。   In the measurement, the measurement conditions are controlled to a temperature of 23 ° C. and a relative humidity of 60% for the purpose of eliminating variation in data due to outside air conditions (wind etc.).

まず、各供試材1を設置し、電源を入れてホットプレート3を140℃にまで加温する。ホットプレートの温度が安定して140℃となり、T1位置の温度が60℃以上になっていることを確認した後、一旦、供試材を取外す。箱内温度が50℃まで下がった時点で、再び供試材を設置し、設置してから90分後の箱内温度を夫々測定する。次に、上記供試材を用いたときの温度と、塗膜を施さない無塗装原板を用いたときの温度の差(ΔT1)を算出する。   First, each test material 1 is installed, the power is turned on, and the hot plate 3 is heated to 140 ° C. After confirming that the temperature of the hot plate is stably 140 ° C. and the temperature at the T1 position is 60 ° C. or higher, the specimen is once removed. When the temperature in the box drops to 50 ° C., the sample material is installed again, and the temperature in the box 90 minutes after installation is measured. Next, the difference (ΔT1) between the temperature when the above-mentioned test material is used and the temperature when an uncoated original plate without a coating film is used is calculated.

尚、ΔT1は、各供試材につき5回ずつ測定し、そのうち上限、下限を除いた3点のデータの平均値を、本発明におけるΔT1と定めた。   ΔT1 was measured five times for each specimen, and the average value of three points of data excluding the upper and lower limits was defined as ΔT1 in the present invention.

この様にして算出されたΔT1は大きい程、放熱特性に優れていることを意味する。好ましい順に2.7℃以上、3.0℃以上、3.3℃以上、3.5℃以上、3.7℃以上、4.0℃以上である。   The larger ΔT1 calculated in this way means that the heat dissipation characteristic is more excellent. It is 2.7 degreeC or more, 3.0 degreeC or more, 3.3 degreeC or more, 3.5 degreeC or more, 3.7 degreeC or more, 4.0 degreeC or more in preferable order.

尚、放熱特性の指標(目標レベル)は、電子機器の種類等によって異なるが、本発明によれば、後記する通り、放熱塗膜中に含まれる黒色添加剤を、塗膜厚との関係で適切に制御することによって、容易に、所定の放熱特性に調整することができる。   In addition, although the parameter | index (target level) of a heat dissipation characteristic changes with kinds etc. of an electronic device, according to this invention, as it mentions later, the black additive contained in a heat dissipation coating film is related with coating film thickness. By appropriately controlling, it is possible to easily adjust to a predetermined heat dissipation characteristic.

(V)式(5):(a−0.05)×(b−0.05)≧0.08
上式(5)は、本発明の塗装体における放熱特性の指標を、表裏面の赤外線積分放射率の積によって特定したもので、左辺[(a−0.05)×(b−0.05)]の計算値(以下、R値で代表させる場合がある)が大きい程、放熱特性(ΔT1)に優れていることを示す。好ましい下限は順に、0.35(ΔT1で、約2.6℃)、0.52(ΔT1で、約3.5℃)である。
(V) Formula (5): (a−0.05) × (b−0.05) ≧ 0.08
The above formula (5) is an index of heat dissipation characteristics in the coated body of the present invention specified by the product of the infrared integrated emissivity of the front and back surfaces, and the left side [(a−0.05) × (b−0.05). )] (There is a case where it is represented by an R value hereinafter) is larger, it indicates that the heat dissipation characteristic (ΔT1) is more excellent. Preferable lower limits are 0.35 (ΔT1, about 2.6 ° C.) and 0.52 (ΔT1, about 3.5 ° C.) in this order.

この上式(5)は、前述したΔT1と、良好な相関関係を有している。参考までに、後記する実施例の結果をプロットしたグラフを図4に示す。   The above equation (5) has a good correlation with the above-described ΔT1. For reference, FIG. 4 shows a graph in which the results of Examples described later are plotted.

次に、上記塗装体を得る為の具体的構成について説明する。   Next, a specific configuration for obtaining the coated body will be described.

上記塗装体は、基板の表裏面に塗膜が被覆されており、且つ、基板の少なくとも表面に、放熱性を有する放熱塗膜が被覆されたものである。所望の自己冷却性を確保する為には、裏面に比べ、表面の赤外線放射率を高くして上式(4)を満足することが必要であり、且つ、放熱特性は、少なくとも上式(5)を満足することが必要である。この様に第二の塗装体では、表面・裏面に要求される放熱特性のレベルが異なる為、以下、場合を分けて説明する。   In the coated body, a coating film is coated on the front and back surfaces of a substrate, and at least a surface of the substrate is coated with a heat radiation coating film having heat dissipation properties. In order to secure the desired self-cooling property, it is necessary to satisfy the above formula (4) by increasing the infrared emissivity of the front surface as compared with the back surface, and the heat dissipation characteristic is at least the above formula (5). ) Must be satisfied. Thus, since the level of the heat dissipation characteristic requested | required by the front surface and a back surface differs in the 2nd coating body, below, it demonstrates separately.

まず、上記第二の塗装体における「表面の放熱塗膜」は、下記(A)及び(B)の態様を包含する。   First, the “surface heat radiation coating” in the second coated body includes the following aspects (A) and (B).

(A)黒色の放熱性添加剤(黒色添加剤)を主に添加し、放熱塗膜中に含まれる黒色添加剤(X)を、塗膜厚(Y)との関係で制御する態様
表面の塗膜に黒色添加剤を添加し、放熱特性を高めようとする場合は、黒色添加剤の添加量(X)と塗膜厚(Y)が下式(6)を満足する様、X及びYを適宜、適切に制御すれば良い。具体的には下記(A−1)〜(A−3)の通りである。
(A) A black surface heat-dissipating additive (black additive) is mainly added, and the black additive (X) contained in the heat-radiating coating film is controlled in relation to the coating film thickness (Y) . When adding a black additive to the coating film to improve heat dissipation characteristics, X and Y are added so that the addition amount (X) of the black additive and the coating thickness (Y) satisfy the following formula (6). Is appropriately controlled. Specifically, it is as the following (A-1) to (A-3).

(A―1)式(6):(X−3)×(Y−0.5)≧3
上式(6)は、第二の塗装体における放熱性の目標レベル(ΔT1≧1.5℃)を実現する為の、X及びYの関係式を定めたものであり、P値[=(X−3)×(Y−0.5)]が大きい程、優れた放熱特性が得られる。好ましい順に、7以上、11以上、15以上、30以上、50以上である。
(A-1) Formula (6): (X-3) × (Y-0.5) ≧ 3
The above equation (6) defines the relational expression of X and Y for realizing the target level of heat dissipation (ΔT1 ≧ 1.5 ° C.) in the second coated body, and the P value [= ( The larger the X-3) × (Y-0.5)], the better the heat dissipation characteristics. It is 7 or more, 11 or more, 15 or more, 30 or more, 50 or more in a preferable order.

但し、P値をあまり大きくしても放熱特性は飽和していまい、使用する黒色添加剤等の量が増えるだけで経済的に無駄である他、本発明塗装体は電子機器の筺体として使用され、加工性や導電性等にも要求されることを考慮すると、P値の上限を、好ましい順に、240、200、150、100に制御することが推奨される。   However, even if the P value is increased too much, the heat dissipation characteristics do not saturate, and only the amount of black additive to be used increases, which is economically wasteful. In addition, the coated body of the present invention is used as a housing for electronic equipment. In consideration of requirements for workability, conductivity, etc., it is recommended that the upper limit of the P value be controlled to 240, 200, 150, 100 in order of preference.

本発明に用いられる黒色添加剤としては黒色を付与し得るものであれば特に限定されず、代表的にはカーボンブラックが挙げられるが、その他、Fe,Co,Ni,Cu,Mn,Mo,Ag,Sn等の酸化物、硫化物、カーバイドや黒色の金属微粉等を使用することもできる。最も好ましいのはカーボンブラックである。   The black additive used in the present invention is not particularly limited as long as it can impart black color, and typically includes carbon black, but in addition, Fe, Co, Ni, Cu, Mn, Mo, Ag , Sn or the like, sulfide, carbide, black metal fine powder, or the like can also be used. Most preferred is carbon black.

ここで、塗膜中のカーボンブラックの添加量(X)は、以下の方法により、測定することができる。   Here, the addition amount (X) of carbon black in the coating film can be measured by the following method.

まず、被験体(分析サンプル)に溶媒を加えて加温し、被験体中の有機物を分解する。使用する溶媒の種類は、ベース系樹脂の種類によっても異なり、各樹脂の溶解度に応じて、適宜、適切な溶媒を使用すれば良いが、例えば、ベース樹脂としてポリエステル系樹脂やウレタン系樹脂を用いる場合は、水酸化ナトリウム−メタノール溶液を添加した容器(ナス型フラスコ等)に被験体を加え、この容器を70℃のウオーターバスで加温し、被験体中の有機物を分解すれば良い。   First, a solvent is added to a subject (analysis sample) and heated to decompose organic substances in the subject. The type of solvent to be used varies depending on the type of base resin, and an appropriate solvent may be used as appropriate according to the solubility of each resin. For example, a polyester resin or a urethane resin is used as the base resin. In such a case, the subject may be added to a container (eg, eggplant-shaped flask) to which a sodium hydroxide-methanol solution has been added, and the container may be heated in a 70 ° C. water bath to decompose organic matter in the subject.

次いで、この有機物をガラスフィルター(孔径0.2μm)で濾別し、得られた残渣中の炭素を、燃焼赤外線吸収法により定量し、塗膜中のカーボンブラック濃度を算出する。   Subsequently, this organic substance is filtered off with a glass filter (pore diameter 0.2 μm), and carbon in the obtained residue is quantified by a combustion infrared absorption method to calculate a carbon black concentration in the coating film.

更に、上記黒色添加剤の平均粒径は5〜100nmに制御することが好ましい。上記添加剤の平均粒径が5nm未満では、所望の放熱特性が得られない他、塗料の安定性が悪く、塗装外観に劣る。一方、平均粒径が100nmを超えると放熱特性が低下するのみならず、塗装後外観が不均一となってしまう。好ましくは10nm以上、90nm以下;より好ましくは15nm以上、80nm以下である。尚、放熱特性に加え、塗膜安定性、塗装後外観均一性等を総合的に勘案すれば、黒色添加剤の最適平均粒径は概ね20〜40nmとすることが推奨される。   Furthermore, the average particle size of the black additive is preferably controlled to 5 to 100 nm. If the average particle diameter of the additive is less than 5 nm, desired heat dissipation characteristics cannot be obtained, the stability of the paint is poor, and the coating appearance is poor. On the other hand, when the average particle diameter exceeds 100 nm, not only the heat dissipation characteristics are deteriorated, but also the appearance after coating becomes non-uniform. Preferably they are 10 nm or more and 90 nm or less; More preferably, they are 15 nm or more and 80 nm or less. In addition to the heat dissipation characteristics, it is recommended that the optimum average particle size of the black additive be approximately 20 to 40 nm considering the stability of the coating film and the appearance uniformity after coating.

(A−2)式(7):4%≦X<15%
黒色添加剤の含有量Xは3%超を前提とし、4%以上とすることが推奨される。ここで、「X>3%」を前提としたのは、上式(6)を満足する為には、当該式の左辺の係数である(X−3)は正(>0)であることが必要だからである。
(A-2) Formula (7): 4% ≦ X <15%
Assuming that the content X of the black additive exceeds 3%, it is recommended to set it to 4% or more. Here, in order to satisfy the above equation (6), “X> 3%” is premised on that the coefficient on the left side of the equation (X−3) is positive (> 0). Because it is necessary.

また、上記Xの下限は、優れた放熱特性を得ると同時に、塗装体自体の特性(塗装性、外観等)を確保する為に定められたもので、3%以下では所望の特性が得られない。好ましい下限は順に、5%、7%、8%、10%である。一方、Xの上限は放熱特性との関係では特に制限されないが、15%以上になると塗装性が悪くなり、塗布むらが生じて外観不良が発生する。従って、塗装性等を考慮した好ましい上限は順に、15%未満、13%、11%である。   The lower limit of X is determined in order to obtain excellent heat dissipation characteristics and at the same time ensure the characteristics of the coated body itself (paintability, appearance, etc.). Desirable characteristics can be obtained at 3% or less. Absent. Preferable lower limits are 5%, 7%, 8% and 10% in order. On the other hand, the upper limit of X is not particularly limited in relation to the heat dissipation characteristics, but when it is 15% or more, the paintability is deteriorated, coating unevenness occurs, and appearance defects occur. Therefore, the preferable upper limit in consideration of paintability and the like is less than 15%, 13%, and 11% in order.

(A−3)式(8):Y>1μm
放熱塗膜の塗膜厚さYは、0.5μm超を前提とし、1μm超とすることが推奨される。ここで、「Y>0.5μm」を前提としたのは、上式(6)を満足する為には、当該式の左辺の係数である(Y−0.5)が正(>0)であることが必要だからである。
(A-3) Formula (8): Y> 1 μm
The coating thickness Y of the heat dissipation coating is premised on more than 0.5 μm, and it is recommended that the coating thickness Y exceeds 1 μm. Here, in order to satisfy the above equation (6), “Y> 0.5 μm” is premised on that the coefficient on the left side of the equation (Y−0.5) is positive (> 0). Because it is necessary to be.

上記Yの下限は、特に優れた放熱特性を得る為に定められたもので、Yが0.5μm以下では、黒色添加剤を多く添加しても所望の放熱効果が得られない。好ましい下限は順に、3μm、5μm、7μm、10μmである。   The lower limit of Y is determined in order to obtain particularly excellent heat dissipation characteristics. When Y is 0.5 μm or less, a desired heat dissipation effect cannot be obtained even if a large amount of black additive is added. Preferable lower limits are 3 μm, 5 μm, 7 μm, and 10 μm in order.

尚、上記Yの上限は放熱特性との関係では特に制限されないが、本発明塗装体は電子機器部品への適用を意図しており、当該用途との関係上、加工性の向上も要求されること;特に曲げ加工時における塗膜のクラックや剥離等の発生防止等を考慮すると、50μm以下(より好ましい順に、45μm以下、40μm以下、35μm以下、30μm以下)に制御することが推奨される。   The upper limit of Y is not particularly limited in relation to heat dissipation characteristics, but the coated body of the present invention is intended to be applied to electronic equipment parts, and improvement in workability is also required in relation to the application. In particular, considering prevention of occurrence of cracks and peeling of the coating film during bending, it is recommended to control to 50 μm or less (more preferably, 45 μm or less, 40 μm or less, 35 μm or less, 30 μm or less).

更に、良好な加工性を備えると共に、優れた導電性も確保する為には、上記Yを12μm以下(より好ましい順に、11μm以下、更により好ましくは10μm以下)に制御することが推奨される。   Furthermore, it is recommended to control the above Y to 12 μm or less (more preferably, 11 μm or less, and even more preferably 10 μm or less) in order to provide good workability and ensure excellent conductivity.

(B)黒色添加剤以外の他の添加剤を主に添加する態様
表面塗膜の放熱特性を高める為に、黒色添加剤以外の他の添加剤(代表的には、少なくともTiO2)を使用する場合は、当該他の添加剤として、例えばTiO2、セラミックス、酸化鉄、酸化アルミニウム、硫酸バリウム、酸化ケイ素等が用いられる。これらは、1種または2種以上使用することができる。更にカーボンブラック等の黒色添加剤を添加しても良い。上記放熱塗膜の膜厚は、所望の放熱特性が得られる様、使用する添加剤の種類等に応じて適宜適切な膜厚を定めることができるが、概ね、5〜30μm程度とすることが推奨される。
(B) A mode in which additives other than black additives are mainly added In order to enhance the heat dissipation characteristics of the surface coating film, other additives (typically, at least TiO2) other than black additives are used. In this case, for example, TiO 2 , ceramics, iron oxide, aluminum oxide, barium sulfate, silicon oxide or the like is used as the other additive. These can be used alone or in combination of two or more. Further, a black additive such as carbon black may be added. The film thickness of the heat dissipation coating can be appropriately determined depending on the type of additive used, etc., so that desired heat dissipation characteristics can be obtained. Recommended.

具体的にはTiO2含有塗膜の場合、塗膜中に酸化チタンを概ね、50〜70%添加し、塗膜厚を約25〜30μmとすることが推奨される。また、メタリック調外観の塗膜を施したいときは、Alフレーク等を概ね、5〜30%添加し、塗膜厚を約5〜30μmとすることが推奨される。 Specifically, in the case of a TiO 2 -containing coating film, it is recommended to add approximately 50 to 70% of titanium oxide in the coating film so that the coating film thickness is about 25 to 30 μm. When it is desired to apply a coating film having a metallic appearance, it is recommended that Al flakes and the like are added in an amount of about 5 to 30% and the coating thickness is about 5 to 30 μm.

次に、本発明に係る第二の塗装体における「裏面の塗膜」について説明する。前述した「表面の塗膜」は、優れた自己冷却性を確保する為に放熱塗膜とする必要があるが、「裏面の塗膜」は、所望の特性が得られる限り、必ずしも放熱塗膜とする必要はない。即ち、本発明の塗装体には、基板の裏面に塗膜が施されていない「片面塗装鋼板」は包含されない(塗膜なし原板の赤外線放射率は概ね0.04で、所望の自己冷却性は得られない)が、上式(4)を満足する限りにおいて、任意の塗膜を採用することができる。   Next, the “back coating film” in the second coated body according to the present invention will be described. The above-mentioned “surface coating film” needs to be a heat radiation coating film in order to ensure excellent self-cooling properties, but the “back surface coating film” is not necessarily a heat radiation coating film as long as desired properties are obtained. It is not necessary to. That is, the coated body of the present invention does not include a “single-side coated steel plate” in which the back side of the substrate is not coated (the infrared emissivity of the uncoated base plate is approximately 0.04, and the desired self-cooling property). However, as long as the above expression (4) is satisfied, any coating film can be employed.

具体的には、前述した黒色添加剤・黒色添加剤以外の他の添加剤を単独または併用し、表面塗膜の放射率に応じて、適宜、添加量及び塗膜厚を適切に調整して裏面の塗膜を形成することができる。尚、黒色添加剤を用いて裏面の塗膜を形成する場合、前記XとYの関係は、必ずしも、前述した(6)式を満足する必要はなく、放熱性を殆ど有しない塗膜(前記のP値が0未満)であっても、表面塗膜の赤外線放射率さえ、適切に制御すれば、所望の自己冷却性を確保することができる(後記する表1のNo.1及び11を参照)。   Specifically, other additives other than the black additive and black additive described above are used alone or in combination, and the addition amount and coating thickness are appropriately adjusted according to the emissivity of the surface coating film. A coating film on the back surface can be formed. In addition, when forming the coating film on the back surface using a black additive, the relationship between the X and Y does not necessarily satisfy the above-described formula (6), and the coating film having almost no heat dissipation (the above-mentioned Even if the infrared emissivity of the surface coating is appropriately controlled, the desired self-cooling property can be secured (Nos. 1 and 11 in Table 1 described later). reference).

或いは、上記の添加剤を全く添加せず、塗膜厚を所定範囲(約2.5μm以上)に制御した塗膜も採用することができる(後記する表1のNo.3及び7を参照)。塗膜中に含まれる樹脂のみによっても、或る程度の放熱特性が得られるからである。   Alternatively, it is also possible to employ a coating film in which the above-mentioned additives are not added at all and the coating thickness is controlled within a predetermined range (about 2.5 μm or more) (see Nos. 3 and 7 in Table 1 described later). . This is because a certain degree of heat dissipation characteristics can be obtained only with the resin contained in the coating film.

具体的には、例えば塗膜形成樹脂として非親水性のポリエステル系樹脂を使用する場合は、塗膜厚を概ね、2.5μm以上に調整すれば良い。   Specifically, for example, when a non-hydrophilic polyester resin is used as the coating film-forming resin, the coating film thickness may be adjusted to approximately 2.5 μm or more.

以上、本発明の塗装体において、表面・裏面の塗膜を形成する黒色添加剤/他の添加剤について、その基本構成を説明した。   The basic configuration of the black additive / other additive that forms the coating film on the front and back surfaces of the coated body of the present invention has been described above.

尚、塗膜中に添加される樹脂(放熱塗膜を形成するベース樹脂)の種類は、放熱特性の観点からは特に限定されず、アクリル系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、フッ素系樹脂、シリコン系樹脂、およびそれらの混合または変性した樹脂等を適宜使用することができる。但し、本発明塗装体は電子機器の筺体として使用される為、放熱性に加え、耐食性、加工性の向上も要求されることを考慮すると、上記ベース樹脂は、非親水性樹脂[具体的には、水との接触角が30°以上(より好ましくは50°以上、更により好ましくは70°以上)を満足するもの]であることが好ましい。この様な非親水性特性を満足する樹脂は、混合度合や変性の程度等によっても変化し得るが、例えばポリエステル系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、シリコン系樹脂、およびそれらの混合または変性した樹脂等の使用が好ましく、なかでもポリエステル系樹脂若しくは変性したポリエステル系樹脂(エポキシ変性ポリエステル系樹脂、フェノール誘導体を骨格に導入したポリエステル系樹脂等の熱硬化性ポリエステル系樹脂または不飽和ポリエステル系樹脂)の使用が推奨される。   In addition, the kind of resin (base resin forming the heat radiation coating film) added to the coating film is not particularly limited from the viewpoint of heat radiation characteristics, and acrylic resin, urethane resin, polyolefin resin, polyester resin. Fluorine-based resins, silicon-based resins, mixed or modified resins thereof, and the like can be used as appropriate. However, since the coated body of the present invention is used as a casing for electronic equipment, considering that the improvement of corrosion resistance and workability is required in addition to heat dissipation, the base resin is a non-hydrophilic resin [specifically, The contact angle with water preferably satisfies 30 ° or more (more preferably 50 ° or more, even more preferably 70 ° or more)]. Resins satisfying such non-hydrophilic properties may vary depending on the degree of mixing, the degree of modification, etc., for example, polyester resins, polyolefin resins, fluorine resins, silicon resins, and mixtures or modifications thereof. Among them, polyester resins or modified polyester resins (epoxy modified polyester resins, thermosetting polyester resins such as polyester resins having a phenol derivative introduced into the skeleton, or unsaturated polyester resins) are preferred. ) Is recommended.

更に上記塗膜には、本発明の作用を損なわない範囲で、カーボンブラック等の黒色添加剤の他、防錆顔料,シリカ等の顔料も添加しても良い。或いは、黒色添加剤以外の他の放熱性を有する添加剤(例えばTiO2、セラミックス、酸化鉄、酸化アルミニウム、硫酸バリウム、酸化ケイ素等を1種または2種以上の少なくとも一種)も、本発明の作用を損なわない範囲で、添加することができる。 Furthermore, in addition to black additives such as carbon black, pigments such as rust preventive pigments and silica may be added to the coating film as long as the effects of the present invention are not impaired. Alternatively, other heat-dissipating additives (for example, at least one of TiO 2 , ceramics, iron oxide, aluminum oxide, barium sulfate, silicon oxide, etc.) other than the black additive are also used in the present invention. It can be added as long as the action is not impaired.

また、上記塗膜には、架橋剤を添加することができる。本発明に用いられる架橋剤としては、例えばメラミン系化合物やイソシアネート系化合物等が挙げられ、これらを1種または2種以上、0.5〜10質量%の範囲で添加することが推奨される。   Moreover, a crosslinking agent can be added to the said coating film. As a crosslinking agent used for this invention, a melamine type compound, an isocyanate type compound, etc. are mentioned, for example, It is recommended to add these by 1 type or 2 types or more in the range of 0.5-10 mass%.

以上、本発明の塗装体を特徴付ける塗膜について詳述した。前述した通り、本発明の最重要ポイントは塗膜の構成を特定したところにあり、塗膜以外の基板については特に限定されない。従って本発明に用いられる基板としては、(1)代表的には金属板、具体的には冷延鋼板、熱延鋼板、電気亜鉛めっき鋼板(EG)、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、5%Al−Znめっき鋼板、55%Al−Znめっき鋼板、Al等の各種めっき鋼板、ステンレス鋼板等の鋼板類や、公知の金属板等を全て適用することができる他、(2)金属板以外の基板、具体的には線材、棒材、パイプ材、セラミック材等も挙げられる。このうち好ましいのは、熱導電性に優れた金属板等の金属材料、セラミックである。   The coating film characterizing the coated body of the present invention has been described in detail above. As described above, the most important point of the present invention is that the configuration of the coating film is specified, and the substrate other than the coating film is not particularly limited. Therefore, as a substrate used in the present invention, (1) typically a metal plate, specifically a cold-rolled steel plate, a hot-rolled steel plate, an electrogalvanized steel plate (EG), a hot-dip galvanized steel plate (GI), alloying Hot-dip galvanized steel sheet (GA), 5% Al—Zn plated steel sheet, 55% Al—Zn plated steel sheet, various plated steel sheets such as Al, steel sheets such as stainless steel sheets, known metal plates, etc. can all be applied In addition, (2) a substrate other than a metal plate, specifically, a wire, a bar, a pipe, a ceramic, and the like can be given. Among these, metal materials such as a metal plate excellent in thermal conductivity, and ceramic are preferable.

尚、上記(1)の金属板は、耐食性向上、塗膜の密着性向上等を目的として、クロメート処理やリン酸塩処理等の表面処理を施してもよいが、環境汚染等を考慮して、ノンクロメート処理した金属板を使用してもよく、いずれの態様も本発明の範囲内に包含される。   The metal plate (1) may be subjected to surface treatment such as chromate treatment and phosphate treatment for the purpose of improving corrosion resistance and adhesion of the coating film. A non-chromated metal plate may be used, and any embodiment is included within the scope of the present invention.

ここで、ノンクロメート処理した金属板を用いた本発明塗装体の構成について説明する。   Here, the configuration of the coated body of the present invention using a non-chromated metal plate will be described.

まず、上記基板は、クロムフリーの下地処理がなされており、且つ、放熱塗膜(少なくとも表面)は、更に防錆剤を含有することが必要である。一般にノンクロメート処理すると耐食性が低下することが知られており、耐食性向上の目的で、防錆剤の使用が不可欠だからである。   First, the substrate is subjected to a chromium-free ground treatment, and the heat radiation coating film (at least the surface) needs to further contain a rust preventive agent. In general, it is known that non-chromate treatment reduces the corrosion resistance, and the use of a rust inhibitor is indispensable for the purpose of improving the corrosion resistance.

ここで、上記「クロムフリーの下地処理」は特に限定されず、通常、使用される公知の下地処理を行えば良い。具体的には、リン酸塩系、シリカ系、チタン系、ジルコニウム系等の下地処理を、単独で、若しくは併用して行うことが推奨される。   Here, the “chromium-free base treatment” is not particularly limited, and a known base treatment that is usually used may be performed. Specifically, it is recommended that the surface treatment such as phosphate-based, silica-based, titanium-based, zirconium-based is performed alone or in combination.

また、上記防錆剤としては、シリカ系化合物、リン酸塩系化合物、亜リン酸塩系化合物、ポリリン酸塩系化合物、イオウ系有機化合物、ベンゾトリアゾール、タンニン酸、モリブデン酸塩系化合物、タングステン酸塩系化合物、バナジウム系化合物、シランカップリング剤等が挙げられ、これらを単独で若しくは併用することができる。特に好ましいのは、シリカ系化合物(例えばカルシウムイオン交換シリカ等)と、リン酸塩系化合物、亜リン酸塩系化合物、ポリリン酸塩系化合物(例えばトリポリリン酸アルミニウム等)との併用であり、シリカ系化合物:(リン酸塩系化合物、亜リン酸塩系化合物、またはポリリン酸塩系化合物)を、質量比率で0.5〜9.5:9.5〜0.5(より好ましくは1:9〜9:1)の範囲で併用することが推奨される。この範囲に制御することにより、所望の耐食性と加工性の両方を確保することができる。   In addition, the above rust preventives include silica compounds, phosphate compounds, phosphite compounds, polyphosphate compounds, sulfur organic compounds, benzotriazole, tannic acid, molybdate compounds, tungsten Examples thereof include acid salt compounds, vanadium compounds, and silane coupling agents, and these can be used alone or in combination. Particularly preferred is a combination of a silica-based compound (for example, calcium ion-exchanged silica) and a phosphate-based compound, a phosphite-based compound, or a polyphosphate-based compound (for example, aluminum tripolyphosphate). Compound: (phosphate compound, phosphite compound, or polyphosphate compound) in a mass ratio of 0.5 to 9.5: 9.5 to 0.5 (more preferably 1: It is recommended to use in the range of 9-9: 1). By controlling within this range, both desired corrosion resistance and workability can be ensured.

尚、これらの防錆剤は、前記の下地処理にも使用しても良い。   In addition, you may use these rust preventives also for the said surface treatment.

上記防錆剤の使用により耐食性は確保できるが、一方、防錆剤の添加による加工性が低下することも知られている。そこで本発明では、放熱塗膜の形成成分として、特に、樹脂及び架橋剤の組合わせに留意しており、エポキシ変性ポリエステル系樹脂及び/又はフェノール誘導体を骨格に導入したポリエステル系樹脂、及び架橋剤(好ましくはイソシアネート系樹脂及び/又はメラミン系樹脂、より好ましくは両者の併用)を組合わせて使用することが推奨される。   It is also known that the corrosion resistance can be ensured by the use of the above rust preventive agent, but the workability due to the addition of the rust preventive agent is lowered. Therefore, in the present invention, as a component for forming a heat-dissipating coating film, particularly attention is paid to a combination of a resin and a crosslinking agent, and an epoxy-modified polyester resin and / or a polyester resin in which a phenol derivative is introduced into the skeleton, and a crosslinking agent. It is recommended to use a combination of (preferably an isocyanate resin and / or a melamine resin, more preferably a combination of both).

このうちエポキシ変性ポリエステル系樹脂及びフェノール誘導体を骨格に導入したポリエステル系樹脂(例えばビスフェノールAを骨格に導入したポリエステル系樹脂等)は、ポリエステル系樹脂に比べ、耐食性及び塗膜密着性に優れている。   Of these, epoxy-modified polyester resins and polyester resins in which phenol derivatives are introduced into the skeleton (for example, polyester resins in which bisphenol A is introduced into the skeleton) are superior in corrosion resistance and coating film adhesion compared to polyester resins. .

一方、イソシアネート系架橋剤は加工性向上作用(加工後の外観向上作用を意味し、後記する実施例では、密着性曲げ試験におけるクラック数で評価している)を有しており、これにより、防錆剤を添加したとしても優れた加工性を確保することが可能となる。   On the other hand, the isocyanate-based crosslinking agent has a workability improving action (meaning an appearance improving action after processing, and in the examples described later, it is evaluated by the number of cracks in an adhesion bending test). Even if a rust inhibitor is added, excellent workability can be secured.

また、メラミン系架橋剤は、優れた耐食性を有することが本発明者らの検討結果により明らかになった。従って、本発明では、前述した防錆剤と併用することにより、非常に良好な耐食性が得られることになる。   Moreover, it became clear from the examination result of the present inventors that the melamine-based crosslinking agent has excellent corrosion resistance. Therefore, in the present invention, very good corrosion resistance can be obtained by using in combination with the above-described rust inhibitor.

本発明では、上記イソシアネート系架橋剤及びメラミン系架橋剤を単独で使用しても良いが、両者を併用すると、加工性及び耐食性を一層向上させることができる。具体的には、イソシアネート系樹脂100質量部に対し、メラミン系樹脂を5〜80質量部の比率で含有することが推奨される。メラミン系樹脂が5質量部未満の場合、所望の耐食性が得られず、一方、メラミン系樹脂が80質量部を超えると、イソシアネート系樹脂の添加による効果が良好に発揮されず、所望の加工性向上作用が得られない。より好ましくは、イソシアネート系樹脂100質量部に対し、10質量部以上、40質量部以下、更により好ましくは15質量部以上、30質量部以下である。   In the present invention, the isocyanate-based crosslinking agent and the melamine-based crosslinking agent may be used alone, but when both are used in combination, processability and corrosion resistance can be further improved. Specifically, it is recommended to contain a melamine resin at a ratio of 5 to 80 parts by mass with respect to 100 parts by mass of the isocyanate resin. When the melamine-based resin is less than 5 parts by mass, desired corrosion resistance cannot be obtained. On the other hand, when the melamine-based resin exceeds 80 parts by mass, the effect due to the addition of the isocyanate-based resin is not exhibited well, and the desired processability is achieved. Improvement effect cannot be obtained. More preferably, it is 10 mass parts or more and 40 mass parts or less with respect to 100 mass parts of isocyanate type resin, More preferably, they are 15 mass parts or more and 30 mass parts or less.

尚、上述した塗膜形成成分を構成する樹脂、防錆剤、架橋剤、黒色添加剤、及び導電性フィラーの比率については、後記する「塗料組成物」において説明する。   In addition, the ratio of the resin, the rust inhibitor, the crosslinking agent, the black additive, and the conductive filler constituting the coating film forming component described above will be described in “Coating composition” described later.

この様な構成を満足する塗装体は、耐食性、塗膜密着性及び加工性に優れている。具体的には、耐食性に関しては、JIS−Z−2371に規定されている塩水噴霧試験耐食性試験(72時間)における外観異常部(塗膜膨れ、錆等)の面積率が10%以下(より好ましくは5%以下)を満足するものである。上記特性は、使用する架橋剤の種類を適切に制御したり(例えば耐食性向上に有用なメラミン系架橋剤を単独で所定量添加する)、防錆剤の溶出を抑制する目的で、塗膜の上に塗膜(好ましくはクリヤー塗膜)を施した二層塗膜とする等の構成を採用することにより、一層高められ、その結果、より過酷な試験[JIS−Z−2371に規定されている塩水噴霧試験耐食性試験(120時間)]における外観異常の面積率が10%以下(より好ましくは5%以下)をも満足するものである。   A coated body satisfying such a configuration is excellent in corrosion resistance, coating film adhesion and workability. Specifically, regarding the corrosion resistance, the area ratio of abnormal appearance parts (coating swelling, rust, etc.) in the salt spray test corrosion resistance test (72 hours) defined in JIS-Z-2371 is 10% or less (more preferably Satisfies 5% or less). The above properties are suitable for controlling the type of crosslinking agent used (for example, adding a predetermined amount of a melamine-based crosslinking agent useful for improving corrosion resistance alone) or suppressing the dissolution of a rust inhibitor. By adopting a structure such as a two-layer coating film on which a coating film (preferably a clear coating film) is applied, it is further enhanced. As a result, a more severe test [as defined in JIS-Z-2371] The area ratio of appearance abnormality in the salt spray test corrosion resistance test (120 hours)] satisfies 10% or less (more preferably 5% or less).

更に上記塗装体は、塗膜密着性及び加工性にも優れたものである。ここで、「塗膜密着性」も「加工性」も、共に「加工後の外観に優れている」点で共通の性質を備えているが、本発明では、特に「加工性」について、「JIS K 5400に規定されている密着曲げ試験におけるクラック(ひび割れ)の数」で評価しており(本発明塗装体は、上記密着曲げ試験におけるクラック数が5個以下、より好ましくは2個以下、更により好ましくは0個を満足する)、一方、「塗膜密着性」は、「加工した部分の塗膜密着性」で評価している。   Furthermore, the said coated body is excellent also in coating-film adhesiveness and workability. Here, both “coating adhesion” and “workability” have a common property in terms of “excellent appearance after processing”, but in the present invention, “workability” is particularly “ (The number of cracks in the adhesion bending test is 5 or less, more preferably 2 or less. On the other hand, “coating film adhesion” is evaluated by “coating film adhesion of the processed part”.

以上、ノンクロメート処理した金属板を用いた本発明塗装体について説明した。   The present invention coated body using a nonchromated metal plate has been described above.

これまで説明した本発明塗装体は、基板に塗膜が施された単層皮膜構成であるが、本発明には、更に、その上に塗膜が一種または2種以上被覆された複層皮膜構成の態様も包含される。特に本発明では、耐疵付き性及び耐指紋性の付与を目指して、特に黒色塗膜を使用した場合、当該黒色塗膜にクリヤー皮膜を施した二層皮膜構成とすることが推奨される。黒色塗膜は濃色系の黒で塗装されている為、手で取扱う際、指紋が目立ち易いというデメリットを抱えており、外観品質が低下するが、クリヤー皮膜の形成により、耐指紋性が改善される。また、たとえ黒色塗膜に疵が付いたとしても、クリヤー皮膜を施すことにより当該疵が目立たなくなるというメリットもある。   The coated body of the present invention described so far has a single-layer coating structure in which a coating film is applied to a substrate. However, the present invention further includes a multilayer coating in which one or more coating films are coated thereon. Configuration aspects are also encompassed. In particular, in the present invention, when a black coating is used particularly for the purpose of imparting scratch resistance and fingerprint resistance, it is recommended to have a two-layer coating configuration in which a clear coating is applied to the black coating. Since the black coating is painted in dark black, it has the demerit that fingerprints are easily noticeable when handled by hand, and the appearance quality deteriorates, but the clear film improves the fingerprint resistance. Is done. In addition, even if the black coating film has wrinkles, there is an advantage that the wrinkles become inconspicuous by applying the clear coating.

ここで、所望の特性(放熱特性/自己冷却性)を維持しつつ、耐疵付き性及び耐指紋性を向上させる為には、クリアー塗膜の膜厚を制御することが重要であるが、放熱性に加えて優れた導電性をも具備させる場合には、当該クリアー塗膜厚の好ましい範囲が変化する。   Here, in order to improve the scratch resistance and fingerprint resistance while maintaining the desired characteristics (heat dissipation characteristics / self-cooling properties), it is important to control the film thickness of the clear coating film, When providing excellent conductivity in addition to heat dissipation, the preferred range of the clear coating thickness changes.

即ち、塗膜に導電性フィラーを添加しない塗装体の場合、優れた放熱特性/自己冷却性を維持しつつ、しかも耐疵付き性及び耐指紋性の向上を図る為には、クリアー塗膜の膜厚を0.1〜10μmに制御することが推奨される。0.1μm未満では耐疵付き性及び耐指紋性の向上作用が得られない。より好ましくは0.2μm以上、更に好ましくは0.3μm以上である。但し、膜厚が10μm超と厚くしても、耐疵付き性等の向上作用は飽和してしまい、皮膜コストが増加するのみで不経済である為、その上限を10μmにすることが好ましい。より好ましくは8μm以下、更に好ましくは7μm以下である。   That is, in the case of a coated body in which a conductive filler is not added to the coating film, in order to maintain the excellent heat dissipation property / self-cooling property and to improve the anti-scratch property and the fingerprint resistance, It is recommended to control the film thickness to 0.1 to 10 μm. If it is less than 0.1 μm, the effect of improving the scratch resistance and fingerprint resistance cannot be obtained. More preferably, it is 0.2 μm or more, and further preferably 0.3 μm or more. However, even if the film thickness is thicker than 10 μm, the effect of improving the scratch resistance and the like is saturated, and it is uneconomical because only the coating cost increases, so the upper limit is preferably 10 μm. More preferably, it is 8 micrometers or less, More preferably, it is 7 micrometers or less.

上述の如く塗膜の上にクリアー塗膜を被覆した二層塗膜構造とすることにより、塗膜単独からなる単層塗膜構造に比べ、耐疵付き性を格段に向上し得ると共に、該単層塗膜構造では達成できなかった耐指紋性向上も得られる点で、クリアー塗膜の形成は極めて有効である。   By using a two-layer coating film structure in which a clear coating film is coated on a coating film as described above, the scratch resistance can be significantly improved compared to a single-layer coating film structure consisting of a coating film alone, The formation of a clear coating film is extremely effective in that an improvement in fingerprint resistance that cannot be achieved with a single-layer coating film structure can be obtained.

ここで、上記クリヤー皮膜を構成する樹脂としては特に限定されず、透明な皮膜を形成し得る樹脂は全て包含される。具体的にはアクリル系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、フッ素系樹脂、シリコン系樹脂等の樹脂、及びこれら樹脂の混合物または変性した樹脂等が挙げられる。更にクリヤー皮膜中には、本発明の作用を損なわない範囲で、架橋剤、ワックス、艶消し剤等の添加剤を添加しても良い。これにより、塗膜の潤滑性や強度等を容易に調整することが可能になり、その結果、耐疵付き性を更に高めることができるからである。本発明に用いられる添加剤としては、塗膜中に通常使用され、上記作用を有効に発揮し得るものであればとくに限定されず、例えばメラミン系架橋剤、ブロックイソシアネート系架橋剤等の架橋剤が挙げられる。   Here, it does not specifically limit as resin which comprises the said clear membrane | film | coat, All resin which can form a transparent membrane | film | coat is included. Specific examples include resins such as acrylic resins, urethane resins, polyolefin resins, polyester resins, fluorine resins, and silicon resins, and mixtures or modified resins of these resins. Furthermore, additives such as a cross-linking agent, a wax, and a matting agent may be added to the clear film as long as the effects of the present invention are not impaired. Thereby, the lubricity and strength of the coating film can be easily adjusted, and as a result, the scratch resistance can be further enhanced. The additive used in the present invention is not particularly limited as long as it is usually used in a coating film and can effectively exhibit the above-described action. For example, a crosslinking agent such as a melamine crosslinking agent or a blocked isocyanate crosslinking agent. Is mentioned.

尚、前述した通り、本発明の塗装体には、クリヤー塗膜でない塗膜が施された複数皮膜構成のものも包含されるが、この場合には、上述したクリヤー塗膜を構成する樹脂および添加剤に、更に着色顔料等の顔料等を添加することができる。   As described above, the coated body of the present invention includes those having a plurality of coating structures coated with a coating film that is not a clear coating film. In this case, the resin constituting the above-described clear coating film and A pigment such as a color pigment can be further added to the additive.

また、クロムフリー系下地処理の施された基板に適用される塗料組成物として、塗膜形成成分に対し、エポキシ変性ポリエステル系樹脂及び/又はフェノール誘導体を骨格に導入したポリエステル系樹脂を35質量%以上(好ましくは40質量%以上、更により好ましくは45質量%以上)、防錆剤を2〜25質量%(好ましくは3質量%以上、20質量%以下;更により好ましくは4質量%以上、15質量%以下)、架橋剤を1〜20質量%(好ましくは2質量%以上、18質量%以下;更により好ましくは3質量%以上、15質量%以下)、及び黒色添加剤を3質量%超含有する塗料組成物も本発明の範囲内に包含される。このうち上記記架橋剤の好ましい要件(好ましくはソシアネート系架橋剤100質量部に対し、メラミン系架橋剤を5〜80質量部の比率で含有すること)、及び上記黒色添加剤の好ましい要件は前述した通りである。本発明の塗料組成物を用いれば、放熱性、耐食性、塗膜密着性、及び加工性に優れたクロムフリー系塗膜を形成することができるので、電子機器部材用塗装体を得る為の塗料であって、特に、クロムフリー塗装体用の塗料として好適に用いることができる。   Further, as a coating composition applied to a substrate subjected to a chromium-free base treatment, 35% by mass of a polyester resin in which an epoxy-modified polyester resin and / or a phenol derivative is introduced into the skeleton with respect to a coating film forming component. Or more (preferably 40% by mass or more, more preferably 45% by mass or more), 2 to 25% by mass of a rust inhibitor (preferably 3% by mass or more, 20% by mass or less; still more preferably 4% by mass or more, 15% by mass or less), 1 to 20% by mass of the crosslinking agent (preferably 2% by mass or more and 18% by mass or less; even more preferably 3% by mass or more and 15% by mass or less), and 3% by mass of the black additive. Super-containing coating compositions are also included within the scope of the present invention. Among these, preferable requirements for the above-mentioned crosslinking agent (preferably containing a melamine-based crosslinking agent in a ratio of 5 to 80 parts by mass with respect to 100 parts by mass of the socyanate-based crosslinking agent), and preferable requirements for the black additive described above. That's right. By using the coating composition of the present invention, it is possible to form a chromium-free coating film excellent in heat dissipation, corrosion resistance, coating film adhesion, and processability. In particular, it can be suitably used as a paint for a chromium-free coated body.

次に、本発明の塗装体を製造する方法について説明する。本発明の塗装体は、上記成分を含む塗料を、公知の塗装方法で基板の表面に塗布し、乾燥させて製造することができる。塗装方法は特に限定されないが、例えば表面を清浄化して、必要に応じて塗装前処理(例えばリン酸塩処理、クロメート処理など)を施した長尺金属帯表面に、ロールコーター法、スプレー法、カーテンフローコーター法などを用いて塗料を塗工し、熱風乾燥炉を通過させて乾燥させる方法などが挙げられる。被膜厚さの均一性や処理コスト、塗装効率などを総合的に勘案して実用上好ましいのは、ロールコーター法である。   Next, a method for producing the coated body of the present invention will be described. The coated body of the present invention can be produced by applying a coating containing the above components to the surface of a substrate by a known coating method and drying it. Although the coating method is not particularly limited, for example, the surface of a long metal strip that has been cleaned and subjected to pre-coating treatment (for example, phosphate treatment, chromate treatment, etc.) as necessary, roll coater method, spray method, Examples thereof include a method in which a paint is applied using a curtain flow coater method and the like, and dried by passing through a hot air drying furnace. A roll coater method is preferable in practical use in consideration of uniformity of film thickness, processing cost, coating efficiency, and the like.

尚、基板として樹脂塗装金属板を使用する場合には、樹脂被膜との密着性または耐食性の向上目的で、塗装前処理としてリン酸塩処理またはクロメート処理を施しても構わない。但し、クロメート処理材については、樹脂塗装体使用中のクロム溶出性の観点から、クロメート処理時のCr付着量を35mg/m2以下に抑制することが好ましい。この範囲であれば、下地クロメート処理層からのクロム溶出を抑えることが可能だからである。また、従来のクロメート処理材は必要に応じて設けられる上塗り塗装の耐水密着性が、6価クロムの溶出に伴って、湿潤環境下において低下する傾向にあるが、上記金属板では溶出が抑制されるため、上塗り被膜の耐水密着性が悪化することはない。 When a resin-coated metal plate is used as the substrate, a phosphate treatment or a chromate treatment may be performed as a pre-coating treatment for the purpose of improving the adhesion to the resin film or the corrosion resistance. However, with respect to the chromate treatment material, it is preferable to suppress the Cr adhesion amount during chromate treatment to 35 mg / m 2 or less from the viewpoint of chromium elution during use of the resin coating. This is because it is possible to suppress chromium elution from the underlying chromate treatment layer within this range. In addition, the conventional chromate treatment material has a water-resistant adhesion property of the top coating provided as needed, and tends to decrease in a wet environment with the elution of hexavalent chromium, but the above metal plate suppresses the elution. For this reason, the water-resistant adhesion of the top coat does not deteriorate.

或いは、前述したクロムフリーの下地処理を、ロールコーター法、スプレー法、浸漬処理法等により施せば、ノンクロメートタイプの塗装体を得ることができる。   Alternatively, a non-chromate-type coated body can be obtained by applying the above-described chromium-free ground treatment by a roll coater method, a spray method, an immersion treatment method, or the like.

更に本発明には、閉じられた空間に発熱体を内蔵する電子機器部品であって、該電子機器部品は、その外壁の全部または一部が上記電子機器部材用塗装体で構成されている電子機器部品も包含される。上記電子機器部品としては、CD、LD、DVD、CD−ROM、CD−RAM、PDP、LCD等の情報記録製品;パソコン、カーナビ、カーAV等の電気・電子・通信関連製品;プロジェクター、テレビ、ビデオ、ゲーム機等のAV機器;コピー機、プリンター等の複写機;エアコン室外機等の電源ボックスカバー、制御ボックスカバー、自動販売機、冷蔵庫等が挙げられる。   Further, according to the present invention, there is provided an electronic device component having a heating element built in a closed space, wherein the electronic device component is an electronic device in which all or a part of the outer wall is constituted by the above-described electronic device member coating body. Equipment parts are also included. The electronic device parts include information recording products such as CD, LD, DVD, CD-ROM, CD-RAM, PDP, LCD, etc .; electrical / electronic / communication related products such as personal computers, car navigation systems, car AVs; projectors, televisions, AV equipment such as video and game machines; copiers such as copiers and printers; power supply box covers such as air conditioner outdoor units, control box covers, vending machines, refrigerators and the like.

以下実施例によって本発明をさらに詳述するが、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で変更実施することはすべて本願発明に含まれる。   The present invention will be described in further detail with reference to the following examples. However, the following examples are not intended to limit the present invention, and all modifications and implementations without departing from the spirit of the present invention are included in the present invention.

実施例1
本実施例では、添加剤の種類、表裏面の放射率を種々変化させた各供試体における放熱性、自己冷却性、及び導電性を測定した。
Example 1
In this example, the heat release property, self-cooling property, and conductivity of each specimen with various types of additives and the emissivities of the front and back surfaces were measured.

まず、電気亜鉛めっき鋼板(板厚0.6mm)を原板として、その表裏面に、下記表1に示す添加剤を添加した塗料(ベース樹脂としてポリエステル樹脂を用い、架橋剤としてメラミン樹脂を使用)を塗布した後、焼付け、乾燥してNo.1〜19の各供試材(120×150mm)を作製した。このうち、No.17は、原板として、Zn−Ni合金めっき鋼板を黒色化処理したもの(板厚0.6mm)を使用し、それ以外は、原板として電気亜鉛めっき鋼板(板厚0.6mm)を使用した。   First, an electrogalvanized steel sheet (thickness 0.6 mm) as a base plate, and a paint in which the additives shown in Table 1 below are added to the front and back surfaces (a polyester resin is used as a base resin and a melamine resin is used as a crosslinking agent) After coating, it was baked and dried to obtain No. Sample materials 1 to 19 (120 × 150 mm) were prepared. Of these, No. 17 uses a blackened Zn-Ni alloy-plated steel plate (plate thickness 0.6 mm) as the original plate, and the other electrogalvanized steel plate (plate thickness 0.6 mm) as the original plate. )It was used.

この様にして得られた各供試材について、図1の装置を用い、前述した方法に基づいて赤外線(波長:4.5〜15.4μm)の積分放射率、及びΔT1、ΔT2及び導電率を測定した。   About each specimen obtained in this way, using the apparatus of FIG. 1, based on the method described above, the integrated emissivity of infrared rays (wavelength: 4.5 to 15.4 μm), ΔT1, ΔT2, and conductivity Was measured.

尚、放熱特性を表すΔT1は、下記基準で相対評価した。本発明に係る第二の塗装体では、◎、●及び○の塗装体を、「当該塗装体における良好な放熱性を発揮するもの」と評価している。
◎:3.5≦ΔT1
●:2.7≦ΔT1<3.5
○:1.5≦ΔT1<2.7
△:1.0≦ΔT1<1.5
×:ΔT<1.0
In addition, ΔT1 representing heat dissipation characteristics was relatively evaluated according to the following criteria. In the second coated body according to the present invention, the coated bodies of ◎, ●, and ◯ are evaluated as “those that exhibit good heat dissipation in the coated body”.
A: 3.5 ≦ ΔT1
●: 2.7 ≦ ΔT1 <3.5
○: 1.5 ≦ ΔT1 <2.7
Δ: 1.0 ≦ ΔT1 <1.5
×: ΔT <1.0

また、自己冷却性を示すΔT2は、下記基準で相対評価した。ΔT2が大きければ大きい程、放熱特性に優れていることを示す。尚、本発明では、◎及び○の塗装体を、「優れた自己冷却性を発揮するもの」として評価している。
◎:1.5≦ΔT2
○:0.5≦ΔT2<1.5
×:ΔT2<0.5
Further, ΔT2 indicating self-cooling property was evaluated relative to the following criteria. It shows that it is excellent in the thermal radiation characteristic, so that (DELTA) T2 is large. In addition, in this invention, the coating body of (double-circle) and (circle) is evaluated as "the thing which exhibits the outstanding self-cooling property."
A: 1.5 ≦ ΔT2
○: 0.5 ≦ ΔT2 <1.5
×: ΔT2 <0.5

得られた結果を表1及び表2に記載する。   The obtained results are shown in Tables 1 and 2.

Figure 2005001393
Figure 2005001393

Figure 2005001393
Figure 2005001393

上記表より、本発明の要件を満足する塗装体(No.1〜12)は、いずれも良好な放熱特性を維持しつつ、しかも、優れた自己冷却性を有している。特に、自己冷却性の指標である式(4)において、Q値(=0.9a−b)が0.045以上を遥かに超えるNo.1〜8は、極めて優れた自己冷却性を発揮しており、Q値が大きい程、自己冷却性に優れていることが分かる。   From the said table | surface, all the coating bodies (No. 1-12) which satisfy the requirements of this invention maintain the favorable heat dissipation characteristic, and also have the outstanding self-cooling property. In particular, in the formula (4) which is an index of the self-cooling property, the Q value (= 0.9a−b) is a No. far exceeding 0.045 or more. 1 to 8 exhibit extremely excellent self-cooling properties, and it can be seen that the larger the Q value, the better the self-cooling properties.

このうち表1のNo.3及び7は、表面にカーボンブラック含有塗膜を被覆し、裏面には塗膜のみ被覆した(添加剤なし)例;No.6/No.12は、表面/裏面にカーボンブラック含有塗膜を被覆し、裏面/表面に酸化チタン含有塗膜を被覆した例;No.10は、表裏面にいずれも、メタリック調外観塗膜を被覆した例;No.11は、表面にAlフレーク含有塗膜を被覆し、裏面にカーボンブラック含有塗膜を被覆した例であるが、いずれも本発明の要件を満足しているので、優れた自己冷却性を有しており、放熱特性も良好である。   Of these, Nos. 3 and 7 in Table 1 are examples in which the surface was coated with a carbon black-containing coating film and the back surface was coated only with a coating film (no additive); 6 / No. No. 12 is an example in which the surface / back surface is coated with a carbon black-containing coating film and the back surface / front surface is coated with a titanium oxide-containing coating film; No. 10 is an example in which the front and back surfaces are both coated with a metallic appearance coating film; 11 is an example in which an Al flake-containing coating film is coated on the front surface and a carbon black-containing coating film is coated on the back surface, both of which satisfy the requirements of the present invention and have excellent self-cooling properties. And has good heat dissipation characteristics.

また、表1のNo.1及びNo.11は、裏面の塗膜にカーボンブラックを添加した例であるが、上式(6)を満足しなくとも、第二の塗装体で定める指標[式(4)及び(5)]を満足する為、自己冷却性も放熱特性も良好である。   In Table 1, No. 1 and no. 11 is an example in which carbon black is added to the coating film on the back surface, but the index [Equations (4) and (5)] defined by the second coated body is satisfied even if the above equation (6) is not satisfied. Therefore, both self-cooling properties and heat dissipation properties are good.

これに対し、本発明の要件を満足しない塗装体(No.13〜19)は、いずれも自己冷却性に劣っている。   On the other hand, all the coated bodies (Nos. 13 to 19) that do not satisfy the requirements of the present invention are inferior in self-cooling properties.

例えばNo.13は、片面に塗装を施さない片面塗装体であり、ベースとなる放熱特性が得られていない。同様にNo.14は、表面(カーボンブラック含有塗膜)の組成が上式(6)を満足しない為、放熱特性の指標となる式(5)を満たさず、所望の放熱特性が得られない。No.15も、表裏面に添加剤を全く添加せず、塗膜厚が薄い為、所望の放熱特性が得られない。   For example, no. Reference numeral 13 denotes a single-sided coated body in which coating is not performed on one side, and a heat dissipation characteristic as a base is not obtained. Similarly, no. No. 14, since the composition of the surface (carbon black-containing coating film) does not satisfy the above formula (6), the formula (5) serving as an index of the heat dissipation characteristics is not satisfied, and the desired heat dissipation characteristics cannot be obtained. No. No. 15 does not add any additive to the front and back surfaces, and the coating thickness is thin, so the desired heat dissipation characteristics cannot be obtained.

一方、No.16は、表裏面の放射率が同程度の例であり、所望の自己冷却性が得られない。No.17は、表裏面を同じ方法で黒色化処理した従来例であり、表裏面の放射率が同程度になる為、所望の自己冷却性が得られない。No.18は、表面に比べ、裏面の放射率が大きい例であり、自己冷却性が低下している。   On the other hand, no. No. 16 is an example in which the emissivities of the front and back surfaces are similar, and a desired self-cooling property cannot be obtained. No. No. 17 is a conventional example in which the front and back surfaces are blackened by the same method, and the emissivity of the front and back surfaces is approximately the same, so that a desired self-cooling property cannot be obtained. No. No. 18 is an example in which the emissivity of the back surface is larger than that of the front surface, and the self-cooling property is lowered.

本発明塗装体において、ΔT1(放熱性)を評価する為に用いた装置の概略図である。In this invention painted body, it is the schematic of the apparatus used in order to evaluate (DELTA) T1 (heat dissipation). 本発明の塗装体における、自己冷却性と放熱特性の双方に優れた範囲を示すグラフである。It is a graph which shows the range excellent in both the self-cooling property and the thermal radiation characteristic in the coating body of this invention. 実施例1において、ΔT2と、Q値(=0.9a−b)との関係を示すグラフである。In Example 1, it is a graph which shows the relationship between (DELTA) T2 and Q value (= 0.9a-b). 実施例1において、ΔT1と、R値[=(a−0.05)×(b−0.05)]との関係を示すグラフである。In Example 1, it is a graph which shows the relationship between (DELTA) T1 and R value [= (a-0.05) * (b-0.05)].

符号の説明Explanation of symbols

1 供試材(被験体)
2 断熱材
3 発熱体
4 防護部材(カバー)
5 測温装置
1 Test material (subject)
2 Insulation 3 Heating element 4 Protective member (cover)
5 Temperature measuring device

Claims (20)

基板の表裏面に塗膜が被覆されており、且つ、基板の少なくとも表面に、放熱性を有する放熱塗膜であって導電性フィラーを含有しない放熱塗膜が被覆された塗装体であって、
該塗装体を100℃に加熱したときの赤外線(波長:4.5〜15.4μm)の積分放射率が、下式(4)及び(5)を満足する(但し、a×b≧0.42を除く)ことを特徴とする放熱性及び自己冷却性に優れた電子機器部材用塗装体。
b≦0.9(a−0.05) … (4)
(a−0.05)×(b−0.05)≧0.08… (5)
a:表面に放熱塗膜が被覆された塗装体の赤外線積分放射率
b:裏面に放熱塗膜が被覆された塗装体の赤外線積分放射率
A coated body in which a coating film is coated on the front and back surfaces of the substrate, and at least the surface of the substrate is a heat radiation coating film having a heat dissipation property and a heat radiation coating film not containing a conductive filler,
The integral emissivity of infrared rays (wavelength: 4.5 to 15.4 μm) when the coated body is heated to 100 ° C. satisfies the following expressions (4) and (5) (provided that a × b ≧ 0. 42), a coated body for electronic device members having excellent heat dissipation and self-cooling properties.
b ≦ 0.9 (a−0.05) (4)
(A−0.05) × (b−0.05) ≧ 0.08 (5)
a: Infrared integrated emissivity of a coated body with a heat dissipation coating coated on the surface
b: Infrared integrated emissivity of a coated body having a heat radiation coating coated on the back surface
前記放熱塗膜は、放熱性添加剤として、少なくとも酸化チタンを50〜70質量%含有し、膜厚25〜30μmを満足するものである請求項1に記載の塗装体。   2. The coated body according to claim 1, wherein the heat radiation coating film contains at least 50 to 70 mass% of titanium oxide as a heat radiation additive and satisfies a film thickness of 25 to 30 μm. 基板の表裏面に塗膜が被覆されており、且つ、基板の少なくとも表面に、放熱性を有する放熱塗膜であって導電性フィラーを含有しない放熱塗膜が被覆された塗装体であって、
前記放熱塗膜は黒色の放熱性添加剤を含有しており、且つ、
下式(6)を満足することを特徴とする放熱性及び自己冷却性に優れた電子機器部材用塗装体。
(X−3)×(Y−0.5)≧3 … (6)
式中、Xは放熱塗膜に含まれる黒色の放熱性添加剤の含有量(質量%)を、
Yは放熱塗膜厚さ(μm)を、夫々、意味する。
A coated body in which a coating film is coated on the front and back surfaces of the substrate, and at least the surface of the substrate is a heat radiation coating film having a heat dissipation property and a heat radiation coating film not containing a conductive filler,
The heat dissipation coating contains a black heat dissipation additive, and
The coating body for electronic device members excellent in heat dissipation and self-cooling characteristics characterized by satisfying the following formula (6).
(X-3) × (Y−0.5) ≧ 3 (6)
In formula, X is content (mass%) of the black heat dissipation additive contained in a heat dissipation coating film,
Y means the thickness of the heat radiation coating film (μm).
更に、下式(7)を満足するものである請求項3に記載の塗装体。
4≦X<15 … (7)
式中、Xは放熱塗膜に含まれる黒色の放熱性添加剤の含有量(質量%)を意味する。
Furthermore, the coating body of Claim 3 which satisfies the following Formula (7).
4 ≦ X <15 (7)
In formula, X means content (mass%) of the black heat-radiating additive contained in a heat-radiation coating film.
更に、放熱塗膜厚さY>1μmを満足するものである請求項3または4に記載の塗装体。   Furthermore, the coating body of Claim 3 or 4 which satisfies the thermal radiation coating film thickness Y> 1 micrometer. 前記黒色の放熱性添加剤の平均粒径は5〜100nmである請求項3〜5のいずれかに記載の塗装体。   The coated body according to any one of claims 3 to 5, wherein the black heat-dissipating additive has an average particle diameter of 5 to 100 nm. 前記黒色の放熱性添加剤はカーボンブラックである請求項3〜6のいずれかに記載の塗装体。   The coated body according to claim 3, wherein the black heat dissipating additive is carbon black. 前記放熱塗膜を形成する樹脂は、非親水性樹脂である請求項1〜7のいずれかに記載の塗装体。   The coated body according to any one of claims 1 to 7, wherein the resin forming the heat radiation coating film is a non-hydrophilic resin. 前記非親水性樹脂は、ポリエステル系樹脂である請求項8に記載の塗装体。   The coated body according to claim 8, wherein the non-hydrophilic resin is a polyester resin. 前記放熱塗膜に、クリアー塗膜が被覆されることにより耐疵付き性及び耐指紋性が高められたものである請求項1〜9のいずれかに記載の塗装体。   The coated body according to any one of claims 1 to 9, wherein the heat-dissipating coating film is coated with a clear coating film so that wrinkle resistance and fingerprint resistance are enhanced. 前記基盤は、クロムフリーの下地処理がなされた金属板であり、且つ、放熱塗膜は、更に防錆剤を含有するものである請求項1〜10のいずれかに記載の塗装体。   The coated body according to any one of claims 1 to 10, wherein the base is a metal plate subjected to a chromium-free ground treatment, and the heat radiation coating further contains a rust preventive. 電子機器部品の筐体として使用されるものである請求項1〜11のいずれかに記載の塗装体。   The coated body according to any one of claims 1 to 11, which is used as a casing for electronic device parts. 請求項1〜12のいずれかに記載の塗装体に用いられる塗料組成物であって、塗膜形成成分に対し、黒色添加剤を3質量%超含有し、導電性フィラーを含有しないものであることを特徴とする電子機器部品用塗料組成物。   It is a coating composition used for the coating body in any one of Claims 1-12, Comprising: With respect to a coating-film formation component, it contains more than 3 mass% of black additives, and does not contain a conductive filler. A coating composition for electronic equipment parts. 前記黒色の放熱性添加剤の平均粒径は5〜100nmである請求項13に記載の組成物。   The composition according to claim 13, wherein the black heat-dissipating additive has an average particle size of 5 to 100 nm. 前記黒色の放熱性添加剤はカーボンブラックである請求項13または14に記載の組成物。   The composition according to claim 13 or 14, wherein the black heat dissipating additive is carbon black. 請求項11に記載の塗装体に用いられる塗料組成物であって、
塗膜形成成分に対し、エポキシ変性ポリエステル系樹脂及び/又はフェノール誘導体を骨格に導入したポリエステル系樹脂を35質量%以上、防錆剤を2〜25質量%、架橋剤を1〜20質量%、及び黒色添加剤を3質量%超含有し、導電性フィラーを含有しないものであることを特徴とする電子機器部品用塗料組成物。
It is a coating composition used for the coating object according to claim 11,
35% by mass or more of a polyester resin in which an epoxy-modified polyester resin and / or a phenol derivative is introduced into the skeleton, 2 to 25% by mass of a rust preventive agent, and 1 to 20% by mass of a crosslinking agent with respect to a coating film forming component. And a black additive containing more than 3% by mass, and containing no conductive filler.
前記架橋剤は、イソシアネート系樹脂100質量部に対し、メラミン系樹脂を5〜80質量部の比率で含有するものである請求項16に記載の組成物。   The composition according to claim 16, wherein the crosslinking agent contains a melamine resin at a ratio of 5 to 80 parts by mass with respect to 100 parts by mass of the isocyanate resin. 前記黒色添加剤の平均粒径は5〜100nmである請求項16または17に記載の組成物。   The composition according to claim 16 or 17, wherein the black additive has an average particle size of 5 to 100 nm. 前記黒色添加剤はカーボンブラックである請求項16〜18のいずれかに記載の組成物。   The composition according to claim 16, wherein the black additive is carbon black. 閉じられた空間に発熱体を内臓する電子機器部品であって、
該電子機器部品は、その外壁の全面または一部が請求項1〜11のいずれかに記載の電子機器部材用塗装体で構成されていることを特徴とする電子機器部品。
An electronic device part containing a heating element in a closed space,
12. The electronic device part according to claim 1, wherein the entire or part of the outer wall of the electronic device part is constituted by the coating body for an electronic device member according to any one of claims 1 to 11.
JP2004216376A 2001-07-25 2004-07-23 Coated body for electronic device members having excellent heat dissipation and self-cooling properties, and electronic device parts Expired - Lifetime JP3796257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216376A JP3796257B2 (en) 2001-07-25 2004-07-23 Coated body for electronic device members having excellent heat dissipation and self-cooling properties, and electronic device parts

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001224728 2001-07-25
JP2001335513 2001-10-31
JP2001335512 2001-10-31
JP2002182226 2002-06-21
JP2004216376A JP3796257B2 (en) 2001-07-25 2004-07-23 Coated body for electronic device members having excellent heat dissipation and self-cooling properties, and electronic device parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003137826A Division JP3796232B2 (en) 2001-07-25 2003-05-15 Painted body for electronic equipment with excellent heat dissipation

Publications (2)

Publication Number Publication Date
JP2005001393A true JP2005001393A (en) 2005-01-06
JP3796257B2 JP3796257B2 (en) 2006-07-12

Family

ID=34109149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216376A Expired - Lifetime JP3796257B2 (en) 2001-07-25 2004-07-23 Coated body for electronic device members having excellent heat dissipation and self-cooling properties, and electronic device parts

Country Status (1)

Country Link
JP (1) JP3796257B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286729A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Paint composition excellent in electromagnetic wave absorbency and conductivity, and coated metal plate coated therewith
JP2008023975A (en) * 2006-06-22 2008-02-07 Nippon Steel Corp Zinc-based plated steel sheet for back cover of indicating device using thin display panel
JP2008186850A (en) * 2007-01-26 2008-08-14 Stanley Electric Co Ltd Light-emitting apparatus and color conversion filter
JP2010514886A (en) * 2006-12-27 2010-05-06 ポスコ Excellent heat-dissipating black resin composition, galvanized steel sheet treatment method using the same, and galvanized steel sheet treated thereby
JP2012210723A (en) * 2011-03-30 2012-11-01 Kobe Steel Ltd Coated steel sheet
JP2016093774A (en) * 2014-11-13 2016-05-26 有限会社久保井塗装工業所 Coating method, coating apparatus and paint for improving heat radiation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286729A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Paint composition excellent in electromagnetic wave absorbency and conductivity, and coated metal plate coated therewith
JP2008023975A (en) * 2006-06-22 2008-02-07 Nippon Steel Corp Zinc-based plated steel sheet for back cover of indicating device using thin display panel
JP2010514886A (en) * 2006-12-27 2010-05-06 ポスコ Excellent heat-dissipating black resin composition, galvanized steel sheet treatment method using the same, and galvanized steel sheet treated thereby
JP2008186850A (en) * 2007-01-26 2008-08-14 Stanley Electric Co Ltd Light-emitting apparatus and color conversion filter
JP2012210723A (en) * 2011-03-30 2012-11-01 Kobe Steel Ltd Coated steel sheet
JP2016093774A (en) * 2014-11-13 2016-05-26 有限会社久保井塗装工業所 Coating method, coating apparatus and paint for improving heat radiation

Also Published As

Publication number Publication date
JP3796257B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
US7279218B2 (en) Coated body having excellent thermal radiation property used for members of electronic device
JP4527587B2 (en) Painted metal material with excellent heat dissipation and electronic equipment parts using the same
KR100741616B1 (en) Paint Composition Having a High Electromagnetic Wave-absorbing Property and High Electric Conductivity and Painted Metal Sheet Covered by the Paint Composition
JP3563731B2 (en) Painted body for electronic equipment with excellent heat dissipation and conductivity
JP4188857B2 (en) Coated body for electronic device members with excellent heat dissipation and electronic device parts
WO2005105432A1 (en) Coated steel sheet with excellent heat dissipation
JP3796257B2 (en) Coated body for electronic device members having excellent heat dissipation and self-cooling properties, and electronic device parts
KR100704063B1 (en) Resin-coated metal sheet
KR100563919B1 (en) High thermal emissive coated bodies for electronic equipment parts
JP4202974B2 (en) Resin-coated metal sheet for electronic equipment members with excellent electromagnetic wave absorption and workability
TWI389794B (en) Laminate resin-coated metal plate excelling in absorption of electromagnetic waves
JP3796249B2 (en) Coated body for electronic equipment members having excellent heat dissipation, self-cooling and electrical conductivity, and electronic equipment parts
JP5176890B2 (en) Coated steel sheet and casing for electronic equipment using the same
JP5061978B2 (en) Surface-treated steel sheets and coated steel plates with excellent corrosion resistance, heat radiation, and conductivity
JP4194041B2 (en) Resin-coated metal plate and electronic device parts with excellent scratch resistance and fingerprint resistance
JP4369761B2 (en) Heating element cover excellent in heat absorption, surface-treated metal plate therefor, and applications thereof
JP3796232B2 (en) Painted body for electronic equipment with excellent heat dissipation
JP2004074145A5 (en)
JP4347790B2 (en) Resin-coated steel sheet for electronic equipment with excellent electromagnetic wave absorption
JP5789242B2 (en) Coated metal sheet
JP2004224017A (en) Painted steel sheet with high cooling power
JP2004134722A (en) Cabinet for electric/electronic apparatus with high cooling power
TH116046A (en) The coated body with excellent heat radiation properties is applied to the parts. Assembly of electronic equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050531

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8