JP2005000811A - Gas absorption apparatus - Google Patents

Gas absorption apparatus Download PDF

Info

Publication number
JP2005000811A
JP2005000811A JP2003167537A JP2003167537A JP2005000811A JP 2005000811 A JP2005000811 A JP 2005000811A JP 2003167537 A JP2003167537 A JP 2003167537A JP 2003167537 A JP2003167537 A JP 2003167537A JP 2005000811 A JP2005000811 A JP 2005000811A
Authority
JP
Japan
Prior art keywords
gas
ozone
static mixer
water
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003167537A
Other languages
Japanese (ja)
Inventor
Koichi Tabei
康一 田部井
Noboru Sakano
昇 阪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003167537A priority Critical patent/JP2005000811A/en
Priority to KR10-2003-0093581A priority patent/KR100506187B1/en
Publication of JP2005000811A publication Critical patent/JP2005000811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/20Dissolving using flow mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/423Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
    • B01F25/4231Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2112Level of material in a container or the position or shape of the upper surface of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/2132Concentration, pH, pOH, p(ION) or oxygen-demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/98Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/99Heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Accessories For Mixers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas absorption apparatus capable of producing a high-concentration gas-absorbed solution stably at a specified temperature. <P>SOLUTION: The apparatus has a static mixer 2 stirring and mixing a raw liquid and a raw gas together and a heating/cooling circuit 31 adjusting the temperature of the gas-absorbed solution formed by the mixer 2. The mixer 2 has two or more resistors arranged within the passage in a cylindrical casing, and the resistors are protruded from the internal peripheral surface toward the center in the form of a plate and arranged axially at specified intervals so that they are inclined downstream, do not come in contact with each other and are shifted circumferentially in sequence at a specified angle. Specially, the apparatus has a treatment tank 3 allowing the introduced raw liquid to stay for a specified time. The gas-absorbed solution is circulated between the mixer 2 and the tank 3, while the raw gas is injected on the upstream side from the mixer 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、原料液中に原料ガス成分を溶解させて所要の濃度のガス吸収液を生成するガス吸収装置に関するものである。
【0002】
【従来の技術】
食品工場における機械の洗浄殺菌並びに用水の殺菌の用途などでオゾン水が広く用いられており、このようなオゾン水の製造では、オゾンガスを水に吸収・溶解させるために散気管やエゼクタを用いることが一般的であるが、気液接触効率を高めると共に装置構成を簡略化するため、静止型混合器でオゾンガスと水とを攪拌混合してオゾンガスの溶解を促進するように構成したオゾン水製造装置が知られている(特許文献1参照。)。
【0003】
【特許文献1】
特開平10−192867号公報
【0004】
【発明が解決しようとする課題】
ところが、前記のような従来構成のオゾン水製造装置では、オゾンガスと水との気液接触効率に限界があり、特にオゾン水を常温より高い温度条件で使用する用途では、高濃度のオゾン水を安定して得ることができないという不都合があった。
【0005】
本発明は、このような従来技術の問題点を解消するべく案出されたものであり、その主な目的は、所要の温度で高濃度のガス吸収液を安定して生成することができるように構成されたガス吸収装置を提供することにある。
【0006】
【課題を解決するための手段】
このような目的を果たすために、本発明においては、請求項1に示すとおり、原料液と原料ガスとを攪拌混合する静止型混合器と、これにより生成するガス吸収液の温度を調整する温度調整手段とを有し、前記静止型混合器は、円筒状のケーシングの内部の流路中に複数の抵抗体が配設され、該複数の抵抗体が、共に内周面側から中心部に向けて板状に突出され、下流側に傾斜した状態で互いに接触しないように軸線方向に所定の間隔をおき、かつ周方向に順次所定角度ずつずらして設けられたものとした。
【0007】
これによると、静止型混合器において、所要の圧力及び流速で原料液と原料ガスとを静止型混合器に導入することで、内部に強力な乱流が発生して気液混合物が激しく攪拌されるため、原料ガスの気泡が細かく破砕されて微細気泡が高密度で生成し、気液接触効率が大幅に高められる。このため、従来大量のガス吸収が困難な比較的高い温度条件でも、高濃度のガス吸収液を安定して生成することができる。例えば、オゾン水の製造では、常温より高く、水に対するオゾンガスの溶解限界である60℃までの任意の温度条件で、高濃度のガス吸収液を生成することができる。
【0008】
前記ガス吸収装置においては、請求項2に示すとおり、原料液が導入されてこれを所要の時間滞留させる処理槽を有し、前記静止型混合器の上流側で原料ガスを注入しながら前記静止型混合器と前記処理槽との間で液を循環させるようにした構成をとることができる。これによると、静止型混合器により液中に大量に生成した微細気泡が処理槽において持続し、ここで液中への原料ガス成分の溶解が進行するため、高濃度のガス吸収液を生成することができる。
【0009】
前記ガス吸収装置においては、請求項3に示すとおり、前記静止型混合器が、前記ケーシングの外周に熱媒体が流通可能なジャケットが設けられた構成をとることができる。これによると、静止型混合器を流通する過程で液を加温・冷却することができ、温度調整の効率を高めることができる。
【0010】
前記静止型混合器においては特に、一対の抵抗体が概ねハ字形状をなすように筒状体の互いに対向する内周面から舌状に突出され、かつその一方の抵抗体が筒状体の中心線と交差するように他方より長尺に形成された抵抗体エレメントを有し、この抵抗体エレメントは、複数のものが周方向に順次所定角度ずつずらしながら軸線方向に列べて内部に挿設された構成とすると良い。
【0011】
これによると、抵抗体が舌状をなすことから、抵抗体に衝突した流れは抵抗体の周囲に多方向に分散され、抵抗体の背面側で巻き込みによる渦流(伴流)が生じ、この抵抗体による流通流体の衝突、分散並びに巻き込みが次々と繰り返されることで、強力な乱流が発生して流通流体が激しく撹拌される。さらに、抵抗体エレメントを流れ方向に沿って周方向に所定角度ずつずらしながら配置することで、筒状体の中心線と交差するように長尺に形成された抵抗体が全体として螺旋状に配置され、その作用によって流通流体に筒状体の中心線を中心とした旋回流が発生し、下流部で継続して撹拌が行われる。
【0012】
【発明の実施の形態】
以下に添付の図面を参照して本発明の実施の形態について詳細に説明する。
【0013】
図1は、本発明によるガス吸収装置の概略構成を示す模式図である。このガス吸収装置は、原料水(純水相当)にオゾンを溶解させてオゾン水を生成するものであり、オゾンガスを生成するオゾン発生器(ガス供給手段)1と、このオゾン発生器1で生成したオゾンガスと水とを攪拌混合する静止型混合器2と、この静止型混合器2を流通した気液混合物を滞留させて液中へのオゾンの溶解を進行させる処理槽3とを有している。
【0014】
処理槽3の上部には、原料水を処理槽3内に導入するための原料水導入部5が設けられ、処理槽3の中間部には、生成したオゾン水を引き抜くためのオゾン水回収部6が設けられている。また処理槽3の上部には、処理槽3の気相中に放散されたオゾンガスを回収するための排ガス回収部7が設けられており、ここから回収された排ガスは、排ガス処理器8を経て大気中に放出される。
【0015】
処理槽3の下部には、処理槽3内の水を引き抜いて静止型混合器2に導くための出口部11と、静止型混合器2を流通した水を処理槽3に戻すための入口部12とが設けられており、処理槽3の出口部11と静止型混合器2とを結ぶ配管途中には、処理槽3と静止型混合器2との間で水を循環圧送するためのポンプ13が設けられている。
【0016】
オゾン発生器1で生成したオゾンガスは、静止型混合器2の上流側で水中に注入され、特にここでは、オゾン発生器1がポンプ13の吐出圧より高い圧力(例えば30Pa)でオゾンガスを発生可能なものであり、オゾンガスがポンプ13の下流側で注入される。なお、オゾン発生器のオゾンガスが比較的低圧の場合には、ポンプの上流側でオゾンガスを水中に注入する構成とし、この場合、気体の吸入量を増大させても吸込不能を起こすことがない特性のポンプを用いると良い。また、気体をケーシング内に直接導入する構成のポンプを用いるようにしても良い。
【0017】
処理槽3には、オゾン水のオゾン濃度を検出する濃度センサ16が設けられており、この濃度センサ16の出力信号がオゾン濃度計17を介して制御盤(制御手段)18に入力されており、制御盤18においては、オゾン濃度計17の検出結果に基づいてオゾン発生器1並びにポンプ13などの動作を制御して、処理槽3内のオゾン水を目標濃度を中心にした所要の範囲に保持するようになっている。
【0018】
オゾン発生器1にて生成したオゾンガスを静止型混合器2の上流側に導く配管途中には、オゾン発生器1へのオゾンガスの逆流を防止するために、アブソーバタンク(緩衝容器)21が設けられている。またこのアブソーバタンク21の上流側配管L1には第1バルブV1が設けられ、下流側配管L2には第2バルブV2が設けられている。さらにこのアブソーバタンク21には、オゾンガスを処理槽3の排ガス回収部7に導く配管L3が接続され、この配管L3に第3バルブV3が設けられている。これら第1・第2・第3の各バルブV1・V2・V3は、電動弁または電磁弁からなり、制御盤18により開閉制御される。
【0019】
処理槽3には、内部のオゾン水の水位を検出するレベルスイッチ(水位検出手段)27が設けられており、このレベルスイッチ27の出力信号が制御盤18に入力されており、制御盤18においては、レベルスイッチ27の検出結果に基づいて処理槽3内のオゾン水の水位を所定の範囲に保持するようになっている。処理槽3内の水位調整は、処理槽3の原料水導入部5に接続された配管L5に設けられた第4バルブV4で行われ、この第4バルブV4は、電動弁または電磁弁からなり、制御盤18により開閉制御される。
【0020】
このガス吸収装置はさらに、熱媒体(水など)の熱交換によりオゾン水を所要の温度に調整する加温・冷却回路(温度調整手段)31が設けられており、ここでは、加温・冷却装置32で所定温度に加温または冷却された熱媒体が、処理槽3内に設けられた伝熱管33を流通して処理槽3内のオゾン水を加温または冷却する。また、処理槽3の出口部11と静止型混合器2とを結ぶ配管L7、並びに静止型混合器2と処理槽3の入口部12とを結ぶ配管L8はそれぞれ、外管内を流通する熱媒体で内管内を流通する水を加温・冷却する二重管構造をなしている。さらに、静止型混合器2には、熱媒体が流通するジャケット35が外装されている。なお、配管L7・L8並びに静止型混合器2のジャケット35には保温・保冷のためのラギングが設けられる。
【0021】
このように構成されたガス吸収装置においては、オゾン発生器1及びポンプ13を起動させると共に、第1・第2の両バルブV1・V2を開くことで、静止型混合器2及び処理槽3にてガス吸収処理が開始し、処理槽3内のオゾン濃度が所定値に達すると、ガス吸収処理を停止する。
【0022】
そして処理槽3のオゾン水回収部6から適宜にオゾン水が引き抜かれ、処理槽3内のオゾン水の水位が下限に達したことをレベルスイッチ27が検出すると、第4バルブV4を開いて原料水を処理槽3内に補給し、これにより処理槽3内の水位が上昇して上限に達したことをレベルスイッチ27が検出すると、第4バルブV4を閉じて原料水の補給を停止する。一方、処理槽3に原料水を導入するのに伴ってオゾン水の濃度が低下し、これをオゾン濃度計17が検出すると、ガス吸収処理を再開する。
【0023】
オゾン濃度が所定値に達してガス吸収処理を停止する際には、配管内の残留ガスの排気処理が以下の手順で行われる。すなわち、ポンプ13と共にオゾン発生器1の主要部が停止した後、オゾン発生器1内のコンプレッサが所定時間(例えば5〜10秒間)継続して作動し、この間に、まず第1バルブV1を開いたままで、第2バルブV2を閉じると共に第3バルブV3を開いて、残留ガスを処理槽3の排ガス回収部7に導き、排気が終了すると第1バルブV1を閉じる。
【0024】
他方、オゾン濃度が所定値を下回ってガス吸収処理を開始する際には、ポンプ13並びにオゾン発生器1を起動させ、所定時間(例えば10秒)経過した後、第3バルブV3を閉じると共に第1バルブV1を開き、その後、アブソーバタンク21にオゾンガスを充満させた上で第2バルブV2を開く。
【0025】
また、このようにしてガス吸収処理が行われる一方で、加温・冷却回路31によりオゾン水が所要の温度に調整される。加温・冷却装置32は、熱媒体を所定温度に保持するように自動運転され、この加温・冷却装置32から送り出される熱媒体が、処理槽3内の伝熱管33、配管L7の外管、静止型混合器2のジャケット35、並びに配管L8の外管を順次流通して、処理槽3に滞留するオゾン水、配管L7・L8並びに静止型混合器2を流通する水が加温・冷却される。
【0026】
図2は、図1に示した静止型混合器を示す側面図である。静止型混合器2には、ケーシング40の外周に熱媒体が流通可能なジャケット35が設けられている。このジャケット35は、ケーシング40の外周に内部に熱媒体が導入される外筒部52が配置され、熱媒体からの伝熱でケーシング40並びに後に詳述する抵抗体エレメント41が加温・冷却される。この構成では、熱交換特性を向上させるために内部にフィンを設けるようにしても良い。
【0027】
図3は、図1に示した静止型混合器の要部を示す斜視図である。この静止型混合器は、円筒状のケーシング40内に多数の抵抗体エレメント41を挿設してなっている。この抵抗体エレメント41は、円形断面をなす筒状体42の互いに対向する内周面から第1・第2の一対の抵抗体43・44がそれぞれ中心部に向けて舌状に突出されたものであり、筒状体42が連続して流路を形成する。
【0028】
抵抗体43・44は、共に下流側に向けて傾斜した状態でハ字形状に配置されており、両抵抗体43・44間に所要の間隔が確保されるように軸線方向にずらして設けられている。図4及び図5に併せて示すように、上流側の第1の抵抗体43は筒状体42の中心線と交差しないように短尺に、下流側の第2の抵抗体44は筒状体42の中心線と交差するように長尺に形成されている。
【0029】
筒状体42の軸線方向の端部には、隣接するものに対して45度ずつずらして結合されるように凹凸が形成されている。また、軸線方向に沿った分割線により一対の抵抗体43・44がそれぞれ形成された2つの分割体42a・42bに分割可能になっている。これにより製造を容易にすると共に、表面に付着した障害物を簡単に除去することができる。
【0030】
このようにしてなる抵抗体エレメント41は、ケーシング40内に挿設するにあたり、図6中に想像線で示す直前の抵抗体エレメント41に対して周方向に45度ずらして配置される。以下、後続の抵抗体エレメント41もそれぞれ、直前のものに対して45度ずつ同一方向にずらして配置され、最初の抵抗体エレメント41に対してはそれぞれ、周方向に45度、90度、135度、180度といった角度位置となる。したがって、全体として見ると、ハ字形状に対をなす抵抗体43・44がそれぞれ、抵抗体エレメント41のずらし角度に応じたリード角をもって螺旋を描くように配置される。
【0031】
このため、流体が内部に導入されると、最初の抵抗体エレメント41の抵抗体43・44に相対する流れはこれらの抵抗体43・44に衝突して周囲に分散され、これらの抵抗体43・44に相対しない流れもショートパスすることなく下流側の抵抗体エレメント41の抵抗体43・44のいずれかに衝突して多方向に分散され、内部に強力な乱流が発生する。
【0032】
このようにして、静止型混合器2に導入されたオゾンと水との気液混合物に激しい乱流が発生し、この乱流による撹拌作用でオゾンガスの微細気泡が高密度で生成し、この微細気泡が粗大化することなく持続する。このため、処理槽3での水とオゾンガスとの気液接触効率が大幅に高められ、さらに配管内でも持続する微細気泡により水中へのオゾンの溶解が進行し、高濃度のオゾン水を得ることができる。
【0033】
なお、本実施形態では、水にオゾンを溶解させてオゾン水を生成する構成としたが、本発明によるガス吸収装置における原料液は水に限定されるものではなく、また原料ガスもオゾンに限定されるものではない。例えば、OHラジカルによる還元作用を有する液を生成するために水素ガスを原料ガスとしたガス吸収を行う構成とすることもできる。
【0034】
【実施例】
前記のように構成されたガス吸収装置では、水に対するオゾンガスの溶解限界である60℃までの任意の温度条件で、高濃度のオゾン水を生成することができる。例えば、食品工場における機械の洗浄殺菌並びに用水の殺菌の用途や、IC基板の製造プロセスで基板に付着した有機物を洗浄除去する用途では、オゾン水が常温で使用され、このような温度条件では、20〜40ppmのオゾン濃度を達成することができる。また鶏卵の洗浄殺菌の用途では、卵殻膜の温度変質並びに卵殻内の圧力低下による水の浸入を避けるためにオゾン水の温度を40℃前後に厳密に保持する必要があり、このような温度条件では、3〜5ppmのオゾン濃度を達成することができる。実際に得られたオゾン水を用いて鶏卵の洗浄殺菌処理を行ったところ、洗浄排水に大腸菌群が検出されず、十分な洗浄殺菌効果を有することを確認することができた。
【0035】
【発明の効果】
このように本発明によれば、静止型混合器において原料ガスの気泡が細かく破砕されて微細気泡が高密度で生成し、気液接触効率が大幅に高められるため、従来大量のガス吸収が困難な比較的高い温度条件でも、高濃度のガス吸収液を安定して生成することが可能になり、ガス吸収液を用いた酸化・還元処理などの所要の処理を効率化する上で大きな効果を奏し、しかも比較的簡易な構成とすることができるため、イニシャルコスト及びランニングコストを削減する上で顕著な効果が得られる。
【図面の簡単な説明】
【図1】本発明によるガス吸収装置の概略構成を示す模式図
【図2】図1に示した静止型混合器を示す側面図
【図3】図1に示した静止型混合器の要部を示す斜視図である。
【図4】図3に示した抵抗体エレメントを示す断面図である。
【図5】図3に示した抵抗体エレメントを上流側から見た正面図である。
【図6】図3に示した抵抗体エレメント相互の配置状況を説明するための図5と同様な正面図である。
【符号の説明】
1 オゾン発生器
2 静止型混合器
3 処理槽
13 ポンプ
31 加温・冷却回路
32 加温・冷却装置
33 伝熱管
35 ジャケット
40 ケーシング
43・44 抵抗体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas absorber that dissolves a raw material gas component in a raw material liquid to generate a gas absorbing liquid having a required concentration.
[0002]
[Prior art]
Ozone water is widely used for cleaning and sterilization of machinery in food factories and water sterilization. In the production of ozone water, air diffusers and ejectors are used to absorb and dissolve ozone gas in water. However, in order to increase the gas-liquid contact efficiency and simplify the device configuration, the ozone water production device is configured to promote the dissolution of ozone gas by stirring and mixing ozone gas and water with a static mixer. Is known (see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-192867
[Problems to be solved by the invention]
However, in the conventional ozone water production apparatus as described above, there is a limit to the gas-liquid contact efficiency between ozone gas and water. Especially in applications where ozone water is used at a temperature higher than room temperature, highly concentrated ozone water is not used. There was an inconvenience that it could not be obtained stably.
[0005]
The present invention has been devised to solve such problems of the prior art, and its main purpose is to be able to stably generate a high-concentration gas absorbing liquid at a required temperature. It is in providing the gas absorption apparatus comprised in this.
[0006]
[Means for Solving the Problems]
In order to achieve such an object, in the present invention, as shown in claim 1, a static mixer for stirring and mixing the raw material liquid and the raw material gas, and a temperature for adjusting the temperature of the gas absorbing liquid generated thereby. The static mixer includes a plurality of resistors disposed in a flow path inside a cylindrical casing, and the plurality of resistors are both arranged from the inner peripheral surface side to the center portion. It is projected in a plate shape toward the downstream side, and is provided at predetermined intervals in the axial direction and sequentially shifted by a predetermined angle in the circumferential direction so as not to contact each other in a state of being inclined toward the downstream side.
[0007]
According to this, in the static mixer, by introducing the raw material liquid and raw material gas into the static mixer at the required pressure and flow rate, a strong turbulent flow is generated inside and the gas-liquid mixture is vigorously stirred. Therefore, the bubbles of the raw material gas are finely crushed and fine bubbles are generated at a high density, and the gas-liquid contact efficiency is greatly enhanced. For this reason, it is possible to stably generate a high-concentration gas absorbing liquid even under relatively high temperature conditions where it has been difficult to absorb a large amount of gas. For example, in the production of ozone water, a high-concentration gas absorbing liquid can be generated under any temperature condition that is higher than normal temperature and is up to 60 ° C., which is the solubility limit of ozone gas in water.
[0008]
In the gas absorption device, as shown in claim 2, the gas absorption device has a treatment tank in which a raw material liquid is introduced and retained for a required time, and the stationary gas is injected while injecting the raw material gas upstream of the static mixer. A configuration in which the liquid is circulated between the mold mixer and the treatment tank can be employed. According to this, fine bubbles generated in a large amount in the liquid by the static mixer are maintained in the treatment tank, and the dissolution of the raw material gas components in the liquid proceeds here, so that a high concentration gas absorbing liquid is generated. be able to.
[0009]
In the gas absorbing device, as shown in claim 3, the static mixer can have a configuration in which a jacket capable of circulating a heat medium is provided on the outer periphery of the casing. According to this, the liquid can be heated and cooled in the process of flowing through the static mixer, and the efficiency of temperature adjustment can be increased.
[0010]
In the static mixer, in particular, the pair of resistors are protruded in a tongue shape from the inner peripheral surfaces facing each other so as to form a generally C shape, and one of the resistors is formed of the cylindrical body. A resistor element is formed so as to be longer than the other so as to intersect the center line.A plurality of resistor elements are arranged in the axial direction while being sequentially shifted by a predetermined angle in the circumferential direction. It is good to have a configuration.
[0011]
According to this, since the resistor has a tongue shape, the flow that collided with the resistor is distributed in multiple directions around the resistor, and a vortex (wake) due to entrainment occurs on the back side of the resistor, and this resistance By repeating the collision, dispersion and entrainment of the circulating fluid by the body one after another, a strong turbulent flow is generated and the circulating fluid is vigorously stirred. Furthermore, by arranging the resistor elements while shifting by a predetermined angle in the circumferential direction along the flow direction, the resistor formed in a long shape so as to intersect the center line of the cylindrical body is arranged in a spiral shape as a whole As a result, a swirling flow around the center line of the cylindrical body is generated in the circulating fluid, and stirring is continuously performed in the downstream portion.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[0013]
FIG. 1 is a schematic diagram showing a schematic configuration of a gas absorption apparatus according to the present invention. This gas absorption device generates ozone water by dissolving ozone in raw water (equivalent to pure water). It is generated by an ozone generator (gas supply means) 1 that generates ozone gas and the ozone generator 1. A stationary mixer 2 that stirs and mixes the ozone gas and water, and a treatment tank 3 that retains the gas-liquid mixture flowing through the stationary mixer 2 and advances the dissolution of ozone into the liquid. Yes.
[0014]
A raw water introduction part 5 for introducing raw water into the treatment tank 3 is provided in the upper part of the treatment tank 3, and an ozone water recovery part for extracting the generated ozone water is provided in the middle part of the treatment tank 3. 6 is provided. Further, an exhaust gas recovery unit 7 for recovering ozone gas diffused in the gas phase of the processing tank 3 is provided at the upper part of the processing tank 3, and the exhaust gas recovered from the exhaust gas passes through the exhaust gas treatment device 8. Released into the atmosphere.
[0015]
In the lower part of the treatment tank 3, there are an outlet part 11 for drawing out the water in the treatment tank 3 and guiding it to the static mixer 2, and an inlet part for returning the water circulated through the static mixer 2 to the treatment tank 3. 12 and a pump for circulating and feeding water between the treatment tank 3 and the static mixer 2 in the middle of the pipe connecting the outlet 11 of the treatment tank 3 and the static mixer 2. 13 is provided.
[0016]
The ozone gas generated by the ozone generator 1 is injected into the water upstream of the static mixer 2. In particular, the ozone generator 1 can generate ozone gas at a pressure (for example, 30 Pa) higher than the discharge pressure of the pump 13. The ozone gas is injected downstream of the pump 13. In addition, when the ozone gas of the ozone generator is relatively low pressure, the configuration is such that the ozone gas is injected into the water upstream of the pump. In this case, even if the gas intake amount is increased, the inhalation is not caused. It is better to use the pump. Moreover, you may make it use the pump of the structure which introduce | transduces gas directly in a casing.
[0017]
The treatment tank 3 is provided with a concentration sensor 16 for detecting the ozone concentration of ozone water, and an output signal of the concentration sensor 16 is input to a control panel (control means) 18 via an ozone concentration meter 17. In the control panel 18, the operations of the ozone generator 1 and the pump 13 are controlled based on the detection result of the ozone concentration meter 17, and the ozone water in the treatment tank 3 is brought into a required range centering on the target concentration. It comes to hold.
[0018]
An absorber tank (buffer container) 21 is provided in the middle of the piping for guiding the ozone gas generated by the ozone generator 1 to the upstream side of the static mixer 2 in order to prevent the ozone gas from flowing back to the ozone generator 1. ing. The upstream pipe L1 of the absorber tank 21 is provided with a first valve V1, and the downstream pipe L2 is provided with a second valve V2. Further, the absorber tank 21 is connected to a pipe L3 that guides ozone gas to the exhaust gas recovery section 7 of the processing tank 3, and a third valve V3 is provided in the pipe L3. Each of the first, second, and third valves V1, V2, and V3 includes an electric valve or an electromagnetic valve, and is controlled to be opened and closed by the control panel 18.
[0019]
The treatment tank 3 is provided with a level switch (water level detecting means) 27 for detecting the water level of the ozone water inside, and an output signal of the level switch 27 is input to the control panel 18. Is configured to maintain the water level of the ozone water in the processing tank 3 within a predetermined range based on the detection result of the level switch 27. The water level in the treatment tank 3 is adjusted by a fourth valve V4 provided in a pipe L5 connected to the raw water introduction part 5 of the treatment tank 3, and the fourth valve V4 is composed of an electric valve or an electromagnetic valve. The control panel 18 controls the opening and closing.
[0020]
This gas absorption device is further provided with a heating / cooling circuit (temperature adjusting means) 31 for adjusting ozone water to a required temperature by heat exchange of a heat medium (water, etc.). Here, heating / cooling is performed. The heat medium heated or cooled to a predetermined temperature by the apparatus 32 flows through the heat transfer pipe 33 provided in the processing tank 3 to heat or cool the ozone water in the processing tank 3. A pipe L7 connecting the outlet 11 of the treatment tank 3 and the static mixer 2 and a pipe L8 connecting the static mixer 2 and the inlet 12 of the treatment tank 3 are each a heat medium that circulates in the outer pipe. It has a double pipe structure that heats and cools the water flowing through the inner pipe. Furthermore, the static mixer 2 is provided with a jacket 35 through which a heat medium flows. Note that the pipes L7 and L8 and the jacket 35 of the static mixer 2 are provided with lagging for heat insulation and cold insulation.
[0021]
In the gas absorption apparatus configured in this way, the ozone generator 1 and the pump 13 are started, and both the first and second valves V1 and V2 are opened, so that the static mixer 2 and the treatment tank 3 are opened. When the gas absorption process starts and the ozone concentration in the treatment tank 3 reaches a predetermined value, the gas absorption process is stopped.
[0022]
When the ozone water is appropriately extracted from the ozone water recovery unit 6 of the treatment tank 3 and the level switch 27 detects that the water level of the ozone water in the treatment tank 3 has reached the lower limit, the fourth valve V4 is opened to open the raw material. When the level switch 27 detects that the water has been replenished into the treatment tank 3 and the water level in the treatment tank 3 has risen to reach the upper limit, the fourth valve V4 is closed to stop the replenishment of the raw material water. On the other hand, when the concentration of ozone water decreases as the raw material water is introduced into the treatment tank 3, and this is detected by the ozone concentration meter 17, the gas absorption process is resumed.
[0023]
When the ozone concentration reaches a predetermined value and the gas absorption process is stopped, the exhaust process of the residual gas in the pipe is performed according to the following procedure. That is, after the main part of the ozone generator 1 is stopped together with the pump 13, the compressor in the ozone generator 1 is continuously operated for a predetermined time (for example, 5 to 10 seconds), and during this time, the first valve V1 is first opened. In this state, the second valve V2 is closed and the third valve V3 is opened to guide the residual gas to the exhaust gas recovery unit 7 of the treatment tank 3. When the exhaust is completed, the first valve V1 is closed.
[0024]
On the other hand, when the gas concentration is started when the ozone concentration falls below a predetermined value, the pump 13 and the ozone generator 1 are started, and after a predetermined time (for example, 10 seconds) has elapsed, the third valve V3 is closed and the second valve V3 is closed. 1 valve V1 is opened, and then the second valve V2 is opened after the absorber tank 21 is filled with ozone gas.
[0025]
Further, while the gas absorption process is performed in this manner, the ozone water is adjusted to a required temperature by the heating / cooling circuit 31. The heating / cooling device 32 is automatically operated so as to maintain the heat medium at a predetermined temperature, and the heat medium sent out from the heating / cooling device 32 is the heat transfer pipe 33 in the processing tank 3 and the outer pipe of the pipe L7. Then, the jacket 35 of the static mixer 2 and the outer pipe of the pipe L8 are sequentially circulated, and the ozone water staying in the treatment tank 3 and the water flowing through the pipes L7 and L8 and the static mixer 2 are heated and cooled. Is done.
[0026]
FIG. 2 is a side view showing the static mixer shown in FIG. The static mixer 2 is provided with a jacket 35 on the outer periphery of the casing 40 through which a heat medium can flow. In the jacket 35, an outer cylinder 52 into which a heat medium is introduced is disposed on the outer periphery of the casing 40, and the casing 40 and the resistor element 41 described in detail later are heated and cooled by heat transfer from the heat medium. The In this configuration, fins may be provided inside in order to improve heat exchange characteristics.
[0027]
FIG. 3 is a perspective view showing a main part of the static mixer shown in FIG. This static mixer has a large number of resistor elements 41 inserted in a cylindrical casing 40. The resistor element 41 is formed by a first and second pair of resistor bodies 43 and 44 projecting in a tongue shape from the inner peripheral surfaces of a cylindrical body 42 having a circular cross section facing each other toward the center. The cylindrical body 42 continuously forms a flow path.
[0028]
The resistors 43 and 44 are both arranged in a C shape while being inclined toward the downstream side, and are offset in the axial direction so as to ensure a required interval between the resistors 43 and 44. ing. As shown in FIGS. 4 and 5, the upstream first resistor 43 is short so as not to intersect the center line of the cylindrical body 42, and the downstream second resistor 44 is a cylindrical body. It is formed in a long shape so as to intersect the center line of 42.
[0029]
Concavities and convexities are formed at the end of the cylindrical body 42 in the axial direction so as to be coupled with each other by shifting by 45 degrees with respect to adjacent ones. Moreover, it can divide | segment into the two division bodies 42a and 42b in which a pair of resistor 43 * 44 was each formed by the division line along an axial direction. As a result, manufacturing can be facilitated and obstacles attached to the surface can be easily removed.
[0030]
When the resistor element 41 thus formed is inserted into the casing 40, the resistor element 41 is arranged by being shifted by 45 degrees in the circumferential direction with respect to the resistor element 41 immediately before indicated by an imaginary line in FIG. In the following, the subsequent resistor elements 41 are also arranged so as to be shifted in the same direction by 45 degrees with respect to the immediately preceding one, and for the first resistor element 41, 45 degrees, 90 degrees, 135 in the circumferential direction, respectively. The angular position is such as 180 degrees or 180 degrees. Therefore, when viewed as a whole, the resistors 43 and 44 that form a pair of C-shapes are arranged so as to draw a spiral with a lead angle corresponding to the shift angle of the resistor element 41.
[0031]
For this reason, when the fluid is introduced into the inside, the flow of the first resistor element 41 facing the resistors 43 and 44 collides with the resistors 43 and 44 and is distributed to the surroundings. The flow not opposed to 44 collides with any of the resistors 43 and 44 of the downstream resistor element 41 without causing a short path and is dispersed in multiple directions, and a strong turbulent flow is generated inside.
[0032]
In this way, a vigorous turbulent flow is generated in the gas-liquid mixture of ozone and water introduced into the static mixer 2, and fine bubbles of ozone gas are generated at a high density by the stirring action of this turbulent flow. Bubbles persist without becoming coarse. For this reason, the gas-liquid contact efficiency between water and ozone gas in the treatment tank 3 is greatly increased, and further, the dissolution of ozone into the water proceeds due to the fine bubbles that continue in the pipe, thereby obtaining high-concentration ozone water. Can do.
[0033]
In the present embodiment, ozone water is generated by dissolving ozone in water, but the raw material liquid in the gas absorption device according to the present invention is not limited to water, and the raw material gas is also limited to ozone. Is not to be done. For example, gas absorption using hydrogen gas as a raw material gas in order to generate a liquid having a reducing action by OH radicals may be employed.
[0034]
【Example】
In the gas absorption apparatus configured as described above, high-concentration ozone water can be generated under any temperature condition up to 60 ° C., which is the solubility limit of ozone gas in water. For example, ozone water is used at room temperature in applications such as cleaning and sterilization of machinery in food factories and water sterilization, and cleaning and removal of organic substances attached to the substrate in the IC substrate manufacturing process. Under such temperature conditions, An ozone concentration of 20-40 ppm can be achieved. Also, in the application of washing and sterilization of eggs, it is necessary to keep the temperature of ozone water strictly around 40 ° C. in order to avoid the temperature change of eggshell membranes and the intrusion of water due to the pressure drop in the eggshell. Then, an ozone concentration of 3 to 5 ppm can be achieved. When the eggs were washed and sterilized using the actually obtained ozone water, coliforms were not detected in the washing waste water, and it was confirmed that the effluent had a sufficient washing and sterilizing effect.
[0035]
【The invention's effect】
As described above, according to the present invention, in the static mixer, the bubbles of the raw material gas are finely crushed and fine bubbles are generated at a high density, and the gas-liquid contact efficiency is greatly improved. Even under relatively high temperature conditions, it is possible to stably generate a high-concentration gas absorption liquid, which is very effective in improving the efficiency of required processes such as oxidation / reduction treatment using the gas absorption liquid. In addition, since the structure can be made relatively simple, a remarkable effect can be obtained in reducing the initial cost and the running cost.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic configuration of a gas absorption apparatus according to the present invention. FIG. 2 is a side view showing a static mixer shown in FIG. 1. FIG. 3 is a schematic diagram of a main part of the static mixer shown in FIG. FIG.
4 is a cross-sectional view showing the resistor element shown in FIG. 3. FIG.
FIG. 5 is a front view of the resistor element shown in FIG. 3 as viewed from the upstream side.
6 is a front view similar to FIG. 5 for explaining the arrangement state of the resistor elements shown in FIG. 3;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ozone generator 2 Static mixer 3 Processing tank 13 Pump 31 Heating / cooling circuit 32 Heating / cooling device 33 Heat transfer tube 35 Jacket 40 Casing 43/44 Resistor

Claims (3)

原料液と原料ガスとを攪拌混合する静止型混合器と、これにより生成するガス吸収液の温度を調整する温度調整手段とを有し、
前記静止型混合器は、円筒状のケーシングの内部の流路中に複数の抵抗体が配設され、該複数の抵抗体が、共に内周面側から中心部に向けて板状に突出され、下流側に傾斜した状態で互いに接触しないように軸線方向に所定の間隔をおき、かつ周方向に順次所定角度ずつずらして設けられたことを特徴とするガス吸収装置。
A static mixer for stirring and mixing the raw material liquid and the raw material gas, and a temperature adjusting means for adjusting the temperature of the gas absorbing liquid generated thereby,
In the static mixer, a plurality of resistors are disposed in a flow path inside a cylindrical casing, and the plurality of resistors are projected in a plate shape from the inner peripheral surface side toward the center. A gas absorption device characterized in that it is provided at predetermined intervals in the axial direction so as not to contact each other in a state of being inclined toward the downstream side, and sequentially shifted by a predetermined angle in the circumferential direction.
原料液が導入されてこれを所要の時間滞留させる処理槽を有し、前記静止型混合器の上流側で原料ガスを注入しながら前記静止型混合器と前記処理槽との間で液を循環させるようにしたことを特徴とする請求項1に記載のガス吸収装置。It has a treatment tank that introduces a raw material liquid and retains it for a required time, and circulates the liquid between the static mixer and the treatment tank while injecting a raw material gas upstream of the static mixer. The gas absorption device according to claim 1, wherein the gas absorption device is made to be. 前記静止型混合器は、前記ケーシングの外周に熱媒体が流通可能なジャケットが設けられたことを特徴とする請求項1若しくは請求項2に記載のガス吸収装置。3. The gas absorption device according to claim 1, wherein the static mixer is provided with a jacket through which a heat medium can flow on an outer periphery of the casing.
JP2003167537A 2003-06-12 2003-06-12 Gas absorption apparatus Pending JP2005000811A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003167537A JP2005000811A (en) 2003-06-12 2003-06-12 Gas absorption apparatus
KR10-2003-0093581A KR100506187B1 (en) 2003-06-12 2003-12-19 Gas absorption apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167537A JP2005000811A (en) 2003-06-12 2003-06-12 Gas absorption apparatus

Publications (1)

Publication Number Publication Date
JP2005000811A true JP2005000811A (en) 2005-01-06

Family

ID=34093313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167537A Pending JP2005000811A (en) 2003-06-12 2003-06-12 Gas absorption apparatus

Country Status (2)

Country Link
JP (1) JP2005000811A (en)
KR (1) KR100506187B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307488A (en) * 2006-05-18 2007-11-29 Fujikin Inc Gas solution manufacturing apparatus and gas solution manufacturing method
JP2008126128A (en) * 2006-11-20 2008-06-05 Noboru Sakano Baffle element and manufacturing method therefor
JP2009061379A (en) * 2007-09-05 2009-03-26 Nikuni:Kk Functional liquid manufacturing apparatus
JP2011218308A (en) * 2010-04-12 2011-11-04 Asupu:Kk Gas-dissolved liquid generating apparatus and method for generation
JP2020065966A (en) * 2018-10-23 2020-04-30 三菱電機株式会社 Purifier and ozone supply device
JP2021079314A (en) * 2019-11-15 2021-05-27 アクアインテック株式会社 Bubble supply installation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037551B1 (en) * 2010-05-31 2011-05-31 신강하이텍(주) Inline mixer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307488A (en) * 2006-05-18 2007-11-29 Fujikin Inc Gas solution manufacturing apparatus and gas solution manufacturing method
JP2008126128A (en) * 2006-11-20 2008-06-05 Noboru Sakano Baffle element and manufacturing method therefor
JP2009061379A (en) * 2007-09-05 2009-03-26 Nikuni:Kk Functional liquid manufacturing apparatus
JP2011218308A (en) * 2010-04-12 2011-11-04 Asupu:Kk Gas-dissolved liquid generating apparatus and method for generation
JP2020065966A (en) * 2018-10-23 2020-04-30 三菱電機株式会社 Purifier and ozone supply device
JP2021079314A (en) * 2019-11-15 2021-05-27 アクアインテック株式会社 Bubble supply installation

Also Published As

Publication number Publication date
KR100506187B1 (en) 2005-08-03
KR20040106203A (en) 2004-12-17

Similar Documents

Publication Publication Date Title
EP3056473B1 (en) Water treatment device and hot-water supply device
WO2010067454A1 (en) Water heating method and water heater
RU2768259C2 (en) Beverage dispensing device with a cleaning module and a method for cleaning said device
JP2005000811A (en) Gas absorption apparatus
JP6342685B2 (en) Method and apparatus for producing hydrogen-containing water
KR20170093297A (en) Nano bubble generator using a perforated plate
JP5692258B2 (en) Fine bubble generator and bath water heater
JP2006263246A (en) Microbubble-jetting device for bathtub or shower
CN204508849U (en) A kind of cavitation apparatus
KR101824240B1 (en) High-density micro-bubble generating device
KR101708552B1 (en) Gas Solution System
KR100970427B1 (en) Waste water treatment apparatus using micro-bubbles
KR101191562B1 (en) System to decrease residual ozone gas and to increase dissolved ozone in the water
KR101135079B1 (en) Device for desolving gas into water
CN217646208U (en) Micro-nano bubble liquid generation system and water heater
JP2008246311A (en) Fine bubble generation apparatus and fine bubble generation method
KR20160040923A (en) Device for generating carbonated water
JP2017061060A (en) Processing method for generating fine air bubble in polymer by processing molding machine
JP2012239790A (en) Fine bubble generation device and circulating bathtub system
JP2006035175A (en) Bath water cleaner
KR100444886B1 (en) A Micro-Bubble Generator And Liquid Treatments Using The Micro-Bubble Generator
JP5423774B2 (en) Bath water heater
JP2007029885A (en) Apparatus for producing carbonated water
JP2005185874A (en) Turbid sewage purifier
KR101997918B1 (en) Ozonic water supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901