JP2004534271A - ハイブリッド型ファイバ拡大ビームコネクタ - Google Patents

ハイブリッド型ファイバ拡大ビームコネクタ Download PDF

Info

Publication number
JP2004534271A
JP2004534271A JP2003511009A JP2003511009A JP2004534271A JP 2004534271 A JP2004534271 A JP 2004534271A JP 2003511009 A JP2003511009 A JP 2003511009A JP 2003511009 A JP2003511009 A JP 2003511009A JP 2004534271 A JP2004534271 A JP 2004534271A
Authority
JP
Japan
Prior art keywords
fiber
optical fiber
lens
hybrid
beam connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003511009A
Other languages
English (en)
Inventor
ジー マン,ラリー
ウクラインツィーク,ルイェルカ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2004534271A publication Critical patent/JP2004534271A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

ハイブリッド型ファイバ拡大ビームコネクタ(100)及びハイブリッド型ファイバ拡大ビームコネクタの作成及び使用方法が記載されている。基本的に、ハイブリッド型ファイバ拡大ビームコネクタは、モードフィールド径(MFD)が相異なるかまたは実効面積が相異なる単一モードファイバなど、異種のファイバを接続するために用いることができる。詳しくは、ハイブリッド型ファイバ拡大ビームコネクタは、第2のレンズ付光ファイバ(106)と光学的に結合されるが空間的には第2のレンズ付光ファイバ(106)から隔てられている、第1のレンズ付光ファイバ(104)を備える。一方のタイプのファイバ(101a)を含む第1のレンズ付光ファイバ(104)は、その内部を進行する光ビームを拡大し、コリメートされた光ビームを出力することができる。他方のタイプのファイバ(101b)を含む第2のレンズ付光ファイバ(106)は、光ビームが第1のレンズ付光ファイバ(104)から第2のレンズ付光ファイバ(106)に進むように、コリメートされた光ビームを受け取り、受け取った光ビームを集束することができる。同様の態様で、ハイブリッド型ファイバ拡大ビームコネクタ(100)は光ビームを第2のレンズ付光ファイバ(106)から第1のレンズ付光ファイバ(104)に伝えることができる。

Description

【関連出願の説明】
【0001】
本出願は、2001年7月5日に出願された、名称を「ハイブリッド型拡大ビームファイバコネクタ」とする、米国仮特許出願第60/303611号の恩典を請求するものである。上記仮特許出願の明細書は本明細書に参照として含まれる。
【技術分野】
【0002】
本発明は全般的には光コネクタに関し、特に、モードフィールド径(MFD)が相異なるかまたは実効面積が相異なる単一モードファイバなど、異種のファイバを接続するために用いることができるハイブリッド型ファイバ拡大ビームコネクタに関する。本発明は熱膨張係数(CTE)が相異なるガラスでつくられているために融着接続が困難なファイバを接続するために用いることもできる。
【背景技術】
【0003】
光コネクタ製造業者はタイプの異なるファイバを接続するために用いることができる光コネクタの設計を試行し続けてきた。例えば特殊用途ファイバ及び分散補償ファイバ等、市販されるようになったファイバの種類が増加し続けているので、このタイプの光コネクタが望ましい。特殊用途ファイバ及び分散補償ファイバは全て、相異なるMFD、したがって相異なる実効面積を有する。残念ながら、現在、タイプの異なるファイバを接続できる光コネクタはない。代わりに、今は、タイプの異なるファイバを互いに融着接続しなければならず、これは時間がかかる作業であり、それほど有効ではない(損失が大きい)ことがある。したがって、タイプの異なるファイバを有効に接続でき、且つモードを整合させ得る光コネクタが必要とされている。上記の要求及びその他の要求は本発明のハイブリッド型ファイバ拡大ビームコネクタ及び方法により満たされる。
【特許文献1】
米国特許出願第09/812108号明細書
【非特許文献1】
メアリー・アドコックス(Mary Adcox)著、「非ゼロ分散シフトファイバ及び標準単一モードファイバに関する融着接続及びファイバ集成互換性(Splicing and Fiber Assembly Compatibility for Non-Zero Dispersion-Shifted Fiber and Standard Single-Mode Fiber)」NOC/EC2000にて発表
【発明の開示】
【発明が解決しようとする課題】
【0004】
異種のファイバを有効に接続でき、モードを整合させ得る、光コネクタを提供する。
【課題を解決するための手段】
【0005】
本発明は、モードフィールド径(MFD)が相異なるかまたは実効面積が相異なる単一モードファイバなど、異種のファイバを接続するために用いることができるハイブリッド型ファイバ拡大ビームコネクタを含む。本コネクタは組成が互いに異なり、したがってCTEが互いに異なるガラスでつくられているファイバを接続するために用いることもできる。組成及びCTEが互いに異なる光ファイバは、融着接続部に大応力がかかるため、融着接続によって確実に結合し合せることは困難である。本ハイブリッド型ファイバ拡大ビームコネクタは、第2のレンズ付光ファイバと光学的に結合されるが空間的には第2のレンズ付光ファイバから隔てられている、第1のレンズ付光ファイバを備える。一方のタイプのファイバを備える第1のレンズ付光ファイバは、第1のレンズ付光ファイバ内を進行する光ビームを拡大し、コリメートされた光ビームを出力することができる。他方のタイプのファイバを備える第2のレンズ付光ファイバは、光ビームが第1のレンズ付光ファイバから第2のレンズ付光ファイバに進むように、コリメートされた光ビームを受け取って、受け取った光ビームを集束することができる。同様の態様で、本ハイブリッド型ファイバ拡大ビームコネクタは第2のレンズ付光ファイバから第1のレンズ付光ファイバに光ビームを伝えることができる。本発明は、本ハイブリッド型ファイバ拡大ビームコネクタを作成及び使用するための方法も含む。
【発明を実施するための最良の形態】
【0006】
添付図面とともになされる以下の詳細な説明を参照することにより、本発明のより完全な理解を得ることができる。
【0007】
図1〜8を参照すれば、ハイブリッド型ファイバ拡大ビームコネクタ100の好ましい実施形態並びにハイブリッド型ファイバ拡大ビームコネクタ100を作成及び使用するための好ましい方法700及び800が開示されている。ハイブリッド型ファイバ拡大ビームコネクタ100はただ一対の異種ファイバを光学的に接続するとして説明されるが、本ハイブリッド型ファイバ拡大ビームコネクタ100を一対またはそれより多くの対の異種ファイバを接続するために用い得ることは当然である。したがって、本ハイブリッド型ファイバ拡大ビームコネクタ100並びに好ましい方法700及び800はそのような限定された態様で解されるべきではない。
【0008】
基本的に、ハイブリッド型ファイバ拡大ビームコネクタ100は、モードフィールド径(MFD)が相異なるかまたは実効面積が相異なる単一モードファイバなど、異種のファイバ101aと101bとを接続するために用いることができる。特に、ハイブリッド型ファイバ拡大ビームコネクタ100は、第2のレンズ付光ファイバ106に光学的に結合されるが空間的には第2のレンズ付光ファイバ106から隔てられている、第1のレンズ付光ファイバ104を備える。一方のタイプのファイバ101aを備える第1のレンズ付光ファイバ104は、第1のレンズ付光ファイバ104内を進行する光ビーム302を拡大し、コリメートされた光ビーム302を出力することができる(図3は、レンズ付光ファイバ104と106の間にあるときにコリメートされる光ビーム302を示す)。他方のタイプのファイバ101bを備える第2のレンズ付光ファイバ106は、第1のレンズ付光ファイバ104から第2のレンズ付光ファイバ106に光ビーム302が有効に進むように、出力された光ビーム302を受け取り、受け取った光ビーム302を集束することができる。同様の態様で、ハイブリッド型ファイバ拡大ビームコネクタ100は第2のレンズ付光ファイバ106から第1のレンズ付光ファイバ104に光ビーム302を伝えることができる。
【0009】
図1を参照すれば、一対以上の異種のファイバ101a及び101bを光学的に接続するために用いることができる、ハイブリッド型ファイバ拡大ビームコネクタ100の分解組立図を示すブロック図がある。2本のファイバ101a及び101bは、MFDが相異なるかまたは実効面積が相異なる場合、あるいはファイバ101a及び101bのそれぞれが組成の相異なる2種のガラスのそれぞれでつくられている場合に、異種のファイバとなる。例えば、異種のファイバ101a及び101bはそれぞれ、コーニング社(Corning Inc.)から、SMF−28(商標),非ゼロ分散シフトファイバ(NZ−DSF)(例:コーニング(登録商標)MetroCor(商標))、及び大実効面積の非ゼロ分散シフトファイバ(例:「コーニング」LEAF(商標))として市販されている単一モードファイバなど、MFDの相異なる単一モードファイバとすることができる。これまでは異種のファイバ101a及び101bを融着接続しなければならなかったであろうから、ハイブリッド型ファイバ拡大ビームコネクタ100は現状技術に優る顕著な改善である。すなわち、ハイブリッド型ファイバ拡大ビームコネクタ100以前の過去においては、異種のファイバ101a及び101bを接続するために利用できるコネクタはなかった。
【0010】
レンズ付光ファイバ104及び106を組み込んでいるハイブリッド型ファイバ拡大ビームコネクタ100により、異種のファイバ101aと101bとの接続が可能になる。さらに、ハイブリッド型ファイバ拡大ビームコネクタ100により、プロファイルがより複雑なファイバと、低損失の別のファイバとの接続も可能になる。例えば、「SMF−28」101aと大実効面積NZ−DSF101bのような単一モードファイバを接続するため、あるいは「SMF−28」101aとNZ−DSF101bを接続するために、融着接続されたピグテイルの代わりに、ハイブリッド型ファイバ拡大ビームコネクタ100を用いることができる。「SMF−28」101a−「SMF−28」101a間のレンズ付光ファイバ104及び106による結合効率の測定値に基づけば、ハイブリッド型ファイバ拡大ビームコネクタ100における推定損失は0.14dB(σ=0.06)であり、この値は相異なるタイプのファイバ101a及び101bの接続についても同じはずである。この0.14dBの推定損失は、「SMF−28」については<0.25dB,大実効面積NZ−DSFについては<0.28dB,NZ−DSFについては<0.34dBの、空間的接触型コネクタに対する現行の損失仕様より小さい。ファイバの融着接続に関するさらなる詳細については、非特許文献1を参照されたい。非特許文献1は本明細書に参照として含まれる。
【0011】
図1に示されるように、ハイブリッド型ファイバ拡大ビームコネクタ100は第1のレンズ付光ファイバ104及び第2のレンズ付光ファイバ106を支持するパッケージ102を備える。詳しくは、パッケージ102は、挿入損失を最小限に抑えるため、第1のレンズ付光ファイバ104及び第2のレンズ付光ファイバ106が対面し、あらかじめ定められた距離だけ互いに隔てられるように、第1のレンズ付光ファイバ104及び第2のレンズ付光ファイバ106を支持し、位置を合せる。
【0012】
パッケージ102は、第1のフェルール108、第2のフェルール110及び嵌合位置合せ固定具112を備える。第1のフェルール108は第1のレンズ付光ファイバ104を支持し、保護する。同様に、第2のフェルール110は第2のレンズ付光ファイバ106を支持し、保護する。嵌合位置合せ固定具112は1本またはそれより多くの位置合せピン114(2本が示されている)とともに、第1のレンズ付光ファイバ104が第2のレンズ付光ファイバ106からあらかじめ定められた距離だけ隔てられるように、第1のフェルール108及び第2のフェルール110を所定の位置に合せて、保持することができる。位置合せピン114は2本のレンズ付光ファイバ104及び106の位置合せを補助することもできる。
【0013】
第1のフェルール108及び第2のフェルール110は、多様な材料でつくることができ、多様な形態をとることができる。そのような形態の1つが図1に示され、図1では、第1のレンズ付光ファイバ104及び第2のレンズ付光ファイバ106の凸レンズ116及び118がそれぞれ第1のフェルール108及び第2のフェルール110から突き出ている。別のそのような形態が図2に示され、図2では、第1のレンズ付光ファイバ104及び第2のレンズ付光ファイバ106の凸レンズ116及び118が第1のフェルール108及び第2のフェルール110のそれぞれから突き出てはいない。代わりに、第1のフェルール108及び第2のフェルール110はそれぞれ、上蓋部品(図示せず)及び、第1のレンズ付光ファイバ104及び第2のレンズ付光ファイバ106の周囲にエポキシ樹脂で貼り合された、基台部品202a及び202bからつくられている。この第2の例では、第1のフェルール108及び第2のフェルール110を突き合せることができ、その場合でも第1のレンズ付光ファイバ104及び第2のレンズ付光ファイバ106の間にあらかじめ定められた距離を維持することができる。
【0014】
作動中、ハイブリッド型ファイバ拡大ビームコネクタ100は、内部を進行する光ビーム302を拡大し、コリメートされた光ビーム302を出力することができる、第1のレンズ付光ファイバ104を備える(図3はレンズ付光ファイバ104と106の間にあるときにコリメートされる光ビーム302を示す)。第2のレンズ付光ファイバ106は、光ビーム302が第1のレンズ付光ファイバ104から第2のレンズ付光ファイバ106に有効に進むように、コリメートされた光ビーム302を受け取り、受け取った光ビーム302を集束することができる。同様な態様で、ハイブリッド型ファイバ拡大ビームコネクタ100は、第2のレンズ付光ファイバ106から第1のレンズ付光ファイバ104に光ビーム302を伝えることもできる。第1のレンズ付光ファイバ104及び第2のレンズ付光ファイバ106に関する詳細は、図3〜6に関して以下に記載される。
【0015】
図3を参照すれば、2本のレンズ付光ファイバ104及び106の様々な幾何学的寸法を示すブロック図がある。レンズ付光ファイバ104及び106の幾何学的寸法は、第1のレンズ付光ファイバ104が第2のレンズ付光ファイバ106から隔てられるべき距離を規定する。下式:
【数1】
Figure 2004534271
【0016】
が成立するときに、レンズ116及び118のそれぞれが完全コリメータとなることは当然である。ここで:
T=レンズ116及び118の厚さ;
=レンズ116及び118の曲率半径;
n=レンズ116及び118の屈折率;
Φ=位相シフト;
である。
【0017】
例えば、波長1550nmにおいてシリカ(n=1.444)を用いれば、レンズ116及び118は、T/R=3.25のときに完全コリメータである。実際には、レンズ付光ファイバ104及び106は点光源ではないこと及び球形レンズ部116及び118は非常に小さいために回折効果が大きいことから、レンズ116及び118の厚さを焦点の回折シフトだけ大きくする必要がある。レンズ116及び118の形状寸法は、様々なファイバ101a及び101bのタイプに応じ、同じとすることもできるし、異ならせることもできることを理解すべきである。したがって、実際上、T/R比は3.25より大きい。
【0018】
コーニング社の「SMF−28」101a及び大実効面積NZ−DSF101bなどの単一モードファイバの接続及び、コーニング社の「SMF−28」101a及びNZ−DSF101bの接続に用いられる、ハイブリッド型ファイバ拡大ビームコネクタ100の各種設計例が表1に示される。表1の計算については、ホウケイ酸ガラスレンズ付光ファイバ104及び106を融着接続するときの熱コア拡張量が3種のファイバのいずれについても同じ(すなわち30.8%の拡張)であると仮定した。表1中の、単位は全てμmである。
【表1】
Figure 2004534271
【0019】
本願発明者らが測定したように、コーニング社の「SMF−28」などの単一モードファイバ101a及び101bを有する2本のレンズ付光ファイバ104及び106の結合効率は0.14dB(標準偏差=0.06)である。これは、1550nmウインドウにおけるNZ−DSFとコーニング社の「SMF−28」の間の従来の融着接続の0.15dB(標準偏差=0.029)の損失と同等である。2本のレンズ付光ファイバ104及び106についてビームウエストにおけるMFDが一致すれば、用いられるファイバのタイプに損失が依存しないはずであることに注目すべきである。
【0020】
図4を参照すれば、本発明に用いることができる具体例としてのレンズ付光ファイバ104及び106の顕微鏡写真が示されている。図示されるようなガラスレンズ400(レンズ部材、平凸コリメーティングレンズ)は、対象の波長で透明となるガラスでつくられ、光ファイバ101aまたは101bに融着接続される。ガラスレンズ400の熱膨張係数(CTE)は光ファイバ101aまたは101bのCTEに一致するかまたはほとんど一致する。本質的に、ガラスレンズ400は厚さ“T”及び曲率半径“R”を有する(図3参照)。さらに具体的には、ガラスレンズ400はスロート部402並びに球形レンズ部116及び118を含む。レンズ付光ファイバ104及び106は、スロート部402の一端を光ファイバ101aまたは101bに融着接続することによりつくることができる。次いで、タングステンフィラメントをもつ融着接続機を用いてスロート部402の他端に凸レンズ116及び118を形成することができる。ガラスレンズ400に関するより詳細な議論は、コーニング社の特許文献1に記載されている。特許文献1の内容は本明細書に参照として含まれる。
【0021】
好ましい実施形態において、レンズ付光ファイバ104及び106、特に球形レンズ部116及び118は、ホウケイ酸ガラスでつくられる。ホウケイ酸ガラスでつくられた球形レンズ部116及び118では複屈折の問題が生じないが、シリカでつくられた球形レンズは偏波依存損失に寄与する複屈折性を示す。さらに、レンズ116及び118をホウケイ酸ガラスでつくると、ハイブリッド型ファイバ拡大ビームコネクタ100の性能を強化できる。その理由は、ファイバ101a及び101bのホウケイ酸ガラスへの融着接続により、モードフィールド径(MFD)を拡大し、レンズ付光ファイバ104及び106の横方向位置合せずれに対する許容度を大きくする熱コア拡張がおこるからである。さらに、シリカの代わりにホウケイ酸ガラスを用いると、レンズ116及び118の作成プロセスの再現性がさらに一層高まる。
【0022】
ホウケイ酸ガラスでつくられたレンズ付光ファイバ104及び106とシリカでつくられたレンズ付光ファイバ104及び106のさらに詳細な比較については、図5を参照されたい。特に、熱コア拡張の効果を図5に見ることができる。データ点は、コーニング社の「SMF−28」に取り付けられたシリカレンズ及びホウケイ酸ガラスレンズについてx及びy方向で測定されたMFDを表す。実線はガウスビームモデルフィッティングを表す。データは、コーニング社の「SMF−28」のコアが10.4μmの公称ファイバモードフィールドから約13.6μmに拡張したことを示す。
【0023】
ホウケイ酸ガラスまたはシリカでつくられた球形レンズ部116及び118を、光ビーム302がレンズ116及び118の表面に当たったときに(図3参照)光ビーム302をより大きなスポット径まで拡散するように機能する、反射防止(AR)膜で被覆することもできる。
【0024】
図6A〜6Cを参照すれば、ハイブリッド型ファイバ拡大ビームコネクタ100に関わる様々な許容度(例えば、横方向オフセット、角度オフセット、軸方向変位)のグラフが示されている。詳しくは、これらのグラフは、横方向、角度及び軸方向位置合せずれの、レンズ付光ファイバ104及び106(MFD=62μm)をもつハイブリッド型ファイバ拡大ビームコネクタ100、及び、コーニング社の「SMF−28」(MFD=10.4μm)、大実効面積NZ−DSF(MFD=9.6μm)及びNZ−DSF(MFD=8.4μm)などの単一モードファイバの、従来の突き合せ結合コネクタにおける損失への影響を示す。従来の突き合せ結合コネクタに比較して、ハイブリッド型ファイバ拡大ビームコネクタ100(例えばレンズ付光ファイバ104及び106)では横方向及び軸方向許容度がかなり広いことが、図6A及び6Cからわかる。しかし、図6Bからは、ハイブリッド型ファイバ拡大ビームコネクタ100では角度位置合せずれに対する許容度がかなり狭いことがわかる。角度位置合せずれに対する許容度が狭まるのはハイブリッド型ファイバ拡大ビームコネクタ100のMFDが大きくなっているためである。したがって、ハイブリッド型ファイバ拡大ビームコネクタ100の機構設計は非可傾とすべきである。さらに、作動距離(例えばレンズ対レンズ間隔)が短ければ角度位置合せずれにより横方向位置合せずれが小さくなるから、作動距離を短くすることが好ましい。
【0025】
図7を参照すれば、ハイブリッド型ファイバ拡大ビームコネクタ100を作成するための好ましい方法700の工程のフローチャートが示されている。ハイブリッド型ファイバ拡大ビームコネクタ100を作成するため、第1のレンズ付光ファイバ104が第1のフェルール108に挿入される(工程702)。同様に、第2のレンズ付光ファイバ106が第2のフェルール110に挿入される(工程704)。好ましい実施形態では、戻り反射(後方反射)損失を低減するために、第1のレンズ付光ファイバ104及び第2のレンズ付光ファイバ106に反射防止膜が被覆される。
【0026】
その後、第1のフェルール108が第2のフェルール110に連結される(工程706)。これは、いくつかの態様で達成され得る。例えば、図1に示されるように、嵌合位置合せ固定具112を1本以上の位置合せピン114(2本が示されている)とともに用いて、第1のフェルール108及び第2のフェルール110を位置合せして、保持することができる。あるいは、第1のフェルール108及び第2のフェルール110を、例えばキー付差込みカップリングまたは結合受栓を用いて、互いに連結することができる。この結果、第1のレンズ付光ファイバ104が第2のレンズ付光ファイバ106に対して位置合せされ、第2のレンズ付光ファイバ106からあらかじめ定められた距離だけ隔てられるような態様で、第1のフェルール108及び第2のフェルール110が互いに対して確実に固定される。
【0027】
第1のフェルール108の第2のフェルール110への連結後、ハイブリッド型ファイバ拡大ビームコネクタ100及び、特に第1のレンズ付光ファイバ104は、第1のレンズ付光ファイバ104内を進行する光ビーム302を拡大し、コリメートされた光ビーム302を第2のレンズ付光ファイバ106に向けて出力することができる。第2のレンズ付光ファイバ106は、光ビーム302が第1のレンズ付光ファイバ104から第2のレンズ付光ファイバ106に進むように、コリメートされた光ビーム302を受け取ると、受け取った光ビーム302を集束する。同様の態様で、ハイブリッド型ファイバ拡大ビームコネクタ100は光ビーム302を第2のレンズ付光ファイバ106から第1のレンズ付光ファイバ104に伝えることもできる。
【0028】
図8を参照すれば、ハイブリッド型ファイバ拡大ビームコネクタ100を使用するための好ましい方法800の工程のフローチャートが示されている。基本的に、ハイブリッド型ファイバ拡大ビームコネクタ100の第1のレンズ付光ファイバ104は第1の光コンポーネント(例えば増幅器)に接続される(工程802)。同様に、ハイブリッド型ファイバ拡大ビームコネクタ100の第2のレンズ付光ファイバ106は第2の光コンポーネント(例えば増幅器)に接続される(工程804)。
【0029】
これで、ハイブリッド型ファイバ拡大ビームコネクタ100の集成は完了している。第1のレンズ付光ファイバ104は、第1のレンズ付光ファイバ104内を進行する光ビーム302を拡大し、コリメートされた光ビーム302を第2のレンズ付光ファイバ106に向けて出力することができる。第2のレンズ付光ファイバ106は、光ビーム302が第1のレンズ付光ファイバ104から第2のレンズ付光ファイバ106に進むように、コリメートされた光ビーム302を受け取ると、受け取った光ビーム302を集束する。同様の態様で、ハイブリッド型ファイバ拡大ビームコネクタ100は光ビーム302を第2のレンズ付光ファイバ106から第1のレンズ付光ファイバ104に伝えることができる。
【0030】
以下に、ハイブリッド型ファイバ拡大ビームコネクタ100の使用例のいくつかを記載する。
【0031】
・ ハイブリッド型ファイバ拡大ビームコネクタ100は、異種のファイバ101a及び101bを接続するために1タイプのジャンパーしか要しないので、配線作業を簡易化することができよう。例えば本発明以前、NZ−DSF路において経常損失を低く抑えるためには、NZ−DSF集成体の代わりに単一モードファイバコネクタを用いるのが普通であった。
【0032】
・ ハイブリッド型ファイバ拡大ビームコネクタ100は、一端をピグテイルとしてまたは一端を別の拡大ビームコネクタとして有し得るパッチコードに用いることができよう。例えばハイブリッドファイバへの適用において、ハイブリッド型ファイバ拡大ビームコネクタ100の一端を増幅器(またはハイブリッド型ファイバで動作するその他のデバイス)に(ピグテイルが付けられていれば)融着接続するかまたは(別のコネクタがつけられていれば)連結することができよう。ハイブリッド型ファイバ拡大ビームコネクタ100の出力は、信号に光ネットワークに戻る経路をとらせるために用いることができ、あるいは光ビームからパワーの一部をとって光学性能をモニタするために用いることができよう。
【0033】
・ ハイブリッド型ファイバ拡大ビームコネクタ100は、モード変換の実施及び、熱膨張係数が大きく異なり、したがって互いに融着接続させることができないファイバの接続に用いることもできる。例えば、本発明以前、エルビウム及びツリウムドープMCSガラスがファイバ増幅器の帯域幅を稼ぐために用いられていた。しかし、MCSガラスの熱膨張係数は約6ppmであり、したがって、MCSガラス増幅器を組み込むときにPureMode(商標)HI980ファイバにMCSガラスを確実に融着接続することはできない。さらに、MCSファイバと「PureMode」HI980ファイバとの間には、約1μmのモードフィールド不整合がある上に、後方反射損失を増大させる屈折率不整合(n(MCS)=1.6〜1.7に対してn(「PureMode」HI980)=1.45)もある。本発明の手法を用いれば、エルビウムまたはツリウムがドープされていないことを除けばファイバコアと同じガラス組成をもつロッドを用いて、エルビウムドープまたはツリウムドープファイバの末端にレンズを形成することができよう。次いで、このレンズに反射減衰量を低減するAR膜を被覆することができる。「PureMode」HI980の末端には別のレンズがシリカガラスで形成される。これらのレンズの形状寸法はビームウエストでモードフィールド径が一致するように選ばれることになろう。AR膜がないときの損失は〜0.5dBであり、AR膜付の場合の損失は0.2dBより小さいであろう。
【0034】
本発明の実施形態を添付図面に1つしか示さず、また上記の詳細な説明に記述しなかったが、本発明は開示した実施形態に限定されるものではなく、また、添付される特許請求の範囲に記載され、特許請求の範囲で定められ本発明の精神を逸脱することなく、数多くの再構成、改変及び置換が可能であることは当然である。
【図面の簡単な説明】
【0035】
【図1】本発明にしたがうハイブリッド型ファイバ拡大ビームコネクタの分解組立図を示すブロック図である
【図2】図1に示されるハイブリッド型ファイバ拡大ビームコネクタのレンズ付光ファイバを支持するために用いられる具体例としての2つのフェルールの基台部の斜視図である
【図3】2本のレンズ付光ファイバの様々な幾何学的寸法を示すブロック図である
【図4】図1に示されるハイブリッド型ファイバ拡大ビームコネクタに組み込むことができるレンズ付光ファイバの顕微鏡写真である
【図5】シリカ平凸レンズ及びホウケイ酸ガラス平凸レンズを有するレンズ付光ファイバへの熱コア拡張の効果を示すグラフである
【図6A】図1に示されるハイブリッド型ファイバ拡大ビームコネクタに関わる横方向オフセット許容度を示すグラフである
【図6B】図1に示されるハイブリッド型ファイバ拡大ビームコネクタに関わる角度オフセット許容度を示すグラフである
【図6C】図1に示されるハイブリッド型ファイバ拡大ビームコネクタに関わる軸方向変位許容度を示すグラフである
【図7】図1に示されるハイブリッド型ファイバ拡大ビームコネクタを作成するための好ましい方法の各工程を示すフローチャートである
【図8】図1に示されるハイブリッド型ファイバ拡大ビームコネクタを用いるための好ましい方法の各工程を示すフローチャートである
【符号の説明】
【0036】
100 ハイブリッド型ファイバ拡大ビームコネクタ
101a,101b ファイバ
102 パッケージ
104,106 レンズ付光ファイバ
108,110 フェルール
112 嵌合位置合せ固定具
114 位置合せピン
116,118 レンズ

Claims (31)

  1. ハイブリッド型ファイバ拡大ビームコネクタにおいて、
    第1のレンズ付光ファイバ、及び
    前記第1のレンズ付光ファイバと光学的に結合されているが、空間的には前記第1のレンズ付光ファイバからあらかじめ定められた距離だけ隔てられている、第2のレンズ付光ファイバ、
    を備え、
    前記第1のレンズ付光ファイバは一方のタイプのファイバを含み、前記第2のレンズ付光ファイバは他方のタイプのファイバを含むことを特徴とするハイブリッド型ファイバ拡大ビームコネクタ。
  2. 前記一方のタイプのファイバ及び前記他方のタイプのファイバは、それぞれが相異なるモードフィールド径を有することを特徴とする請求項1に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  3. 前記一方のタイプのファイバ及び前記他方のタイプのファイバは、それぞれが相異なるガラス組成でつくられていることを特徴とする請求項1に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  4. 前記第1のレンズ付光ファイバ及び前記第2のレンズ付光ファイバを支持できるパッケージをさらに備えることを特徴とする請求項1に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  5. 請求項4に記載のハイブリッド型ファイバ拡大ビームコネクタにおいて、前記パッケージが、
    前記第1のレンズ付光ファイバを支持できる第1のフェルール、
    前記第2のレンズ付光ファイバを支持できる第2のフェルール、及び
    前記第1のレンズ付光ファイバが前記第2のレンズ付光ファイバから前記あらかじめ定められた距離だけ隔てられるように、前記第1のフェルール及び前記第2のフェルールを位置合せして保持できる嵌合位置合せ固定具、
    をさらに備えることを特徴とするハイブリッド型ファイバ拡大ビームコネクタ。
  6. 前記第1のレンズ付光ファイバ及び前記第2のレンズ付光ファイバは、それぞれが、光ファイバ及び、スロート部と球形レンズ部とを含む平凸コリメーティングレンズを備えることを特徴とする請求項1に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  7. 前記スロート部及び前記球形レンズ部は、それぞれが、前記第1のレンズ付光ファイバが前記第2のレンズ付光ファイバから空間的に隔てられるべき前記あらかじめ定められた距離を画定する形状寸法を有することを特徴とする請求項6に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  8. 前記ハイブリッド型ファイバ拡大ビームコネクタがアレイ配列ハイブリッド型ファイバ拡大ビームコネクタであることを特徴とする請求項1に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  9. 異種のファイバの接続に用いられるハイブリッド型ファイバ拡大ビームコネクタにおいて、前記ハイブリッド型ファイバ拡大ビームコネクタが、
    光ビームを拡大すること及びコリメートされた光ビームを出力することができる一方のタイプのファイバを含む、第1のレンズ付光ファイバ、及び
    前記第1のレンズ付光ファイバからあらかじめ定められた距離だけ空間的に隔てられ、前記光ビームが前記第1のレンズ付光ファイバから前記第2のレンズ付光ファイバに有効に進むように、前記コリメートされた光ビームを受け取ること及び前記受け取った光ビームを集束することができる他方のタイプのファイバを含む、第2のレンズ付光ファイバ、
    を備えることを特徴とするハイブリッド型ファイバ拡大ビームコネクタ。
  10. 前記第1のレンズ付光ファイバが単一モードファイバを含み、前記第2のレンズ付光ファイバが非ゼロ分散シフトファイバを含むことを特徴とする請求項9に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  11. 前記第1のレンズ付光ファイバが単一モードファイバを含み、前記第2のレンズ付光ファイバが大実効面積を有する非ゼロ分散シフトファイバを含むことを特徴とする請求項9に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  12. 前記第1のレンズ付光ファイバ及び前記第2のレンズ付光ファイバの内の少なくとも一方が複雑な物理的プロファイルをもつファイバを含むことを特徴とする請求項9に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  13. 前記第1のレンズ付光ファイバ及び前記第2のレンズ付光ファイバが、互いに異なるモードフィールド径を有するファイバを含むことを特徴とする請求項9に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  14. 前記第1のレンズ付光ファイバ及び前記第2のレンズ付光ファイバが、相異なるガラス組成を有するファイバを含むことを特徴とする請求項9に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  15. 請求項9に記載のハイブリッド型ファイバ拡大ビームコネクタにおいて、前記第1のレンズ付光ファイバ及び前記第2のレンズ付光ファイバが対面し、前記あらかじめ定められた距離だけ空間的に隔てられるように、前記第1のレンズ付光ファイバ及び前記第2のレンズ付光ファイバを支持すること及び位置合せすることができるパッケージをさらに備えることを特徴とするハイブリッド型ファイバ拡大ビームコネクタ。
  16. 前記第1及び第2のレンズ付光ファイバは、それぞれが、光ファイバ及び、スロート部と球形レンズ部とを含む平凸コリメーティングレンズをさらに備えることを特徴とする請求項9に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  17. 前記球形レンズ部のそれぞれに反射防止膜が被覆されていることを特徴とする請求項16に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  18. 前記球形レンズ部は、それぞれがホウケイ酸ガラスでつくられていることを特徴とする請求項16に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  19. 前記ハイブリッド型ファイバ拡大ビームコネクタが一対より多くの前記第1及び第2のレンズ付光ファイバを備えることを特徴とする請求項9に記載のハイブリッド型ファイバ拡大ビームコネクタ。
  20. ハイブリッド型ファイバ拡大ビームコネクタを作成するための方法において、
    一方のタイプのファイバを含む第1のレンズ付光ファイバを第1のフェルールに挿入する工程、
    他方のタイプのファイバを含む第2のレンズ付光ファイバを第2のフェルールに挿入する工程、及び
    前記第1のレンズ付光ファイバ及び前記第2のレンズ付光ファイバが位置合せされ、あらかじめ定められた距離だけ互いに隔てられ、よって、前記第1のレンズ付光ファイバが、前記第1のレンズ付光ファイバ内を進行している光ビームを拡大して、コリメートされた光ビームを、前記光ビームが前記第1のレンズ付光ファイバから前記第2のレンズ付光ファイバに有効に進むように、前記コリメートされた光ビームを受け取り、前記受け取った光ビームを集束する前記第2のレンズ付光ファイバに向けて出力することを可能にするように、前記第1のフェルール及び前記第2のフェルールを確実に固定する工程、
    を含むことを特徴とする方法。
  21. 前記一方のタイプのファイバ及び前記他方のタイプのファイバは、それぞれが相異なるモードフィールド径を有することを特徴とする請求項20に記載の方法。
  22. 前記一方のタイプのファイバ及び前記他方のタイプのファイバは、それぞれが相異なるガラス組成でつくられていることを特徴とする請求項20に記載の方法。
  23. 前記第1及び第2のレンズ付光ファイバは、それぞれが光ファイバ及び、スロート部と球形レンズ部とを含む平凸コリメーティングレンズをさらに備えることを特徴とする請求項20に記載の方法。
  24. 前記球形レンズ部のそれぞれに反射防止膜が被覆されることを特徴とする請求項22に記載の方法。
  25. 前記球形レンズ部は、それぞれがホウケイ酸ガラスでつくられることを特徴とする請求項22に記載の方法。
  26. ハイブリッド型ファイバ拡大ビームコネクタを使用するための方法において、
    一方のタイプのファイバを含む第1のレンズ付光ファイバを第1の光コンポーネントに接続する工程、及び
    他方のタイプのファイバを含む第2のレンズ付光ファイバを第2の光コンポーネントに接続する工程、
    を含み、
    前記第1のレンズ付光ファイバ及び前記第2のレンズ付光ファイバが位置合せされ、あらかじめ定められた距離だけ互いに隔てられ、よって、前記第1のレンズ付光ファイバが、前記第1のレンズ付光ファイバ内を進行している光ビームを拡大し、コリメートされた光ビームを、前記光ビームが前記第1の光コンポーネントから前記第2の光コンポーネントに有効に進むように、前記コリメートされた光ビームを受け取り、前記受け取った光ビームを集束する前記第2のレンズ付光ファイバに向けて出力することを可能にすることを特徴とする方法。
  27. 前記第1のタイプのファイバ及び前記第2のタイプのファイバのそれぞれが相異なるモードフィールド径を有することを特徴とする請求項25に記載の方法。
  28. 前記一方のタイプのファイバ及び前記他方のタイプのファイバは、それぞれが相異なるガラス組成でつくられていることを特徴とする請求項25に記載の方法。
  29. 前記第1及び第2のレンズ付光ファイバは、それぞれが光ファイバ及び、スロート部と球形レンズ部とを含む平凸コリメーティングレンズをさらに備えることを特徴とする請求項25に記載の方法。
  30. 前記球形レンズ部のそれぞれに反射防止膜が被覆されていることを特徴とする請求項29に記載の方法。
  31. 前記球形レンズ部は、それぞれがホウケイ酸ガラスでつくられていることを特徴とする請求項29に記載の方法。
JP2003511009A 2001-07-05 2002-05-31 ハイブリッド型ファイバ拡大ビームコネクタ Withdrawn JP2004534271A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US30361101P 2001-07-05 2001-07-05
PCT/US2002/017126 WO2003005089A1 (en) 2001-07-05 2002-05-31 Hybrid fiber expanded beam connector and methods for using and making the hybrid fiber expanded beam connector

Publications (1)

Publication Number Publication Date
JP2004534271A true JP2004534271A (ja) 2004-11-11

Family

ID=23172883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003511009A Withdrawn JP2004534271A (ja) 2001-07-05 2002-05-31 ハイブリッド型ファイバ拡大ビームコネクタ

Country Status (6)

Country Link
US (1) US6655850B2 (ja)
JP (1) JP2004534271A (ja)
KR (1) KR20040015329A (ja)
CN (1) CN1633614A (ja)
TW (1) TWI247147B (ja)
WO (1) WO2003005089A1 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3826726B2 (ja) * 2001-04-25 2006-09-27 日本電気株式会社 光出力装置の保護装置並びにそれを用いた光伝送システム及び光出力装置の保護方法
US8463439B2 (en) 2009-03-31 2013-06-11 Intuitive Surgical Operations, Inc. Optic fiber connection for a force sensing instrument
US7329050B1 (en) 2006-03-10 2008-02-12 Translume, Inc. Tapered, single-mode optical connector
US7334944B1 (en) * 2006-07-24 2008-02-26 Lockheed Martin Corporation Optical connector
EP1884809B1 (en) 2006-07-31 2018-02-14 TE Connectivity Corporation Expanded beam connector
US7684695B1 (en) * 2006-08-11 2010-03-23 Lockheed Martin Corporation Optical diagnostic indicator
US20080037946A1 (en) * 2006-08-14 2008-02-14 John George Multicable clamp
US7766557B2 (en) * 2007-03-06 2010-08-03 Stratos International, Inc. Expanded beam connector and expanded beam optoelectronic device
US7817454B2 (en) 2007-04-03 2010-10-19 Micron Technology, Inc. Variable resistance memory with lattice array using enclosing transistors
US10718909B2 (en) * 2008-07-29 2020-07-21 Glenair, Inc. Expanded beam fiber optic connection system
US7775725B2 (en) * 2008-10-29 2010-08-17 Tyco Electronics Corporation Single-channel expanded beam connector
FR2951556B1 (fr) * 2009-10-19 2011-12-23 Socapex Amphenol Dispositif de connexion de fibres optiques
CN102147509B (zh) * 2010-02-08 2013-12-11 鸿富锦精密工业(深圳)有限公司 光纤耦合连接器及其公端与母端
CN102782545B (zh) 2010-03-19 2015-07-08 康宁公司 用于电子装置的光纤接口装置
JP2013522692A (ja) * 2010-03-19 2013-06-13 コーニング インコーポレイテッド 並進可能なフェルールを備えた光ファイバインタフェース装置
US8520989B2 (en) * 2010-03-19 2013-08-27 Corning Incorporated Fiber optic interface devices for electronic devices
US20110229077A1 (en) * 2010-03-19 2011-09-22 Davide Domenico Fortusini Small-form-factor fiber optic interface devices with an internal lens
US8622632B2 (en) * 2010-03-19 2014-01-07 Corning Incorporated Small-form-factor fiber optic interface assemblies for electronic devices having a circuit board
TW201205988A (en) * 2010-07-23 2012-02-01 Hon Hai Prec Ind Co Ltd Fiber connector assembly
TWI503586B (zh) * 2010-08-18 2015-10-11 Hon Hai Prec Ind Co Ltd 光纖耦合連接器
US8781273B2 (en) 2010-12-07 2014-07-15 Corning Cable Systems Llc Ferrule assemblies, connector assemblies, and optical couplings having coded magnetic arrays
US8774577B2 (en) 2010-12-07 2014-07-08 Corning Cable Systems Llc Optical couplings having coded magnetic arrays and devices incorporating the same
CN103339543B (zh) 2011-01-20 2016-12-21 康宁股份有限公司 具有梯度折射率透镜的插座套管组件和使用其的光纤连接器
US8905648B2 (en) * 2011-06-29 2014-12-09 Cinch Connectivity Solutions, Inc. Expanded beam fiber optic connector
US20130034329A1 (en) * 2011-08-04 2013-02-07 Honeywell International Inc. Modular optical assembly
US8734024B2 (en) 2011-11-28 2014-05-27 Corning Cable Systems Llc Optical couplings having a coded magnetic array, and connector assemblies and electronic devices having the same
WO2013096367A1 (en) * 2011-12-19 2013-06-27 Ipg Photonics Corporation Pigtailed fiber connector system
WO2013126487A1 (en) * 2012-02-23 2013-08-29 Corning Incorporated Stub lens assemblies for use in optical coherence tomography systems
US8967885B2 (en) 2012-02-23 2015-03-03 Corning Incorporated Stub lens assemblies for use in optical coherence tomography systems
US8861900B2 (en) 2012-02-23 2014-10-14 Corning Incorporated Probe optical assemblies and probes for optical coherence tomography
CN103323914B (zh) * 2012-03-20 2016-05-04 鸿富锦精密工业(深圳)有限公司 光纤连接器
US9036966B2 (en) 2012-03-28 2015-05-19 Corning Incorporated Monolithic beam-shaping optical systems and methods for an OCT probe
TWI557455B (zh) * 2012-05-16 2016-11-11 鴻海精密工業股份有限公司 光纖連接器組件
US10114174B2 (en) 2012-05-31 2018-10-30 Corning Optical Communications LLC Optical connectors and optical coupling systems having a translating element
US9588302B2 (en) * 2012-06-01 2017-03-07 Te Connectivity Corporation Expanded-beam connector with molded lens
US9151912B2 (en) 2012-06-28 2015-10-06 Corning Cable Systems Llc Optical fiber segment holders including shielded optical fiber segments, connectors, and methods
US9304265B2 (en) 2012-07-26 2016-04-05 Corning Cable Systems Llc Fiber optic connectors employing moveable optical interfaces with fiber protection features and related components and methods
CN105339824B (zh) 2013-06-25 2017-08-29 康宁光电通信有限责任公司 具有位移盖体及迎接插座的光学式插头
EP3198317A1 (en) 2014-09-23 2017-08-02 Corning Optical Communications LLC Optical connectors and complimentary optical receptacles having magnetic attachment
CN107529967B (zh) * 2015-04-23 2020-08-11 奥林巴斯株式会社 内窥镜系统
US9645325B2 (en) 2015-05-01 2017-05-09 Corning Optical Communications LLC Expanded-beam ferrule with high coupling efficiency for optical interface devices
WO2017039681A1 (en) * 2015-09-04 2017-03-09 Ccs Technology, Inc. Fiber coupling device for coupling of at last one optical fiber
JP2017219801A (ja) * 2016-06-10 2017-12-14 東洋製罐グループホールディングス株式会社 多芯光コネクタ及びその製造方法
EP3500882A1 (en) * 2016-08-17 2019-06-26 Nanoprecision Products, Inc. Optical fiber connector ferrule assembly having dual reflective surfaces for beam expansion and expanded beam connector incorporating same
KR101952757B1 (ko) * 2017-02-13 2019-02-27 주식회사 이오테크닉스 광학 커플러 및 이를 포함하는 레이저 장치
US10291332B2 (en) * 2017-04-11 2019-05-14 Innovatice Micro Technology Self-aligned silicon fiber optic connector
CN109870772A (zh) * 2017-12-01 2019-06-11 福州高意通讯有限公司 一种可长期插拔的光纤连接器
WO2020086161A1 (en) 2018-09-04 2020-04-30 Panduit Corp. Smf to mmf coupler

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1504490A (en) 1975-11-28 1978-03-22 Bowthorpe Hellerman Ltd Optical fibre connector
DE3062617D1 (en) * 1979-07-09 1983-05-11 Post Office Method of precisely locating the end of a dielectric optical waveguide in a waveguide coupling device
JPS60190973A (ja) * 1984-03-04 1985-09-28 菊地 眞 ハイパサ−ミア用加温装置
US4925267A (en) 1984-07-02 1990-05-15 Polaroid Corporation Structure and fabrication of components for connecting optical fibers
GB2175411B (en) 1985-05-16 1988-08-03 Stc Plc Silica rod lens optical fibre terminations
US4854663A (en) * 1986-12-04 1989-08-08 Itt Corporation Lensed optic fiber terminus and method
US4781431A (en) 1986-12-29 1988-11-01 Labinal Components And Systems, Inc. Lensed optical connector
US4844580A (en) 1988-05-16 1989-07-04 Gte Products Corporation Fiber optic lens
US4969702A (en) * 1989-05-22 1990-11-13 Tektronix, Inc. Laser pigtail assembly and method of manufacture
GB9102715D0 (en) * 1991-02-08 1991-03-27 Smiths Industries Plc Optical fibre couplings
US5293438A (en) * 1991-09-21 1994-03-08 Namiki Precision Jewel Co., Ltd. Microlensed optical terminals and optical system equipped therewith, and methods for their manufacture, especially an optical coupling method and optical coupler for use therewith
US5661832A (en) 1995-11-28 1997-08-26 Sumitomo Electric Industries, Ltd. Optical connector structure, optical fiber cord assembly and process of producing optical fiber cord assembly
US5699464A (en) * 1996-05-13 1997-12-16 Lucent Technologies Inc. Lens structure for focusing the light emitted by a multimode fiber
JPH10123358A (ja) 1996-10-21 1998-05-15 Ando Electric Co Ltd 光結合器
US5967653A (en) * 1997-08-06 1999-10-19 Miller; Jack V. Light projector with parabolic transition format coupler
JP2000206359A (ja) * 1999-01-18 2000-07-28 Alps Electric Co Ltd 光ファイバ結合装置
JP2000206360A (ja) * 1999-01-18 2000-07-28 Alps Electric Co Ltd 光ファイバ結合装置
KR100822953B1 (ko) 2000-03-17 2008-04-16 코닝 인코포레이티드 광 도파관 렌즈 및 그 제조방법
US6438290B1 (en) * 2000-06-22 2002-08-20 Eastman Kodak Company Micro-aspheric collimator lens

Also Published As

Publication number Publication date
TWI247147B (en) 2006-01-11
CN1633614A (zh) 2005-06-29
US6655850B2 (en) 2003-12-02
KR20040015329A (ko) 2004-02-18
US20030021543A1 (en) 2003-01-30
WO2003005089A1 (en) 2003-01-16

Similar Documents

Publication Publication Date Title
JP2004534271A (ja) ハイブリッド型ファイバ拡大ビームコネクタ
US6632025B2 (en) High power expanded beam connector and methods for using and making the high power expanded beam connector
US7742669B2 (en) Optical fiber pump multiplexer
EP2757397B1 (en) Optical assembly for repetitive coupling and uncoupling
JP3615735B2 (ja) 相当大きな断面積の光学素子に溶着接続された光ファイバを使用するコリメータの製造
JP7390432B2 (ja) ビーム拡大用単一反射面を有する光ファイバコネクタフェルールアセンブリ、並びにそれを組み込んだ拡大ビームコネクタ
US20030202762A1 (en) Tapered lensed fiber for focusing and condenser applications
EP1395863A4 (en) LENGTH-FORMED FIBERS THERMALLY FORMED
US9229170B1 (en) Two-port optical devices using mini-collimators
US20040156585A1 (en) Lensed fiber for optical interconnections
US20040151431A1 (en) Lensed fiber having small form factor and method of making the same
JP2017040917A (ja) 別個の位置合わせ組立体を有する拡大ビームコネクタ
JP4690249B2 (ja) 高屈曲性光ファイバ
JP3820802B2 (ja) 光送信器
JP4344678B2 (ja) モードコンディショナ及び2連モードコンディショナ
JPH0497106A (ja) 低反射光フアイバ端末及び低反射光コネクタ並びに低反射光フアイバ端末の製造方法
Lipson et al. Opto-mechanical considerations for laser-fiber coupling and packaging
JP4062110B2 (ja) 光接続部品及び光接続方法並びに光通信機器
JPH0498206A (ja) 光ファイバ端末および光コネクタ
JP4192748B2 (ja) 光ファイバ接続部材及び光ファイバ接続方法
JP2020129063A (ja) 光ファイバ、多芯光ファイバ、及び光コネクタ
JP2004287172A (ja) 先球光ファイバ、コリメータ
JP2008058714A (ja) 終端用光ファイバ、終端用光ファイバ付きフェルール及び光終端器並びにその製造方法
JP2003121678A (ja) 光源モジュール

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802