JP2004517732A - Bonding method between shape memory material and steel or copper material - Google Patents

Bonding method between shape memory material and steel or copper material Download PDF

Info

Publication number
JP2004517732A
JP2004517732A JP2002503485A JP2002503485A JP2004517732A JP 2004517732 A JP2004517732 A JP 2004517732A JP 2002503485 A JP2002503485 A JP 2002503485A JP 2002503485 A JP2002503485 A JP 2002503485A JP 2004517732 A JP2004517732 A JP 2004517732A
Authority
JP
Japan
Prior art keywords
copper
alloy
shape memory
mpa
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002503485A
Other languages
Japanese (ja)
Inventor
カウツ、シュテファン
キュール、ハンネス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2004517732A publication Critical patent/JP2004517732A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/222Non-consumable electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3009Pressure electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof

Abstract

形状記憶合金からなる構成要素と、鋼や銅からなる薄い構成要素とを結合する方法において、銅合金からなる電極を用いて点溶接を行うにあたり、5000A秒以上、好ましくは8000A秒以上のIt値と少なくとも30MPa、好ましくは80MPaの加圧力において1000A以上、好ましくは2000A以上の電流強度を設定する。このような条件下での点溶接により、両構成要素間の電気的ならびに機械的に良好な結合が得られる。A component made of shape memory alloy, a method of coupling the thin component made of steel or copper, in performing welding points using an electrode made of a copper alloy, 5000A 2 seconds or more, preferably more than 8000 A 2 seconds A current intensity of 1000 A or more, preferably 2000 A or more is set at an I 2 t value and a pressure of at least 30 MPa, preferably 80 MPa. Spot welding under these conditions results in a good electrical and mechanical connection between the two components.

Description

【0001】
この発明は、形状記憶合金からなる構成要素と、必要に応じ被覆された鋼材又は銅材からなる構成要素との間に機械的及び電気的結合を作る方法に関する。
【0002】
加熱されるとその形状を変化させ、加熱が終わると元の形状に再び復帰する形状記憶特性を備えた合金は種々公知である。例えば「材料科学と工学(Materials Science and Engineering )」、巻A202、1995年、148〜156頁には、例えば200℃に加熱されると数パーセント収縮する、種々の組成を持つTiNi及びTiNiCu合金が開示されている。このような合金を使用した構成要素は、特に回路保護遮断器で使用される(例えば書籍「形状記憶合金の工学的側面(Engineering Aspects of Shape Memory Alloys)」、バターワース・ハイネマン出版社、ロンドン(英国)、1990年版、330〜337頁を参照)。このような回路保護遮断器では、この種形状記憶合金からなる構成要素を鋼材又は銅メッキした鋼材からなる構成要素又は銅の帯板と接続し、しかも同時に遷移抵抗を小さくして良好な電流容量を維持しながら高度の機械的強度を確保するという課題が生ずる。しかしながら、このような接続は通常行われている溶接技術では直ちには実現できないことが判っている。このような接続を備えた公知の装置は、それ故、手間のかかるボルト結合、締め付け或いは圧潰(例えば所謂「クリンピング」)を行っている。
【0003】
この発明の課題は、それ故、このような構成要素間の機械的及び電気的に良好な結合を作る方法を提供することにある。
【0004】
この課題は、この発明によれば、銅合金からなる電極を使用し、It値が5000A秒以上かつ加圧力が少なくとも30MPaにおいて電流強度を1000A以上に設定して点溶接を行うことにより解決される。圧接抵抗溶接の特別な方法としての点溶接は公知の方法で行う(例えば、H.J.ファーレンヴァルト著「溶接技術(Schweisstechnik)」、F.フィーヴェーク&ゾーン出版社、ブラウンシュヴァイク、1992年、79〜86頁参照)。
【0005】
この発明は、その場合、前述のこれらパラメータを組み合わせかつ特別な電極を使用して初めて上述の材料からなる構成要素間の点溶接が可能であるという認識に基づく。この場合に初めて、要求されるような要件が満たされる。上述の電極合金ではベースの合金が問題なので、これは、この合金が通常の不純物元素を各々最大で1重量%の範囲で含む2成分だけであるか、或いはこの合金に10原子%以下の比較的僅少な割合で他の元素を加えて合金化可能であることを意味する。従ってこの発明による利点は、第一に機械的に高強度の結合が上述の構成要素間に作られ、この結合がまた電気的に良導電性の結合における要件をも満たすことにある。形状記憶合金部材と結合される、鋼材又は銅材からなる構成要素は、一般に、その場合熱伝導の理由や、例えば巻線性のような加工技術の故に比較的薄く、即ち結合範囲での最大厚さが特に精々2mmであることが望まれる。
【0006】
ここで、前述のパラメータは各々単に下限を表わすに過ぎない。そこで、電流強度を2000A以上に設定するのが好ましい。何となれば、電流強度が大きくなるにつれ、結合特性が一層改善されるからである。
【0007】
このことは、特にIt値を8000A秒以上に設定した際にも当て嵌まる。
【0008】
加圧力も結合の質に関係するので、加圧力は少なくとも40MPa、好ましくは少なくとも80MPaに設定するとよい。
【0009】
以下のパラメータの組み合わせで行うのが特に有利である。
電流強度: 約2000A
t値: 約10000A
加圧力: 約150MPa
上記の3つのパラメータの各々は、その場合、前記値から±10%偏倚しても結合特性の著しい悪化は生じない。
【0010】
銅合金からなり、使用可能な電極材料は、DIN ISO 5182から採用できる。このために好適な電極形状は、DIN ISO 5182から公知である。電極材料として、主成分(50原子%以上)としての銅の他に、X成分として、元素Ag、Be、Co、Cr、Cd、Fe、Hf、Mn、Mo、Nb、Pd、Pt、Ta、Ti、V、W、Zn、Zrの少なくとも1つを含むCuX合金を使用すると特に好ましい。特にCuCoBe型のCuCoBe合金で、50≦x≦99.8、0.1≦y≦20、0.1≦z≦20(各々原子%)としたものを用いる。なおその場合、各々1原子%以下の微量の不純物元素を含めてx+y+z≒100(原子%)とする。これらの使用される電極材料により良好な導電性、高い機械的強度並びに溶接される材料との特別の相性が確保される。
【0011】
このような電極材料を用い、前記のNiTi又はNiTiCu形状記憶合金からなる部材を、銅メッキした鋼板に特に良好に溶接できる。同様に電気的に良好で、機械的に強固な結合は、特に形状記憶合金からなる開閉要素を備えた回路保護遮断器においても必要である(先述の文献「形状記憶合金の工学的側面」を参照)。同様な結合の問題は、形状記憶合金からなる部分を鋼板又は銅や銅合金からなる撚り線に互いに結合しようとするときにも生ずる。この場合も、この発明による方法は特に有効に使用できる。
【0012】
勿論、本発明による方法で、他の公知の形状記憶合金からなる構成要素と鋼板又は鋼や銅からなる撚り線との点溶接も可能である。例えば、「インタメタリックス(Intermetallics)」、第3巻、1995年、35〜46頁及び「スクリプタ・メタルジカ・エ・マテリアリア(Scripta METALLURGICA et MATERIALIA)」第27巻、1992年、1097〜1102頁に種々の好適なTi50Ni50−xPd形状記憶合金が記載されている。TiNi合金に代えて、他の形状記憶合金も使用可能なことは自明である。例えばCuAl系形状記憶合金がその例である。同様なCuZn24Al13合金が「メタルクンデ誌(Z. Metallkde.)」、第79巻、10号、1988年、678〜683頁に開示されている。「スクリプタ・マテリアリア(Scripta Materialia)」、第34巻、2号、1966年、255乃至260頁には他のCuAlNi形状記憶合金が記載されている。上述の2元又は3元合金には、さらに例えばHfのような他の合金成分をそれ自体公知の方法で加えて合金化できることは自明である。
【0013】
この発明による方法においては、通常の点溶接技術の装置が使用できる。このような装置は、例えば先述の文献「溶接技術」の抜粋が示している。
[0001]
The present invention relates to a method for making a mechanical and electrical connection between a component made of a shape memory alloy and a component made of steel or copper coated as required.
[0002]
Various alloys are known which have a shape memory characteristic that changes its shape when heated and returns to its original shape after heating. For example, in Materials Science and Engineering, Volume A202, 1995, pp. 148-156, for example, TiNi and TiNiCu alloys of various compositions that shrink by several percent when heated to 200 ° C. It has been disclosed. Components using such alloys are used in particular in circuit protection circuit breakers (for example the book "Engineering Aspects of Shape Memory Alloys", Butterworth Heineman Publishing Company, London, UK ), 1990 edition, pages 330-337). In such a circuit protection circuit breaker, a component made of this kind of shape memory alloy is connected to a component made of steel or copper-plated steel or a copper strip, and at the same time, the transition resistance is reduced to obtain a good current capacity. However, there arises a problem that a high mechanical strength is secured while maintaining the mechanical strength. However, it has been found that such a connection cannot be realized immediately with conventional welding techniques. Known devices with such a connection therefore perform expensive bolting, tightening or crushing (eg so-called "crimping").
[0003]
The object of the invention is therefore to provide a method for making a good mechanical and electrical connection between such components.
[0004]
According to the present invention, the present invention provides an electrode made of a copper alloy, performing spot welding by setting the current intensity to 1000 A or more when the I 2 t value is 5000 A for 2 seconds or more and the pressing force is at least 30 MPa. Will be resolved. Spot welding as a special method of crimp resistance welding is carried out in a known manner (for example, HJ Fahrenwald, “Schweisstechnik”, F. Föweg & Zon Publishing, Braunschweig, 1992; See pages 79-86).
[0005]
The invention is based on the recognition that a spot welding between components made of the above-mentioned materials is then possible only by combining these parameters mentioned above and using special electrodes. Only then can the required requirements be fulfilled. Since the base alloy is a problem in the electrode alloys described above, this may be due to the fact that this alloy is only two components, each containing up to 1% by weight of a typical impurity element, or less than 10 at. It means that alloying is possible by adding other elements in a very small proportion. The advantage of the present invention is therefore that, first of all, a mechanically strong connection is made between the components described above, which also fulfills the requirements for an electrically conductive connection. The components made of steel or copper which are joined to the shape memory alloy component are generally relatively thin, i.e. because of heat conduction and processing techniques such as, for example, winding properties, i.e. the maximum thickness in the joining range. It is particularly desired that the thickness be at most 2 mm.
[0006]
Here, each of the above parameters merely represents a lower limit. Therefore, it is preferable to set the current intensity to 2000 A or more. This is because as the current intensity increases, the coupling characteristics are further improved.
[0007]
This is particularly true when the I 2 t value is set to 8000 A 2 seconds or more.
[0008]
Since the pressure is also related to the quality of the connection, the pressure should be set to at least 40 MPa, preferably at least 80 MPa.
[0009]
It is particularly advantageous to use a combination of the following parameters:
Current intensity: about 2000A
I 2 t value: about 10000 A 2 seconds Pressure: about 150 MPa
In this case, even if each of the above three parameters deviates from the above value by ± 10%, the coupling characteristics will not be significantly deteriorated.
[0010]
A usable electrode material made of a copper alloy can be adopted from DIN ISO 5182. Suitable electrode shapes for this are known from DIN ISO 5182. As an electrode material, in addition to copper as a main component (50 atomic% or more), as an X component, elements Ag, Be, Co, Cr, Cd, Fe, Hf, Mn, Mo, Nb, Pd, Pt, Ta, It is particularly preferable to use a CuX alloy containing at least one of Ti, V, W, Zn, and Zr. Especially in Cu x Co y Be z type CuCoBe alloys, used after a 50 ≦ x ≦ 99.8,0.1 ≦ y ≦ 20,0.1 ≦ z ≦ 20 ( each atomic%). Note that in this case, x + y + z ≒ 100 (at.%) Including a trace amount of impurity element of 1 at.% Or less. These used electrode materials ensure good conductivity, high mechanical strength and special compatibility with the material to be welded.
[0011]
Using such an electrode material, a member made of the above-mentioned NiTi or NiTiCu shape memory alloy can be particularly well welded to a copper-plated steel plate. Equally good electrical and mechanically strong connections are also necessary, in particular, in circuit protection circuit breakers with switching elements made of shape memory alloys (see the above mentioned document "Engineering aspects of shape memory alloys"). reference). Similar bonding problems also occur when trying to bond parts made of shape memory alloy to steel plates or stranded wires made of copper or copper alloy. In this case also, the method according to the invention can be used particularly effectively.
[0012]
Of course, with the method according to the invention, it is also possible to perform spot welding between components made of other known shape memory alloys and stranded wires made of steel or steel or copper. For example, "Intermetallics", Vol. 3, 1995, pp. 35-46 and "Scripta Metallurgica et Materialialia", Vol. 27, 1992, pp. 1097-1102. It has been described various preferred Ti 50 Ni 50-x Pd x shape memory alloy. Obviously, other shape memory alloys can be used in place of the TiNi alloy. For example, a CuAl-based shape memory alloy is an example. A similar CuZn 24 Al 13 alloy is disclosed in Z. Metalkde, Vol. 79, No. 10, 1988, pp. 678-683. Other CuAlNi shape memory alloys are described in "Scripta Materialia", Vol. 34, No. 2, 1966, pp. 255-260. Obviously, the above-mentioned binary or ternary alloys can be alloyed by further adding other alloying components such as Hf in a manner known per se.
[0013]
In the method according to the invention, conventional spot welding techniques can be used. Such an apparatus is shown, for example, in an excerpt of the above-mentioned document “welding technology”.

Claims (13)

形状記憶合金からなる構成要素と、必要に応じて被覆された鋼材或いは銅材からなる薄い構成要素との間に機械的及び電気的結合を作る方法において、銅合金からなる電極を使用し、5000A秒以上のIt値で、かつ少なくとも30MPaの加圧力において、電流強度を1000A以上に設定して点溶接を行うことを特徴とする結合方法。In a method of making a mechanical and electrical connection between a component made of a shape memory alloy and a thin component made of steel or copper coated as required, an electrode made of a copper alloy is used. A joining method characterized in that, at an I 2 t value of 2 seconds or more and a pressure of at least 30 MPa, the current intensity is set to 1000 A or more and spot welding is performed. 2000A以上の電流強度に設定することを特徴とする請求項1記載の方法。The method according to claim 1, wherein the current intensity is set to 2000A or more. 8000A秒以上のIt値に設定することを特徴とする請求項1又は2記載の方法。The process according to claim 1 or 2, characterized in that to set the I 2 t value of 2 seconds or more 8000 A. 少なくとも40MPa、好ましくは少なくとも80MPaの加圧力を設定することを特徴とする請求項1から3の1つに記載の方法。4. The method according to claim 1, wherein a pressure of at least 40 MPa, preferably at least 80 MPa, is set. 約2000Aの電流強度、約10000A秒のIt値及び約150MPaの加圧力を、各々±10%の精度を維持して設定することを特徴とする請求項1記載の方法。Current intensity of about 2000A, about 10000 A I 2 t value of 2 seconds and a pressure of about 150 MPa, The process of claim 1, wherein the setting by keeping each ± 10% accuracy. 電極材料として、主成分であるCuの他に、元素Ag、Be、Co、Cr、Cd、Fe、Hf、Mn、Mo、Nb、Pd、Pt、Ta、Ti、V、W、Zn、Zrの少なくとも1つを含む銅合金を使用することを特徴とする請求項1から5の1つに記載の方法。As an electrode material, in addition to Cu as a main component, elements Ag, Be, Co, Cr, Cd, Fe, Hf, Mn, Mo, Nb, Pd, Pt, Ta, Ti, V, W, Zn, and Zr 6. The method according to claim 1, wherein a copper alloy containing at least one is used. 電極材料としてCuCoBe合金を使用することを特徴とする請求項6記載の方法。7. The method according to claim 6, wherein a CuCoBe alloy is used as the electrode material. 電極材料として、50≦x≦99.8、0.1≦y≦20及び0.1≦z≦20とするとき、それぞれ1原子%以下の僅かな不純物を含んで、x+y+z≒100(それぞれ原子%)であるCuCoBe合金を使用することを特徴とする請求項7記載の方法。When the electrode material satisfies 50 ≦ x ≦ 99.8, 0.1 ≦ y ≦ 20 and 0.1 ≦ z ≦ 20, x + y + z ≒ 100 (each atomic the method of claim 7, wherein the use of Cu x Co y be z alloy is%). 厚さが0.1〜5mm、好ましくは0.5〜2mmの鋼材或いは銅材からなる構成要素を使用することを特徴とする請求項1から8の1つに記載の方法。9. The method according to claim 1, wherein components of steel or copper having a thickness of 0.1 to 5 mm, preferably 0.5 to 2 mm, are used. 銅メッキした鋼板からなる構成要素を使用することを特徴とする請求項1から9の1つに記載の方法。10. The method according to claim 1, wherein a component made of copper-plated steel sheet is used. 銅或いは銅合金製の撚り線からなる構成要素を使用することを特徴とする請求項1から9の1つに記載の方法。10. The method according to claim 1, wherein a component consisting of a stranded wire made of copper or copper alloy is used. 形状記憶合金として、TiNi又はTiNiCu又はTiNiPd又はCuAl又はCuAlNi又はCuAlZn合金で、それぞれ必要に応じて5原子%以下の割合でその他の成分を含むものを使用することを特徴とする請求項1から11の1つに記載の方法。12. The shape memory alloy according to claim 1, wherein TiNi, TiNiCu, TiNiPd, CuAl, CuAlNi, or CuAlZn alloy, each containing other components at a ratio of 5 atomic% or less as needed, is used. A method according to one of the preceding claims. Hfをさらに追加して合金化した形状記憶合金を使用することを特徴とする請求項12に記載の方法。13. The method of claim 12, wherein a shape memory alloy alloyed with additional Hf is used.
JP2002503485A 2000-06-21 2001-06-08 Bonding method between shape memory material and steel or copper material Withdrawn JP2004517732A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10030395 2000-06-21
PCT/DE2001/002154 WO2001098018A1 (en) 2000-06-21 2001-06-08 Method for connecting shape-memory material and steel or copper material

Publications (1)

Publication Number Publication Date
JP2004517732A true JP2004517732A (en) 2004-06-17

Family

ID=7646410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002503485A Withdrawn JP2004517732A (en) 2000-06-21 2001-06-08 Bonding method between shape memory material and steel or copper material

Country Status (4)

Country Link
US (1) US20020179202A1 (en)
EP (1) EP1292422A1 (en)
JP (1) JP2004517732A (en)
WO (1) WO2001098018A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200087489A (en) * 2019-01-11 2020-07-21 변지상 Copper alloy composition for spot-cap tip electrode without chromium and spot-cap tip electrode made using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060047223A1 (en) * 2004-08-31 2006-03-02 Ryan Grandfield Apparatus and method for joining stainless steel guide wire portion to nitinol portion, without a hypotube
US7998090B2 (en) * 2004-08-31 2011-08-16 Abbott Cardiovascular Systems Inc. Guide wire with core having welded wire segments
CN102152017B (en) * 2011-02-14 2012-10-24 吉林大学 Method for connecting TiNi shape memory alloy and austenitic stainless steel heterogenetic material
US9061088B2 (en) 2012-02-02 2015-06-23 Abbott Cardiovascular Systems, Inc. Guide wire core wire made from a substantially titanium-free alloy for enhanced guide wire steering response
US9636485B2 (en) 2013-01-17 2017-05-02 Abbott Cardiovascular Systems, Inc. Methods for counteracting rebounding effects during solid state resistance welding of dissimilar materials
CN115041794B (en) * 2022-06-24 2024-01-09 厦门宏发电声股份有限公司 Welding process method for connecting TiNi shape memory alloy wire with stainless steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB237902A (en) * 1924-07-30 1926-04-01 British Thomson Houston Co Ltd Improvements in and relating to welding electrodes
JP3373076B2 (en) * 1995-02-17 2003-02-04 トヨタ自動車株式会社 Wear-resistant Cu-based alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200087489A (en) * 2019-01-11 2020-07-21 변지상 Copper alloy composition for spot-cap tip electrode without chromium and spot-cap tip electrode made using the same
KR102192145B1 (en) * 2019-01-11 2020-12-16 변지상 Copper alloy composition for spot-cap tip electrode without chromium and spot-cap tip electrode made using the same

Also Published As

Publication number Publication date
US20020179202A1 (en) 2002-12-05
WO2001098018A1 (en) 2001-12-27
EP1292422A1 (en) 2003-03-19

Similar Documents

Publication Publication Date Title
CN101831571B (en) Silver-nickel-based electrical contact material and preparation method thereof
JP3520046B2 (en) High strength copper alloy
JP2004517732A (en) Bonding method between shape memory material and steel or copper material
US4137076A (en) Electrical contact material of TiC, WC and silver
JPH0559468A (en) Copper alloy for conductive spring
JP2001138069A (en) Welded body of different kinds of metal materials, arc contactor and contactor
JP2020002439A (en) Copper alloy for fuse
CN1305017A (en) Copper-based composition used as electric contacts
JP3807475B2 (en) Copper alloy plate for terminal and connector and manufacturing method thereof
JP6530267B2 (en) Electrode material for thermal fuse
JPH04231432A (en) Electrifying material
JP2575577B2 (en) Spot welding method of aluminum alloy
JPH04231443A (en) Electrifying material
JPH04231433A (en) Electrifying material
JP2741946B2 (en) Resistance welding method of copper or copper alloy and iron or iron alloy
JPH0499839A (en) Conductive material
JPH04231446A (en) Conductive material
JPS5821018B2 (en) Copper alloy for high strength conductivity with good heat resistance
JPH01168831A (en) Electric conductive material
JPH0499838A (en) Conductive material
JP2763365B2 (en) Resistance welding method of copper / copper alloy and iron / iron alloy
Taubenblat et al. High Strength High Conductivity AMZIRC Copper & AMAX-MZC Alloy
JP2023127033A (en) Manufacturing method of resistive element and resistive element obtained by the same
JPS6311417B2 (en)
JPH01187705A (en) Conductive material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902