JP2004517313A - フルイディックガス計量システム - Google Patents

フルイディックガス計量システム Download PDF

Info

Publication number
JP2004517313A
JP2004517313A JP2002554475A JP2002554475A JP2004517313A JP 2004517313 A JP2004517313 A JP 2004517313A JP 2002554475 A JP2002554475 A JP 2002554475A JP 2002554475 A JP2002554475 A JP 2002554475A JP 2004517313 A JP2004517313 A JP 2004517313A
Authority
JP
Japan
Prior art keywords
gas
flow
channel
band
fluidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002554475A
Other languages
English (en)
Inventor
クラシルチコブ,イエヘズケル
リトバク,アンナ
Original Assignee
ジエツト・センサー・リミテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジエツト・センサー・リミテツド filed Critical ジエツト・センサー・リミテツド
Publication of JP2004517313A publication Critical patent/JP2004517313A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3227Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using fluidic oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters

Abstract

広い流量範囲であり、該範囲の下端の低流量バンドと、該範囲の中部の中バンドとそしてその上端の高バンドとにより規定される該広い流量範囲でユーザーに供給されるガス流れを計量するためにガス源からユーザーサイトまで走るライン内に介在するフルイディックガス計量システム。該システムは該源から加圧ガス流れを受ける入力室と該ガスがそこから該ユーザーへ供給される出力室とを含む。該室を3つのガス流れチャンネルが相互接続する。第1チャンネルは、該ガスの流量が該低バンドにある時のみ周波数が該流量に比例する周期的パルスを発生するよう動作する第1フルイディックジェネレーターにより規定される。第2チャンネルは、該ガスの流量が該中バンドにある時のみ周波数が該流量に比例する周期的パルスを発生するよう動作する第2フルイディックジェネレーターにより規定される。該第3チャンネルは該流れが該高バンドにある時のみ動作するバイパス通路により規定され、該バイパスは該ガス流れを該第2と第3チャンネルの間に分けるよう作用し、それにより該第2ジェネレーターは該中バンド内で流量を計量する。該第1及び第2ジェネレーターにより発生される周期的パルスは、該全範囲を通して該ユーザーにより消費されるガスの精確な読み値を提供するために処理され合計される。

Description

【0001】
[発明の分野]
本発明は一般的にユーザーに供給されるガス流れ(gas stream)の流量(flowrate)を計量(metering)するためのフルイディック(fluidic)ガス計量システム(gas metering systems)に関し、特に広い範囲に亘り精確で、なおこの範囲に亘り低い圧力降下(low pressure drop)を示すこの種のシステムに関する。
【0002】
[本発明の背景(従来技術の状況)]
住宅用、商業用又は産業用ユーザーへの天然ガスの供給は彼の消費したガス量に対し該ユーザーに課されるべき精確な課金を計算出来るように精確に計量されねばならない。該計量システムの範囲は該ユーザーのガス要求を受け入れるに充分でなければならず、該システムは該ガスライン(gas line)に過剰な圧力降下を生じてはならない。低い圧力降下が重要な絶対必要事項(important desideratum)である理由は該計量システムがガス供給源から該ユーザーのサイトまで延びるガスライン内に介在(interposed)し、従ってガス流れに抵抗する該ライン内インピーダンス(impedance)として作用するからである。
【0003】
ガス計量システムの好ましい種類は、カング他(Kang et al.)への米国特許第5,239、695号(1994年)で開示された”大きな流れ計量範囲を有するフルイディック流量計(Fluidic Flowmeter with Large Flow Metering Range)”の様に広い範囲を有するフルイディック流量計を利用する。フルイディック流量計の主な部品は、計量される流体の流量に比例する繰り返しレート(repetition rate)で周期的流体パルス(periodic fluid pulses)を発生するフルイディック発振器(fluidic oscillator)である。
【0004】
又下記米国特許がフルイディックガス流量計(fluidic gas flowmeters)を開示している:
A. オカバヤシ(Okabyashi)への特許第5、309、770号(1994年)
B. ウエキ他(Ueki et al.)への特許第5,335,553号(1994年)
C. フアング(Huang)への特許第5、353、704号(1994年)
フルイディックガス流量計の多くの利点の中には下記がある:
1)該メーターはその動作範囲に亘り線形(linear)である。従って該メーターの出力パルスの繰り返しレート又は周波数は計量される流量に比例する。
【0005】
2)該メーターは可動部品を有さず、従って衝撃(shock)及び振動する力により影響されない。
【0006】
3)該メーターは高度のレンジアビリテイ(rangeability)を有する。
【0007】
4)該メーターは密度の変化により影響されない容積流れの条件(term)で校正されることが可能である。
【0008】
5)該メーターは修理又は保守を要しない。
【0009】
標準的フルイディック流量計の形状は、該メーターの動作を始動するために2つの傾斜した側壁間の空間内にガスの流れが噴射されると、コアナダ効果のために、該流れはこれらの壁の1つにそれ自身を付け、該流れの1部分はフイードバック通路を通り制御ポートへ逸らされる。このフイードバック流れは、それが付けられた該壁から離れるよう該流れをはがす分離バブル(separation bubble)を拡大し、該拡大は、同様なフイードバック作用が起こる反対壁上へ該流れがロックする迄拡大する。従って該流れは該壁間で発振し、そしてその流量に比例する周波数で発振する。
【0010】
このフルイディック発振器に変換器(transducer)が付随し、該変換器は該フルイディックパルスを、その繰り返しレートが該ガスの瞬時流量(instantaneous flowrate)に比例する周期的電気パルスに変換する。これらのパルスを合計(totalizing)することにより、該ユーザーにより消費されたガスのリッター換算で通常表される全流れの精確な指示を得る。
【0011】
該システムにより計量されたガスの量は、毎時リットル(liters per hour)で表した時、指定された周期(period)内に該フルイディック発振器により発生されたパルスの数と、1つのパルス内に含まれるガス量を掛け算したものに等しい。
【0012】
ガス計量システムが広い流量範囲に亘り線形であることが重要であるのみならず、該ガスをユーザーサイトへ供給するラインで該システムにより作られる圧力降下が該全範囲に亘り低いことも重要である。かくして、もしシステムが該範囲の上部領域を除いて低い圧力降下を示すとしても、それは、それがその顧客に供給する該ガスを精確に計量し測らねばならずそして高い圧力降下を許容出来ないガス供給会社にとっては受入可能ではないであろう。
【0013】
計量システムが広い流量範囲に亘り精確であると言う該基本的要求はフルイディック発振器を使用するメーターで満足させることは難しくない。しかし同じシステムがその全範囲を通して低い圧力降下を示す要求は難しい。現在のフルイディックメーターは広い流量範囲で動作する時大体は(more or less)低い圧力降下を有するが該範囲の上部領域では例外であり、そこでは該圧力降下は受入可能なレベルを超える。
【0014】
本発明のフルイディック計量システムがバイパス通路(bypass passage)を含むので、従来技術の中でオカバヤシ他(Okabayashi et al.)への米国特許第5、610、162号(1986年)に関心がある。この特許で開示されたフルイディック計量システムは上流及び下流フルイディック要素(upstream and downstream fluidic elements)を有し、1つは、その開口部面積(opening area)がもう1つの要素内のジェットノズル(jet nozzle)のそれより小さいジェットノズルを有する。その中にバルブを有するバイパス通路が小さな面積のノズルを有する該要素と並列に配置される。この特許は該ジェットノズル開口部の面積が小さい程、該メーターの感度は高くなるがその圧力降下が大きくなることを指摘している。
【0015】
[本発明の概要]
前記事項を考えて、本発明の主目的はユーザーのサイトへ供給されるガス流れの流量を広い範囲全体に亘り精確に測定するフルイディックガス計量システムで、かつ該システムがその全体範囲を通して低い圧力降下を作る該システムを提供することである。
【0016】
特に、本発明の目的は流量範囲が低、中及び高流量バンド(low, medium and high flowrate bands)に分けられ、各バンドが別々のチャンネルにより取り扱われ、これらのチャンネルの2つのみがその中にフルイディックジェネレーター(fluidic generator)を有する様な、上記種類のシステムを提供することである。該チャンネルの配置がその様であるので該2つのジェネレーターの1つは該中及び高の両流量バンドでの流量を測定する。
【0017】
又本発明の目的は、動作が効率的で信頼性があるコンパクトな、自己充足的(self−sufficient)ユニットを作るのに比較的低コストで製造出来る、上記種類の計量システムを提供することである。
【0018】
本発明のなおもう1つの目的は、周囲温度、大気圧(barometric pressure)又は補償無しではそのメーター読み値(meter readings)を幾分不正確にする他の変動要素(variables)、の変動に対し補償されるガス計量システムを提供することである。
【0019】
本発明のなおもう1つの目的は、ユーザーにより消費されたガスの、広い範囲に亘り精確である読み値(reading)を提供するために、2つのフルイディックジェネレーターによりそれに供給されるパルスデータを処理するよう作用するマイクロプロセサーにより、その動作が制御されるフルイディック計量システムを提供することである。
【0020】
マイクロプロセサーを有する本発明のシステムの重要な特徴は該マイクロプロセサーにより取得されたデジタルデータが顧客請求ステーション、インターネットウエブサイト又はこのデータの必要な何等かの外部ステーションへマイクロ波伝送(microwave transmitted)され得ることである。
【0021】
簡潔に述べると、これらの目的は、その範囲の下端(lower end of the range)での低流量バンド(low flowrate band)と、その範囲の中部(middle of the range)での中バンド(medium band)とそしてその上端(upper end of thereof )での高バンド(high band)と、により規定される広い流量範囲でユーザーに供給されるガス流れを計量するためにガス源からユーザーサイトまで走るライン内に介在(interposed)するフルイディックガス計量システムで達成される。該システムは該源から加圧ガスの流れを受ける入力室(input chamber)とそこから該ガスが該ユーザーへ供給される出力室(output chamber)とを有する。
【0022】
3つのガス流れチャンネル(gas flow channels)が該室を相互接続(intercoupling)する。該第1チャンネルは、ガスの流量が該低バンドにある時のみ、周波数が該流量に比例する周期的パルス(periodic pulses)を発生するよう動作するフルイディックジェネレーターにより規定される。該第2チャンネルは、ガスの流量が中バンドにある時のみ、周波数が該流量に比例する周期的パルスを発生するよう動作するフルイディックジェネレーターにより規定される。該第3チャンネルは、該流れが該高バンドにある時のみ動作するバイパス通路により規定され、該バイパスは該ガス流れを該第2と第3チャンネルの間で分けるよう作用しそれにより該第2ジェネレーターが流量を該中バンド内で計量する。該第1及び第2ジェネレーターにより発生される該周期的パルスは該ユーザーにより消費されたガスの精確な読みを該全範囲を通して提供するよう処理される。
【0023】
本発明のみならずその更に進んだ特徴と目的のより良い理解のために、付属する図面を参照する。
【0024】
[本発明の詳細な記述]
計量システム 図1に示す様に、広い範囲を通してガス流れ(gas stream)の流量を精確に計量するために本発明のシステムは3つの流れチャンネル(flow channels)A、BそしてCを含む。チャンネルAは計量されるべき全範囲の下端(lower end of the full range)の低流量バンド(low flowrate band)の流量用に確保されている。チャンネルBは該範囲の中部部分(mid−section of the range)の中流量バンド(medium flowrate band)の流量用に確保されている。そしてチャンネルCは該範囲の上端(upper end of the range)の高流量バンド(high flowrate band)の流量用に確保されている。この後これらのバンドは低、中そして高バンド(low, medium and high bands)と参照される。
【0025】
例に依れば、我々は計量されるべき流量の広い範囲が毎時1lから毎時90lまでに亘ると仮定する。この範囲は該範囲の底部端部の低バンド(毎時1から30l)、該範囲の中部(middle)の中バンド(毎時28から60l)、そして該範囲の上端の高バンド(毎時58から90l)から成る。該バンドの接続部(junction)での重なり合いの理由は1つのバンドからもう1つへの移行を後らせるためにヒステレシスを提供するためである。
【0026】
1つのバンドからもう1つへの移行をもたらすために別のバルブを含む該ガス計量システムの状況では、該ヒステレシスの目的は該バルブの過剰に急激な閉じと開きを防止することであり、結果的なバルブ変動(valve fluctuations)は該システムの動作を損なう。
【0027】
バッテリーで給電され、自己充足的な全体システムはケーシング10内に封じられるが、該ケーシングはパーテション壁11と12により高圧室13,低圧室14そしてデータ処理室15に区画分け(compartmentalized)される。
【0028】
計量されるべきガスは供給源16からユーザーサイト17へ走るガスラインを通って流れ、該ユーザーにより消費されるガス量は該ライン内に介在する該システムにより計量される。従って該システムが該ユーザーへ供給される該ガスを精確に計量することのみならず、該ライン内の該システムにより導入される圧力降下が該全計量範囲の該低、中そして高バンド内で低いことも重要である。
【0029】
チャンネルA、BそしてCは該高圧及び低圧室13及び14を相互接続するので、これらのチャンネルの何れかが開き動作している時、ガスの流れは該高圧室から該低圧室へ該動作チャンネルを通して流れる。
【0030】
チャンネルAはフルイディック発振器(fluidic oscillator)18により規定されるが、該発振器は、流量が該低バンドにあるガス流れが該ユーザーに供給されつつある時、繰り返しレートが該流量に比例する周期的流体パルス(periodic fluid pulses)を作る。これらの流体パルスは、該流体パルスを対応する電気パルスに変換する、ピエゾ電気変換器(piezoelectric transducer)19の様な、圧力応答変換器(pressure−responsive transducer)に印加される。発振器18と組み合わされた変換器19はフルイディックジェネレーター(fluidic generator)を形成する。このジェネレーターにより発生される脈動信号(pulsating signal)はデータ処理区画15内に配置されたマイクロプロセサー20に印加されるが、それは該ユーザーにより消費されつつあるガス量を処理しリットルに換算して(in terms of liters)合計(totalize)するよう作用する。該ジェネレーターにより発生されるパルスの周波数は該ガスの瞬時流量(instantaneous flowrate)を表し、これらのパルスはリットル読み値を得るために該プロセサーで合計されねばならない。
【0031】
この読み値はマイクロプロセサー20に接続された液晶デバイス(LCD device)21又は英数字用語でデータを表示出来る同様な表示手段により示される。チャンネルBは該ガス流れの流量が該中バンド内にある時繰り返しレートが該ガスの流量に比例する周期的流体パルスを作るため動作するフルイディック発振器22により規定される。これらの流体パルスはピエゾ電気変換器23に印加され、該変換器はこれらのパルスを、処理用にマイクロプロセサー20に供給される脈動信号に変換する。該変換器23と組み合わされたこの第2発振器は第2フルイディックジェネレーターを構成する。
【0032】
チャンネルCはバイパス通路24により規定されるが、該通路は、該ユーザーに供給されつつある流量が該高バンドにある時、該ガス流れの小さい方の成分(minor component)を高圧室13から低圧室14へ導き、その大きい方の成分(major component)はチャンネルBを通って流れるが、そこでそれは該第2フルイディックジェネレーターにより計量される。
【0033】
ガス源16に接続された入り口ポート25を通して高圧室13内へ供給されるのは公称ガス圧力、普通水柱200mmの天然ガス(natural gas)である。該ガスにより運ばれる粒子物質が該計量システムに入ることを防止するために、フイルター25がポート28内に置かれる。チャンネルA、BそしてCを通って低圧力室14内へ流れるガスはガス出口26へ放出され、そこからそれはユーザーサイト17へ供給される。従って該計量システムは源16からユーザーサイト17へ走るライン内に介在し、このサイトへ供給されるガスの量を計量するよう動作する。
【0034】
チャンネルA及びB内へのガスの流れは高圧室13内に設置された双安定ソレノイドジユアルバルブ(dual valve)27により制御される。マイクロプロセサー20によりそれに印加される直流電圧により電磁的に駆動されるバルブ27は、チャンネルAへの入り口のシール可能なポート27Aと、チャンネルBへの入り口のシール可能なポート27Bと、を備える。バルブ27に印加される該直流電圧は、1つの極性での時は、ポート27Aを開かせ、ポート27Bを閉じさせるが、反対の極性での時は、ポート27Bを開かせ、ポート27Aを閉じさせる。従って該双安定バルブはチャンネルAかチャンネルBか何れかを動作させるが、同時に両チャンネル共動作させることは決してない。
【0035】
チャンネルAで、このチャンネルが動作している時該ジェネレーターにより発生される該周期的パルスは該低バンドのガスの流量に比例する周波数を有するので、これらのパルスはマイクロプロセサー20により合計され、液晶デバイス21により表示されるリットル読み値を作る。チャンネルBでフルイディックジェネレーターにより発生される該周期的パルスは該中バンドのガス流量に比例する周波数を有し、チャンネルBが動作している時、液晶21は該範囲の該中バンドで該ユーザーにより消費されたガスの量を示す。
【0036】
又バイパスチャンネルへの入り口にシール可能なポート28Aを有するシングルアクションソレノイドバルブ28が高圧室13内に設置されている。従って、このポートがマイクロプロセサー20によりバルブ28へ印加される直流電圧により開かされた時だけ、高圧室13からのガスがチャンネルCに入ることが出来て、それを通って低圧室14へ流れる。バルブ27及び28の該直流制御は、バルブ28の該ポート28Aが開いた時、バルブ27のポート27Bも又開くようになっている。
【0037】
システムの動作: 最初に、バルブ27のポート27AはチャンネルA内へガスを受け入れるために開き、ポート27BはガスがチャンネルBに入るのを防止するために閉じる。そしてチャンネルCのバルブポート28Aが次いで閉じるのでガスはバイパスされ得ない。
【0038】
ユーザーへ供給されつつある該ガスの流量が該範囲の該低バンドにある時、入力室13内の全てのガスはチャンネルA内へ流れ該チャンネルのフルイディックジェネレーターは該流量に比例する繰り返しレートを有するパルスを発生する。これらのパルスはマイクロプロセサー20へ運ばれ、該プロセサーのリットル読み値は液晶デバイス21上に表示される。
【0039】
しかしながら、チャンネルA内の該フルイディックジェネレーターのパルスに応答するマイクロプロセサー20が該低バンドの上にある流量を検出すると、それがマイクロプロセサー20に供給する脈打ち信号(pulsatory signal)は該マイクロプロセサーにソレノイドバルブ21に直流電圧を印加させ、該電圧はポート27Aを閉じポート27Bを開く。従ってチャンネルA及びCは閉じられ、今や流量が該範囲の中バンド内にあるガス流れはチャンネルBを通って流れる。この流量はチャンネルB内の該フルイディックジェネレーターにより計量され、該マイクロプロセサーにより処理されるので、今度は液晶21のスクリーン上には該範囲の中バンドのリットル読み値が表示される。
【0040】
チャンネルBからのパルスに応答するマイクロプロセサー20が該ガス流れの流量が該中バンドの上に昇ったことを検出すると、それはバイパスチャンネルCの入り口内のポート28Aを開くようバルブ28を駆動するために直流電圧を印加する。この状態は該流量が該範囲の高バンドにある時のみ起こり、その状態ではチャンネルB及びCは共に開き、チャンネルAは閉じる。該バイパスチャンネルのオリフイスは、小さな方の成分がチャンネルCを通って流れる一方大きな方の成分はチャンネルBを通るよう該計量されつつあるガス流れを分けるように寸法決めされている(dimensioned)。
【0041】
チャンネルBを通って流れる該大きい方の成分は該範囲の中バンドにある。従って、ユーザーに供給されつつある該ガス流れが例え高バンドにあっても、この流れを計量しているフルイディックジェネレーターは該中バンドで計量している。
【0042】
マイクロプロセサー20の動作は、それに印加される脈動信号が流量周波数が隣接バンドの境界にあることを示す時バルブ駆動電圧を作るようなものである。
【0043】
流量が該高バンドにある時該システムが適当な読み値を提供するように、流量が該中バンドの上に昇る時チャンネルB内の変換器23によりアドバイス(advised)されるマイクロプロセサー20はチャンネルBのフルイディックジェネレーターにより発生されるパルスの数学的重みを修正するよう作用するので、該パルスは該高バンドの流量を示す。かくしてチャンネルAのみが動作する時(モードI)、液晶21は該低バンドで該ユーザーにより消費されるガスのリットルを表示する。チャンネルBのみが動作している時(モードII)、該範囲の中バンドで消費されるガスのリットルが表示される。そしてチャンネルAが不動作で、チャンネルB及びCの両方が動作している時(モードIII)該範囲の高バンドで消費されるガスのリットルが該液晶上に表示される。
【0044】
該システムに含まれる該フルイディックジェネレーターにより発生されるパルスを合計するために、各パルスに含まれるガスの容積はこれらのパルスの周波数又は繰り返しレートにより掛け算されねばならない。この周波数は計量されつつあるガスの瞬時の流れレート(instantaneous flow rate)を示す。該計算を行うマイクロプロセサー20は、該ガスを計量するコースで下記の条件のどの1つが行われているかに適合した1パルスのリットル値に換算して与えねばならない(must give in terms of the value of one pulse in liters that are appropriate to which one of the following conditions is in effect in the cource of metering the gas)。
【0045】
条件(1)この条件はフルイディックのパルスが、該システムの該チャンネルAの低周波数バンド内で該フルイディックジェネレーター(G1)により発生されている時もたらされる。
【0046】
条件(2)この条件はフルイディックのパルスが、該チャンネルBの中周波数バンド内で該フルイディックジェネレーター(G2)により発生されている時もたらされ、該チャンネルCのバイパス通路は閉じられているので該ガスの全部がチャンネルBを通って流れる。
【0047】
条件(3)この条件はチャンネルC内の該バイパス通路が開いているので該ガスの1部分だけがチャンネルBを通って流れることを除けば、効果的には条件(2)と同じである。
【0048】
下表では、ユーザーにより消費され、該システムにより計量されつつあるガスのリットルを計算するために、マイクロプロセサー20で処理される1パルスのリットル値(One Pulse in Liters)に関するデータの例が与えられる。
【0049】
【表1】
Figure 2004517313
【0050】
モードIでは該システムの圧力降下はチャンネルAによってのみ作られたものである一方モードIIでは該圧力降下はチャンネルBによって作られたもののみであり、両方の場合該降下が低いことを注意しておく。そして、高流量バンドにあると、フルイディック流量計は通常はより高い圧力降下を有するが、モードIIIでは、該圧力降下はバイパスチャンネルCと連携するチャンネルBにより決定され、従って低い。
【0051】
構造的特徴:チャンネルAのフルイディック発振器18は全範囲の低バンドの流量を計量せねばならぬのみである。従ってそれは1つがもう1つの上に設置された別々のモールドされたプラスチックボード(plastic boards)で形成された2つの双安定フルイディック要素(bi−stable fluidic elements)から成ってもよい。このスタック(stacked)された配置では、1つの要素の出力チャンネルは中間通信ボード(intermediate communication board)を経由してそれぞれのもう1つの要素の制御入力に接続される。
【0052】
チャンネルBのフルイディック発振器22は該中バンドのガス流れを計量する必要があり、1つの要素のそれぞれの出力チャンネルがもう1つの要素の制御入力に接続されるように、1つがもう1つの上にある、別々のボード上に形成された3つの双安定要素から成るのが好ましい。1つのこの様な3要素の配置が図2に示され、後で説明される。
【0053】
チャンネルCのバイパス通路24は層に配置されたプレートにより創られ、中央の供給チャンネル(central feeding channel)を有する。バルブ27と28は、内径が該バルブシート(valve seat)のそれに対応する環状溝を有するデイスク層(disc layer)により創られたストライク要素(strike element)により各々が形成されている。
【0054】
マイクロプロセサー20はソフトウエアを備えるが、該ソフトウエアは下記式により該フルイディックメーターを通って流れるガスの量を計算するよう機能しており、
Q=f×q、ここで
Qは該メーターを通って流れる毎時リットル値のガス量であり、
fは該フルイディック発振器により発生される流体パルス数であり、そして
qは1パルスでのガス量である。
補償(Compensation):
該計量システムの精度(accuracy)を高めるために、該ガスメーターが曝される周囲温度の変動を補償するため、又は該読み値の精度に影響する何等かの他の変動要素を補償するための手段が提供されてもよい。
【0055】
かくして該システムに温度センサーTが付随するが、それは支配的な温度(prevailing temperature)を検出するために該メーターへ行くガスラインに隣接して設置され、該センサー信号はそれへの温度の影響を補償するため計算された流量を修正するよう作用するマイクロプロセサー20に印加される。もしセンサーTがアナログ信号を発生するならば、それはA−D変換器を通して該マイクロプロセサーに印加されるのでそれはデジタル式に処理され得る。
【0056】
或る場合には、該ガスメーターが海面より上の又は下のサイトに設置されるかも知れず、これは計量されるガスのエネルギー値の計算に有害に影響するかも知れない。該メーターへの大気圧変動(barometric variations)の影響を解消するために、出力がマイクロプロセサー20に供給される大気圧センサー(barometric sensor)Vが備えられ、該マイクロプロセサーは大気圧の変動(variations in barometric pressure)に対しその読み値を補償する。
【0057】
又計量されるガスのカロリー含有量(caloric content)の変化が該システムの計量精度に影響する。天然ガスは種々のカロリー含有量を有する種々の源から来るので、出力がその読み値を調整するために該マイクロプロセサーに供給されるカロリーセンサー(caloric sensor)Kが備えられる。
【0058】
又他の変動要素(variables)を検出し補償するために、該システム内にガス圧力センサーP又は何等かの他のセンサーNを含んでもよい。該メーターはこれらの外部センサーが無くても受入可能な程精確であることそして該センサーの目的はより高い桁の精度を実現するためであることは注意せねばならない。
【0059】
広い範囲を通してガス流量を計量するために、ここに開示した該フルイディックガス計量システムはこの範囲を、低、中、高の3つのバンドに分けるが、各々は別々のチャンネルを割り当てられる。該低バンドチャンネルでは、そのフルイディックジェネレーターはこのバンドでガス流量を計量するよう動作し、そして該中バンドチャンネルでは第2フルイディックジェネレーターがそのバンドでガス流量を計量するよう動作する。バイパス通路により形成される該高バンドチャンネルは、該第2チャンネルの該フルイディックジェネレーターが該高バンドの該流量を計量するよう動作するように、該ガス流れの1部分を逸らす。
【0060】
実際には、該システムは、低流量バンド、低中バンド(low medium band)、高中バンド(high medium band)そして高バンドを有する4チャンネルシステムの様な、3より多いバンドに該範囲を分けるよう配備されてもよい。この配備では、該低、低中そして高中チャンネルの各々には別々のフルイディックジェネレーターが含まれ、該第4チャンネルはバイパス通路用に確保されるだろう。
読み取り器(Reader): 該計量システムには、予め決められた時間間隔用の公衆ローンダリー機械(public laundry machine)又は公衆電話を動作させるために使用されるカードと同様なプリペイドカード(pre−paid card)を走査するための読み取り器(reader)29が付随してもよい。この場合、該カードはその購入者に、該カードについて支払われた量に左右されるガスエネルギーの予め決められた量の権利を与えるだろう。
【0061】
かくしてもし該カードが25ドルのコストで、そのユーザーに1000リットルのガスの権利を与えるなら、該カード保持者が該カードを挿入する度毎に、彼は、彼が買いたいガス量、例えば100リットル、をキーイン(key in)出来て、その時該カードはこの量だけ減額される(downgraded)。該ユーザーが彼のガスの権利を使い切ると、該カードは最早有効でない。
【0062】
該カード読み取り器29には可視又は可聴警報器(visible or audible alarm)(示されてない)が付随しており、それは彼が彼のカードを挿入した時、それは間もなく使い切ること、そして彼が新カードを購入するのが最良であること、を該カード保持者に警告する。該プリペイドカード読み取り器は、該プリペイドカードが使い切られた時、該ガス源を閉じ、そして新カードが挿入された時該源を再開するマスターバルブと連携して動作する。
【0063】
プリペイドカードの利点は、ガス供給会社がその顧客に請求すること、そして彼が支払いを滞納している時顧客に通知すること、そして支払いが受けられなかった時ガスの供給を閉じること、のニーヅを解消することである。プリペイドカードを用いると、顧客は決して支払いに後れず、彼に供給されるガスは既に支払い済みである。
【0064】
又該システムはモデムによりインターネットハイウエイ(Internet highway)にリンクされてもよいので該マイクロプロセサーに記憶されたデジタルデータはガス請求ステーションとして機能するウエブサイト(web site)、又は該データを要する何等かの他のウエブサイトに伝送されることが可能である。該データを送り出している計量システムを識別するために、該データは識別用のデジタル形式のシンボル(symbol)又はコードにより先行される。
【0065】
3要素フルイディックジェネレーター(Three−Element Fluidic Generator):チャンネルBで3要素フルイディックジェネレーターを使う理由はそれが2要素ジェネレーターより速い応答を有すること、そして従って流量が該範囲の該中バンドにある時ガス流れの流量を計量するのにより好適であることである。
【0066】
図2に示す様に、チャンネルB用の該3要素ジェネレーターは各々が第1ガス入力30を有する要素E1、E2、そしてE3から形成される。該3要素への入力は並列に接続されるのでそれらは同時刻に被計量ガスを受ける。各第1入力は1対の第2入り口30Aと1対の第2出口30Bに流れ込む。各要素の該第2入り口30Aはもう1つの要素の第2出口に接続される。
【0067】
各要素は又1対の第1出口X、YそしてZを備える。これらはユーザーのサイトへ計量されたガスを供給するため並列に接続される。
【0068】
該フルイディック発振器により発生された周期的パルスはピエゾ電気変換器34により検出され、該変換器は繰り返しレートが計量されるガスの流量に比例する脈動信号を発生する。
【0069】
該システムに含まれる該フルイディック発振器はここで開示されるものである必要はなく、計量される流量バンドのガスの流量を計量出来るどんなフルイディック発振器により構成されてもよいことは理解されるべきである。
【0070】
本発明の好ましい実施例が示されたが、その中では本発明の精神から離れることなく多くの変更と変型が行われてもよいことは理解されるべきである。かくして該システムに含まれるバルブはソレノイド型である必要はなく、実際には、該マイクロプロセサーによりそれに印加される制御電圧に応答する、モーター駆動されるボールであっても、又は何等かの他の種類であってもよい。そして該2つのジェネレーターは共通のセンサーを共有してもよいので、各フルイディックジェネレーター用に別々のピエゾ電気センサーを提供する必要はない。
【図面の簡単な説明】
【図1】
本発明の好ましい実施例のフルイディックガス流量計量システムのブロック線図である。
【図2】
該システムに含まれる3要素フルイディック発振器の線図の略図である。

Claims (17)

  1. ガス源からユーザーサイトまで走るライン内に介在させられた時低い圧力降下しか発生しないフルイディックガス計量システムであるが、該ガスが、広い流量範囲であり、該範囲の下部部分の低流量バンドと、中部部分の中バンドとそしてその上部部分の高バンドと、により規定される該広い流量範囲で該システムを経由して該サイトに供給されており、前記システムが、
    A.前記源から導かれた加圧ガスの流れが中に供給される入力室と、
    B.該ガス流れがそこから前記サイトへ供給される出力室と、
    C.該ガス流れが該低バンドの流量を有する時のみ、該流量に比例する繰り返しレートを有する周期的パルスを発生するよう動作する第1フルイディックジェネレーターにより規定され、該室を相互接続する第1チャンネルと、
    D.該ガス流れが該中バンドの流量を有する時のみ、該流量に比例する繰り返しレートを有する周期的パルスを発生するよう動作する第2フルイディックジェネレーターにより規定され、該室を相互接続する第2チャンネルと、
    E.該ガス流れの流量が該高バンドにある時のみ動作し、バイパス通路により規定され、該室を相互接続する第3チャンネルと、を具備しており、該第3チャンネルは、該ガス流れを、それによりバイパスされる小さい方の成分と、該第2チャンネルを通って流れそして該中バンド内にある流量を有する大きい方の成分と、に分けるよう作用しており、前記システムは又、
    F.該第1及び第2ジェネレーターに接続され、それらにより該低、中そして高バンドでの該システムの動作中発生されるパルスを処理するための、そして該全範囲を通して該ユーザーにより消費されるガスの精確な読み値を提供するよう該パルスを合計するための手段と、そして
    G.前記読み値を示すための手段とを具備することを特徴とするシステム。
  2. 前記第1及び第2ジェネレーターの各々が、フルイディック発振器と、対応する電気パルスを作るために該発振器により発生されるフルイディックパルスに応答する変換器と、を有することを特徴とする請求項1のシステム。
  3. 該変換器がピエゾ電気要素であることを特徴とする請求項2のシステム。
  4. 該第1ジェネレーターが2つのフルイディック要素から構成されることを特徴とする請求項2のシステム。
  5. 該第2ジェネレーターが3つのフルイディック要素を有することを特徴とする請求項2のシステム。
  6. 該処理手段が該パルスの周波数に1パルスに含まれるガスの容積を掛け算することによりリットルに換算して消費されたガス量を計算するマイクロプロセサーであることを特徴とする請求項1のシステム。
  7. 該流量が該低バンドにある時該第1チャンネルを開き、該第2チャンネルを閉じるよう動作し、該流量が該中バンドにある時該第1チャンネルを閉じ、該第2チャンネルを開くよう動作するジユアルバルブを更に具備することを特徴とする請求項1のシステム。
  8. 該流れの流量が該高バンドにある時のみこの流れの小さい方の成分に該第3チャンネルを開くよう動作するシングルバルブを更に具備しており、それにより該中バンドにある大きい方の成分が該第2チャンネルを通って流れることを特徴とする請求項7のシステム。
  9. 計量される該ガス流れの流量が該低バンドにある時は、該流れは該ジュアルバルブにより該第1チャンネルを通って流れさせられ、該流量が該中バンドにある時は、該ジュアルバルブは該流れに該第2チャンネルを通って流れさせ、そして該流量が該高バンドにある時は、該シングルバルブが該流れの小さい方の成分に該第3チャンネル内に流れさせる様な、シーケンスの駆動電圧で該ジュアル及び該シングルバルブを駆動する手段を更に具備することを特徴とする請求項8のシステム。
  10. 該流量読み値を表示する液晶デバイスを更に具備することを特徴とする請求項1のシステム。
  11. 前記マイクロプロセサーに含まれる流量データを遠隔のステーションへ伝送する手段を更に具備することを特徴とする請求項6のシステム。
  12. 周囲温度の変化に対して該メーター読み値を補償するために温度応答センサーを備えた手段を更に具備することを特徴とする請求項1のシステム。
  13. 大気圧の変化に対して該メーター読み値を補償するために大気圧センサーを備えた手段を更に具備することを特徴とする請求項1のシステム。
  14. 計量されるガスの圧力の変化に対して該メーター読み値を補償するためにガス圧力センサーを備えた手段を更に具備することを特徴とする請求項1のシステム。
  15. 計量されるガスの熱量測定値の変化に対して該メーター読み値を補償するために熱量測定センサーを備えた手段を更に具備することを特徴とする請求項1のシステム。
  16. プリペイドカード読み取り器であるが、該カードを該読み取り器内に挿入した該ユーザーに予め決められた量のガスを供給するよう適合された該プリペイドカード読み取り器が該システムに付随することを特徴とする請求項1のシステム。
  17. 流量に関してその中に記憶されたデジタルデータを遠隔のステーションへ送るための該マイクロプロセサーに接続された手段を更に具備することを特徴とする請求項6のシステム。
JP2002554475A 2001-01-08 2001-11-05 フルイディックガス計量システム Pending JP2004517313A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/755,168 US6477900B2 (en) 2001-01-08 2001-01-08 Fluidic gas metering system
PCT/IB2001/002081 WO2002054019A1 (en) 2001-01-08 2001-11-05 Fluidic gas metering system

Publications (1)

Publication Number Publication Date
JP2004517313A true JP2004517313A (ja) 2004-06-10

Family

ID=25038005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002554475A Pending JP2004517313A (ja) 2001-01-08 2001-11-05 フルイディックガス計量システム

Country Status (9)

Country Link
US (1) US6477900B2 (ja)
EP (1) EP1352218A1 (ja)
JP (1) JP2004517313A (ja)
CN (1) CN1488069A (ja)
CA (1) CA2434075A1 (ja)
IL (1) IL156754A0 (ja)
PL (1) PL362059A1 (ja)
RU (1) RU2003124507A (ja)
WO (1) WO2002054019A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235423A1 (ja) * 2019-05-23 2020-11-26 パナソニックIpマネジメント株式会社 ガス保安装置、及び、ガス保安システム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7383740B2 (en) * 2003-11-17 2008-06-10 Spirojet Medical Ltd Spirometer
US7204156B2 (en) * 2005-07-29 2007-04-17 Motorola, Inc. Fuel cell system having fluidic oscillation flow meter
US7818092B2 (en) * 2006-01-20 2010-10-19 Fisher Controls International Llc In situ emission measurement for process control equipment
GB2447425A (en) * 2007-03-13 2008-09-17 Univ Cranfield Bidirectional flowmeter with two fluidic oscillators arranged in series
DE102008064455A1 (de) * 2007-12-20 2009-06-25 Robert Buck Überwachungsvorrichtung zur Überwachung eines fließfähigen Mediums
US8457907B2 (en) * 2010-10-08 2013-06-04 Shindonga Electronics Co., Ltd Compensation device for fluidic oscillation flow meter and compensation method using the same
CN102519525B (zh) * 2011-11-24 2013-10-09 宁波水表股份有限公司 一种射流振荡水流量传感器
CN103528490B (zh) * 2013-11-05 2016-04-06 无锡市迈日机器制造有限公司 大量程亚微米级高精度气电转换器
KR102162046B1 (ko) * 2017-02-10 2020-10-06 가부시키가이샤 후지킨 유량 측정 방법 및 유량 측정 장치
CN115031793B (zh) * 2022-08-11 2022-12-09 成都国光电子仪表有限责任公司 一种总线数字式流量计量系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4255964A (en) * 1978-11-30 1981-03-17 The Garrett Corporation Fluid monitor
GB2172996B (en) 1984-06-27 1987-07-15 Osaka Gas Co Ltd Fluidic flowmeter
US4550614A (en) * 1985-01-14 1985-11-05 Fischer & Porter Company Oscillatory flowmeter
US4930357A (en) * 1986-11-21 1990-06-05 Allied-Signal Inc. Fluidic volumetric fluid flow meter
GB8720356D0 (en) 1987-08-28 1987-10-07 Thorn Emi Flow Measurement Ltd Fluid meter
US5179970A (en) * 1987-10-23 1993-01-19 The Coca-Cola Company Beverage dispensing valve
GB8908749D0 (en) 1989-04-18 1989-06-07 Jeavons Engineering Ltd Flowmeters
KR910007654B1 (ko) 1989-04-26 1991-09-28 삼성전자 주식회사 이동식 무선전화기의 rf전력 제어회로
US5335553A (en) 1990-11-15 1994-08-09 Tokyo Gas Co. Ltd. Fluidic gas meter provided with a printed wiring board
EP0503462B1 (en) * 1991-03-06 1996-10-09 Osaka Gas Co., Ltd. Fluidic vibrating type flowmeter
FR2679028B1 (fr) * 1991-07-09 1993-10-29 Schlumberger Industrie Oscillateur fluidique et debitmetre comportant un tel oscillateur.
CA2135173A1 (en) 1992-05-20 1993-11-25 Bruce E. Witzel Ester derivatives of 4-aza-steroids
NL9201906A (nl) * 1992-11-02 1994-06-01 Huiberts Albertus T Werkwijze en inrichting voor het meten van het debiet van een mediumstroom.
US5353704A (en) 1993-07-09 1994-10-11 Wildewood Creative Products, Inc. Stamping apparatus and method for forming a stamp and stamping using elongated members
US5577109A (en) * 1994-06-06 1996-11-19 Call Processing, Inc. Pre-paid card system and method
US5780747A (en) * 1995-12-18 1998-07-14 Changmin Co., Ltd. Open channel multichannel ultrasonic flowrate measurement apparatus and method
US6076392A (en) * 1997-08-18 2000-06-20 Metasensors, Inc. Method and apparatus for real time gas analysis
US6223789B1 (en) * 1999-06-24 2001-05-01 Tokheim Corporation Regulation of vapor pump valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235423A1 (ja) * 2019-05-23 2020-11-26 パナソニックIpマネジメント株式会社 ガス保安装置、及び、ガス保安システム
JP2020190501A (ja) * 2019-05-23 2020-11-26 パナソニックIpマネジメント株式会社 ガス保安装置、及び、ガス保安システム
JP7249594B2 (ja) 2019-05-23 2023-03-31 パナソニックIpマネジメント株式会社 ガス保安装置、及び、ガス保安システム

Also Published As

Publication number Publication date
CA2434075A1 (en) 2002-07-11
US20020124659A1 (en) 2002-09-12
RU2003124507A (ru) 2005-02-10
WO2002054019A1 (en) 2002-07-11
PL362059A1 (en) 2004-10-18
IL156754A0 (en) 2004-02-08
EP1352218A1 (en) 2003-10-15
CN1488069A (zh) 2004-04-07
US6477900B2 (en) 2002-11-12

Similar Documents

Publication Publication Date Title
AU601501B2 (en) Coriolis mass flow metering
US4911006A (en) Custody transfer meter
EP0305134B1 (en) Fluid metering system
US5056017A (en) System to monitor fuel level in a tank, and fuel dispensed from the tank, to determine fuel leakage and theft losses
JP2004517313A (ja) フルイディックガス計量システム
EP0306193A1 (en) Fluid meter
CA2317678A1 (en) System for validating calibration of a coriolis flowmeter
US3831812A (en) Fluid dispensing system
DE69309939D1 (de) Durchflussmesser
US6453753B1 (en) Volume or mass flowmeter
US6606915B2 (en) Method for measuring oscillation frequency of a fluid jet in a fluidic oscillator
AU628296B2 (en) Beverage dispensing valve
CA2539609A1 (en) Inferential densometer and mass flowmeter
JPS58189518A (ja) 質量流量計
JP2000241218A (ja) 流量計
JP2000065672A (ja) ガス漏洩検知装置
JP2002062179A (ja) ガスメータ
JPH11258098A (ja) ガス漏洩検知装置
JP2000241219A (ja) ガスメータ
US11885658B2 (en) Converting a directly measured mass flow rate to account for buoyancy
JP2787395B2 (ja) 蒸気流量計
JP2002365119A (ja) 流体流量の積算装置
JPH0319492B2 (ja)
JPS5786718A (en) Integrating flowmeter with electronic auxiliary pipe
JP3169116B2 (ja) 気体流量計及び複合気体流量計