JP2004514883A - 静電容量型測定デバイス - Google Patents

静電容量型測定デバイス Download PDF

Info

Publication number
JP2004514883A
JP2004514883A JP2002544613A JP2002544613A JP2004514883A JP 2004514883 A JP2004514883 A JP 2004514883A JP 2002544613 A JP2002544613 A JP 2002544613A JP 2002544613 A JP2002544613 A JP 2002544613A JP 2004514883 A JP2004514883 A JP 2004514883A
Authority
JP
Japan
Prior art keywords
voltage
probe
measuring
power supply
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002544613A
Other languages
English (en)
Other versions
JP4294315B2 (ja
Inventor
パスカル、ジョルダーナ
クロード、ロウネイ
ダニエル、ル、ルスト
ウイリアム、パンシロリ
ヨアキム、ダ、シルバ
フィリップ、パルボ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Computer Products Europe SAS
Original Assignee
Hitachi Computer Products Europe SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0015119A external-priority patent/FR2817032B1/fr
Priority claimed from FR0015123A external-priority patent/FR2817035B1/fr
Priority claimed from FR0015127A external-priority patent/FR2817036B1/fr
Priority claimed from FR0015120A external-priority patent/FR2817033B1/fr
Priority claimed from FR0015121A external-priority patent/FR2817034B1/fr
Application filed by Hitachi Computer Products Europe SAS filed Critical Hitachi Computer Products Europe SAS
Publication of JP2004514883A publication Critical patent/JP2004514883A/ja
Application granted granted Critical
Publication of JP4294315B2 publication Critical patent/JP4294315B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2405Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by varying dielectric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Fluid Pressure (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Amplifiers (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

本発明は、少なくとも一つの測定プローブ(10)と、測定プローブ(10)と参照要素(20)との間に制御された電源電圧を順に加えるための手段(30)と、測定プローブ(10)上に蓄積された電気負荷を積分するための手段(50)とを備える測定デバイスに係る。本発明によると、このデバイスは、更に、積分段(50)の入力オフセットを訂正するための手段(60)を備える。

Description

【0001】
本発明はセンサの分野に係る。
【0002】
より詳細には、本発明は、それぞれ、測定プローブと参照要素、例えば、参照プローブとを形成する2つの導電体間の誘電率(permittivity)の間接的な測定を利用する測定デバイスに係る。
【0003】
図1に示されるような基本構造を有するデバイスがPCT特許出願公開明細書第0025098号において説明されている。
【0004】
このデバイスは、それぞれ、測定プローブ10と参照プローブ20とを構成する2つの導電体と、制御された振幅のDC電圧を供給する能力を有する電源手段30と、容量スイッチングシステム53を備える積分器段(integrator stage)50と、制御された周波数にて、以下のセットの2つのシーケンスをサイクル的に定義する動作手段(operating means)40とを備える。
第一のシーケンスT1においては、電源手段30は、測定プローブ10に連結され、測定プローブ10と参照プローブ20との間に電場が加えられ、電荷が測定プローブ10上に蓄積され、
第二のシーケンスT2においては、電源手段30は測定プローブ10から切り離され、測定プローブ10は積分器段50の総和点(summation point)に連結され、電荷が積分器段50に転送され、積分器段50の出力の所に測定プローブ10と参照プローブ20との間に存在する誘電率を表す信号が得られる。
【0005】
より詳細には、PCT特許出願公開明細書第0025098号によると、積分器段50は、増幅器51と、この増幅器51と帰還モードに配列された第一の積分コンデンサ(integration capacitor)52と、動作手段40によって駆動される前述のシーケンスのテンポにて演算増幅器51の出力と入力との間で切換えられる第二のコンデンサ53とを備え、定常平衡状態(steady balance state)において、演算増幅器51の出力の所に、−E×Cs/C53に等しい平衡電圧(balance voltage)が得られる。この関係式において、−Eは電源手段30の端子間の電圧の振幅を表し、Csは、測定プローブ10と参照要素との間に測定される静電容量の値を表し、C53は、前記測定プローブ10と第二のスイッチドコンデンサ53との間に測定される静電容量の値を表す。
【0006】
電源手段30及び第二のコンデンサ53のスイッチングは、時間基準(time base)41によって駆動されるインバータオン/オフスイッチ42、43によって行われる。
【0007】
この公知のデバイスの動作の様式は、本質的には、以下の通りである。
【0008】
当初、積分コンデンサC52、スイッチングコンデンサC53、及び測定プローブ10と参照プローブ20との間に形成されるコンデンサCsは、各々、完全に放電されている、つまり、
QC52=0
QC53=0
QCs=0
であるものと想定する。
【0009】
第一のシーケンスにおいて、コンデンサCsがモジュール30によって供給される電源電圧の下で充電される。ここでは、この電源電圧は−Eに等しいものと想定される。
【0010】
第一のシーケンスT1の終端において、我々は、以下のような値を有する。
QCs=−E×Cs
QC52=0
QC53=0
【0011】
第二のシーケンスT2において、この電荷がCsからC52に転送される。
【0012】
つまり、電荷が蓄積され、CsとC52が零なる仮想インピーダンスを有する演算増幅器51の反転入力に連結され、
−E×Cs=Vs2×C52となり、第二のシーケンスの際の演算増幅器51の出力電圧はVs2となる。
【0013】
次のシーケンスT1において、2つのコンデンサC52とC53は並列にされる。すると、我々は、以下を得る。
Vs≒Vs2×C52/(C52+C53)
=QC53/C53=QC52/C52、つまり
Q53≒[Vs2×C52/(C52+C53)]×C53
−[Vs2/(1+C53/C52)×C53
つまり、C52≒n×C53>>C55である場合は、
QC53はほぼ、Vs2×C53となる。
【0014】
次のシーケンスT2において、C53内に含まれる電荷は、Csの電荷の逆となり、Csの電荷の残りの部分がC52等に転送される。
【0015】
演算増幅器51の出力の所の出力電圧Vsは、次第に増加し、最終的にはVs balance≒QC53/C53なる平衡値に達し、この結果、
QC53≒Vs balance×C53=−E×Csとなる。
【0016】
こうして、x回の反復の後に、このデバイスは、総和点の所で平衡状態に達し、C53の電荷QC53によって、プローブの電荷Csが補償される。
【0017】
静電容量Csの変動が検出されると直ちに、プローブの電荷Csの追加(或いは損失)によって、コンデンサC52が充電(或いは放電)される。
【0018】
こうして、定常状態においては、スイッチングコンデンサC53によってプローブの電荷Csの変動が平衡化される。
【0019】
本発明の目的は、公知のデバイスのそれよりも優れた性能を示す新規のデバイスを提唱することにある。
【0020】
より具体的には、本発明の目的は、公知のデバイスにおいて見られる、温度、湿度、或いは容量結合によって生成される低周波の電気妨害等に起因するドリフトを補償することにある。
【0021】
この目的が、本発明によると、少なくとも一つの測定プローブを含む少なくとも一つの測定ヘッドと、この測定プローブと参照要素との間に制御された電源電圧を順に供給する能力を有する手段と、測定プローブ上に蓄積された電荷を積分する手段とを備えるデバイスであって、更に、積分器段の入力のオフセット訂正を行う能力を有する手段を備えることを特徴とするデバイスによって達成される。
【0022】
本発明のもう一つの好ましい態様においては、このデバイスは、更に、微分器段(differentiator stage)を備え、これは、自身の入力の所に、オフセット訂正(電圧)は同一とされ、様々な異なる制御された電源電圧が加えたとき、測定ヘッドから得られる出力を表す2つの信号を受信する。
【0023】
本発明のもう一つの好ましい態様においては、このデバイスは、2つの測定ヘッドを備え、微分器段に加えられる信号は、それぞれ、これら2つの測定ヘッドの積分器段の出力から得られる。
【0024】
本発明のもう一つの好ましい態様においては、それぞれ、上述の2つの測定ヘッドに属する2つの測定プローブは、ピッタリと近接して、同一の媒体内に配置される。
【0025】
本発明のもう一つの好ましい態様においては、オプションとして、このデバイスは、単一の測定ヘッドと、あるオフセット訂正(電圧)とある与えられた制御された電源電圧を加えたとき測定ヘッドから得られる出力を格納する能力を有する手段とを備え、微分器段は、こうして格納された信号を、オフセット訂正(電圧)は同一とされ、ある異なる制御された電源電圧が加えられたときに測定ヘッドの出力の所に得られる電圧と比較する。
【0026】
本発明のもう一つの好ましい態様においては、積分器段のオフセット訂正は、可変電圧(源)から給電されるコンデンサを備える回路の助けを得て遂行される。
【0027】
本発明のもう一つの好ましい態様においては、このデバイスは、更に、オフセット訂正を積分器段からの出力信号に従属させる能力を有する手段を備える。
【0028】
もう一つの態様においては、本発明は、少なくとも一つの測定プローブを含む少なくとも一つの測定ヘッドと、測定プローブと参照要素との間に制御された電源電圧をシーケンス順に加える能力を有する手段と、測定プローブ上に蓄積された電荷を積分する能力を有する手段とを備えるデバイスに係り、このデバイスは、複数の異なるプローブを順に積分器段の入力に連結する能力を有する手段を備えることを特徴とする。
【0029】
もう一つの態様においては、本発明は、少なくとも一つの測定プローブを含む少なくとも一つの測定ヘッドと、測定プローブと参照要素との間に制御された電源電圧をシーケンス順に加える能力を有する手段と、測定プローブ(10)上に蓄積された電荷を積分する能力を有する手段(50)とを備えるデバイスに係り、電源手段が一連の制御された可変電圧を測定プローブに加えるのに適し、このデバイスが更に積分器段の出力の所の信号の傾向を加えられた電源電圧の関数として分析するための手段を備えることを特徴とする。
【0030】
本発明の他の特徴、目的及び長所が、以下の詳細な説明を、単に一例として与えられ、制限することは意図しない添付の図面を参照しながら読むことで、一層明白になるものである。
【0031】
【発明の実施の形態】
図2は、参照要素20と協力して静電容量(capacitance)Csを測定する測定プローブ10と、電源手段(supply means)30と、電荷積分器段(electric charge integrator stage)50と、時間基準(time base)41と、を備える本発明による「測定ヘッド(measurement head)」が追加された基本回路を示す。
【0032】
本発明によると、この参照要素20は、参照プローブ、或いは、例えば、地球、或いは自動車のシャシ等の付近の金属物等の他の物体から構成される。
【0033】
電源手段30は、ここでは、電位インバータ段(potential−inverter stage)から成る。この段は、演算増幅器31を備え、この非反転入力は接地される。演算増幅器31の反転入力は、抵抗R32を介して電源電圧Vf=+Eを受ける。好ましくは、抵抗R32と同一値の帰還抵抗R33が演算増幅器OP31の反転入力と出力との間に配置される。
【0034】
演算増幅器OP31の出力は、時間基準41にて駆動されるオン/オフスイッチ420を介して測定プローブ10にシーケンス順に加えられる。
【0035】
参照プローブ20は接地される。
【0036】
測定プローブ10は、更に、時間基準41にてオン/オフスイッチ420とは反対に駆動される第二のオン/オフスイッチ422を介して積分器段50に属する演算増幅器51の反転入力にもシーケンス順に連結される。
【0037】
これら2つのオン/オフスイッチ420、422は、図1に簡略的に示される反転オン/オフスイッチ42から構成される。
【0038】
これら二つのオン/オフスイッチ420、422は、図2においてCLK1及びCLK2として示される2つの位相の反対の信号によって駆動される。
【0039】
演算増幅器50の非反転入力は接地される。
【0040】
演算増幅器OP50の反転入力と出力との間には積分コンデンサ(integration capacitor)C52が帰還モードにて配置される。
【0041】
スイッチドコンデンサ53の第一の電極は接地される。
【0042】
スイッチドコンデンサ53の第二の電極は、時間基準41にて生成される信号CLK1とCLK2によって位相を逆に駆動される2つのオン/オフスイッチ430、432にて、演算増幅器OP512の出力と、演算増幅器OP512の反転入力に、シーケンス順に連結される。
【0043】
これら2つのオン/オフスイッチ430、432は、図1に簡略的に示されるオン/オフスイッチ43から構成される。
【0044】
時間基準41は、こうして、以下の2つの基準期間T1、T2から成るシーケンスを定義する。
期間T1においては、オン/オフスイッチ420、430は閉じられ、他方、オン/オフスイッチ422、432は開かれる。この第一の期間においては、測定プローブ10は、段31から供給される電源電圧−Eに充電され、他方、スイッチングコンデンサ53は積分器段の出力に連結される。
【0045】
次に、時間基準41は、第二の期間T2を定義し、この第二の期間T2においては、オン/オフスイッチ422、432は閉じられ、他方、オン/オフスイッチ420、430は開かれる。この第二の期間においては、測定プローブ10は、演算増幅器OP51の反転入力に連結され、他方、スイッチングコンデンサ53は積分器段50の入力に連結される。
【0046】
図2に示される基本デバイスは、更に、積分器段50の入力のオフセット訂正を行う能力を有する手段60を備える。
【0047】
これらオフセット訂正手段60は、積分器段50の入力に加える訂正電圧(correction voltage)を分析適するのに適するが、この訂正電圧は、積分器段の入力の所に、例えば、温度や、湿度や、容量結合によって生成される低周波の電気的妨害に起因して生成されるオフセット電圧(offset voltage)を補償するために用いられる。
【0048】
図2に示すこの特定の実現においては、このオフセット訂正手段60は、演算増幅器64と、これと関連するコンデンサ62を備える。
【0049】
演算増幅器64は、フォロアモードに配列される。演算増幅器64は、その非反転入力には、可変電源電圧V0を受ける。演算増幅器64の反転入力は、この出力と帰還モードに構成される。演算増幅器OP64の出力は、クロックCLK1のテンポにて、オン/オフスイッチ66を介してコンデンサ62にシーケンス順に連結される。更に、コンデンサ62自身は、時間基準41によって生成されるクロックCLK2のテンポにて、第二のオン/オフスイッチ68を介して、積分器段50の入力、つまり、演算増幅器OP51の反転入力にシーケンス順に連結される。
【0050】
図2に示されるデバイスは、こうして、積分器段50の演算増幅器51の出力の所に出力信号Vs≒(Vf×Cs/Cc)−(Vo×Co/Cc)を供給する。ここで、
Vfは電源インバータ段30の入力の所での電源電圧を表し、
Voはオフセット訂正段60の入力の所での電源電圧を表し、
Csは測定プローブ10と参照プローブ20との間に測定される静電容量を表し、
Coはコンデンサ62の静電容量を表し、
Ccはスイッチングコンデンサ53の静電容量を表す。
【0051】
図2に示されるオフセット訂正手段60は、Qo≒Vo×Coに等しい量の電荷を増幅器51の総和点に、コンデンサ53のスイッチングと同期して注入する能力を有する。
【0052】
電圧Voを適当なやり方、例えば、デジタルアナログ変換器にて調節することで、出力電圧Vsを実質的に零にすることが可能となる。
【0053】
こうして形成されたデバイスを用いると、測定プローブ10と、参照プローブ20との間に存在する静電容量Csの小さな変動を、プローブに大きなオフセットが存在する場合でも、積分器段51を飽和させることなく、測定することが可能となる。より具体的には、本発明によると、測定プローブの静電容量Csは、2つの成分容量(elementary capacitance)CsoとCmに分割される。ここで、
Csoは、プローブの、接続ワイヤに起因し、通常、高い値を有し、時には数百ピコファラッドに達することもあるオフセットを表し、
Cmは、プローブの、測定プローブ10と参照プローブ20との間の誘電率を測定する際に見られる、仮想容量(virtual capacitance)の、通常、数百フェムトファラッド程度の変動を表す。
【0054】
Csoの値は、より具体的には、温度及び相対湿度の関数として変化する。Csoの値はCmと較べて高いため、この値のドリフトが比ΔCso/Ccにおいて増幅され(過剰に大きくなり)、これがCmの変動のフルスケールより遥かに大きくなることがある。
【0055】
入力段が飽和することに起因する測定の誤りを回避するために、本発明においては、前述のように、微分段(減算器)70が用いられる。
【0056】
この微分段(differential stage)は、自身の2つの入力の所に、測定ヘッドからの出力を表す、オフセット訂正は同一とされ、異なる制御された電源電圧が加えられたときの、2つの信号を受信する。
【0057】
図3には、本発明によるこの微分段70を備えるデバイスの一つの実施例が示される。
【0058】
図3には、各々が上に説明の図2に示されるタイプの積分器段50と関連するプローブ10を備える、2つの測定ヘッドTE1とTE2が示される。各測定プローブ10は、図2に示されるタイプの電源手段30、及び図2に示されるタイプの各々のオフセット補償手段60と関連する。
【0059】
電源手段30は、測定ヘッドTE1若しくはTE2の各測定プローブ10と関連する参照要素20との間に特定の制御された電圧Enを加えるように設計される。ヘッドTE1若しくはTE2の各参照要素は、特定の参照プローブから形成することも、両方のヘッドに共通なプローブから形成することも、或いは地球や自動車のシャシ等の付近の金属物から形成することもできる。更にもう一つのバリエーションにおいては、ある与えられた測定ヘッドの参照要素20は、他方のヘッドの測定プローブ10から形成される。より具体的には、一つの実現においては、測定ヘッドTE1の参照要素20は、参照ヘッドTE2の測定プローブ10から形成される。
【0060】
微分段70は、自身の入力の所に、2つの測定ヘッドTE1、TE2からの出力信号Vs1とVs1を受信する。
【0061】
このデバイスは、全体としては、時間基準41によって駆動される。
【0062】
微分段70の出力の所に得られる信号は、任意の適当な手段によって、例えば、標本保持デバイス72とこれに続くアナログデジタル変換器74によって、或いは、任意の適当な分析手段、例えば、マイクロコンピュータによって利用される。
【0063】
図3には、Cso1とCso2なる参照符号の下に、とりわけ接続ワイヤに起因し、測定ヘッドTE1とTE2の積分段50の入力の所にオフセット電圧を生成する原因となる浮遊容量(stray capacitances)が示される。
【0064】
図3には、更に、Pなる参照符号の下に、電気結合に起因し、各測定ヘッドTE1とTE2の入力の所に加えられる可能性のある電気的な妨害(disturbances)も示される。
【0065】
図3に示されるシーケンサ41は、デバイスの、主として図4に示されるような2つの一連のサイクルC1、C2から構成されるサイクル的な動作を制御する。
【0066】
オフセット訂正(量)を校正するための第一のサイクルC1においては:
このデバイスは、同一の入力電源電圧Vf≒E、好ましくは、小さな、例えば、1ボルトの電圧を、2つの測定ヘッドTE1とTE2に加える。
【0067】
このサイクルC1において、コントローラ74は、測定ヘッドTE1のオフセット訂正電圧Vo1を、零に極めて近い、例えば、0.1ボルトの出力電圧Vs1が得られるように調節する。
【0068】
この同一のサイクルC1において、コントローラ74は、第二の測定ヘッドTE2に加えられるオフセット訂正電圧Vo2を、零に極めて近い、例えば、0.1ボルトの出力電圧Vs2が得られるように調節する。
【0069】
この第一のサイクルの際に、微分段70は、零に極めて近く、参照として取られた電圧Vs.refに等しい出力電圧Vs=Vs1−Vs2を供給する。
【0070】
第二の続く(測定)サイクルC2においては、コントローラ74は、測定ヘッドTE1に、第一のサイクルの終端において定義されるのと同一のオフセット訂正電圧Vo1と、ある異なる電源電圧Vf=E、例えば、5ボルトを加える。
【0071】
この第二のサイクルC2においては、コントローラ74は、参照測定ヘッドとして機能する第二の測定ヘッドTE2に、同一のオフセット訂正電圧Vo2と、第一のサイクルC1の終端において定義されるのと同一の電源電圧Vf=Eを加える。
【0072】
例えば、温度或いは相対湿度に起因してドリフトが発生する場合、これらは、2つの測定ヘッドTE1とTE2のプローブの所に出現する。これは、これらが近接して配置され、類似の周囲媒体の影響を受けるためである。微分段70を用いて測定が差分的に行われ、この微分段の出力の所にCso1とCso2に起因するドリフトを含まない電圧Vs、つまり:
Vsn≒E1(Cso1/Cc−Cso2/Cc)−(Co/Cc)(Vo1−Vo2)+(En−E1)(Cm/Cc)が得られる。
【0073】
測定ヘッドTE1とTE2の2つのプローブが互いに十分に近接して配置され、かつ、これら2つのサイクルが時間的に極めて近接する、例えば、50KHzなる周波数とされる場合は、容量結合に起因する同相モード(common−mode)雑音も除去される。
【0074】
図3に示される差分モード(differential mode)にて動作するデバイスは2つの測定ヘッドTE1、TE2を備える。
【0075】
本発明の一つの代替の実現においては、信号対雑音比を最大化するための差分動測定を、単一の測定ヘッドにて遂行できるようにされる。これを達成するために、このデバイスに、測定ヘッドからのオフセット訂正のための出力信号の大きさと、ある与えられた制御された電源電圧とを格納するためのメモリ手段が設けられ、その後、この信号が、同一のオフセット訂正(電圧)と、ある異なる制御された電源電圧とを用いたとき、測定ヘッドの出力の所に得られる信号と比較される。
【0076】
この代替の実現においては、コントローラ74に匹敵する手段によって、図5に示されるような2つのサイクルが定義される:
(オフセット訂正を校正するための)第一のサイクルC1において、例えば、0ボルトの弱い既知の電場Eoが測定プローブ10に加えられ、ある与えられたオフセット訂正Vo1に対して得られた、雑音に対応する、出力信号Vs1が格納される。
【0077】
雑音に対応するこの出力電圧Vs1が格納される。
【0078】
(測定の)第二のサイクルC2において、動作電場Eを、オフセット電圧Vo1は同一に維持して、加えることで、出力Vs2が得られる。
【0079】
これら2つの測定が時間的に十分に近接して行われた場合は、2つのサイクル間で周囲雑音が変化することはない。
【0080】
このため、第一のサイクルC1の終端において格納された信号Vs1と第二のサイクルC2の際に得られた信号Vs2の差分を取ることで、雑音の除去された測定結果を得ることができる。
【0081】
上述の2つのサイクルC1、C2がこのデバイスの使用を通じて順次反復される。
【0082】
このデバイスが、図3に示すように2つの測定ヘッドTE1とTE2を用いるか、或いは単一の測定ヘッドと信号Vs1用のメモリとを用いるかに関係なく、上述のサイクルC1、C2自身は、各々、図4と5との関連で上で説明したような少なくとも2つの一連のシーケンスから成る。
【0083】
勿論、図4と5に示されるタイミングチャートには様々なバリエーションが考えられる。
【0084】
第一に、例えば、校正サイクルC1を、必要であれば、シーケンスT1、T2のペアの複数のセットから構成し、測定サイクルC2に進む前にオフセット訂正(電圧)を調節することもできる。
【0085】
更に、オフセット訂正(電圧)を校正するためのサイクルC1と測定サイクルC2とを規則的に交替させたり、或いは数回の連続する測定サイクルC2毎に、定期的に、校正サイクルC1を挿入することもできる。
【0086】
図6には、オフセット訂正電圧が積分器段からの出力電圧に従属するように構成された本発明によるデバイスが示される。
【0087】
図6に示される機能図は、(プローブ10と、入力電圧Vfを受ける電源手段30と積分器段50から構成され)伝達関数(transfer function)G(z)を有する測定ヘッドと、一方においてはオフセット訂正電圧Voを受け、他方においてはデバイスからの出力電圧Voを、伝達関数C(z)を有するセル92を介して受ける第一の微分器段(減算器)90と、一方においては測定ヘッドからの出力を受け、他方においては第一の微分器段90からの出力Vo’を、伝達関数H(z)を有するセル96を介して受ける第二の微分器段(減算器)94とを備える。
【0088】
これによって:
H(z)=Co/[C52+(C53−C52)xZ−1
G(z)=Cs/[C52+(C53−C52)xZ−1]及び
Vs(z)=Vf(z)×G(z)−Vo’(z)×H(z)、つまり
Vs(z)=Vf(z)×G(z)−[Vo−Vs(z)×C(z)]×H(z)が得られ;
これから:
C(z)=C52/Co
が得られる。
【0089】
これから明らかなように、このシステムの安定性及び応答時間は比C52/Coのみに依存する。従って、最小の応答時間を得るためには、この比を、他方において(C52に依存する)積分項(integration term)が保存され、適正な信号対雑音比が得られる範囲内で、慎重に(可能な限り大きく)選択することで十分である。
【0090】
より具体的には、オフセット訂正電圧Voが積分器段からの出力電圧に従属するように動作するこの発明では、オフセット訂正電圧Voが入力電圧Vfに従属するように動作する構成と較べて、システムの安定性が向上する。つまり、この構成では、システムの安定性は、CiとCoのみに依存し、より具体的には(可変であるプローブ10の仮想容量)Csには依存しない。
【0091】
図7には、測定プローブ10と参照要素20との間の静電容量Csの急激な階段状の変化が示される。
【0092】
図1に示され、資料WO−0025089において開示される従来のデバイスでは図8に示すタイプの遅い応答しか得られない。
【0093】
他方、オフセット訂正(電圧)が出力信号Vsに従属するように動作する本発明によるデバイスでは図9に示すタイプの速い応答を得ることが可能となる。
【0094】
当業者においては明らかなように、本発明によるデバイスでは、公知の従来のデバイスと比較して、測定プローブ10と参照要素20との間に定義される静電容量の実際の値を表す出力値により速く到達することができる。
【0095】
本発明では、CiとCoを正しく選択することで、1ms以下の収束時間が可能となる。
【0096】
非常に短かな応答時間が様々な用途において歓迎される。例えば、これに限定されるものではないが、ふくらまし式エアーバッグ(inflatable airbags)を制御することを意図しての検出の分野がある。この分野においては、とりわけ、非常に短かな、典型的には10msより小さい、応答時間を有することが極めて重要となる。
【0097】
図10は、参照要素20と協力してそれぞれ静電容量Cs1,Cs2...Csnを測定する一連の測定プローブ10.1〜10.nと、関連する電源手段30と、電荷積分器段50と、時間基準41と、を備える本発明による回路を示す。
【0098】
各測定プローブ10は、別個の参照要素20と関連する。一つのバリエーションとして、参照要素20を幾つかの測定プローブ10に対して共通に用いることも、更には、これらの全てに対して共通に用いることもできる。
【0099】
電源手段30、積分器段50及び時間基準41は、好ましくは、図2との関連で前に説明されたように構成される。
【0100】
図10からわかるように、本発明の枠組み内で、測定プローブ10.1〜10.nは、順に、時間基準41にてクロックされるオン/オフスイッチ80.1〜80.nを介して、オン/オフスイッチ420と422との間に定義される接点に連結され、こうして、これら測定プローブ10.1〜10.nは、順に、時間期間T1においては電源電圧Vfに、そして、時間期間T2においては演算増幅器51の反転入力に連結される。
【0101】
図11には対応する動作タイミング図が示される。
【0102】
この図11は、2つの校正シーケンスT1、T2のn個のペアのセット、つまり、測定プローブ10の各々に対するオフセット訂正電圧Voを探索するためのシーケンスを含む第一の期間Pe1と、これも、各測定プローブ10に対する2つの測定期間T1、T2のn個のペアのセットを含む第二の期間Pe2が示される。
【0103】
これらシーケンスT1とT2は前に説明した構成に従う。
【0104】
図3に示す例においては、これら校正期間Pe1は一つにグループ化されており、同様に、これら測定期間Pe2も一つにグループ化されている。
【0105】
一つのバリエーションとして、校正期間Pe1の間に測定期間Pe2を挿入することもできる。
【0106】
勿論、図11に示されるタイミング図は、本発明が(図2、3に示すような2つのヘッドに基づく、若しくは図4に示すような単一のヘッドとメモリに基づく)差分モードでの測定と、(図10に示すような)複数の測定プローブと用いるやり方とを組合せて利用する場合には、図4、5に示すそれと組合せて用いることが必要となる。
【0107】
図12には、本発明によるプローブ構造の一つのバリエーションが示される。これは、参照プローブ20の側面に配置される、単一のストランドから成る、「U]字形の測定プローブ10から成る。
【0108】
この構成では、2つのプローブ10、20が平行な単一のストランドから形成される従来のデバイスと比較して、この構成では、「U」字形の測定プローブ10の二つの要素の各々と、これらの間に配置された参照プローブ20との間に分布する電場が総和されるために、感度が30%から50%なるオーダだけ向上する。
【0109】
類似の効果が、対称的なやり方にて、測定プローブ10の側面に配置される、単一のストランドから成る、「U]字形の参照プローブ20を用いることによっても得られる。
【0110】
これらに限定されるものではないが、プローブ10と20は、以下のような構成とすることが考えられる:
プローブ10と20の幅Lは、(平坦なストリップ或いはワイヤから形成される場合)0.5mmから5mmのオーダとされ;
プローブ10と20の長さlは、検出されるべきゾーンと等しくされ;
プローブ10と20の間の間隔eは、所望の検出距離に依存して5から40mmのオーダとされ;
プローブの厚さEは、ワイヤの場合は、0.5mmから5mmのオーダとされ、平坦なストリップの構造が用いられる場合は、数ミクロンから0.5mmのオーダとされる。
【0111】
プローブ10と20は、典型的には、0.1から100 ohms squareのオーダの抵抗率(resistivity)を有し、好ましくは、防水材にてカバーされる。このコーティング材には、好ましくは、高い抵抗率(R>100 Mohms)と、比較的低い誘電率(εr<7)を示すものが用いられる。
【0112】
図12において、Cはプローブ10、20の密封シールドケーブルFへの接続を表す。測定プローブ10は、このシールドケーブルのコアに接続され、参照プローブ20はこのシールドケーブルのシールディングに接続される。
【0113】
本発明によるこのU字形のプローブ構造の長所は、このシステムの枠組み内で、図10に示すように、複数のプローブを用いた場合にも得られる。
【0114】
この目的のためには、少なくとも参照要素20或いは測定プローブ10の一つ、或いは両方を、U字形に成形することのみで十分である。
【0115】
例えば、図13には、各々が単一のストランドから成り、蜘蛛の巣状の構造から形成される一つの共通の参照要素20と関連する複数の測定プローブ10を備えるシステムが示される。参照要素を形成するこの蜘蛛の巣状の構造は、各々の側面に測定プローブを形成するストランドが位置する複数の並列のU字形要素から成る。
【0116】
図13において、Cは、一方においては、プローブ10から複数のストランドから成る防水シールドケーブル(multistrand leaktight shielded cable)Fの導体への接続を提供し、他方においては、参照要素20からこのケーブルFのシールディング(shielding)への接続を提供するコネクタを表す。測定プローブはシールドケーブルのコアに接続され、参照プローブ20はシールドケーブルのシールディングに接続される。
【0117】
図14には、一つのバリエーションが示され、ここでは、測定プローブ10がU字形状を有する。
【0118】
これら測定プローブ10及び関連する参照要素20は、適用を考える用途に依存して、適当な、剛性或いはフレキシブルの、どのようなサポート上に設けることもできる。
【0119】
本発明によると、測定の動的な揺れ(measurement dynamic swing)を改善するために、測定ヘッドは、一連の測定サイクルの際に、測定プローブ10上に、可変電圧Enを、順次、受ける。
【0120】
これら可変電圧Enは、例えば、3から8ボルトへと、電圧的に次第に増大される。
【0121】
ただし、バリエーションも可能であり、一つのバリエーションにおいては、必要に応じて測定値の訂正ができるように、それぞれ、近いモードでの検出(near mode of detection)と遠いモードでの検出(far mode of detection)のために、それぞれ、低い値と高い値の2つの一連の電圧が順に加えられる。
【0122】
各測定サイクルにおいて、ある電源電圧Enに対応する値Vsnが測定ヘッドの出力、つまり、積分器51の出力の所に得られる。
【0123】
各電源電圧値Enに対応して、参照プローブ20、或いは近傍の金属物、例えば、上述の用途の場合は自動車のシャシ、或いは、地球を基準とする、空間的に閉じた一つの同電位分布線(isopotential distribution line)が存在する。
【0124】
図15に示すように、電源電圧Enの値を大きくすればするほど、この同電位線(equipotential line)の範囲は大きくなる。
【0125】
当業者においては理解できるように、測定プローブ10と参照プローブ20との間に測定プローブ10から取り出される電荷を積分することによってこうして検出される静電容量の値は、測定ヘッドの検出図に影響を与える媒体の誘電率に直接に依存するとともに、勿論、この媒体の厚さにも依存する。
【0126】
これに限定されるものではないが、自動車のシート上のユーザを検出する、より具体的には、保護エアーバッグを展開するという文脈において、本発明を用いて、測定ヘッドの積分器段51の出力の所の信号の変化を分析することで、これから得られる検出図の関数として、シート上に人が存在するのか、或いは水分の存在等の類似する漂遊現象(stray phenomenon)に過ぎないのかを弁別することが可能となる。
【0127】
人体の相対誘電率(relative permittivity)は、自動車のシートを製造するために用いる材料や周囲物の誘電率より80倍以上も高いために、測定ヘッドからの出力信号を分析することで、測定プローブ10の近傍の人の存在を検出するとともに、その人の測定プローブ10からの位置を特定することが十分に可能となる。
【0128】
図16に示すように、電源電圧は、測定シーケンスの期間T1の際に、例えば、E1、E2、E3へと次第に増加される。図16に示される期間T2は、測定プローブ10が演算増幅器51の反転入力に連結され、同時に、スイッチングコンデンサ53がこの同一の反転入力に連結される期間に対応する。勿論、E1からEnへと増加されるこのサイクルの終端すると、類似の測定サイクルが反復される。
【0129】
前述のように、本発明の一つのバリエーションによると、例えば、それぞれ、低い値と高い値の2つの一連の電圧、例えば、図17に示すような、近いモードでの検出のための低い値の2つの電圧E1、E2と、遠いモードでの検出のための高い値の2つの電圧E3、E4が、測定プローブ10に順次加えられる。
【0130】
このような過程を用いると、とりわけ、遠く離れた物体を検出する際に、測定プローブ10の近くに位置するある種の妨害媒体或いは物体の存在を考慮することが可能になる。
【0131】
可変電源電圧Enの個々の値に対して、Vsnが対応し、これらが格納される。
【0132】
こうして、一連の対の値Vsn/Enが得られる。
【0133】
これらのデータに基づいて、デバイスの分析手段は、間接的に、測定プローブ10と参照要素20との間に測定される仮想静電容量の値を、それぞれ、近いモード、つまり、Csnearと、遠いモード、つまり、Csfarについて計算する。
【0134】
遠いモードにおいて検出される仮想静電容量Csfarは:
Csfar=Cc×K1=Cc(Vs4−Vs3)/(E4−E3)
なる関係を用いて計算されるが、ここで、
Ccは、スイッチングコンデンサ53の静電容量を表す。
【0135】
この仮想静電容量Csfarは、例えば、自動車のシート内のユーザを検出するケースにおいては、ユーザからシートまでの距離に関する情報を与える。
【0136】
同様に、近いモードにおいて検出される仮想静電容量Csnearは:
Csnearr=Cc×K2=Cc(Vs2−Vs1)/(E2−E1)
なる関係を用いて計算される。
【0137】
この仮想静電容量Csnearは、例えば、自動車のシート内のユーザを検出するための用途のケースにおいては、ユーザとシートの間に、妨害物、例えば、ベッドマットやタオルが存在する可能性を示す。
【0138】
この後者の場合(つまり、妨害物が存在する場合)は、仮想Csfarの値が影響を受け、過小評価されることとなる。
【0139】
この結果としてのユーザに関しての距離の誤りは、Csfarについて得られた値を、Csnearについて得られた値に基づいて訂正することで、訂正することができる。
【0140】
この訂正のためには様々な手段を用いることができる。
【0141】
一つの好ましい実施例においては、K1/K2なる比が計算され、この比が1より大きな場合は、Csfarの訂正された値、つまり、Csfarmodが:
Csfarmod=Csfar×K=Csfar×(K1/K2)
なる関係に基づいて計算される。
【0142】
こうして訂正された値Csfarmodは、E3とE4の下で、Vs3とVs4を測定することで得られるユーザの距離の良好な近似を与える。
【0143】
図16のタイミング図は、本発明が(図2、3の場合のように2つのヘッドを用いる構成、或いは図4のように一つのヘッドとメモリを用いる構成に基づいて)可変電源電圧と差分測定を、及び/或いは(図10に示すような)複数の測定プローブを、組合せて利用する場合には、勿論、図11のタイミング図、及び/或いは図4、5のタイミング図と組合せて使用する必要がある。
【0144】
勿論、本発明は、上で説明された特定の実現に制限されるものではなく、本発明の精神の範囲内の様々なバリエーションにも及ぶものである。
【0145】
本発明は多数の用途に係る。上では自動車のシート上のユーザの検出、より具体的には、ふくらまし式エアーバッグの制御について言及されたが、本発明はこの特定の用途に限られるものではない。本発明は、例えば、とりわけ、浸入防止用の検出や液体レベル検出器の分野にも係る。
【図面の簡単な説明】
【図1】
資料WO−0025098において開示される従来の技術によるデバイスを簡略的に示す。
【図2】
本発明によるオフセット訂正手段を備える基本回路を示す。
【図3】
本発明による2つの測定ヘッドを備えるデバイスの基本構造を示す。
【図4】
本発明による差分モードにて用いられる2つの測定ヘッドを備えるデバイスの動作のタイミング図を示す。
【図5】
本発明による単一の測定ヘッドとこの測定ヘッドの出力を格納するためのメモリを備えるデバイスの動作の類似のタイミング図を示す。
【図6】
本発明の枠組み内で遂行されるオフセット訂正のスレービングを示す。
【図7】
測定プローブと参照プローブ間の静電容量の急激な変動を示す。
【図8】
PCT特許出願公開明細書第0025098号による公知の測定デバイスによって得られる従来の応答を示す。
【図9】
本発明によるスレービングによるオフセット訂正を利用するデバイスによって得られる応答を示す。
【図10】
本発明による複数の測定ヘッドを備えるデバイスを示す。
【図11】
本発明による複数の測定ヘッドを備えるデバイスの動作のタイミング図を示す。
【図12】
本発明によるプローブの一つのバリエーションを示す。
【図13】
本発明によるプローブのもう一つのバリエーションを示す。
【図14】
本発明によるプローブのもう一つのバリエーションを示す。
【図15】
本発明による測定ヘッドの検出レンジを加えられる電源電圧の関数として示す。
【図16】
本発明によるデバイスの動作のタイミング図を示す。
【図17】
本発明の様々な枠組み内で、測定プローブに加えられる電圧と、結果として得られる対応する出力電圧を示す。
【符号の説明】
10 測定プローブ
20 参照プローブ
30 電源手段
40 動作手段
41 時間基準
50 積分器段
51 演算増幅器
52 積分コンデンサ
53 スイッチングコンデンサ
60 オフセット訂正手段
62 コンデンサ
64 演算増幅器
66 オン/オフスイッチ
68 第二のオン/オフスイッチ
70 微分段(減算器)
72 標本保持デバイス
74 アナログデジタル変換器
74 コントローラ

Claims (36)

  1. 少なくとも一つの測定プローブ(10)を含む少なくとも一つの測定ヘッドと、前記測定プローブ(10)と参照要素(20)との間に制御された電源電圧をシーケンス順に加える能力を有する手段(30)と、前記測定プローブ(10)上に蓄積された電荷を積分する能力を有する手段(50)とを備える測定デバイスであって、更に、前記積分器段(50)の入力のオフセット訂正を行う能力を有する手段(60)を備えることを特徴とする測定デバイス。
  2. さらに、自身の各々の入力端子に、オフセット訂正は同一とされ、異なる制御された電源電圧を加えたとき、測定ヘッドから得られる出力を表す信号を受信する微分器段(70)を備えることを特徴とする請求項1記載のデバイス。
  3. それぞれ、測定プローブ(10)と参照要素(20)を構成する2つの導電体と、制御された振幅のDC電圧を供給する能力を有する電源手段(30)と、容量スイッチングシステム(53)を備える積分器段(50)と、サイクル的に、制御された周波数にて、セットの2つのシーケンス(T1、T2)を定義するのに適する動作手段(40)と、を備え、
    第一のシーケンスにおいては、前記電源手段(30)は前記測定プローブ(10)に連結され、前記測定プローブ(10)と前記参照要素(20)との間に電場が加えられ、前記測定プローブ(10)上に電荷が蓄積され、
    第二のシーケンスにおいては、前記電源手段(30)は前記測定プローブ(10)から切り離され、前記測定プローブ(10)は前記積分器段(50)の総和点に連結され、電荷が前記積分器段(50)に転送され、前記積分器段(50)の出力の所に前記測定プローブ(10)と前記参照要素(20)との間に存在する誘電率を表す信号が得られ、
    前記積分器段(50)がさらに演算増幅器(51)と、この増幅器(51)と帰還モードに配列された第一の積分コンデンサ(52)と、この演算増幅器(51)の出力と入力の間で、動作手段(40)によって駆動されるシーケンス(T1、T2)のテンポにてスイッチングされる第二のコンデンサ(53)とを備え、定常平衡状態においては、この演算増幅器(51)の出力の所に−ECs/C53に等しい電圧Vs balanceが得られ、この関係式において、
    −Eは、前記電源手段(30)の端子間の電圧の大きさを表し、Csは、前記測定プローブ10と参照要素との間に測定される静電容量の値を表し、C53は、前記測定プローブ10と前記第二のスイッチングコンデンサ(53)との間に測定される静電容量の値を表す、ことを特徴とする請求項1或いは2のいずれかに記載のデバイス。
  4. 2つの測定ヘッド(T1、T2)を備え、前記微分器段(70)に加えられる信号が、それぞれ、これら2つの測定ヘッドの積分器段(50)の出力から得られることを特徴とする請求項1乃至3のいずれかに記載のデバイス。
  5. 前記2つの測定プローブが、互いにピッタリと近接して、同一の媒体内に配置されることを特徴とする請求項4記載のデバイス。
  6. 2つの一連のサイクルから成るサイクル動作を制御する能力を有するコントローラを備え、第一のサイクルにおいては、前記2つの測定ヘッドが同一の電源電圧Vfを受け、前記オフセット電圧が訂正され、第二のサイクルにおいては、前記測定ヘッドの第一の測定ヘッドTE1に加えられる電源電圧は修正されるが、第二の測定ヘッドTE2に加えられる電源電圧と前に得られたオフセット電圧はそのままにされることを特徴とする請求項4或いは5のいずれかに記載のデバイス。
  7. 単一の測定ヘッドと、あるオフセット訂正(電圧)とある与えられた制御された電源電圧を加えたとき、この測定ヘッドから得られる出力信号を格納する能力を有する手段とを備え、この格納された電圧がオフセット訂正(電圧)は同一とし、ある異なる制御された電源電圧が加えられたときに前記測定ヘッドの出力の所に得られる電圧と比較されることを特徴とする請求項1乃至4のいずれかに記載のデバイス。
  8. 前記オフセット訂正手段(60)が可変電圧(源)Voから給電されるコンデンサ(62)を備えることを特徴とする請求項1乃至7のいずれかに記載のデバイス。
  9. 各々がペアの2つのシーケンス(T1、T2)から成る数回のサイクルC1が含まれ、このサイクルが測定サイクルC2の前にオフセット訂正(電圧)を校正するために遂行されることを特徴とする、請求項3と組合せて用いられる、請求項1乃至8のいずれかに記載のデバイス。
  10. 数回の測定サイクルC2が含まれ、これがオフセット訂正(電圧)を校正するためのサイクルC1に続いて遂行されることを特徴とする、請求項3と組合せて用いられる請求項1乃至9のいずれかに記載のデバイス。
  11. 各オフセット訂正(電圧)校正サイクルC1と各測定サイクルC2が、少なくとも一つのセットの2つのシーケンス(T1、T2)を含むことを特徴とする、請求項3と組合せて用いられる請求項1乃至10のいずれかに記載のデバイス。
  12. 前記測定プローブ(10)或いは前記参照要素(10)の少なくとも一つが「U」字形状を有することを特徴とする請求項1乃至11のいずれかに記載のデバイス。
  13. 前記測定プローブ(10)が「U」字形状を有することを特徴とする請求項12記載のデバイス。
  14. 前記参照要素(20)が「U」字形状を有することを特徴とする請求項12記載のデバイス。
  15. 幾つかの測定プローブに共通に用いる一つの参照要素(20)を備えることを特徴とする請求項12乃至14のいずれかに記載のデバイス。
  16. 蜘蛛の巣状の参照要素(20)を備えることを特徴とする請求項15記載のデバイス。
  17. 更に、前記オフセット訂正(電圧)を前記積分器段からの出力信号に従属させる能力を有する手段を備えることを特徴とする請求項1乃至16のいずれかに記載のデバイス。
  18. 前記従属手段(C(z))がC52/Coなる伝達関数を有し、ここで、C52は積分コンデンサを表し、Coはオフセット訂正電圧のために用いられるコンデンサを表すことを特徴とする、請求項3と組合せて用いられる請求項17記載のデバイス。
  19. 複数の異なるプローブ(10.1、10.n)を順に前記積分器段の入力の所に連結(配置)する能力を有する手段を備えることを特徴とする請求項1乃至18のいずれかに記載のデバイス。
  20. 少なくとも一つの測定プローブ(10)を含む少なくとも一つの測定ヘッドと、前記測定プローブ(10)と参照要素(20)との間に制御された電源電圧をシーケンス順に加える能力を有する手段(30)と、前記測定プローブ(10)上に蓄積された電荷を積分する能力を有する手段(50)とを備える測定デバイスであって、複数の異なるプローブ(10.1、10.n)を順に前記積分器段の入力に連結する能力を有する手段を備えることを特徴とする測定デバイス。
  21. 前記複数のプローブを前記積分器段50の入力に順に連結するように設計されたオン/オフスイッチ(80.1、80.n)のネットワークを備えることを特徴とする請求項19或いは20記載のデバイス。
  22. 分析手段によって前記測定プローブ(10)の各々に対してオフセット訂正電圧(Vo)を探索するために用いられる2つの校正シーケンス(T1、T2)のn個のペアのセットから成る第一の期間(Pe1)と、各測定プローブ(10)に対するこれも2つの測定シーケンス(T1、T2)のn個のペアのセットから成る第二の期間(Pe2)から構成されるチックレートを定義する能力を有する手段を備えることを特徴とする請求項19乃至21のいずれかに記載のデバイス。
  23. n個の異なるプローブ(10.1、10.n)を順に前記積分器段の入力に連結する能力を有する手段と、分析手段によって前記測定プローブ(10)の各々に対してオフセット訂正電圧(Vo)を探索するために用いられる2つの校正シーケンス(T1、T2)のn個のペアのセットから成る第一の期間(Pe1)と、各測定プローブ(10)に対するこれも2つの測定シーケンス(T1、T2)のn個のペアのセットから成る第二の期間(Pe2)から構成されるチックレートを定義する能力を有する手段とを備え、前記第二の期間において、微分器段(70)が自身の各入力の所に、同一のオフセット訂正(電圧)と、複数の異なる制御された電源電圧が加えられたときに、測定ヘッドから出力される2つの信号を受信することを特徴とする請求項1乃至22のいずれかに記載のデバイス。
  24. 前記各ペアの2つ一連のシーケンスの際に、最初に制御された電圧が測定プローブ(10)に加えられ、次に、測定プローブ(10)が前記積分器段(50)の入力に連結されることを特徴とする請求項22或いは23記載のデバイス。
  25. 前記電源手段(30)が一連の制御された可変電圧(E1、E2...)を前記測定プローブ(10)に加えるのに適し、このデバイスが更に前記積分器段の出力の所の信号の傾向を加えられた電源電圧の関数として分析するための手段を備えることを特徴とする請求項1乃至24のいずれかに記載のデバイス。
  26. 少なくとも一つの測定プローブ(10)を含む少なくとも一つの測定ヘッドと、前記測定プローブ(10)と参照要素(20)との間に制御された電源電圧をシーケンス順に加える能力を有する手段(30)と、前記測定プローブ(10)上に蓄積された電荷を積分する能力を有する手段(50)とを備える測定デバイスであって、前記電源手段(30)が一連の制御された可変電圧(E1、E2...)を前記測定プローブ(10)に加えるのに適し、このデバイスが更に前記積分器段の出力の所の信号の傾向を加えられた電源電圧の関数として分析するための手段を備えることを特徴とする測定デバイス。
  27. 前記参照要素が参照プローブ(20)から形成されることを特徴とする請求項1乃至26のいずれかに記載のデバイス。
  28. 前記参照要素(20)が、例えば、地球或いは自動車のシャシ等の付近の金属物などの物体から形成されることを特徴とする請求項1乃至27のいずれかに記載のデバイス。
  29. 前記電源電圧の増分が一定とされることを特徴とする請求項25或いは26のいずれかに記載のデバイス。
  30. 前記電圧の増分が1ボルトのオーダとされることを特徴とする請求項25、26或いは29のいずれかに記載のデバイス。
  31. 前記電源手段が、それぞれ、低値と高値の少なくとも2つの一連の電圧を順に前記測定プローブ(10)に加えるのに適することを特徴とする請求項25、26、29或いは30のいずれかに記載のデバイス。
  32. 前記電源手段が、前記測定プローブ(10)に、少なくとも、近いモードでの検出のための低い値の2つの電圧E1、E2と、遠いモードでの検出のための高い値の2つの電圧E3、E4を順に加えるのに適することを特徴とする請求項25、26、29、30、31のいずれかに記載のデバイス。
  33. 前記分析手段がK1=(Vs4−Vs3)/(E4−E3)に比例する遠いモードにおける仮想容量Csfarと、K2=(Vs2−Vs1)/(E2−E1)に比例する近いモードにおける仮想容量Csnearとを計算するのに適し、この式において、Vsnは、ある電源電圧Enが加えられたとき、積分器段の出力の所に得られる電圧を表すことを特徴とする請求項32記載のデバイス。
  34. 前記分析手段が遠いモードにて高い値の電圧を加えることで得られる容量値Csfarを、近いモードにて低い値の電圧を加えることで得られる容量値Csnearに基づいて訂正するのに適することを特徴とする請求項25、26、29、30、31、32、33のいずれかに記載のデバイス。
  35. 前記分析手段がK1/K2なる比を計算し、この比が1より大きな場合は、遠いモードにおける仮想容量Csfarの訂正された値、つまり、Csfarmodを、関係式:
    Csfarmod=Csfar×K=Csfar×(K1/K2)
    に基づいて計算するのに適することを特徴とする請求項33或いは34記載のデバイス。
  36. 動作を一連のサイクルの形式にて制御する能力を有する手段を備え、前記測定プローブ(10)に加えられる電圧があるサイクルから別のサイクルへと制御されたやり方にて変化され、各サイクルが2つの一連のシーケンス(T1、T2)に分割され、これらシーケンスの際に、それぞれ、制御された電圧が前記測定プローブ(10)に加えられ、その後、前記測定プローブ(10)が前記積分器段(50)の入力に連結されることを特徴とする請求項25、26、29、30、31、32、33、34、35のいずれかに記載のデバイス。
JP2002544613A 2000-11-23 2001-11-20 静電容量型測定デバイス Expired - Fee Related JP4294315B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR0015119A FR2817032B1 (fr) 2000-11-23 2000-11-23 Perfectionnements aux dispositifs de mesure exploitant une mesure indirecte de permittivite
FR0015123A FR2817035B1 (fr) 2000-11-23 2000-11-23 Dispositif de mesure exploitant une mesure indirecte de permittivite a sondes mulitiples
FR0015127A FR2817036B1 (fr) 2000-11-23 2000-11-23 Dispositif de mesure exploitant une mesure indirecte de permettivite a grande dynamique
FR0015120A FR2817033B1 (fr) 2000-11-23 2000-11-23 Disposistif de mesure exploitant une mesure indirecte de permettivite comprenant des moyens de compensation en derive
FR0015121A FR2817034B1 (fr) 2000-11-23 2000-11-23 Dispositif de mesure exploitant une mesure indirecte de permettivite a reponse rapide
PCT/FR2001/003632 WO2002042721A1 (fr) 2000-11-23 2001-11-20 Dispositif de mesure capacitif

Publications (2)

Publication Number Publication Date
JP2004514883A true JP2004514883A (ja) 2004-05-20
JP4294315B2 JP4294315B2 (ja) 2009-07-08

Family

ID=27515321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002544613A Expired - Fee Related JP4294315B2 (ja) 2000-11-23 2001-11-20 静電容量型測定デバイス

Country Status (8)

Country Link
US (1) US20040124857A1 (ja)
EP (1) EP1336082B1 (ja)
JP (1) JP4294315B2 (ja)
AT (1) ATE403135T1 (ja)
AU (1) AU2002220801A1 (ja)
CA (1) CA2430252A1 (ja)
DE (1) DE60135142D1 (ja)
WO (1) WO2002042721A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880481B2 (en) * 2007-12-19 2011-02-01 Infineon Technologies Ag Capacitive sensor and measurement system
DE102012004913B4 (de) * 2012-03-09 2014-04-10 Paragon Ag Vorrichtung zur Bestimmung eines zu einem Verhältnis von Induktivitäten bzw. Kapazitäten zweier induktiver bzw. kapazitiver Bauteile proportionalen Messwerts und entsprechendes Verfahren
EP3141159B1 (en) 2015-09-09 2018-04-25 Hl Display Ab Feeder device
EP3488738A1 (en) 2017-11-28 2019-05-29 Hl Display Ab Feeder device and sled for such device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720608A (en) * 1980-07-15 1982-02-03 Nippon Seiko Kk Displacement measuring device
JPH0972757A (ja) * 1995-09-01 1997-03-18 Murata Mfg Co Ltd 微少容量検出回路
WO2000005593A1 (en) * 1998-07-24 2000-02-03 Life Measurement Instruments, Inc. Variable dielectric position transducer and method
WO2000025098A2 (fr) * 1998-10-23 2000-05-04 Claude Launay Dispositif de mesure capacitif
JP2000249773A (ja) * 1999-03-01 2000-09-14 Nitta Ind Corp 着座センサ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5343766A (en) * 1992-02-25 1994-09-06 C & J Industries, Inc. Switched capacitor transducer
US5914610A (en) * 1994-02-03 1999-06-22 Massachusetts Institute Of Technology Apparatus and method for characterizing movement of a mass within a defined space
US6472885B1 (en) * 2000-10-16 2002-10-29 Christopher Charles Green Method and apparatus for measuring and characterizing the frequency dependent electrical properties of dielectric materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720608A (en) * 1980-07-15 1982-02-03 Nippon Seiko Kk Displacement measuring device
JPH0972757A (ja) * 1995-09-01 1997-03-18 Murata Mfg Co Ltd 微少容量検出回路
WO2000005593A1 (en) * 1998-07-24 2000-02-03 Life Measurement Instruments, Inc. Variable dielectric position transducer and method
WO2000025098A2 (fr) * 1998-10-23 2000-05-04 Claude Launay Dispositif de mesure capacitif
JP2000249773A (ja) * 1999-03-01 2000-09-14 Nitta Ind Corp 着座センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"TOMOGRAPHIC IMAGINING OF TWO-COMPONENT FLOW USING CAPACITANCE SENSORS", SCIENTIFIC INSTRUMENTS, vol. 22, JPNX007002255, 23 March 1989 (1989-03-23), UK, ISSN: 0000810940 *

Also Published As

Publication number Publication date
WO2002042721A1 (fr) 2002-05-30
EP1336082A1 (fr) 2003-08-20
ATE403135T1 (de) 2008-08-15
AU2002220801A1 (en) 2002-06-03
DE60135142D1 (de) 2008-09-11
JP4294315B2 (ja) 2009-07-08
US20040124857A1 (en) 2004-07-01
CA2430252A1 (fr) 2002-05-30
EP1336082B1 (fr) 2008-07-30

Similar Documents

Publication Publication Date Title
JP3498318B2 (ja) 容量検出システム及び方法
US8076948B2 (en) Distance measurement with capacitive sensor
US20130106779A1 (en) Noise compensation techniques for capacitive touch screen systems
US7616011B2 (en) Detection apparatus for a capacitive proximity sensor
US7456731B2 (en) Capacitive-type physical quantity sensor
JPH09280806A (ja) 静電容量式変位計
RU2001113742A (ru) Измерительное устройство для косвенного измерения диэлектрической проницаемости
US9310454B2 (en) Detection of a dielectric object
EP0168489A1 (en) Capacitive transducer and method
EP0742445A2 (en) Method and apparatus for measuring the change in capacitance values in dual capacitors
JP4294315B2 (ja) 静電容量型測定デバイス
US7098673B2 (en) Capacitive measuring system
JP3282360B2 (ja) 容量型センサ
EP2230523B1 (en) Physical quantity measuring unit and device for measuring a voltage and an electric field
US9772421B2 (en) Beam detector with control circuit
JP2000221054A (ja) 容量式物理量検出装置
JPH07225137A (ja) 静電容量センサ
JPH0926434A (ja) 静電容量式加速度センサのための回路装置
JP3805478B2 (ja) 容量性素子の等価直列抵抗測定方法および等価直列抵抗測定装置
JPH07260510A (ja) 容量型センサ
FR2817032A1 (fr) Perfectionnements aux dispositifs de mesure exploitant une mesure indirecte de permittivite
RU2042954C1 (ru) Устройство для контроля заданного погонного сопротивления микропровода в стеклянной изоляции
RU2175114C2 (ru) Измеритель перемещения тела
SU1144010A1 (ru) Устройство дл измерени давлени
FR2817033A1 (fr) Disposistif de mesure exploitant une mesure indirecte de permettivite comprenant des moyens de compensation en derive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070330

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080815

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081112

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees