JP2004509429A5 - - Google Patents

Download PDF

Info

Publication number
JP2004509429A5
JP2004509429A5 JP2002508822A JP2002508822A JP2004509429A5 JP 2004509429 A5 JP2004509429 A5 JP 2004509429A5 JP 2002508822 A JP2002508822 A JP 2002508822A JP 2002508822 A JP2002508822 A JP 2002508822A JP 2004509429 A5 JP2004509429 A5 JP 2004509429A5
Authority
JP
Japan
Prior art keywords
antenna
conductors
plasma reactor
plasma
symmetry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002508822A
Other languages
Japanese (ja)
Other versions
JP5160717B2 (en
JP2004509429A (en
Filing date
Publication date
Priority claimed from US09/611,170 external-priority patent/US6694915B1/en
Priority claimed from US09/610,800 external-priority patent/US6409933B1/en
Priority claimed from US09/611,169 external-priority patent/US6685798B1/en
Priority claimed from US09/611,168 external-priority patent/US6414648B1/en
Priority claimed from US09/611,345 external-priority patent/US6462481B1/en
Application filed filed Critical
Priority claimed from PCT/US2001/020717 external-priority patent/WO2002005308A2/en
Publication of JP2004509429A publication Critical patent/JP2004509429A/en
Publication of JP2004509429A5 publication Critical patent/JP2004509429A5/ja
Application granted granted Critical
Publication of JP5160717B2 publication Critical patent/JP5160717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【特許請求の範囲】
【請求項1】ワークピースを処理するためにRF電源の供給と共に使用するプラズマリアクタであって、
天井を有し、軸対称を規定する真空チャンバと、
前記チャンバ内のワークピース支持ペデスタルと、
前記天井の少なくとも中間部分上に置かれ、それぞれの同軸ヘリカルソレノイドにおける対称軸の周りに巻かれた第1の複数導体を有する第1のソレノイドのインターリーブされたコイルアンテナと、
を備え、
前記複数導体は、前記対称軸から少なくともほぼ一様に横方向に変位され、前記複数導体は、ほぼ対称軸の方向に互いにオフセットされ、且つ、前記複数導体の各々は、RFソース電源の両端に接続されることを特徴とするプラズマリアクタ。
【請求項2】前記コイルアンテナは、前記対称軸にほぼ垂直な上面と下面の間にあり、各導体によって規定されたヘリカルソレノイドは、前記上面近くの導体の上部点、及び前記下面近くの導体の下部点において終端されており、前記RF電源は、前記導体の各々の前記上部点及び下部点の両端に接続されていることを特徴とする請求項1に記載のプラズマリアクタ。
【請求項3】前記上部点は、前記RF電源の出力端子に接続され、且つ前記下部点は、前記天井近くの電位を減少するように接地されていることを特徴とする請求項2に記載のプラズマリアクタ。
【請求項4】前記上部点は、nがコイルアンテナの前記複数導体の数である場合に、約360/nによって互いに角度的に変位されていることを特徴とする請求項2に記載のプラズマリアクタ。
【請求項5】前記下部点は、nがコイルアンテナの前記複数導体の数である場合に、約360/nによって互いに角度的に変位されていることを特徴とする請求項4に記載のプラズマリアクタ。
【請求項6】前記上部点は同一平面にあり、且つ、前記上面にあることを特徴とする請求項5に記載のプラズマリアクタ。
【請求項7】前記下部点は同一平面にあり、且つ、前記下面にあることを特徴とする請求項6に記載のプラズマリアクタ。
【請求項8】さらに、前記天井の上に置かれ、前記第1のソレノイドのインターリーブされた導体コイルアンテナによって囲まれ、且つそれより小さな横の広がりを有する内側コイルアンテナを有し、それにより、前記第1のソレノイドのインターリーブされた導体コイルアンテナは、外側のコイルアンテナとなることを特徴とする請求項1に記載のプラズマリアクタ。
【請求項9】さらに、前記内側のコイルアンテナに接続された第2のRFプラズマソース電源を有し、それにより、前記内側と外側アンテナに供給されるそれぞれのRF電力レベルは、前記内側と外側アンテナから供給されたRF磁界の半径方向の分布を制御するために差動的に調整可能であることを特徴とする請求項8に記載のプラズマリアクタ。
【請求項10】前記第1のRFプラズマソース電源は、差動的に調整可能な電力レベルを有する2つのRF出力を有し、前記2つのRF出力の一方は、前記外側アンテナに接続され、その他方は内側アンテナに接続されており、それにより、前記内側と外側アンテナに供給されたそれぞれのRF電力レベルは、内側と外側アンテナから供給されるRF磁界の半径方向の分布を制御するために差動的に調整可能であることを特徴とする請求項8に記載のプラズマリアクタ。
【請求項11】前記第1の複数導体の数は、前記第2の複数導体の数より大きく、且つ前記第1の複数導体の長さは、それに従って、前記外側アンテナの誘導性リアクタンスを前記内側アンテナの誘導性リアクタンスに少なくとも近づくように短くされることを特徴とする請求項8に記載のプラズマリアクタ。
【請求項12】前記内側アンテナは、前記天井の上に置かれ、且つ前記外側アンテナの変位より小さい、前記対称軸から少なくともほぼ一様な横に変位した同軸状ヘリカルソレノイドの前記対称軸の周りに巻かれた第2の複数導体を有する第2のソレノイドのインターリーブされた導体コイルアンテナを有し、各ヘリカルソレノイドの導体は、前記対称軸に平行な方向に他のヘリカルソレノイドの導体からオフセットされていることを特徴とする請求項8に記載のプラズマリアクタ。
【請求項13】前記外側アンテナの前記第1の複数導体の数は、前記内側アンテナの前記第2の複数導体の数より大きいことを特徴とする請求項12に記載のプラズマリアクタ。
【請求項14】さらに、差動的に調整可能な電力レベルを有する2つのRF出力のあるRFプラズマソース電源を有し、前記2つのRF出力の一方は前記外側アンテナに接続され、且つ他方は内側アンテナに接続され、それにより前記内側と外側アンテナに供給されるそれぞれのRF電力レベルは、前記内側と外側アンテナから供給されるRF磁界の半径方向の分布を制御するために作動的に調整可能であることを特徴とする請求項13に記載のプラズマリアクタ。
【請求項15】前記RFプラズマソース電源は、
出力端子と戻り端子を有するRF電力発生器と、
直列キャパシタと、
前記RF電力発生器の出力端子と前記直列キャパシタの一方の側間に接続されたインピーダンスマッチング素子と、
前記直列キャパシタの他方の側及び前記戻り端子間に接続された可変並列キャパシタと、
前記インピーダンスマッチング素子と前記直列キャパシタ間の接続点に接続された第1の出力ノードと、
前記直列キャパシタと前記可変並列キャパシタ間の接続点に接続された第2の出力ノードと、
を有することを特徴とする請求項14に記載のプラズマリアクタ。
[Claims]
1. A plasma reactor for use with a supply of RF power to process a workpiece, the plasma reactor comprising:
A vacuum chamber having a ceiling and defining axial symmetry;
A workpiece support pedestal in the chamber;
A first solenoidal interleaved coil antenna having a first plurality of conductors disposed on at least an intermediate portion of the ceiling and wound around an axis of symmetry in a respective coaxial helical solenoid;
With
The plurality of conductors are at least substantially uniformly laterally displaced from the axis of symmetry, the plurality of conductors are offset from one another in a direction of the substantially symmetry axis, and each of the plurality of conductors is at opposite ends of an RF source power supply. A plasma reactor characterized by being connected.
2. The coil antenna is located between an upper surface and a lower surface substantially perpendicular to the axis of symmetry, and a helical solenoid defined by each conductor includes an upper point of the conductor near the upper surface and a conductor near the lower surface. The reactor of claim 1, wherein the RF power supply is terminated at a lower point of the conductor and the RF power supply is connected to both ends of the upper and lower points of each of the conductors.
3. An apparatus according to claim 2, wherein said upper point is connected to an output terminal of said RF power supply, and said lower point is grounded so as to reduce a potential near said ceiling. Plasma reactor.
4. The plasma of claim 2, wherein said upper points are angularly displaced from each other by about 360 / n, where n is the number of said plurality of conductors of the coil antenna. Reactor.
5. The plasma of claim 4, wherein the lower points are angularly displaced from each other by about 360 / n, where n is the number of the plurality of conductors of the coil antenna. Reactor.
6. The plasma reactor according to claim 5, wherein said upper point is on the same plane and is on said upper surface.
7. The plasma reactor according to claim 6, wherein said lower point is on the same plane and is on said lower surface.
8. The apparatus further comprises an inner coil antenna located on the ceiling, surrounded by the first solenoidal interleaved conductor coil antenna, and having a smaller lateral extent, The plasma reactor according to claim 1, wherein the interleaved conductor coil antenna of the first solenoid is an outer coil antenna.
9. The apparatus further comprises a second RF plasma source power supply connected to said inner coil antenna, such that respective RF power levels supplied to said inner and outer antennas are respectively equal to said inner and outer antennas. 9. The plasma reactor of claim 8, wherein the reactor is differentially adjustable to control a radial distribution of an RF magnetic field supplied from the antenna.
10. The first RF plasma source power supply has two RF outputs having differentially adjustable power levels, one of the two RF outputs being connected to the outer antenna; The other is connected to the inner antenna, so that the respective RF power levels supplied to the inner and outer antennas are used to control the radial distribution of the RF magnetic field supplied from the inner and outer antennas. 9. The plasma reactor according to claim 8, wherein the reactor is differentially adjustable.
11. The number of said first plurality of conductors is greater than the number of said second plurality of conductors, and the length of said first plurality of conductors accordingly sets the inductive reactance of said outer antenna to said inductive reactance. 9. The plasma reactor according to claim 8, wherein the plasma reactor is shortened so as to at least approach an inductive reactance of the inner antenna.
12. The inner antenna is positioned about the axis of symmetry of a coaxial helical solenoid positioned on the ceiling and at least substantially uniformly laterally displaced from the axis of symmetry less than the displacement of the outer antenna. A second solenoid interleaved conductor coil antenna having a second plurality of conductors wound thereon, wherein each helical solenoid conductor is offset from another helical solenoid conductor in a direction parallel to said axis of symmetry. The plasma reactor according to claim 8, wherein:
13. The plasma reactor according to claim 12, wherein the number of said first plurality of conductors of said outer antenna is larger than the number of said second plurality of conductors of said inner antenna.
14. An RF plasma source power supply having two RF outputs having differentially adjustable power levels, one of said two RF outputs being connected to said outer antenna, and the other being connected to said outer antenna. The respective RF power levels connected to the inner antenna and thereby supplied to the inner and outer antennas are operatively adjustable to control the radial distribution of the RF magnetic field supplied from the inner and outer antennas The plasma reactor according to claim 13, wherein:
15. The RF plasma source power supply comprises:
An RF power generator having an output terminal and a return terminal;
A series capacitor;
An impedance matching element connected between an output terminal of the RF power generator and one side of the series capacitor;
A variable parallel capacitor connected between the other side of the series capacitor and the return terminal;
A first output node connected to a connection point between the impedance matching element and the series capacitor;
A second output node connected to a connection point between the series capacitor and the variable parallel capacitor;
The plasma reactor according to claim 14, comprising:

JP2002508822A 2000-07-06 2001-06-29 Plasma reactor with symmetrical parallel conductor coil antenna Expired - Lifetime JP5160717B2 (en)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US09/611,168 2000-07-06
US09/610,800 US6409933B1 (en) 2000-07-06 2000-07-06 Plasma reactor having a symmetric parallel conductor coil antenna
US09/611,169 US6685798B1 (en) 2000-07-06 2000-07-06 Plasma reactor having a symmetrical parallel conductor coil antenna
US09/611,170 2000-07-06
US09/611,169 2000-07-06
US09/611,168 US6414648B1 (en) 2000-07-06 2000-07-06 Plasma reactor having a symmetric parallel conductor coil antenna
US09/611,345 2000-07-06
US09/611,345 US6462481B1 (en) 2000-07-06 2000-07-06 Plasma reactor having a symmetric parallel conductor coil antenna
US09/611,170 US6694915B1 (en) 2000-07-06 2000-07-06 Plasma reactor having a symmetrical parallel conductor coil antenna
US09/610,800 2000-07-06
PCT/US2001/020717 WO2002005308A2 (en) 2000-07-06 2001-06-29 A plasma reactor having a symmetric parallel conductor coil antenna

Publications (3)

Publication Number Publication Date
JP2004509429A JP2004509429A (en) 2004-03-25
JP2004509429A5 true JP2004509429A5 (en) 2008-08-14
JP5160717B2 JP5160717B2 (en) 2013-03-13

Family

ID=27541986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002508822A Expired - Lifetime JP5160717B2 (en) 2000-07-06 2001-06-29 Plasma reactor with symmetrical parallel conductor coil antenna

Country Status (3)

Country Link
EP (1) EP1301938A2 (en)
JP (1) JP5160717B2 (en)
WO (1) WO2002005308A2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820188B2 (en) * 2002-06-19 2006-09-13 三菱重工業株式会社 Plasma processing apparatus and plasma processing method
AU2002313941A1 (en) * 2002-07-26 2004-02-16 Plasmart Co. Ltd. Inductively coupled plasma generator having lower aspect ratio
US6852639B2 (en) 2002-07-31 2005-02-08 Infineon Technologies Ag Etching processing method for a material layer
KR100486724B1 (en) 2002-10-15 2005-05-03 삼성전자주식회사 Inductively coupled plasma generating apparatus with serpentine coil antenna
JP2006216903A (en) * 2005-02-07 2006-08-17 Hitachi High-Technologies Corp Plasma processing unit
CN101136279B (en) 2006-08-28 2010-05-12 北京北方微电子基地设备工艺研究中心有限责任公司 Jigger coupling coil and jigger coupling plasma device
US8314560B2 (en) 2006-11-28 2012-11-20 Samco Inc. Plasma processing apparatus
US8956500B2 (en) 2007-04-24 2015-02-17 Applied Materials, Inc. Methods to eliminate “M-shape” etch rate profile in inductively coupled plasma reactor
JP5229995B2 (en) * 2008-04-07 2013-07-03 株式会社アルバック Antenna, AC circuit, and plasma processing apparatus
JP5551343B2 (en) * 2008-05-14 2014-07-16 東京エレクトロン株式会社 Inductively coupled plasma processing equipment
JP5231308B2 (en) * 2009-03-31 2013-07-10 東京エレクトロン株式会社 Plasma processing equipment
US20110094994A1 (en) * 2009-10-26 2011-04-28 Applied Materials, Inc. Inductively coupled plasma apparatus
US20110094683A1 (en) * 2009-10-26 2011-04-28 Applied Materials, Inc. Rf feed structure for plasma processing
JP5851682B2 (en) 2010-09-28 2016-02-03 東京エレクトロン株式会社 Plasma processing equipment
KR101202957B1 (en) * 2010-10-19 2012-11-20 주성엔지니어링(주) Antenna for generating plasma and Apparatus for treating substrate including the same
JP6581602B2 (en) 2014-02-06 2019-09-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated In-line DPS chamber hardware design that allows axial symmetry for improved flow conductance and uniformity
KR101712263B1 (en) * 2014-04-22 2017-03-03 김일욱 helical resonance plasma antenna and plasma generating equipment including the same
JP2015159118A (en) * 2015-03-26 2015-09-03 東京エレクトロン株式会社 plasma processing apparatus
KR102308040B1 (en) * 2015-06-15 2021-09-30 어플라이드 머티어리얼스, 인코포레이티드 Source RF power dividing internal coil to improve BCD and etch depth performance
KR101932117B1 (en) * 2017-08-11 2018-12-24 피에스케이 주식회사 Substrate treating apparatus, substrate treating method and plasma generating unit
US11521828B2 (en) 2017-10-09 2022-12-06 Applied Materials, Inc. Inductively coupled plasma source
KR101972783B1 (en) * 2017-10-13 2019-08-16 주식회사 유진테크 Icp antenna and plasma processing apparatus including the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577100A (en) * 1980-06-16 1982-01-14 Nippon Electron Optics Lab Plasma generator
CA2047571C (en) * 1990-07-24 2001-12-18 Ian Lawrence Turner Inductively coupled plasma spectroscopy
US6074512A (en) * 1991-06-27 2000-06-13 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US5231334A (en) * 1992-04-15 1993-07-27 Texas Instruments Incorporated Plasma source and method of manufacturing
JP3105403B2 (en) * 1994-09-14 2000-10-30 松下電器産業株式会社 Plasma processing equipment
US5753044A (en) * 1995-02-15 1998-05-19 Applied Materials, Inc. RF plasma reactor with hybrid conductor and multi-radius dome ceiling
US5919382A (en) * 1994-10-31 1999-07-06 Applied Materials, Inc. Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor
DE69510427T2 (en) * 1994-10-31 1999-12-30 Applied Materials Inc Plasma reactors for semiconductor wafer treatment
US5688357A (en) * 1995-02-15 1997-11-18 Applied Materials, Inc. Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor
US6252354B1 (en) * 1996-11-04 2001-06-26 Applied Materials, Inc. RF tuning method for an RF plasma reactor using frequency servoing and power, voltage, current or DI/DT control
US6028395A (en) * 1997-09-16 2000-02-22 Lam Research Corporation Vacuum plasma processor having coil with added conducting segments to its peripheral part
US6028285A (en) * 1997-11-19 2000-02-22 Board Of Regents, The University Of Texas System High density plasma source for semiconductor processing

Similar Documents

Publication Publication Date Title
JP2004509429A5 (en)
KR100645469B1 (en) Multiple coil antenna for inductively-coupled plasma generation systems
JP4646272B2 (en) Plasma processing equipment
CN102054648B (en) Dual mode inductively coupled plasma reactor with adjustable phase coil assembly
JP2002519861A5 (en)
US6685798B1 (en) Plasma reactor having a symmetrical parallel conductor coil antenna
CN102056393B (en) inductively coupled plasma reactor
US6414648B1 (en) Plasma reactor having a symmetric parallel conductor coil antenna
KR101929411B1 (en) Plasma processing apparatus
US6694915B1 (en) Plasma reactor having a symmetrical parallel conductor coil antenna
JP5916044B2 (en) Plasma processing apparatus and plasma processing method
KR0162916B1 (en) Plasma processing apparatus
JP5905447B2 (en) Induction coil assembly in a plasma processing system
US6462481B1 (en) Plasma reactor having a symmetric parallel conductor coil antenna
US6409933B1 (en) Plasma reactor having a symmetric parallel conductor coil antenna
KR20060132854A (en) Compact, distributed inductive element for large scale inductively-coupled plasma sources
CN102421239A (en) Plasma processing apparatus
JP2001118834A (en) High-density plasma tool having adjustable uniformity and statistical electronic overheat and reducing gas cracking
US20230260751A1 (en) Coil structure and plasma processing apparatus
CN101754568B (en) Plasma treatment device and radio frequency device thereof
KR101118492B1 (en) Induction coil, plasma generating apparatus and plasma generating method
JP3762650B2 (en) Power supply system for plasma processing equipment
CN208923027U (en) Induction coil group and reaction chamber
TWI594505B (en) Coil antenna with plural radial lobes
CN101677485A (en) Plasma processing equipment, its radio frequency apparatus and radio frequency conveying method