JP2004508740A - 適応テレビジョン番組推奨器 - Google Patents
適応テレビジョン番組推奨器 Download PDFInfo
- Publication number
- JP2004508740A JP2004508740A JP2001557277A JP2001557277A JP2004508740A JP 2004508740 A JP2004508740 A JP 2004508740A JP 2001557277 A JP2001557277 A JP 2001557277A JP 2001557277 A JP2001557277 A JP 2001557277A JP 2004508740 A JP2004508740 A JP 2004508740A
- Authority
- JP
- Japan
- Prior art keywords
- program
- feature
- data processing
- probability
- list
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003044 adaptive effect Effects 0.000 title description 2
- 238000004364 calculation method Methods 0.000 claims abstract description 30
- 238000012545 processing Methods 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 9
- 238000001914 filtration Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 5
- 230000003442 weekly effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000013476 bayesian approach Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H60/00—Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
- H04H60/35—Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users
- H04H60/46—Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for recognising users' preferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/466—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/4662—Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms
- H04N21/4663—Learning process for intelligent management, e.g. learning user preferences for recommending movies characterized by learning algorithms involving probabilistic networks, e.g. Bayesian networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/4508—Management of client data or end-user data
- H04N21/4532—Management of client data or end-user data involving end-user characteristics, e.g. viewer profile, preferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/454—Content or additional data filtering, e.g. blocking advertisements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/466—Learning process for intelligent management, e.g. learning user preferences for recommending movies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/466—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/4667—Processing of monitored end-user data, e.g. trend analysis based on the log file of viewer selections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/466—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/4668—Learning process for intelligent management, e.g. learning user preferences for recommending movies for recommending content, e.g. movies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/482—End-user interface for program selection
- H04N21/4826—End-user interface for program selection using recommendation lists, e.g. of programs or channels sorted out according to their score
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/16—Analogue secrecy systems; Analogue subscription systems
- H04N7/162—Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing
- H04N7/163—Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing by receiver means only
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Software Systems (AREA)
- Human Computer Interaction (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
テレビジョン番組を推奨するシステムは、推奨を作成するために確率計算及び視聴者プロファイルを使用する。確率計算はベイズ分類器理論の形式であることが望ましい。古典的なベイズ分類器理論に対する変更が提案される。
Description
【0001】
I.発明の背景
A.発明の分野
本発明はユーザプロファイルに基づいてテレビジョン番組を推奨することに関する。
【0002】
B.関連技術
米国特許第5,758,259号は、番組とユーザプロファイルの所定の特性との間の「相関」に基づいて望ましいテレビジョン番組を識別する方法を示す。この関連技術の特許明細書では「相関」という用語は、数学的な概念の相関に関連するのではなく、プロファイルと番組との間のいくらかの類似性を評価するための非常に単純なアルゴリズムであるようである。
【0003】
II.発明の概要
本発明は、自動番組推奨の技術を改善することを目的とする。
【0004】
この目的は、視聴者プロファイルに基づく確率計算を用いて達成される。確率計算は、ベイズ分類器理論に基づくことが望ましい。
【0005】
この目的は、視聴者履歴のローカルレコードを保持することによって更に達成される。ローカルレコードは、漸増的に更新可能であることが望ましい。ローカルレコードは、プライバシーの理由では有利であり、視聴者履歴情報が中央の場所へアップロードされることが必要な共同的なフィルタリングといった方法と対照されうる。漸増的な更新を使用することは、記憶要件を最小化する点で有利である。
【0006】
本発明は、古典的なベイズ分類器技術を改善することを更なる目的とする。
【0007】
この目的は、1つの実施例では雑音フィルタリングによって達成される。
【0008】
この目的は、他の実施例では非独立特徴値に変更されてベイズ分類器を適用することによって達成される。
【0009】
以下、本発明の更なる目的及び利点について説明する。
【0010】
ベイズ分類器は、一般的にはDuda&Hartの教科書「Pattern Recognition and Scene Analysis」(John Wiley & Sons 1973)に記載されている。文書検索に対するベイズ分類器の適用については、D. Billsus & M. Pazzini, ”Learning Probablistic User Models”, http://www.dkfi.uin−sb.de/〜bauer/um−ws/Final−Versions/Billsus/ProbUserModels.htmlに記載されている。
【0011】
III.図面の簡単な説明
本発明について図面を参照して非制限的な例を用いて説明する。
【0012】
IV.望ましい実施例の詳細な説明
図0は、本発明を実施するためのハードウエアを示す図である。ハードウエアは、一般的には、ディスプレイ1と、ある種のプロセッサ2と、ある種の接続3を介してプロセッサに接続されるある種のユーザ入力装置4と、テレビジョンプログラミング又は電子番組ガイド(「EPG」)データといったデータ受信用のある種のリンク5とを有する。ディスプレイ1は、一般的にはテレビジョン画面であるが、任意の種類の表示装置でありうる。プロセッサ2は、セットトップボックス、PC、又は十分な処理力を有するかぎり任意の他の種類のデータ処理装置でありうる。ユーザ入力装置4は、遠隔制御装置であってもよく、接続3は赤外線接続であってもよい。プロセッサがPCである場合、ユーザ入力装置は、一般的には複数個存在し、例えばキーボード及びマウスがある。ユーザ入力装置は、ディスプレイ上の接触感知装置でありうる。外部への接続5は、アンテナ、ケーブル、インターネットへの電話回線、ネットワーク接続、又は任意の他のデータリンクでありうる。同様に、接続5は、一つのメモリ装置又は幾つかのメモリ装置へ接続されうる。
【0013】
図1は、適応推奨器の実施例の主な要素を示す図である。これらの要素は、CPU2といったデータ処理装置によって読み取り可能な媒体110上のソフトウエア及びデータとして存在することが望ましい。要素は、プロファイル作成器ソフトウエア102への入力を与える視聴履歴データ構造101を含む。プロファイル作成器ソフトウエアは、視聴者プロファイル103を生成する。本願では、「ユーザプロファイル」と「視聴者プロファイル」という用語は、同義に使用される。視聴者プロファイルは、推奨器ソフトウエア104への入力として用いられる。推奨器ソフトウエアは、タイトル、チャンネル、開始時間等といった各番組を記述する特徴を含むEPGデータ構造105も入力として使用する。推奨器104の出力は、ユーザが対話しうるユーザインタフェース106上に現れる。
【0014】
この視聴者履歴データ構造は、EPGデータベースから選択されたレコードを含む。EPGデータベースは、例えばTribune Media Service社から市販されている。当業者は、より細かい意味の記述で他の形式を考えうる。選択されたレコードは、最小限には視聴者によって見られるテレビ番組に対応する。これらのレコードは、ユーザインタフェースの一部であるソフトウエアによって視聴履歴に入れられ、視聴者がどの番組を見たか分かっていると想定する。ユーザはコマーシャル中にチャンネル間を行ったり来たりするよう切り換えることが多いため、ソフトウエアは、所与の時間間隔中に1つ以上の番組を見ているユーザについての記録することが可能であることが望ましい。また、ソフトウエアは番組が見られた時間の長短にかかわらず、また、番組が見られたか、後に見るために録画されたかに関わらず、ソフトウエアが番組を記録することが望ましい。
【0015】
望ましい視聴履歴フォーマットは、視聴履歴に正のレコード及び負のレコードの両方が存在することを想定する。これは、好まれる番組の特徴と好まれない番組の特徴を区別することを学習することが目標であるために必要である。図2は、視聴履歴を収集するための疑似コードを示す図である。
【0016】
C+は、正の番組(即ち、見た番組)の組を示し、C−は負の番組(即ち、見ていない番組)を示すものとする。
【0017】
視聴者プロファイルは、多数の特徴値のカウントを含む。これらのカウントは、視聴者履歴に新しいエントリが入れられるとインクリメントされる。通常は、各番組は幾つかの特徴値を有する。従って、視聴者履歴に番組を入れることにより、その番組に関連付けられる全ての特徴値に関連付けられるカウントが更新される。
【0018】
この種類の履歴の漸増的な更新可能性は、大量の記憶容量又は計算努力を必要とすることなく視聴者履歴を継続的に更新することを可能とするため有利である。
【0019】
正及び負のエントリの数のカウント(k(C+),k(C−))のほかにも、正及び負の例について個々の特徴の発生のカウント(k(fi|C+),k(fi|C−))を記録し、fiは特徴iを示し、(k(fi|C+)は組C+のうち特徴fiを有する番組の数を示す。特徴組は、選択されたキーフィールドから抽出されるEPGレコードの中にエントリを含み、その例を図3の表1に示す。
【0020】
本発明の概念を示すため、かかるカウントの実施例の部分的な例を、図4の表2に示す。図中、リストは空間を節約するため6つの列に示されるが、リストは実際には3つの列のみを有し、表の後半は前半の次に表わされる。列の各行は、4片のデータを有し即ち、第1の列には特徴の種類及び特徴の値、第2の列には正のカウント、第3の列には負のカウントがある。正のカウントは、その特徴値を有する番組が見られた回数を示す。負のカウントは、その特徴値を有する番組が見られていない回数を示す。
【0021】
テレビジョン番組スケジュールは、毎日の各時間スロットに対して通常は幾つかの、又は多くの番組を含む。通常は、ユーザは任意の所与のスロット内の1つ又は2つの番組を見るだけである。視聴者プロファイルが見られていない全ての番組のリストを含む場合、見られていない番組の数は見られた番組の数をはるかに超えてしまう。見られていない番組をサンプリングする方法を構築することが望まれる。例えば、プロセッサが視聴者プロファイルを集めるとき、図2の疑似コードで提案されるように、見られた番組毎に付随するものとして単一の見られていない番組を週間スケジュールからランダムに選択しうる。この設計は、以下説明するベイズ事前確率推定値のバランスを崩さないよう、視聴履歴中の正のエントリの数と負のエントリの数を略等しく維持しようとする。
【0022】
一般的には、付随する番組を見られている番組と同じ時間スロットから選択することは望ましくない。組み合わされた時間及び曜日特徴値は、一般的には、どの特定の番組が望ましいかについての最も強い予測量、又は、最も強い予測量のうちの1つであることが実験により分かっている。従って、見られている番組と同時の他の番組は、第2又は第3の選択肢の番組であり得ると同時に、全く異なる時間における番組が非常に望ましくないことがある。従って、見られた番組を含む一週間全体の番組スケジュールからランダムに付随する番組を選択することが望ましい。
【0023】
番組についての時間及び曜日特徴値は、番組がユーザの興味をひくものであるかどうかを決定するうえで非常に重要である場合が多いため、一般的には、全く同じ内容の2つの番組が異なる曜日及び/又は異なる時間に示された場合はこれらを同一であると考えるのは望ましくない。換言すれば、シリーズの特定的なエピソードは火曜日の午後8時に示されれば非常に好まれ、一方、同じシリーズの同じエピソードは月曜日の午前10時に示されれば全く好まれない。このように、2つの番組の内容が全く同じであっても、午前10時のエピソードは、午後8時のエピソードとは全く異なる番組であると考えられるべきである。
【0024】
より多くの番組を見ると、プロファイルの長さは長くなる傾向がある。この傾向を減少させ、弁別に役立つ特徴に注目するために、視聴者プロファイル中の特徴を定期的に再調査すること、また、頻出するがあまり弁別力のないような単語を除去することが推奨される。
【0025】
一般的に、例えばサッカーを見ることだけが好きである単純な嗜好の持ち主に対しては、比較的短い時間に亘って視聴者プロファイルをとることによって比較的容易に推奨がなされる。複雑な嗜好の持ち主に対しては、視聴者履歴が良い推奨を行うために十分に意味のあるものとなるには、更に長い時間がかかる。しかしながら、複雑な嗜好の持ち主は、おそらく最も推奨を必要としている人たちである。最終的な分析では、視聴者履歴は、常に曖昧となる。このような履歴に基づく番組の推奨は、誤りに対する余地を常に含む。推奨は、最も良い場合でも、正しいという幾らかの確率を有するものであるといえる。従って、確率計算は、推奨を行なうために視聴者プロファイルデータを分析するのに有用である。推奨器の望ましい実施例は、視聴者プロファイルから導出される事前確率推定値及び条件付き確率推定値を用いた単純なベイズ分類器を用いるものである。推奨がどのように視聴者に示されるかはここでは定義されていないが、少なくとも番組が見られたか否かを観察することにより、推奨に対する視聴者の応答を捕らえることができると想定する。
【0026】
以下、2−クラスのベイズの決定モデルについて説明する。関心となるTV番組の2つのクラスは、
C1 視聴者が関心を持つ番組、
C2 視聴者が感心を持たない番組
である。より多くの又は欠落した関心についての意味を示すため他のクラスが使用されうる。上記された関心のクラスに対して、視聴履歴は、以下のクラス、
C+ 視聴者が見たこと、
C− 視聴者が見ていないこと
のみについての情報を得る。
【0027】
ユーザがどの番組を見たか、又は見ていないかを決定することについては、本願の範囲外である。ユーザは、自分がどの番組を見たかについての手動のログを入力することがある。或いは、ハードウエアがユーザの視聴についての挙動を記録することがある。当業者は、これについての多数の技術を案出することがある。ユーザは幾つかの番組を追うために幾つかの番組の間を行ったり来たりするよう切り換えうるため、短い時間に亘ってのみ見られた場合でも、番組は見られたと考えられることが可能であるべきである。
【0028】
観察に基づきクラスC1とC2の間で推断することができるが、これらの推断は不確実性の要素を常に含む。ベイズモデルは、図5aに従って視聴者プロファイルのカウントから事前確率P(C+)及びP(C−)を直接計算する。換言すれば、見られていない番組は視聴者が関心を持たないものであり、見られた番組は視聴者が関心を持つものであると仮定する。
【0029】
番組がC+又はC−にある場合に所与の特徴fiが存在するという条件付き確率は、図5bに従って計算される。これらの計算は、TVが見られていない間に一日に一回計算され、視聴者プロファイルに記憶されうる。
【0030】
来るべき番組に対する推奨は、事後確率、即ち特徴が与えられているときに番組がクラスC+及びC−にある確率、を推定することによって計算されうる。ここで、xを二進ベクトル(x1,x2,...,xi,...,xn)、但しiは視聴者プロファイル中の特徴に亘る添え字であり、番組の中に存在する特徴fiが推奨のために考慮されていればxi=1であり、推奨されなければ0である。各番組がただ1つの特徴を有さねばならない排他的な特徴、例えば曜日、時間、局、である場合、添え字iは、値がプロファイルの中にも存在するのであれば、考慮されている番組に存在する値を示すものとして扱われる。さもなければ、新しい排他的な特徴は、計算には入れられない。排他的でない特徴では、添え字iはプロファイルの中に存在する全ての値に亘り、考慮されている番組にとって新しい排他的でない特徴は計算には寄与しない。事後確率は、図5cに従って推定される。
【0031】
これらの推定値があるとき、P(C+|x)>P(C−|x)であれば番組は一般的に推奨され、推奨の「強さ」はP(C+|x)−P(C−|x)に比例する。このスキームについての1つの内在的な問題は、幾つかの条件付き確率はゼロである可能性が高いことである。連鎖乗算の中にゼロがあれば、結果はゼロとなるため、ゼロを消去するための何らかの手段が必要である。上述のBillsus及びPazzaniの文献は、単に生じた全てのゼロに対して小さい定数を挿入することを含む2つのスキームを示す。
【0032】
条件付き確率乗算連鎖においてゼロを取り扱う一つの方法は以下の通りである。1000を発見的知識を選択する。視聴履歴に含まれる番組の数が1000であれば、ゼロの代わりに1/1000という値を代入しうる。視聴履歴に含まれる番組の数が1000よりも大きければ、補正は、
【0033】
【数1】
であり、但し、
ki+は特徴Iを有する見られた番組の数であり、
k+は見られた番組の総数である。
【0034】
これは、Billsus及びPazzaniの文献では、ラプラス補正と称されるものである。当業者によれば他のスキームが案出されうる。
【0035】
古典的なベイズ理論は、推奨を行う際に、図4のリストの全ての蓄積された要素を使用することを必要とする。それでも、幾つかの場合は、雑音の切り捨てを用いることが有用であり、リストの中に特徴についての十分なデータがなければ特徴を削除する。例えば、正のカウントであっても負のカウントであっても、特定の特徴が考慮されている番組のある所与の割合よりも多く現れなければ、どの推奨を行うかの決定においては無視されうる。実験的には、5%の切り捨ては大きすぎることが分かっている。
【0036】
雑音の切り捨ての一つの実施例では、切り捨てを決めるために割合を用いるのではなく視聴者プロファイル自体を使用する。この実施例は、まず、特定の特徴の種類に関連する視聴者プロファイルのサブセット又はサブリストをとる。例えば、サブリストは、有利には特徴の種類、即ち時刻及び曜日に関する視聴者プロファイルの全ての要素を含みうる。或いは、他の例では、サブリストは有利には、チャンネル番号に関連する視聴者プロファイルの全ての要素を含みうる。一般的には、選択される特徴の種類は独立した特徴の種類であり、換言すれば他の特徴の種類が意味のあるものであることを必要としない特徴の種類である。
【0037】
サブリストは、負のカウント、即ち特定の特徴値を有し見られていない番組の数でソートされる。このソートされたリストにおける最も高い負のカウントは、雑音レベルと見なされうる。換言すれば、望ましい実施例では、「見られない」番組は一週間の番組スケジュールからランダムに選択されるため、どの見られない時間スロットも雑音があるとは考えられない。
【0038】
このように、雑音レベル以下で正のカウント及び負のカウントの両方を有する特徴は、推奨を行うときにベイズ計算のために考慮される必要はない。
【0039】
この雑音レベル閾値処理の例は、雑音の切り捨てを決定するための特徴として、例えば曜日/時間といった特定の特徴を使用している。一般的には、負の例のサンプリング手順によって均一にランダムにサンプリングされた全ての特徴は、当業者によれば雑音閾値の計算のために選択されうる。
【0040】
図5a乃至図5cの計算は、完了するまでに比較的低い計算パワーを必要とし、従ってセットトップボックスの中にあるような大きくないハードウエアに対して容易に適応可能であるため有利である。
【0041】
「Surprise Me」特徴
上述のスキームによる推奨は、既に見られた番組の中に存在する多数の特徴を有する番組となる。蓄積された視聴者プロファイルは、見られた番組に共通な特徴が僅かしかない番組に対しては意味のある推奨を与えない。従って、オプションとして、かかる番組が見られた番組に共通な特徴が僅かしかない場合は、「surprise me」特徴で、推奨器は時々は番組をランダムに推奨するようにしてもよい。
【0042】
[他の領域でのユーザプロファイルの使用]
一旦ユーザプロファイルが作成されると、本発明の推奨技術は、映画、本、オーディオ記録物、又はTシャツやポスターといった販売促進物といった他の種類のアイテムにも使用されうる。
【0043】
[特徴の非独立性]
ベイズ分類器理論の領域における古典的な仮定は、全ての特徴が独立であるということである。従って、例えば特徴が正の番組には頻繁に存在するが、推奨されるものとして考えられている番組からは欠如していれば、そのことは番組にとって不利である。しかしながら、これは現在の適用に対しては望ましくない結果を生じうる。
【0044】
例えば、ユーザプロファイルの中に、最もよく見られているものとして5つの曜日/時間スロットが示されると仮定する。更に、これらの5つのスロットのうちの1つの特定の番組があると評価されると仮定する。図5cの計算は、一致する曜日/時間スロットについては確率を高め、一致しない4つの曜日/タイムスロットについては確率を低める。直感的に、確率を低めることは、当該の番組についての確率の正確な決定には正しく関連しないようである。各番組はただ一つの値を有するため番組が有さない値はこれに対して不利であるべきではないため、曜日/時間の異なる値は独立ではない。
【0045】
古典的なベイズアプローチの欠点を改善するため、特徴を2つのタイプ、即ちセット1とセット2として指定することが提案される。特徴がセット1であると指定されれば、ベイズの計算は特徴の一致しない特徴を全て無視する。特徴がセット2であると指定されれば、図5cに示されるような通常のベイズの計算が行われる。
【0046】
通常は、テレビジョン適用では、セット1は曜日/時間;局;タイトルを含む。例えば批評レーティングといった幾つかの番組に対してのみ値を有する幾つかの特徴はもまたセット1とされ、なぜならば批評は僅かな割合の番組のみをレーティングする傾向があるためあまりにも多くの番組が一致しないためである。
【0047】
テレビジョン番組についてのセット2は、通常は1つの番組毎に幾つかの値を有しうる全ての特徴を含む。
【0048】
本願から、当業者によれば他の変更が明らかとなろう。かかる変更は、テレビジョンインタフェースの設計、製造、及び使用において既に知られており、上述の特徴の代わりに又は上述の特徴に加えて使用されうる他の特徴を含みうる。本願の請求の範囲は、特徴の特定の組合せについて述べているが、本願の開示の範囲は、本発明と同じ技術的な問題の幾つか又は全てを軽減するかしないかに関わらず、明示的に又は暗に本願に開示される新規な特徴又は新規な特徴の組合せとその派生物を含むと理解されるべきである。尚、出願人は、本願又は本願から派生する更なる出願を遂行するときにかかる特徴について更なる請求項が作成されうることについて言及する。
【0049】
本願において使用される用語「含む」は、追加的な要素を排除するものと見なされるべきではない。本願で単数形として示されるものは、複数の要素を排除するものではない。
【図面の簡単な説明】
【図0】
本発明を実施しうるシステムを示す図である。
【図1】
適応推奨器の主な要素を示す図である。
【図2】
視聴履歴発生器のための疑似コードを示す図である。
【図3】
キーフィールドのテーブルを示す図である。
【図4】
視聴者プロファイルを示す図である。
【図5A】
事前確率計算を示す図である。
【図5B】
条件付き確率計算を示す図である。
【図5C】
事後確率計算を示す図である。
I.発明の背景
A.発明の分野
本発明はユーザプロファイルに基づいてテレビジョン番組を推奨することに関する。
【0002】
B.関連技術
米国特許第5,758,259号は、番組とユーザプロファイルの所定の特性との間の「相関」に基づいて望ましいテレビジョン番組を識別する方法を示す。この関連技術の特許明細書では「相関」という用語は、数学的な概念の相関に関連するのではなく、プロファイルと番組との間のいくらかの類似性を評価するための非常に単純なアルゴリズムであるようである。
【0003】
II.発明の概要
本発明は、自動番組推奨の技術を改善することを目的とする。
【0004】
この目的は、視聴者プロファイルに基づく確率計算を用いて達成される。確率計算は、ベイズ分類器理論に基づくことが望ましい。
【0005】
この目的は、視聴者履歴のローカルレコードを保持することによって更に達成される。ローカルレコードは、漸増的に更新可能であることが望ましい。ローカルレコードは、プライバシーの理由では有利であり、視聴者履歴情報が中央の場所へアップロードされることが必要な共同的なフィルタリングといった方法と対照されうる。漸増的な更新を使用することは、記憶要件を最小化する点で有利である。
【0006】
本発明は、古典的なベイズ分類器技術を改善することを更なる目的とする。
【0007】
この目的は、1つの実施例では雑音フィルタリングによって達成される。
【0008】
この目的は、他の実施例では非独立特徴値に変更されてベイズ分類器を適用することによって達成される。
【0009】
以下、本発明の更なる目的及び利点について説明する。
【0010】
ベイズ分類器は、一般的にはDuda&Hartの教科書「Pattern Recognition and Scene Analysis」(John Wiley & Sons 1973)に記載されている。文書検索に対するベイズ分類器の適用については、D. Billsus & M. Pazzini, ”Learning Probablistic User Models”, http://www.dkfi.uin−sb.de/〜bauer/um−ws/Final−Versions/Billsus/ProbUserModels.htmlに記載されている。
【0011】
III.図面の簡単な説明
本発明について図面を参照して非制限的な例を用いて説明する。
【0012】
IV.望ましい実施例の詳細な説明
図0は、本発明を実施するためのハードウエアを示す図である。ハードウエアは、一般的には、ディスプレイ1と、ある種のプロセッサ2と、ある種の接続3を介してプロセッサに接続されるある種のユーザ入力装置4と、テレビジョンプログラミング又は電子番組ガイド(「EPG」)データといったデータ受信用のある種のリンク5とを有する。ディスプレイ1は、一般的にはテレビジョン画面であるが、任意の種類の表示装置でありうる。プロセッサ2は、セットトップボックス、PC、又は十分な処理力を有するかぎり任意の他の種類のデータ処理装置でありうる。ユーザ入力装置4は、遠隔制御装置であってもよく、接続3は赤外線接続であってもよい。プロセッサがPCである場合、ユーザ入力装置は、一般的には複数個存在し、例えばキーボード及びマウスがある。ユーザ入力装置は、ディスプレイ上の接触感知装置でありうる。外部への接続5は、アンテナ、ケーブル、インターネットへの電話回線、ネットワーク接続、又は任意の他のデータリンクでありうる。同様に、接続5は、一つのメモリ装置又は幾つかのメモリ装置へ接続されうる。
【0013】
図1は、適応推奨器の実施例の主な要素を示す図である。これらの要素は、CPU2といったデータ処理装置によって読み取り可能な媒体110上のソフトウエア及びデータとして存在することが望ましい。要素は、プロファイル作成器ソフトウエア102への入力を与える視聴履歴データ構造101を含む。プロファイル作成器ソフトウエアは、視聴者プロファイル103を生成する。本願では、「ユーザプロファイル」と「視聴者プロファイル」という用語は、同義に使用される。視聴者プロファイルは、推奨器ソフトウエア104への入力として用いられる。推奨器ソフトウエアは、タイトル、チャンネル、開始時間等といった各番組を記述する特徴を含むEPGデータ構造105も入力として使用する。推奨器104の出力は、ユーザが対話しうるユーザインタフェース106上に現れる。
【0014】
この視聴者履歴データ構造は、EPGデータベースから選択されたレコードを含む。EPGデータベースは、例えばTribune Media Service社から市販されている。当業者は、より細かい意味の記述で他の形式を考えうる。選択されたレコードは、最小限には視聴者によって見られるテレビ番組に対応する。これらのレコードは、ユーザインタフェースの一部であるソフトウエアによって視聴履歴に入れられ、視聴者がどの番組を見たか分かっていると想定する。ユーザはコマーシャル中にチャンネル間を行ったり来たりするよう切り換えることが多いため、ソフトウエアは、所与の時間間隔中に1つ以上の番組を見ているユーザについての記録することが可能であることが望ましい。また、ソフトウエアは番組が見られた時間の長短にかかわらず、また、番組が見られたか、後に見るために録画されたかに関わらず、ソフトウエアが番組を記録することが望ましい。
【0015】
望ましい視聴履歴フォーマットは、視聴履歴に正のレコード及び負のレコードの両方が存在することを想定する。これは、好まれる番組の特徴と好まれない番組の特徴を区別することを学習することが目標であるために必要である。図2は、視聴履歴を収集するための疑似コードを示す図である。
【0016】
C+は、正の番組(即ち、見た番組)の組を示し、C−は負の番組(即ち、見ていない番組)を示すものとする。
【0017】
視聴者プロファイルは、多数の特徴値のカウントを含む。これらのカウントは、視聴者履歴に新しいエントリが入れられるとインクリメントされる。通常は、各番組は幾つかの特徴値を有する。従って、視聴者履歴に番組を入れることにより、その番組に関連付けられる全ての特徴値に関連付けられるカウントが更新される。
【0018】
この種類の履歴の漸増的な更新可能性は、大量の記憶容量又は計算努力を必要とすることなく視聴者履歴を継続的に更新することを可能とするため有利である。
【0019】
正及び負のエントリの数のカウント(k(C+),k(C−))のほかにも、正及び負の例について個々の特徴の発生のカウント(k(fi|C+),k(fi|C−))を記録し、fiは特徴iを示し、(k(fi|C+)は組C+のうち特徴fiを有する番組の数を示す。特徴組は、選択されたキーフィールドから抽出されるEPGレコードの中にエントリを含み、その例を図3の表1に示す。
【0020】
本発明の概念を示すため、かかるカウントの実施例の部分的な例を、図4の表2に示す。図中、リストは空間を節約するため6つの列に示されるが、リストは実際には3つの列のみを有し、表の後半は前半の次に表わされる。列の各行は、4片のデータを有し即ち、第1の列には特徴の種類及び特徴の値、第2の列には正のカウント、第3の列には負のカウントがある。正のカウントは、その特徴値を有する番組が見られた回数を示す。負のカウントは、その特徴値を有する番組が見られていない回数を示す。
【0021】
テレビジョン番組スケジュールは、毎日の各時間スロットに対して通常は幾つかの、又は多くの番組を含む。通常は、ユーザは任意の所与のスロット内の1つ又は2つの番組を見るだけである。視聴者プロファイルが見られていない全ての番組のリストを含む場合、見られていない番組の数は見られた番組の数をはるかに超えてしまう。見られていない番組をサンプリングする方法を構築することが望まれる。例えば、プロセッサが視聴者プロファイルを集めるとき、図2の疑似コードで提案されるように、見られた番組毎に付随するものとして単一の見られていない番組を週間スケジュールからランダムに選択しうる。この設計は、以下説明するベイズ事前確率推定値のバランスを崩さないよう、視聴履歴中の正のエントリの数と負のエントリの数を略等しく維持しようとする。
【0022】
一般的には、付随する番組を見られている番組と同じ時間スロットから選択することは望ましくない。組み合わされた時間及び曜日特徴値は、一般的には、どの特定の番組が望ましいかについての最も強い予測量、又は、最も強い予測量のうちの1つであることが実験により分かっている。従って、見られている番組と同時の他の番組は、第2又は第3の選択肢の番組であり得ると同時に、全く異なる時間における番組が非常に望ましくないことがある。従って、見られた番組を含む一週間全体の番組スケジュールからランダムに付随する番組を選択することが望ましい。
【0023】
番組についての時間及び曜日特徴値は、番組がユーザの興味をひくものであるかどうかを決定するうえで非常に重要である場合が多いため、一般的には、全く同じ内容の2つの番組が異なる曜日及び/又は異なる時間に示された場合はこれらを同一であると考えるのは望ましくない。換言すれば、シリーズの特定的なエピソードは火曜日の午後8時に示されれば非常に好まれ、一方、同じシリーズの同じエピソードは月曜日の午前10時に示されれば全く好まれない。このように、2つの番組の内容が全く同じであっても、午前10時のエピソードは、午後8時のエピソードとは全く異なる番組であると考えられるべきである。
【0024】
より多くの番組を見ると、プロファイルの長さは長くなる傾向がある。この傾向を減少させ、弁別に役立つ特徴に注目するために、視聴者プロファイル中の特徴を定期的に再調査すること、また、頻出するがあまり弁別力のないような単語を除去することが推奨される。
【0025】
一般的に、例えばサッカーを見ることだけが好きである単純な嗜好の持ち主に対しては、比較的短い時間に亘って視聴者プロファイルをとることによって比較的容易に推奨がなされる。複雑な嗜好の持ち主に対しては、視聴者履歴が良い推奨を行うために十分に意味のあるものとなるには、更に長い時間がかかる。しかしながら、複雑な嗜好の持ち主は、おそらく最も推奨を必要としている人たちである。最終的な分析では、視聴者履歴は、常に曖昧となる。このような履歴に基づく番組の推奨は、誤りに対する余地を常に含む。推奨は、最も良い場合でも、正しいという幾らかの確率を有するものであるといえる。従って、確率計算は、推奨を行なうために視聴者プロファイルデータを分析するのに有用である。推奨器の望ましい実施例は、視聴者プロファイルから導出される事前確率推定値及び条件付き確率推定値を用いた単純なベイズ分類器を用いるものである。推奨がどのように視聴者に示されるかはここでは定義されていないが、少なくとも番組が見られたか否かを観察することにより、推奨に対する視聴者の応答を捕らえることができると想定する。
【0026】
以下、2−クラスのベイズの決定モデルについて説明する。関心となるTV番組の2つのクラスは、
C1 視聴者が関心を持つ番組、
C2 視聴者が感心を持たない番組
である。より多くの又は欠落した関心についての意味を示すため他のクラスが使用されうる。上記された関心のクラスに対して、視聴履歴は、以下のクラス、
C+ 視聴者が見たこと、
C− 視聴者が見ていないこと
のみについての情報を得る。
【0027】
ユーザがどの番組を見たか、又は見ていないかを決定することについては、本願の範囲外である。ユーザは、自分がどの番組を見たかについての手動のログを入力することがある。或いは、ハードウエアがユーザの視聴についての挙動を記録することがある。当業者は、これについての多数の技術を案出することがある。ユーザは幾つかの番組を追うために幾つかの番組の間を行ったり来たりするよう切り換えうるため、短い時間に亘ってのみ見られた場合でも、番組は見られたと考えられることが可能であるべきである。
【0028】
観察に基づきクラスC1とC2の間で推断することができるが、これらの推断は不確実性の要素を常に含む。ベイズモデルは、図5aに従って視聴者プロファイルのカウントから事前確率P(C+)及びP(C−)を直接計算する。換言すれば、見られていない番組は視聴者が関心を持たないものであり、見られた番組は視聴者が関心を持つものであると仮定する。
【0029】
番組がC+又はC−にある場合に所与の特徴fiが存在するという条件付き確率は、図5bに従って計算される。これらの計算は、TVが見られていない間に一日に一回計算され、視聴者プロファイルに記憶されうる。
【0030】
来るべき番組に対する推奨は、事後確率、即ち特徴が与えられているときに番組がクラスC+及びC−にある確率、を推定することによって計算されうる。ここで、xを二進ベクトル(x1,x2,...,xi,...,xn)、但しiは視聴者プロファイル中の特徴に亘る添え字であり、番組の中に存在する特徴fiが推奨のために考慮されていればxi=1であり、推奨されなければ0である。各番組がただ1つの特徴を有さねばならない排他的な特徴、例えば曜日、時間、局、である場合、添え字iは、値がプロファイルの中にも存在するのであれば、考慮されている番組に存在する値を示すものとして扱われる。さもなければ、新しい排他的な特徴は、計算には入れられない。排他的でない特徴では、添え字iはプロファイルの中に存在する全ての値に亘り、考慮されている番組にとって新しい排他的でない特徴は計算には寄与しない。事後確率は、図5cに従って推定される。
【0031】
これらの推定値があるとき、P(C+|x)>P(C−|x)であれば番組は一般的に推奨され、推奨の「強さ」はP(C+|x)−P(C−|x)に比例する。このスキームについての1つの内在的な問題は、幾つかの条件付き確率はゼロである可能性が高いことである。連鎖乗算の中にゼロがあれば、結果はゼロとなるため、ゼロを消去するための何らかの手段が必要である。上述のBillsus及びPazzaniの文献は、単に生じた全てのゼロに対して小さい定数を挿入することを含む2つのスキームを示す。
【0032】
条件付き確率乗算連鎖においてゼロを取り扱う一つの方法は以下の通りである。1000を発見的知識を選択する。視聴履歴に含まれる番組の数が1000であれば、ゼロの代わりに1/1000という値を代入しうる。視聴履歴に含まれる番組の数が1000よりも大きければ、補正は、
【0033】
【数1】
であり、但し、
ki+は特徴Iを有する見られた番組の数であり、
k+は見られた番組の総数である。
【0034】
これは、Billsus及びPazzaniの文献では、ラプラス補正と称されるものである。当業者によれば他のスキームが案出されうる。
【0035】
古典的なベイズ理論は、推奨を行う際に、図4のリストの全ての蓄積された要素を使用することを必要とする。それでも、幾つかの場合は、雑音の切り捨てを用いることが有用であり、リストの中に特徴についての十分なデータがなければ特徴を削除する。例えば、正のカウントであっても負のカウントであっても、特定の特徴が考慮されている番組のある所与の割合よりも多く現れなければ、どの推奨を行うかの決定においては無視されうる。実験的には、5%の切り捨ては大きすぎることが分かっている。
【0036】
雑音の切り捨ての一つの実施例では、切り捨てを決めるために割合を用いるのではなく視聴者プロファイル自体を使用する。この実施例は、まず、特定の特徴の種類に関連する視聴者プロファイルのサブセット又はサブリストをとる。例えば、サブリストは、有利には特徴の種類、即ち時刻及び曜日に関する視聴者プロファイルの全ての要素を含みうる。或いは、他の例では、サブリストは有利には、チャンネル番号に関連する視聴者プロファイルの全ての要素を含みうる。一般的には、選択される特徴の種類は独立した特徴の種類であり、換言すれば他の特徴の種類が意味のあるものであることを必要としない特徴の種類である。
【0037】
サブリストは、負のカウント、即ち特定の特徴値を有し見られていない番組の数でソートされる。このソートされたリストにおける最も高い負のカウントは、雑音レベルと見なされうる。換言すれば、望ましい実施例では、「見られない」番組は一週間の番組スケジュールからランダムに選択されるため、どの見られない時間スロットも雑音があるとは考えられない。
【0038】
このように、雑音レベル以下で正のカウント及び負のカウントの両方を有する特徴は、推奨を行うときにベイズ計算のために考慮される必要はない。
【0039】
この雑音レベル閾値処理の例は、雑音の切り捨てを決定するための特徴として、例えば曜日/時間といった特定の特徴を使用している。一般的には、負の例のサンプリング手順によって均一にランダムにサンプリングされた全ての特徴は、当業者によれば雑音閾値の計算のために選択されうる。
【0040】
図5a乃至図5cの計算は、完了するまでに比較的低い計算パワーを必要とし、従ってセットトップボックスの中にあるような大きくないハードウエアに対して容易に適応可能であるため有利である。
【0041】
「Surprise Me」特徴
上述のスキームによる推奨は、既に見られた番組の中に存在する多数の特徴を有する番組となる。蓄積された視聴者プロファイルは、見られた番組に共通な特徴が僅かしかない番組に対しては意味のある推奨を与えない。従って、オプションとして、かかる番組が見られた番組に共通な特徴が僅かしかない場合は、「surprise me」特徴で、推奨器は時々は番組をランダムに推奨するようにしてもよい。
【0042】
[他の領域でのユーザプロファイルの使用]
一旦ユーザプロファイルが作成されると、本発明の推奨技術は、映画、本、オーディオ記録物、又はTシャツやポスターといった販売促進物といった他の種類のアイテムにも使用されうる。
【0043】
[特徴の非独立性]
ベイズ分類器理論の領域における古典的な仮定は、全ての特徴が独立であるということである。従って、例えば特徴が正の番組には頻繁に存在するが、推奨されるものとして考えられている番組からは欠如していれば、そのことは番組にとって不利である。しかしながら、これは現在の適用に対しては望ましくない結果を生じうる。
【0044】
例えば、ユーザプロファイルの中に、最もよく見られているものとして5つの曜日/時間スロットが示されると仮定する。更に、これらの5つのスロットのうちの1つの特定の番組があると評価されると仮定する。図5cの計算は、一致する曜日/時間スロットについては確率を高め、一致しない4つの曜日/タイムスロットについては確率を低める。直感的に、確率を低めることは、当該の番組についての確率の正確な決定には正しく関連しないようである。各番組はただ一つの値を有するため番組が有さない値はこれに対して不利であるべきではないため、曜日/時間の異なる値は独立ではない。
【0045】
古典的なベイズアプローチの欠点を改善するため、特徴を2つのタイプ、即ちセット1とセット2として指定することが提案される。特徴がセット1であると指定されれば、ベイズの計算は特徴の一致しない特徴を全て無視する。特徴がセット2であると指定されれば、図5cに示されるような通常のベイズの計算が行われる。
【0046】
通常は、テレビジョン適用では、セット1は曜日/時間;局;タイトルを含む。例えば批評レーティングといった幾つかの番組に対してのみ値を有する幾つかの特徴はもまたセット1とされ、なぜならば批評は僅かな割合の番組のみをレーティングする傾向があるためあまりにも多くの番組が一致しないためである。
【0047】
テレビジョン番組についてのセット2は、通常は1つの番組毎に幾つかの値を有しうる全ての特徴を含む。
【0048】
本願から、当業者によれば他の変更が明らかとなろう。かかる変更は、テレビジョンインタフェースの設計、製造、及び使用において既に知られており、上述の特徴の代わりに又は上述の特徴に加えて使用されうる他の特徴を含みうる。本願の請求の範囲は、特徴の特定の組合せについて述べているが、本願の開示の範囲は、本発明と同じ技術的な問題の幾つか又は全てを軽減するかしないかに関わらず、明示的に又は暗に本願に開示される新規な特徴又は新規な特徴の組合せとその派生物を含むと理解されるべきである。尚、出願人は、本願又は本願から派生する更なる出願を遂行するときにかかる特徴について更なる請求項が作成されうることについて言及する。
【0049】
本願において使用される用語「含む」は、追加的な要素を排除するものと見なされるべきではない。本願で単数形として示されるものは、複数の要素を排除するものではない。
【図面の簡単な説明】
【図0】
本発明を実施しうるシステムを示す図である。
【図1】
適応推奨器の主な要素を示す図である。
【図2】
視聴履歴発生器のための疑似コードを示す図である。
【図3】
キーフィールドのテーブルを示す図である。
【図4】
視聴者プロファイルを示す図である。
【図5A】
事前確率計算を示す図である。
【図5B】
条件付き確率計算を示す図である。
【図5C】
事後確率計算を示す図である。
Claims (35)
- 視聴者プロファイルデータ及びテレビジョン番組に関するデータを含むデータを受け取る少なくとも1つの入力と、
プロセッサとを含むデータ処理装置であって、
上記プロセッサは、
上記テレビジョン番組が所望の番組である確率を計算する段階と、
上記確率に基づいて上記テレビジョン番組に関する推奨を与える段階とを実行するよう適合される、データ処理装置。 - 上記入力は、上記データ処理装置によって読取り可能な媒体に結合される、請求項1記載のデータ処理装置。
- 上記媒体は上記視聴者プロファイルを具現化する、請求項2記載のデータ処理装置。
- 上記媒体は上記データ処理装置にローカルであり、
上記視聴者プロファイルは漸増的に更新可能であるよう配置される、請求項3記載のデータ処理装置。 - 上記プロセッサは、
特徴値のリストと、
上記リストの各要素について、その特徴値を有する番組が見られた回数と、
を含むデータ構造に従って上記視聴者プロファイルを維持する、請求項3記載のデータ処理装置。 - 上記データ構造は、上記リストの各要素に対して、その特徴値を有する番組が見られていない回数を更に含む、請求項5記載のデータ処理装置。
- 上記プロセッサは、ユーザが新しい番組を見るたびに、
上記リストに対して、その新しい番組に関連付けられる特徴値又はかかる特徴値のカウントを追加する第1の追加段階と、
プログラムスケジュールからランダムに選択され、見られていない、少なくとも付随するプログラムを、上記新しいプログラムに対して選択する選択段階と、
上記リストに対して、上記付随するプログラムの特徴値又はかかる特徴値のカウントを追加する第2の追加段階と、
を実行するよう配置される、請求項6記載のデータ処理装置。 - 上記プロセッサは、ユーザが新しい番組を見るたびに、
上記リストに対して、その新しい番組に関連付けられる特徴値又はかかる特徴値のカウントを追加する第1の追加段階を実行するよう更に配置される、請求項5記載のデータ処理装置。 - 上記媒体は、上記テレビジョン番組に関する上記データを具現化する、請求項2記載のデータ処理装置。
- 上記入力はネットワーク接続である、請求項1記載のデータ処理装置。
- ベイズ分類器を用いて計算を行なう、請求項1記載のデータ処理装置。
- 上記プロセッサは、上記ベイズ分類器を使用する前に、上記視聴者プロファイルに対して雑音閾値計算を行なうよう更に適応される、請求項11記載のデータ処理装置。
- 上記視聴者プロファイルデータは、
特徴値のリストと、
上記リストの各要素に対して、その特徴値を有する番組が見られていない回数を示す負のカウントと、
上記リストの各要素に対して、その特徴値を有する番組が見られた回数を示す正のカウントとを含み、
上記雑音閾値計算は、
少なくとも1つの特別なタイプの特徴を有する少なくとも1つの特徴値を含むサブリストを選択する段階と、
上記サブリスト中の最も高い負のカウントを上記雑音閾値として選択する段階とを含み、
上記推奨は、上記視聴者プロファイル中の上記雑音閾値を越える正のカウント又は負のカウントを有する少なくとも1つの特徴値を有する群から選択される番組を含む、請求項12記載のデータ処理装置。 - 上記視聴者プロファイルに上記雑音閾値を受けさせる段階は、正当な雑音閾値を推定するために既知のランダム処理によって集められる観察値を用いる段階を含む、請求項12記載のデータ処理装置。
- 上記特別なタイプは、曜日及び時刻特徴タイプを含む、請求項13記載のデータ処理装置。
- 上記特別なタイプは、局識別特徴タイプを含む、請求項13記載のデータ処理装置。
- 上記視聴者プロファイルデータは、幾つの見られた番組が夫々の特徴を有したかを示す見られた番組の複数のカウントを含む、請求項1記載のデータ処理装置。
- 計算段階は、上記テレビジョン番組が特定のクラス内にある確率を計算する段階を含む、請求項17記載のデータ処理装置。
- 上記クラスは、
上記視聴者が関心を持つ番組と、
上記視聴者が関心を持たない番組と、のうちの1つである、請求項18記載のデータ処理装置。 - 上記確率を計算する段階は、
番組が望まれているか否かについての事前確率を計算する段階と、
番組が望まれていれる場合に特徴fiが存在するかどうかの条件付き確率を計算する段階と、
上記条件付き確率及び上記事前確率に基づいて番組が望まれているか否かについての事後確率を計算する段階とを含む、請求項1記載のデータ処理装置。 - 見られた番組は、上記視聴者が関心を持つ番組であると仮定される、請求項1記載のデータ処理装置。
- 上記視聴者プロファイルは、特徴タイプ及びかかる特徴タイプの値のリストを含み、上記特徴タイプは、
非独立であると見なされる値を有する特徴タイプの第1のセットと、
独立であると見なされる値を有する特徴タイプの第2のセットとを含む、少なくとも2つのセットから選択され、
確率を計算する段階は、
上記第2のセットからの特徴タイプに対応してベイズ分類器計算を適用する段階と、
上記第1のセットからの特徴タイプに対応して変更されたベイズ分類器計算を適用する段階とを含む、請求項1記載のデータ処理装置。 - 上記第1のセットの特徴に関して、上記変更されたベイズ分類器計算は、分類された番組に一致する特徴値のみを考慮に入れる、請求項24記載のデータ処理装置。
- データ処理装置によって読み取り可能な少なくとも1つの媒体であって、
視聴者プロファイルとテレビジョン番組に関するデータとに基づいて、テレビジョン番組が望まれているものである確率を計算する段階と、
上記確率に基づいて、上記テレビジョン番組に関する推奨を与える段階と、を実行するよう配置されるソフトウエアを具現化する少なくとも1つの媒体。 - 上記少なくとも1つの媒体は、
特徴値のリストと、
上記リストの各要素について、その特徴値を有する番組が見られた回数と、を含むデータ構造として上記視聴者プロファイルを更に具現化する、請求項24記載の少なくとも1つの媒体。 - 上記データ構造は、上記リストの各要素に対して、その特徴値を有する番組が見られていない回数を更に含む、請求項25記載のデータ処理装置。
- 上記ソフトウエアは、ユーザが新しい番組を見るたびに、
上記リストに対して、その新しい番組に関連付けられる特徴値又はかかる特徴値のカウントを追加する第1の追加段階と、
プログラムスケジュールからランダムに選択され、見られていない、少なくとも付随するプログラムを、上記新しいプログラムに対して選択する選択段階と、
上記リストに対して、上記付随するプログラムの特徴値又はかかる特徴値のカウントを追加する第2の追加段階と、
を実行するよう配置される、請求項26記載の少なくとも1つの媒体。 - ベイズ分類器を用いて計算を行なう、請求項24記載の少なくとも1つの媒体。
- 上記ソフトウエアは、上記ベイズ分類器を使用する前に、上記視聴者プロファイルに対して雑音閾値計算を行なうよう更に適応される、請求項28記載の少なくとも1つの媒体。
- 上記視聴者プロファイルデータは、
特徴値のリストと、
上記リストの各要素に対して、その特徴値を有する番組が見られていない回数を示す負のカウントと、
上記リストの各要素に対して、その特徴値を有する番組が見られた回数を示す正のカウントとを含み、
上記雑音閾値計算は、
少なくとも1つの特別なタイプの特徴を有する少なくとも1つの特徴値を含むサブリストを選択する段階と、
上記サブリスト中の最も高い負のカウントを上記雑音閾値として選択する段階とを含み、
上記推奨は、上記視聴者プロファイル中の上記雑音閾値を越える正のカウント又は負のカウントを有する少なくとも1つの特徴値を有する群から選択される番組を含む、請求項29記載の少なくとも1つの媒体。 - 上記確率を計算する段階は、
番組が望まれているか否かについての事前確率を計算する段階と、
番組が望まれていれる場合に特徴fiが存在するかどうかの条件付き確率を計算する段階と、
上記条件付き確率及び上記事前確率に基づいて番組が望まれているか否かについての事後確率を計算する段階とを含む、請求項24記載の少なくとも1つの媒体。 - 上記視聴者プロファイルは、特徴タイプ及びかかる特徴タイプの値のリストを含み、上記特徴タイプは、
非独立であると見なされる値を有する特徴タイプの第1のセットと、
独立であると見なされる値を有する特徴タイプの第2のセットとを含む、少なくとも2つのセットから選択され、
確率を計算する段階は、
上記第2のセットからの特徴タイプに対応してベイズ分類器計算を適用する段階と、
上記第1のセットからの特徴タイプに対応して変更されたベイズ分類器計算を適用する段階とを含む、請求項24記載の少なくとも1つの媒体。 - データ処理装置において、
一組のデータを受け取る段階と、
雑音規準に従ってデータをフィルタリングする段階と、
ベイズ分類器計算に基づいて上記フィルタリングされたデータから結果を導出する段階と、
ユーザに対して上記結果を提示する段階とを実行する、コンピュータ方法。 - 上記雑音規準は、組のうちの、雑音を表わす可能性が高いと思われる特定のタイプのインスタンスの頻度に基づく、請求項33記載の方法。
- 物理的な観察値を反映し、幾つかの独立な特徴値及び幾つかの独立でない特徴値を含む特徴値と特徴値についての観察値とを含むリストを含むデータを受け取る第1の受信段階と、
特徴値を含む分類されるべき項目についてのデータを受け取る第2の受信段階と、
上記物理的な観察値を反映するデータを、
独立でないと見なされた特徴値を含む第1のセットと、
独立であると見なされた特徴値を含む第2のセットとをふくむ、少なくとも2つのセットへ分割する段階と、
上記物理的な観察値を反映するデータと、分類される項目に関するデータとに確率計算を行うための、
上記第2のセットに関する特徴値に対してベイズ分類器を適用する段階と、
上記第1のセットに関する特徴値に対して変更されたベイズ分類器計算を適用する段階と、
上記確率計算に基づいてユーザに対して、分類されるべき項目に関する結論を提示する段階とを含むデータ処理装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/498,271 US7051352B1 (en) | 2000-02-04 | 2000-02-04 | Adaptive TV program recommender |
PCT/EP2001/000816 WO2001058145A2 (en) | 2000-02-04 | 2001-01-25 | Adaptive tv program recommender |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004508740A true JP2004508740A (ja) | 2004-03-18 |
Family
ID=23980322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001557277A Pending JP2004508740A (ja) | 2000-02-04 | 2001-01-25 | 適応テレビジョン番組推奨器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7051352B1 (ja) |
EP (1) | EP1192802A2 (ja) |
JP (1) | JP2004508740A (ja) |
KR (1) | KR20010105404A (ja) |
WO (1) | WO2001058145A2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008073633A2 (en) * | 2006-11-06 | 2008-06-19 | Promethean Ventures, Llc | System and method of using movie taste for compatibility matching |
JP2019050603A (ja) * | 2009-09-23 | 2019-03-28 | ロヴィ ガイズ, インコーポレイテッド | メディアデバイスの検出領域内のユーザの自動的に検出するシステムおよび方法 |
Families Citing this family (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8352400B2 (en) | 1991-12-23 | 2013-01-08 | Hoffberg Steven M | Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore |
US8352984B2 (en) | 1998-06-12 | 2013-01-08 | Thomson Licensing | System and method for generating and managing user preference information for scheduled and stored television programs |
US6614987B1 (en) * | 1998-06-12 | 2003-09-02 | Metabyte, Inc. | Television program recording with user preference determination |
US7966078B2 (en) | 1999-02-01 | 2011-06-21 | Steven Hoffberg | Network media appliance system and method |
KR100617662B1 (ko) * | 2000-03-14 | 2006-08-28 | 엘지전자 주식회사 | 멀티미디어 데이터의 사용자 히스토리 정보 구성 및 관리 방법 그리고 이를 기반으로 하는 사용자 프로파일 정보 구성 방법 |
US7284064B1 (en) | 2000-03-21 | 2007-10-16 | Intel Corporation | Method and apparatus to determine broadcast content and scheduling in a broadcast system |
US8087051B2 (en) * | 2000-06-30 | 2011-12-27 | Thomson Licensing | Database management system and method for electronic program guide and television channel lineup organization |
US8495679B2 (en) * | 2000-06-30 | 2013-07-23 | Thomson Licensing | Method and apparatus for delivery of television programs and targeted de-coupled advertising |
KR100443673B1 (ko) | 2000-07-13 | 2004-08-09 | 엘지전자 주식회사 | 사용자 히스토리 기반 멀티미디어 서비스 시스템 |
US8302127B2 (en) * | 2000-09-25 | 2012-10-30 | Thomson Licensing | System and method for personalized TV |
EP1223757B1 (en) | 2001-01-09 | 2006-03-22 | Metabyte Networks, Inc. | System, method, and software application for targeted advertising via behavioral model clustering, and preference programming based on behavioral model clusters |
US7231652B2 (en) * | 2001-03-28 | 2007-06-12 | Koninklijke Philips N.V. | Adaptive sampling technique for selecting negative examples for artificial intelligence applications |
US8818871B2 (en) * | 2001-06-21 | 2014-08-26 | Thomson Licensing | Method and system for electronic purchases using an intelligent data carrier medium, electronic coupon system, and interactive TV infrastructure |
US20030066068A1 (en) * | 2001-09-28 | 2003-04-03 | Koninklijke Philips Electronics N.V. | Individual recommender database using profiles of others |
US8943540B2 (en) | 2001-09-28 | 2015-01-27 | Intel Corporation | Method and apparatus to provide a personalized channel |
US20030066067A1 (en) * | 2001-09-28 | 2003-04-03 | Koninklijke Philips Electronics N.V. | Individual recommender profile modification using profiles of others |
US20030066071A1 (en) * | 2001-10-03 | 2003-04-03 | Koninklijke Philips Electronics N.V. | Program recommendation method and system utilizing a viewing history of commercials |
GB2387676A (en) * | 2002-04-15 | 2003-10-22 | Agena Ltd | A method of recommending television programmes |
US7130866B2 (en) | 2002-07-30 | 2006-10-31 | Koninklijke Philips Electronics N.V. | Controlling the growth of a feature frequency profile by deleting selected frequency counts of features of events |
JP3712124B2 (ja) * | 2002-10-16 | 2005-11-02 | ソニー株式会社 | 情報処理装置および情報処理方法、記録媒体、並びにプログラム |
US8561096B1 (en) * | 2003-01-08 | 2013-10-15 | The Directv Group, Inc. | Distributed storage and processing of viewing usage data |
PL1625716T3 (pl) | 2003-05-06 | 2008-05-30 | Apple Inc | System i usługa przesyłania wiadomości |
JP2007513535A (ja) * | 2003-05-30 | 2007-05-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 視聴状態に応じたテレビ番組の記録のための表示優先度の確認 |
DE602004013771D1 (de) * | 2003-06-03 | 2008-06-26 | Koninkl Philips Electronics Nv | Verfahren und vorrichtung zum generieren eines nutzerprofils basierend auf spiellisten |
US7786987B2 (en) * | 2003-09-25 | 2010-08-31 | The Nielsen Company (Us), Llc | Methods and apparatus to detect an operating state of a display based on visible light |
US9027043B2 (en) * | 2003-09-25 | 2015-05-05 | The Nielsen Company (Us), Llc | Methods and apparatus to detect an operating state of a display |
EP1531458B1 (en) * | 2003-11-12 | 2008-04-16 | Sony Deutschland GmbH | Apparatus and method for automatic extraction of important events in audio signals |
CN1294755C (zh) * | 2004-01-19 | 2007-01-10 | 大唐电信科技股份有限公司光通信分公司 | 多媒体终端 |
US20080256579A1 (en) * | 2004-03-29 | 2008-10-16 | Koninklijke Philips Electronics, N.V. | Assisted User Control in Recommenders |
US20060015895A1 (en) * | 2004-06-30 | 2006-01-19 | Stone Christopher J | Method and system for avoiding undesirable portions of a recorded audiovisual program |
US8943537B2 (en) * | 2004-07-21 | 2015-01-27 | Cox Communications, Inc. | Method and system for presenting personalized television program recommendation to viewers |
CN102523063A (zh) | 2004-08-09 | 2012-06-27 | 尼尔森(美国)有限公司 | 用于监视来自各种源的音频/视觉内容的方法及装置 |
US7533399B2 (en) * | 2004-12-02 | 2009-05-12 | Panasonic Corporation | Programming guide content collection and recommendation system for viewing on a portable device |
JP2008525875A (ja) * | 2004-12-23 | 2008-07-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | コンテンツを推薦するための方法及び装置 |
TW200704183A (en) * | 2005-01-27 | 2007-01-16 | Matrix Tv | Dynamic mosaic extended electronic programming guide for television program selection and display |
WO2006079974A2 (en) * | 2005-01-27 | 2006-08-03 | Koninklijke Philips Electronics N.V. | Assisted user control in recommenders |
US7693887B2 (en) * | 2005-02-01 | 2010-04-06 | Strands, Inc. | Dynamic identification of a new set of media items responsive to an input mediaset |
US7734569B2 (en) | 2005-02-03 | 2010-06-08 | Strands, Inc. | Recommender system for identifying a new set of media items responsive to an input set of media items and knowledge base metrics |
EP1844386A4 (en) | 2005-02-04 | 2009-11-25 | Strands Inc | NAVIGATION SYSTEM IN A MUSICAL CATALOG USING MEASUREMENTS FOR CORRELATION OF A KNOWLEDGE BASE OF MEDIA SETS |
WO2006114451A1 (es) | 2005-04-22 | 2006-11-02 | Musicstrands, S.A.U. | Sistema y método para adquirir y agregar datos sobre la reproducción de elementos o ficheros multimedia |
KR20060131471A (ko) * | 2005-06-16 | 2006-12-20 | 삼성전자주식회사 | 고밀도 광디스크의 리드인 영역 내 오.피.씨 데이터관리방법 |
US7870582B2 (en) * | 2005-07-13 | 2011-01-11 | Broadcom Corporation | Method for providing long term program guide data in a video recorder system with access to only short term program guide data |
US8875196B2 (en) | 2005-08-13 | 2014-10-28 | Webtuner Corp. | System for network and local content access |
EP1932263A4 (en) | 2005-08-16 | 2012-04-04 | Nielsen Media Res Inc | METHOD AND DEVICES FOR DETECTING ON / OFF OF A DISPLAY DEVICE |
JP2007060398A (ja) * | 2005-08-25 | 2007-03-08 | Toshiba Corp | 番組情報提供装置、番組情報提供方法及びそのプログラム |
US7877387B2 (en) | 2005-09-30 | 2011-01-25 | Strands, Inc. | Systems and methods for promotional media item selection and promotional program unit generation |
US7962505B2 (en) | 2005-12-19 | 2011-06-14 | Strands, Inc. | User to user recommender |
US20070244880A1 (en) * | 2006-02-03 | 2007-10-18 | Francisco Martin | Mediaset generation system |
US8187293B2 (en) * | 2006-02-06 | 2012-05-29 | Novartis Ag | Microsurgical instrument |
BRPI0708030A2 (pt) * | 2006-02-10 | 2011-05-17 | Strands Inc | sistemas e métodos para priorizar arquivos de reprodutor de mìdia móvel |
KR20080100342A (ko) | 2006-02-10 | 2008-11-17 | 스트랜즈, 아이엔씨. | 동적 양방향 엔터테인먼트 |
CN101395559A (zh) | 2006-03-01 | 2009-03-25 | Tivo有限公司 | 推荐的记录和下载引导 |
US8707369B2 (en) * | 2006-03-01 | 2014-04-22 | Tivo Inc. | Recommended recording and downloading guides |
WO2007103923A2 (en) | 2006-03-06 | 2007-09-13 | La La Media, Inc | Article trading process |
US8682654B2 (en) * | 2006-04-25 | 2014-03-25 | Cyberlink Corp. | Systems and methods for classifying sports video |
AU2007254220B2 (en) * | 2006-05-18 | 2012-03-29 | The Nielsen Company (Us), Llc | Methods and apparatus for cooperator installed meters |
US8520850B2 (en) | 2006-10-20 | 2013-08-27 | Time Warner Cable Enterprises Llc | Downloadable security and protection methods and apparatus |
JP4358219B2 (ja) * | 2006-11-21 | 2009-11-04 | 株式会社東芝 | 番組情報提供装置、番組情報提供方法及びそのプログラム |
US8621540B2 (en) | 2007-01-24 | 2013-12-31 | Time Warner Cable Enterprises Llc | Apparatus and methods for provisioning in a download-enabled system |
JP2008187575A (ja) * | 2007-01-31 | 2008-08-14 | Sony Corp | 情報処理装置および方法、並びにプログラム |
US8671000B2 (en) | 2007-04-24 | 2014-03-11 | Apple Inc. | Method and arrangement for providing content to multimedia devices |
US8099315B2 (en) | 2007-06-05 | 2012-01-17 | At&T Intellectual Property I, L.P. | Interest profiles for audio and/or video streams |
JP5251039B2 (ja) * | 2007-08-23 | 2013-07-31 | ソニー株式会社 | 情報処理装置、情報処理方法、およびプログラム |
US20090064229A1 (en) * | 2007-08-30 | 2009-03-05 | Microsoft Corporation | Recommendation from stochastic analysis |
US20090106797A1 (en) * | 2007-10-22 | 2009-04-23 | Electronic Data Systems Corporation | Apparatus, and associated method, for providing personalized channel content |
US8832753B2 (en) | 2008-01-16 | 2014-09-09 | Apple Inc. | Filtering and tailoring multimedia content based on observed user behavior |
US8839327B2 (en) * | 2008-06-25 | 2014-09-16 | At&T Intellectual Property Ii, Lp | Method and apparatus for presenting media programs |
US9015778B2 (en) | 2008-06-25 | 2015-04-21 | AT&T Intellectual Property I. LP | Apparatus and method for media on demand commentaries |
US20100017725A1 (en) * | 2008-07-21 | 2010-01-21 | Strands, Inc. | Ambient collage display of digital media content |
US8601003B2 (en) | 2008-09-08 | 2013-12-03 | Apple Inc. | System and method for playlist generation based on similarity data |
US8180712B2 (en) | 2008-09-30 | 2012-05-15 | The Nielsen Company (Us), Llc | Methods and apparatus for determining whether a media presentation device is in an on state or an off state |
EP2374066A4 (en) | 2008-10-02 | 2013-12-04 | Apple Inc | REAL-TIME VISUALIZATION OF USER ACCOUNT OF MEDIA ARTICLES |
US8793717B2 (en) | 2008-10-31 | 2014-07-29 | The Nielsen Company (Us), Llc | Probabilistic methods and apparatus to determine the state of a media device |
US9357247B2 (en) | 2008-11-24 | 2016-05-31 | Time Warner Cable Enterprises Llc | Apparatus and methods for content delivery and message exchange across multiple content delivery networks |
US8204987B2 (en) * | 2008-12-09 | 2012-06-19 | At&T Intellectual Property I, L.P. | Providing reports of received multimedia programs |
US20100169908A1 (en) * | 2008-12-30 | 2010-07-01 | Nielsen Christen V | Methods and apparatus to enforce a power off state of an audience measurement device during shipping |
US8375404B2 (en) * | 2008-12-30 | 2013-02-12 | The Nielsen Company (Us), Llc | Methods and apparatus to enforce a power off state of an audience measurement device during shipping |
US8156517B2 (en) * | 2008-12-30 | 2012-04-10 | The Nielsen Company (U.S.), Llc | Methods and apparatus to enforce a power off state of an audience measurement device during shipping |
US9276761B2 (en) * | 2009-03-04 | 2016-03-01 | At&T Intellectual Property I, L.P. | Method and apparatus for group media consumption |
US8275623B2 (en) | 2009-03-06 | 2012-09-25 | At&T Intellectual Property I, L.P. | Method and apparatus for analyzing discussion regarding media programs |
US9215423B2 (en) | 2009-03-30 | 2015-12-15 | Time Warner Cable Enterprises Llc | Recommendation engine apparatus and methods |
US11076189B2 (en) | 2009-03-30 | 2021-07-27 | Time Warner Cable Enterprises Llc | Personal media channel apparatus and methods |
PL2251994T3 (pl) | 2009-05-14 | 2014-05-30 | Advanced Digital Broadcast Sa | System i sposób optymalizowania rekomendacji treści |
US9602864B2 (en) | 2009-06-08 | 2017-03-21 | Time Warner Cable Enterprises Llc | Media bridge apparatus and methods |
US20110060738A1 (en) | 2009-09-08 | 2011-03-10 | Apple Inc. | Media item clustering based on similarity data |
US8266652B2 (en) * | 2009-10-15 | 2012-09-11 | At&T Intellectual Property I, L.P. | Apparatus and method for transmitting media content |
US8396055B2 (en) | 2009-10-20 | 2013-03-12 | Time Warner Cable Inc. | Methods and apparatus for enabling media functionality in a content-based network |
US9830605B2 (en) * | 2009-10-30 | 2017-11-28 | At&T Intellectual Property I, L.P. | Apparatus and method for product marketing |
US10264029B2 (en) | 2009-10-30 | 2019-04-16 | Time Warner Cable Enterprises Llc | Methods and apparatus for packetized content delivery over a content delivery network |
US8224756B2 (en) * | 2009-11-05 | 2012-07-17 | At&T Intellectual Property I, L.P. | Apparatus and method for managing a social network |
US8760469B2 (en) | 2009-11-06 | 2014-06-24 | At&T Intellectual Property I, L.P. | Apparatus and method for managing marketing |
US8316303B2 (en) | 2009-11-10 | 2012-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for presenting media programs |
US9031379B2 (en) * | 2009-11-10 | 2015-05-12 | At&T Intellectual Property I, L.P. | Apparatus and method for transmitting media content |
US10708663B2 (en) | 2009-11-13 | 2020-07-07 | At&T Intellectual Property I, L.P. | Apparatus and method for media on demand commentaries |
US8387088B2 (en) * | 2009-11-13 | 2013-02-26 | At&T Intellectual Property I, Lp | Method and apparatus for presenting media programs |
US8373741B2 (en) * | 2009-11-20 | 2013-02-12 | At&T Intellectual Property I, Lp | Apparatus and method for collaborative network in an enterprise setting |
US9100550B2 (en) | 2009-11-20 | 2015-08-04 | At&T Intellectual Property I, L.P. | Apparatus and method for managing a social network |
US8839306B2 (en) | 2009-11-20 | 2014-09-16 | At&T Intellectual Property I, Lp | Method and apparatus for presenting media programs |
US9519728B2 (en) | 2009-12-04 | 2016-12-13 | Time Warner Cable Enterprises Llc | Apparatus and methods for monitoring and optimizing delivery of content in a network |
US9094726B2 (en) | 2009-12-04 | 2015-07-28 | At&T Intellectual Property I, Lp | Apparatus and method for tagging media content and managing marketing |
US9342661B2 (en) | 2010-03-02 | 2016-05-17 | Time Warner Cable Enterprises Llc | Apparatus and methods for rights-managed content and data delivery |
US9906838B2 (en) | 2010-07-12 | 2018-02-27 | Time Warner Cable Enterprises Llc | Apparatus and methods for content delivery and message exchange across multiple content delivery networks |
US8997136B2 (en) | 2010-07-22 | 2015-03-31 | Time Warner Cable Enterprises Llc | Apparatus and methods for packetized content delivery over a bandwidth-efficient network |
JP5815534B2 (ja) | 2010-08-31 | 2015-11-17 | アトナープ株式会社 | センサーにより測定されたデータから候補を見つける方法および装置 |
US8495683B2 (en) | 2010-10-21 | 2013-07-23 | Right Brain Interface Nv | Method and apparatus for content presentation in a tandem user interface |
EP2477333A1 (en) * | 2010-12-23 | 2012-07-18 | Harman Becker Automotive Systems GmbH | Broadcasted program playback method |
US9602414B2 (en) | 2011-02-09 | 2017-03-21 | Time Warner Cable Enterprises Llc | Apparatus and methods for controlled bandwidth reclamation |
US8826313B2 (en) | 2011-03-04 | 2014-09-02 | CSC Holdings, LLC | Predictive content placement on a managed services systems |
US9420320B2 (en) | 2011-04-01 | 2016-08-16 | The Nielsen Company (Us), Llc | Methods, apparatus and articles of manufacture to estimate local market audiences of media content |
US9141982B2 (en) | 2011-04-27 | 2015-09-22 | Right Brain Interface Nv | Method and apparatus for collaborative upload of content |
US8584166B2 (en) * | 2011-05-11 | 2013-11-12 | Verizon Patent And Licensing Inc. | Probabilistic-based content recommender |
WO2012158904A1 (en) | 2011-05-17 | 2012-11-22 | Webtuner Corporation | System and method for scalable, high accuracy, sensor and id based audience measurement system |
AU2012258732A1 (en) | 2011-05-24 | 2013-12-12 | WebTuner, Corporation | System and method to increase efficiency and speed of analytics report generation in Audience Measurement Systems |
CN103703786A (zh) | 2011-05-26 | 2014-04-02 | 韦伯图纳公司 | 高度可伸缩的具有客户端事件预处理的观众测量系统 |
CN103918277B (zh) | 2011-08-26 | 2017-12-26 | 谷歌公司 | 用于确定媒体项正被呈现的置信水平的系统和方法 |
US8433815B2 (en) | 2011-09-28 | 2013-04-30 | Right Brain Interface Nv | Method and apparatus for collaborative upload of content |
US8983905B2 (en) | 2011-10-03 | 2015-03-17 | Apple Inc. | Merging playlists from multiple sources |
US8789109B2 (en) * | 2011-10-17 | 2014-07-22 | Electronics And Telecommunications Research Institute | System for recommending favorite channel/program based on TV watching pattern and method thereof |
CA2859560A1 (en) | 2011-12-19 | 2013-06-27 | The Nielsen Company (Us), Llc | Methods and apparatus for crediting a media presentation device |
US20150156545A1 (en) * | 2012-01-04 | 2015-06-04 | Thomson Licensing | Method and system for providing media recommendations |
KR101471940B1 (ko) | 2012-02-03 | 2014-12-24 | 한국과학기술원 | Tv 프로그램 콘텐츠와 웹 콘텐츠의 연계추천 장치, 시스템, 방법 및 그 방법을 실행하는 프로그램이 기록된 컴퓨터로 읽을 수 있는 기록매체 |
US9692535B2 (en) | 2012-02-20 | 2017-06-27 | The Nielsen Company (Us), Llc | Methods and apparatus for automatic TV on/off detection |
US9467723B2 (en) | 2012-04-04 | 2016-10-11 | Time Warner Cable Enterprises Llc | Apparatus and methods for automated highlight reel creation in a content delivery network |
US10158898B2 (en) | 2012-07-26 | 2018-12-18 | Comcast Cable Communications, Llc | Customized options for consumption of content |
US20140082645A1 (en) | 2012-09-14 | 2014-03-20 | Peter Stern | Apparatus and methods for providing enhanced or interactive features |
US9565472B2 (en) | 2012-12-10 | 2017-02-07 | Time Warner Cable Enterprises Llc | Apparatus and methods for content transfer protection |
WO2014116774A1 (en) | 2013-01-24 | 2014-07-31 | Thomson Licensing | Method and system for content discovery |
CN104683852B (zh) * | 2013-11-29 | 2018-04-06 | 国际商业机器公司 | 处理广播信息的方法和设备 |
US9510057B2 (en) | 2014-01-03 | 2016-11-29 | Gracenote, Inc. | Interactive programming guide |
US9621940B2 (en) | 2014-05-29 | 2017-04-11 | Time Warner Cable Enterprises Llc | Apparatus and methods for recording, accessing, and delivering packetized content |
US10116676B2 (en) | 2015-02-13 | 2018-10-30 | Time Warner Cable Enterprises Llc | Apparatus and methods for data collection, analysis and service modification based on online activity |
US9924224B2 (en) | 2015-04-03 | 2018-03-20 | The Nielsen Company (Us), Llc | Methods and apparatus to determine a state of a media presentation device |
US10404758B2 (en) | 2016-02-26 | 2019-09-03 | Time Warner Cable Enterprises Llc | Apparatus and methods for centralized message exchange in a user premises device |
US10210459B2 (en) | 2016-06-29 | 2019-02-19 | The Nielsen Company (Us), Llc | Methods and apparatus to determine a conditional probability based on audience member probability distributions for media audience measurement |
US10075753B2 (en) | 2016-12-31 | 2018-09-11 | Turner Broadcasting System, Inc. | Dynamic scheduling and channel creation based on user selection |
US11134309B2 (en) | 2016-12-31 | 2021-09-28 | Turner Broadcasting System, Inc. | Creation of channels using pre-encoded media assets |
US11962821B2 (en) | 2016-12-31 | 2024-04-16 | Turner Broadcasting System, Inc. | Publishing a disparate live media output stream using pre-encoded media assets |
US10425700B2 (en) * | 2016-12-31 | 2019-09-24 | Turner Broadcasting System, Inc. | Dynamic scheduling and channel creation based on real-time or near-real-time content context analysis |
US11038932B2 (en) | 2016-12-31 | 2021-06-15 | Turner Broadcasting System, Inc. | System for establishing a shared media session for one or more client devices |
US10965967B2 (en) | 2016-12-31 | 2021-03-30 | Turner Broadcasting System, Inc. | Publishing a disparate per-client live media output stream based on dynamic insertion of targeted non-programming content and customized programming content |
US11546400B2 (en) | 2016-12-31 | 2023-01-03 | Turner Broadcasting System, Inc. | Generating a live media segment asset |
US12022142B2 (en) | 2016-12-31 | 2024-06-25 | Turner Broadcasting System, Inc. | Publishing a plurality of disparate live media output stream manifests using live input streams and pre-encoded media assets |
US10694231B2 (en) | 2016-12-31 | 2020-06-23 | Turner Broadcasting System, Inc. | Dynamic channel versioning in a broadcast air chain based on user preferences |
US10992973B2 (en) | 2016-12-31 | 2021-04-27 | Turner Broadcasting System, Inc. | Publishing a plurality of disparate live media output stream manifests using live input streams and pre-encoded media assets |
US11109086B2 (en) | 2016-12-31 | 2021-08-31 | Turner Broadcasting System, Inc. | Publishing disparate live media output streams in mixed mode |
US11051074B2 (en) | 2016-12-31 | 2021-06-29 | Turner Broadcasting System, Inc. | Publishing disparate live media output streams using live input streams |
US11051061B2 (en) | 2016-12-31 | 2021-06-29 | Turner Broadcasting System, Inc. | Publishing a disparate live media output stream using pre-encoded media assets |
US11503352B2 (en) | 2016-12-31 | 2022-11-15 | Turner Broadcasting System, Inc. | Dynamic scheduling and channel creation based on external data |
US10645462B2 (en) | 2016-12-31 | 2020-05-05 | Turner Broadcasting System, Inc. | Dynamic channel versioning in a broadcast air chain |
US10856016B2 (en) | 2016-12-31 | 2020-12-01 | Turner Broadcasting System, Inc. | Publishing disparate live media output streams in mixed mode based on user selection |
US11245964B2 (en) | 2017-05-25 | 2022-02-08 | Turner Broadcasting System, Inc. | Management and delivery of over-the-top services over different content-streaming systems |
EP3410732A1 (en) | 2017-05-30 | 2018-12-05 | Advanced Digital Broadcast S.A. | A system and a method for monitoring activity of a user during content presentation |
US10936653B2 (en) | 2017-06-02 | 2021-03-02 | Apple Inc. | Automatically predicting relevant contexts for media items |
US11721090B2 (en) * | 2017-07-21 | 2023-08-08 | Samsung Electronics Co., Ltd. | Adversarial method and system for generating user preferred contents |
US11082734B2 (en) | 2018-12-21 | 2021-08-03 | Turner Broadcasting System, Inc. | Publishing a disparate live media output stream that complies with distribution format regulations |
US10880606B2 (en) | 2018-12-21 | 2020-12-29 | Turner Broadcasting System, Inc. | Disparate live media output stream playout and broadcast distribution |
US10873774B2 (en) | 2018-12-22 | 2020-12-22 | Turner Broadcasting System, Inc. | Publishing a disparate live media output stream manifest that includes one or more media segments corresponding to key events |
CN112333515B (zh) * | 2020-07-30 | 2023-01-20 | 深圳Tcl新技术有限公司 | 推荐节目的显示方法、装置、设备及可读存储介质 |
US12067779B1 (en) * | 2022-02-09 | 2024-08-20 | Amazon Technologies, Inc. | Contrastive learning of scene representation guided by video similarities |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4706121B1 (en) | 1985-07-12 | 1993-12-14 | Insight Telecast, Inc. | Tv schedule system and process |
US5223924A (en) | 1992-05-27 | 1993-06-29 | North American Philips Corporation | System and method for automatically correlating user preferences with a T.V. program information database |
EP0920207B2 (en) | 1992-12-09 | 2006-09-27 | Sedna Patent Services, LLC | Interactive terminal for television delivery system |
JP3297914B2 (ja) | 1993-01-08 | 2002-07-02 | ソニー株式会社 | テレビジョン受像機 |
US5410344A (en) | 1993-09-22 | 1995-04-25 | Arrowsmith Technologies, Inc. | Apparatus and method of selecting video programs based on viewers' preferences |
DE4406091A1 (de) | 1994-02-25 | 1995-08-31 | Grundig Emv | Empfänger mit einer Vorrichtung zur Erzeugung einer individuellen Programmvorschau |
JP3500741B2 (ja) | 1994-03-01 | 2004-02-23 | ソニー株式会社 | テレビ放送の選局方法及び選局装置 |
KR100348915B1 (ko) | 1994-05-12 | 2002-12-26 | 마이크로소프트 코포레이션 | 텔레비젼프로그램선택방법및그시스템 |
GB2289782B (en) | 1994-05-23 | 1998-02-04 | Gareth Bertram Stevens | Improvements in or relating to television apparatus |
US5534911A (en) | 1994-11-02 | 1996-07-09 | Levitan; Gutman | Virtual personal channel in a television system |
FR2726718B1 (fr) * | 1994-11-08 | 1996-12-27 | Lacrosse Philippe | Dispositif d'affichage d'informations sur un televiseur |
US5758257A (en) * | 1994-11-29 | 1998-05-26 | Herz; Frederick | System and method for scheduling broadcast of and access to video programs and other data using customer profiles |
CA2166434A1 (en) | 1995-01-04 | 1996-07-05 | Fujio Noguchi | Method and apparatus for providing programming information |
JP4001942B2 (ja) | 1995-02-06 | 2007-10-31 | ソニー株式会社 | 受信装置および受信方法、並びに放送システムおよび放送方法 |
GB9504376D0 (en) | 1995-03-04 | 1995-04-26 | Televitesse Systems Inc | Automatic broadcast monitoring system |
CA2170429C (en) | 1995-03-28 | 2000-04-25 | Stephen Gregory Eick | Method and apparatus for finding and selecting a desired data item from a large schedule of data items using a tv set and a controller similar to a tv-remote-control |
US5880768A (en) | 1995-04-06 | 1999-03-09 | Prevue Networks, Inc. | Interactive program guide systems and processes |
US5768422A (en) * | 1995-08-08 | 1998-06-16 | Apple Computer, Inc. | Method for training an adaptive statistical classifier to discriminate against inproper patterns |
US5758259A (en) * | 1995-08-31 | 1998-05-26 | Microsoft Corporation | Automated selective programming guide |
US5867226A (en) * | 1995-11-17 | 1999-02-02 | Thomson Consumer Electronics, Inc. | Scheduler employing a predictive agent for use in a television receiver |
US5790935A (en) * | 1996-01-30 | 1998-08-04 | Hughes Aircraft Company | Virtual on-demand digital information delivery system and method |
US5635989A (en) | 1996-02-13 | 1997-06-03 | Hughes Electronics | Method and apparatus for sorting and searching a television program guide |
US5704017A (en) * | 1996-02-16 | 1997-12-30 | Microsoft Corporation | Collaborative filtering utilizing a belief network |
US5828419A (en) | 1996-02-29 | 1998-10-27 | Hughes Electronics | Method and apparatus for generating television program guides utilizing icons |
US5867799A (en) | 1996-04-04 | 1999-02-02 | Lang; Andrew K. | Information system and method for filtering a massive flow of information entities to meet user information classification needs |
US5848396A (en) * | 1996-04-26 | 1998-12-08 | Freedom Of Information, Inc. | Method and apparatus for determining behavioral profile of a computer user |
JP3793975B2 (ja) | 1996-05-20 | 2006-07-05 | ソニー株式会社 | 階層型メニューにおけるカスタマイズメニューの登録方法及びカスタマイズメニューを備えた映像機器 |
JP4478214B2 (ja) * | 1996-05-29 | 2010-06-09 | ソニー株式会社 | 番組ガイド制御装置及び方法 |
AU3294997A (en) | 1996-06-13 | 1998-01-07 | Starsight Telecast Incorporated | Method and apparatus for searching a guide using program characteristics |
US5801787A (en) | 1996-06-14 | 1998-09-01 | Starsight Telecast, Inc. | Television schedule system and method of operation for multiple program occurrences |
DE69735516T2 (de) | 1996-10-08 | 2006-10-26 | Matsushita Electric Industrial Co., Ltd., Kadoma | Informationsempfangsverfahren und dieses benutzende Vorrichtung |
CN1139252C (zh) | 1996-11-15 | 2004-02-18 | 曼德波特有限公司 | 用于在电子节目指南中查找节目的方法和装置 |
US5801747A (en) * | 1996-11-15 | 1998-09-01 | Hyundai Electronics America | Method and apparatus for creating a television viewer profile |
US6163316A (en) | 1997-01-03 | 2000-12-19 | Texas Instruments Incorporated | Electronic programming system and method |
GB2325537B8 (en) | 1997-03-31 | 2000-01-31 | Microsoft Corp | Query-based electronic program guide |
US6286141B1 (en) | 1997-05-22 | 2001-09-04 | Soundview Technologies Incorporated | Personal editing system |
EP0986903B1 (en) | 1997-06-06 | 2003-05-07 | Thomson Consumer Electronics, Inc. | System and method for sorting program guide information |
IL121230A (en) * | 1997-07-03 | 2004-05-12 | Nds Ltd | Intelligent electronic program guide |
US6005597A (en) * | 1997-10-27 | 1999-12-21 | Disney Enterprises, Inc. | Method and apparatus for program selection |
US6236978B1 (en) * | 1997-11-14 | 2001-05-22 | New York University | System and method for dynamic profiling of users in one-to-one applications |
US6185534B1 (en) | 1998-03-23 | 2001-02-06 | Microsoft Corporation | Modeling emotion and personality in a computer user interface |
US6317722B1 (en) * | 1998-09-18 | 2001-11-13 | Amazon.Com, Inc. | Use of electronic shopping carts to generate personal recommendations |
US6412012B1 (en) * | 1998-12-23 | 2002-06-25 | Net Perceptions, Inc. | System, method, and article of manufacture for making a compatibility-aware recommendations to a user |
US6727914B1 (en) * | 1999-12-17 | 2004-04-27 | Koninklijke Philips Electronics N.V. | Method and apparatus for recommending television programming using decision trees |
-
2000
- 2000-02-04 US US09/498,271 patent/US7051352B1/en not_active Expired - Fee Related
-
2001
- 2001-01-25 KR KR1020017012654A patent/KR20010105404A/ko not_active Application Discontinuation
- 2001-01-25 WO PCT/EP2001/000816 patent/WO2001058145A2/en not_active Application Discontinuation
- 2001-01-25 EP EP01909693A patent/EP1192802A2/en not_active Withdrawn
- 2001-01-25 JP JP2001557277A patent/JP2004508740A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008073633A2 (en) * | 2006-11-06 | 2008-06-19 | Promethean Ventures, Llc | System and method of using movie taste for compatibility matching |
WO2008073633A3 (en) * | 2006-11-06 | 2008-09-04 | Promethean Ventures Llc | System and method of using movie taste for compatibility matching |
JP2019050603A (ja) * | 2009-09-23 | 2019-03-28 | ロヴィ ガイズ, インコーポレイテッド | メディアデバイスの検出領域内のユーザの自動的に検出するシステムおよび方法 |
JP2020167730A (ja) * | 2009-09-23 | 2020-10-08 | ロヴィ ガイズ, インコーポレイテッド | メディアデバイスの検出領域内のユーザの自動的に検出するシステムおよび方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1192802A2 (en) | 2002-04-03 |
KR20010105404A (ko) | 2001-11-28 |
WO2001058145A2 (en) | 2001-08-09 |
WO2001058145A3 (en) | 2002-01-10 |
US7051352B1 (en) | 2006-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004508740A (ja) | 適応テレビジョン番組推奨器 | |
JP5421469B2 (ja) | 対象を定めたテレビ番組配信のためのシステム、プリファレンスエンジン、機械可読媒体およびテレビ視聴習慣を判断する方法 | |
US7509662B2 (en) | Method and apparatus for generation of a preferred broadcasted programs list | |
US7240355B1 (en) | Subscriber characterization system with filters | |
KR100870833B1 (ko) | 복합 이용자 프로파일 생성 시스템과 방법 및 컴퓨터 판독 가능한 기록 매체 | |
JP6235556B2 (ja) | コンテンツ提示方法、コンテンツ提示装置及びプログラム | |
US20040003392A1 (en) | Method and apparatus for finding and updating user group preferences in an entertainment system | |
US20020083451A1 (en) | User-friendly electronic program guide based on subscriber characterizations | |
US20040073919A1 (en) | Commercial recommender | |
JP5032477B2 (ja) | ユーザに関心を引くアイテムを推奨するシステムおよび方法 | |
US7441260B1 (en) | Television program recommender with automatic identification of changing viewer preferences | |
US20030051240A1 (en) | Four-way recommendation method and system including collaborative filtering | |
US20020186867A1 (en) | Filtering of recommendations employing personal characteristics of users | |
KR20020033202A (ko) | 3가지 방식의 매체 추천 방법 및 시스템 명세 | |
KR20040037246A (ko) | 커머셜의 시청 히스토리를 이용하는 프로그램 추천 방법및 시스템 | |
JP2005531237A (ja) | 視聴行動を局所解析する方法、システム及びプログラム・プロダクト | |
CN112784069B (zh) | 一种iptv内容智能推荐系统以及方法 | |
EP2357804A1 (en) | Personal TV content recommendation list generating method | |
JP2007049322A (ja) | 番組推薦装置 | |
JP4701970B2 (ja) | ユーザ嗜好抽出装置およびテレビ番組推薦装置 | |
JP4359878B2 (ja) | 操作履歴情報収集方法及び操作履歴情報収集装置 |