JP2004506296A - 空間光変調器によって駆動される光電陰極を源とする電子ビームパターン発生器 - Google Patents

空間光変調器によって駆動される光電陰極を源とする電子ビームパターン発生器 Download PDF

Info

Publication number
JP2004506296A
JP2004506296A JP2002518493A JP2002518493A JP2004506296A JP 2004506296 A JP2004506296 A JP 2004506296A JP 2002518493 A JP2002518493 A JP 2002518493A JP 2002518493 A JP2002518493 A JP 2002518493A JP 2004506296 A JP2004506296 A JP 2004506296A
Authority
JP
Japan
Prior art keywords
radiation
photocathode
modulator
electron beams
spatial light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002518493A
Other languages
English (en)
Inventor
アレン ポール シー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2004506296A publication Critical patent/JP2004506296A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70375Multiphoton lithography or multiphoton photopolymerization; Imaging systems comprising means for converting one type of radiation into another type of radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31777Lithography by projection
    • H01J2237/31779Lithography by projection from patterned photocathode

Abstract

本発明は、多重ビームリトグラフィに典型的に使用されるような、所望の空間パターンを有する多重電子ビームの源を提供する。典型的には紫外放射である放射を変調器上へ導き、変調器から光陰極上へ導く。典型的には空間光変調器である変調器は、放射に空間パターンを与える。放射に与えられたパターンは、光陰極によって生成されるビームのような多重電子ビームに伝えられる。1つの結果として、従来の単一ビームシステムよりも高いスループットを有する電子ビームリトグラフィシステムが得られる。多重電子ビームを形成させる方法、及びこれらの多重電子ビームを用いてターゲットをパターン化する方法も開示される。マイクロミラーアレイが好ましい変調器である。水銀アーク灯からの紫外放射を変調器によってテルル化セシウム光陰極上へ導くことが、放射源と光陰極との好ましい組合わせである。

Description

【0001】
(技術分野)
本発明は、電子ビームリソグラフィに関する。詳述すれば、本発明は、光電陰極に衝突させて多重電子ビームを形成させ、それによって電子ビームリソグラフィックシステムのスループットを増大させるための、典型的には空間光変調器によって変調された紫外放射である変調された電磁放射の発生、及びその使用に関する。
【0002】
(従来の技術)
電子ビーム(eビーム)リソグラフィは、適当なレジストで被覆された基体上へ電子のビームを導くことによってパターン化するための商業的に重要な技術である。露出されたレジストを現像し、次いでエッチングすることによって材料が選択的に除去され、電子衝撃に曝された領域(ポジレジスト)に、または電子衝撃に曝されなかった領域(ネガレジスト)に所望のパターンが作成される。eビームリソグラフィは、一般的にはフォトリソグラフィに使用されるマスクを製造するために使用されているが、集積回路ウェーハ及び他のターゲットをeビームに直接露出させることも遂行される。
【0003】
レジストの露出は、典型的にレジストで被覆された基体上へ、1つまたはそれ以上の集束(された)電子のビームを導くことによって遂行される。電子オプティックスを制御する(典型的には、コンピュータ制御)ことによって、プロセス設計者は、露出を必要とする基体の領域へeビームを導き、その基体を含むステージの機械的並進に対するビームのふれを補償し、所望のパターンで基体を走査またはタイルし、基体上の何れかの特定の画素に衝突させる電子の線量を制御し(オフ、オン、またはグレースケール)、そしてそれ以外に所望のパターンを発生させるために衝突させるeビームの位置及び線量を指令することができる。集束ビームリソグラフィの他に、投射(プロジェクション)eビームリソグラフィ(“SCALPEL”等)も使用される(例えば、Yamashita et. al. Jpn. J. Appl. Phys. Vol 35 (1996) pp. 6404−6414及び Sohda et. al. J. Vac. Sci. Technol. B 13(6), Nov./Dec. 1995 pp. 2419−2423を参照されたい)。以下、説明を明確にするために、特定的に、複数の集束電子ビームを使用するeビームリソグラフィによる基体のパターン化に関して詳述する。しかしながら、多重電子ビームの形成に関連する本発明は、本質的に集束ビームリソグラフィに限定されるものではなく、当業者ならば以下の説明から適用可能な他の技術分野も明白になるであろう。
【0004】
集束電子ビームによって遂行されるリソグラフィの1つの重大な欠陥は、マスクを通して露出さて遂行されるフォトリソグラフィに比して、得られるスループットが比較的低いことである。集束電子ビームリソグラフィは、eビームの衝撃に基体を完全に露出させるためには数時間(多分、30時間程度)を必要とする。eビーム装置は、このプロセスの間適切且つ連続的に機能しなければならない。露出中に装置が故障すると、製品は拒絶され、平均スループットが低下し、そして総合コストを更に増加させることになる。従って、eビームリソグラフィを加速させるための種々の手段が提唱されており、それらの1つは基体上へ平行に導かれる多重集束電子ビームの使用に関している。例えば、Grovesら(米国特許第5,981,962号)、Linら(米国特許第5,539,568号)、Muellerら(米国特許第4,856,037号)、及びそれらの参照文献を参照されたい。電子投射ディスプレイ技術の最新のレビューが、1998年7−9月版TI Technical Journalの7−46ページにHornbeck によって記述されているので参照されたい。
【0005】
本発明は、一般的に、適当に変調された光を適当な光電陰極上に導くことによって、多重電子ビームを形成させるための源及び手段に関する。他の多重平行電子ビームの源が、例えばSchneider及び共同研究者の研究(J. Vac. Sci. Technol. B 14(6), Nov./Dec. 1996 pp. 3782−3786、及びJ. Vac. Sci. Technol. B 15(6), Nov./Dec. 1997 pp. 2702−2712)、Baum(米国特許第6,005,247号)、MacDonald(米国特許第5,363,021号)、及びEngle(米国特許第5,557,177号)、及びそれらの参照文献に記載されているので参照されたい。
【0006】
本発明は、一般的に、空間的に変調された光のパターンを使用してそれらを光電陰極上に衝突させ、光電陰極において多重電子源を形成させることにも関する。このようにして形成された多重eビームは、1つまたは複数の適当な集束用コラムの受入れコーン上に衝突し、それによってリソグラフィ用集束電子ビームを発生する。光を変調する技術及び機器は、Haraら(米国特許第4,741,602号、4,763,996号、4,818,983号)、Kobayashiら(米国特許第5,170,281号、5,208,696号)、Katoら(米国特許第5,173,954号)、及びSandstrom(PCT 国際公開No. WO99/45441)の研究及びそれらの参照文献を含む。他の変調された及び/またはパターン化された光の例は、Sweatt(米国特許第5,920,380号)及びClukin(米国特許第5,543,862号)の研究及びそれらの参照文献を含む。
【0007】
(発明の概要)
本発明は、典型的には、光電陰極に衝突させて多重電子ビームを形成させ、それによって電子ビームリソグラフィックシステムのスループットを増大させるための、典型的には空間光変調器によって変調された紫外(UV)放射である変調された電磁放射の発生、及びその使用に関する。
【0008】
レジストを電子ビームに露出させてパターン化するには、典型的に1つまたはそれ以上の集束電子ビームをレジスト被覆基体上へ導いて遂行される。電子オプティックス(光学系)を制御する(典型的には、コンピュータ制御による)ことによって、プロセス設計者は、露出を必要とする基体の領域へeビームを導き、その基体を含むステージの機械的並進に対するビームのふれを補償し、所望のパターンで基体を走査またはタイルし、基体上の何れかの特定の画素に衝突させる電子の線量を制御し(オフ、オン、またはグレースケール)、そしてそれ以外に所望のパターンを発生させるために衝突させるeビームの位置及び線量を指令することができる。集束電子ビームによって遂行されるリソグラフィの1つの重大な欠陥は、マスクを通して露出することによって遂行されるフォトリソグラフィに比して、得られるスループットが、比較的低いことである。従って、eビームリソグラフィを加速させるための種々の手段が提唱されており、それらの1つは基体上へ平行に導かれる多重集束電子ビームの使用に関している。
【0009】
本発明は、一般的に、適当に変調された光を適当な光電陰極上へ導くことによって多重電子ビームを形成させる源及び手段に関する。本発明は、一般的に、空間的に変調された光のパターンを使用してそれらを光電陰極上に衝突させ、光電陰極において多重電子源を形成させることにも関する。このようにして形成された多重eビームは、1つまたは複数の適当な集束用コラムの受入れコーン上に衝突し、それによってリソグラフィ用集束電子ビームを発生する。本発明は、典型的に多重ビームリソグラフィに使用される望ましい空間パターンを有する多重電子ビームの源を提供する。典型的には紫外放射である放射は、変調器上へ導かれ、変調器から光電陰極上へ導かれる。典型的には空間光変調器である変調器は、放射に空間パターンを与える。放射に与えられるパターンは、多重電子ビームが光電陰極によって生成されるにつれて該ビームへ伝えられる。1つの結果として、本発明による電子ビームリソグラフィシステムは、従来の単一ビームシステムよりも高いスループットを有する。多重電子ビームを形成させる方法、及びこれらの多重電子ビームを用いてターゲットをパターン化する方法を以下に説明する。好ましい変調器は、マイクロミラーである。放射源及び光電陰極の好ましい組合わせは、水銀アーク灯からの紫外放射を変調器によってテルル化セシウム光電陰極上へ導くことである。
【0010】
(実施の形態)
以下の説明及び添付図面においては、類似要素を識別するために類似の参照番号を使用する。
【0011】
電子ビームリソグラフィは、フォトレジストの層上に精密パターンを描くために使用される技術の1つである。集束電子ビームによる露出と、それに続く現像及びエッチングとによって、フォトレジスト層の下に位置する1つまたは複数の材料の層内に所望のパターンが形成される。ポジフォトレジストではこれらの露出された領域がエッチングされ、ネガフォトレジストでは露出されなかった領域がエッチングされる。ポジ及びネガフォトレジストは共に、商業応用に有用である。
【0012】
高度に集束された電子ビーム(“eビーム”)を使用する電子ビームリソグラフィは、フォトレジストの層内に極めて細かいパターンを発生させることが可能であるが、電子と電子との反発、及び他の電子オプティックス、ダイナミックス等の効果によってもたらされるeビームの焦点ぼけによって制限される。電子ビームの方向及び強度をコンピュータによって制御することにより、ターゲット基体内にさまざまなパターンを発生させることができる。しかしながら、eビームリソグラフィの可用性の重大な限界は、得られるスループットが比較的低いことである。フォトレジスト内に望まれるパターンは小さくなり続けているので、より小さい寸法の、より多くの画素を描かなければならない。eビームを適切な画素へ導き、その画素を適切な電子の線量に露出させることは、時間を消費するプロセスである。従って、eビームリソグラフィの最も重要な商業応用の1つは、フォトリソグラフィマスクを描くことである。eビームによるパターン化をコンピュータによって精密に制御することによって、マスク設計者は、原理的には、実質的に基体上に望むことができるどのような形態のパターン(回路素子)をも作成することができる。このようにして描かれたマスクは、典型的には多くのターゲット(典型的には、集積回路ウェーハ)を露出させるためにフォトリソグラフにおいて使用される。マスク作成プロセスは時間を消費するが、それは多くの集積回路の露出に使用されて相殺されるので、eビームマスク作成は経済的に且つ商業的に実行可能になる。
【0013】
電子ビームパターン化は、いろいろな方法で遂行することができる。ラスタ走査とは、各画素に適切な線量を与えるようにeビームの強度を調整しながら、露出されるターゲットの前表面を電子ビームで画素毎に走査するeビームプロセスのことである。ラスタ走査は、たとえどのような画面画像を作成するのであっても同一の行毎に(または、列毎に)電子ビームを導く、CRTまたはTV受像機において使用されている典型的な走査モードである。特定の画像を形成させるための要求が各画素へ送給される強度を決定するが、ビームを走査させるパターンは決定しない。最も簡単なラスタ走査eビームシステムは簡単なオン・オフビーム制御を使用するが、他のシステムは完全オンと完全オフとの間に幾つかのレベルの中間露出(“グレー”レベル)を用いる。幾つかのラスタ走査手順は、パルス幅変調(“PWM”)を使用することによってオン・オフビームからグレースケールを構成する。即ち、画素周期をより短い間隔に細分し、画素期間の一部分の間ビームをターンオンさせる。(ある場合には、各画素の露出中にビームを基体上に静止させ続けさせるために、逆行走査が導入される。)他の走査手順では、マルチパス印刷技術を使用する。この技術では、部分的露出(グレースケール)は、ある走査中は完全露出を、また他の走査中は0露出を用いる多重ラスタ走査によって達成され、それによって画素の部分的露出が達成される。ラスタ走査は、簡単且つ予測可能な走査パターン(異なるパターンを描かせても変化しない)を長所としている。走査パターンがこのように簡単であることから、走査プロセスを最大走査速度(及びスループット)に対して最適化することが可能である。
【0014】
ラスタ走査の他に、幾つかのeビームリソグラフィプロセスはベクトル走査を使用している。ベクトル走査は、走査されるターゲット表面の領域にeビームを導き、次いで別の表面領域を露出させるように運動させる前に、隣接する(またはほぼ隣接する)領域をeビームエネルギで“タイル(tile)”する。ベクトル走査は、パターン化すべき表面を横切るeビームの運動を減少させることができるが、走査及び書込みの複雑さが増加する。ベクトル走査におけるように、比較的局所化された領域に電子強度を導くと、基体の加熱のような他の効果を悪化させ、書込みプロセスが更に複雑になる。
【0015】
ベクトル及びラスタ走査に加えて、投射eビームリソグラフィのように、電子による広域フラッシュによって表面またはその一部分を平行に露出させる(典型的にはマスクを通して)ことができる。“SCALPEL”は、当分野においては公知の電子の単一フラッシュによって、拡張された領域を露出させる1例である。
【0016】
ベクトル走査の複雑さを導入することなくラスタ走査のスループットを増大させる一方法は、多重eビームを用いてラスタ走査を遂行することである。即ち、実質的に平行な多くの電子ビームの1つがウェーハの表面全体の各画素に導かれ、その特定のeビームが導かれる各画素へ適切な強度(多分、0)を送給する。従って、多重eビームラスタ走査のスループットは、ビームラスタ走査に比して改善される。1ビームの代わりにNビームを使用しても、Nビームの操作及び制御に含まれる他のプロセスが書込みプロセスを遅延させるので、スループットの増大は典型的にはN倍よりは小さくなる。しかしながら一般的には、スループットの増大はかなりなものになる。
【0017】
以下に、説明を明確にするために多重eビームラスタ走査の例を詳述する。ラスタ走査eビームリソグラフィは本発明を使用する主要分野であることが予測されるが、以下に説明する技術及びその等価は、多くの実験を繰り返さなくても、他の形状のeビームパターン化に直接的に適用されるように一般化することができ、本発明はこれらの技術も本発明の範囲に含まれることを意図している。
【0018】
図1に、本発明の一実施の形態を示す。電磁(UV)放射の源1は、空間光変調器(“SLM”)2を照射する。多重電子ビームを形成させるためには、電磁放射として紫外光が好ましい形態であることが予測される。しかしながら、本発明は本質的にそれに限定されるものではなく、集束された、または焦点ぼけしたレーザビーム、2倍(または、複数倍)周波数のレーザ源等を含む他の波長及び光源を使用することができる。本発明における放射源の主目的は、このような放射を光電陰極3に衝突させて電子を放出させることである。従って、放射源は合理的な効率で電子を放出する光電陰極の電子放出特性と両立でき、放出された電子が空間的及びエネルギ分布に合理的な広がりを有し、そして放射源及び光電陰極の両者がコスト、信頼度、寿命、使用の容易さ及び便利さの合理的な組合わせを有しているべきである。
【0019】
現在では紫外光が好ましい放射源であるが、受入れ可能な電子の放出を達成するために適切な光電陰極材料と組合わせて使用するのに他の波長を本発明の範囲から排除するものではない。光源は、空間的に均一であり、放射が衝突するSLM2上の領域全体にわたって放射の強度、波長、及び/または他の特性に大きい変化が存在しないことが好ましい。従って、源1からの放射が合理的に一定であり、電子ビームを安定して生成することが望ましい。しかしながら、本発明は、非均一放射源をその範囲から本質的に排除するものではない。放射1の空間的な及び/または波長の変化は、ある場合には、SLM2を適切に使用することによって、または適切な特性を有していない電子を電子ビームオプティックスによって排除することによって補償することができる。レーザ、水銀アーク灯等は、本発明を実現するのに十分な電磁放射の源である。水銀アーク灯は、典型的に250nm(ナノメートル)付近の波長の放射を使用するテルル化セシウムと共に使用する都合の良い光源である。代替として、266nm放射を放出するソリッドステートレーザ、257nmを発生する2倍周波数アルゴンイオンレーザも受入れ可能な選択である。もし量子効率が多重ビームリソグラフィに使用するために十分な電子強度を発生するならば、364nmのアルゴンイオンレーザラインもテルル化セシウム光電陰極を照射するのに受入れることができる。
【0020】
“空間光変調器”とは、源1から発する放射の強度(または、他の1つまたは複数の特性)を変調し、光電陰極3から多重電子ビームを放出させる何等かのデバイスのことをいう。本発明を実現するためには、幾つかの型のSLMが使用可能である。
【0021】
源1からの放射は、典型的に空間光変調器2に導かれる。SLMの機能は、多重電子ビームを形成させるために光電陰極3上に導かれる放射のパターンを限定することである。SLMは、コンピュータがSLMを制御することによって光電陰極が放出する電子ビームのパターンが制御されるように、コンピュータ制御に応答してその光変調特性を変更できることが好ましい。SLMとして1つの都合の良い選択は、Texas Instruments, Inc.製のようなマイクロミラーアレイである。
【0022】
図1に示すSLMは、反射によって源1からの放射を変調するように示されている。当分野においては透過性SLMも公知であり、本発明の実施の形態に使用することができる。更に、光電陰極3に衝突する電磁放射の強度を空間的に変調することが、本発明の必須要件ではない。光電陰極3を照射した時に異なる電子放出をもたらすような電磁放射の何等かの特性(波長、位相等)の空間的変化を、本発明の実施の形態に使用することができる。しかしながら、マイクロミラーアレイ、または幾つかの他の型のSLMによって強度の空間的変化を発生させることが現在では本発明の好ましい実施の形態である。
【0023】
SLM2によって生成された光のパターンは、光電陰極3上に導かれる。これは、図1に示すようなSLMの反射特性(または、透過SLMの場合には、透過特性)のパターンを光電陰極上に再現(即ち“像形成(イメージ)”)する。従って、電子は、SLMの反射(または透過)特性によって決定されるパターンで光電陰極から放出される。このようにして光電陰極3によって生成された電子のパターンをeビーム走査及び集束コラム4へ抽出することにより、ターゲット5における断面パターンがSLMのパターンによって決定されるような多重ビームパターンが形成される。
【0024】
SLMとして使用されるマイクロミラーアレイは、典型的には電気コマンド信号に応答する個々のミラー要素を傾けることによって機能し、それに入射する放射を多くの異なる方向へ偏向させる。簡単な2方向ミラー偏向(図1に示されているようにオン・オフ)を、本発明の実施の形態に使用することができる。マイクロミラーアレイからのより複雑な偏向のパターンを、本発明と共に使用することができる。屈折性デバイスは、典型的には、表面の小領域を変形させることによってSLM内に画素毎の格子を生成するか、または代替として、画素毎の位相格子を形成することができる。これら2つの広いクラスのSLMデバイスの何れも、本発明の実施の形態に有用である。
【0025】
マイクロミラーアレイからなるSLMに加えて、他の多くの型のSLMを本発明の実施の形態に使用することができる。液晶ディスプレイ(“LCD”)を、本発明と共にSLMとして透過または反射の何れかのモードで使用することができる。LCDは、本発明に使用するには他の候補SLMよりレスポンス時間が遅いが、コスト、電力消費等に関して多くの適切な代償を有している。しかしながら、SLMを使用すると、典型的には、総合システムの性能を重大に劣化させることなくより遅いレスポンス時間を受入れることができる高度の平行が得られる。他の候補SLMは、カリフォルニア州サニーベールのSilicon Light Machines製の“格子光弁”(grating light valves)を含む。格子光弁は、典型的に、適当な物質(例えば、窒化シリコン)の交互ストリップを変位させ、格子光弁を横切る画素毎のミニチュア位相格子を作るように機能する。従って、光弁の各素子において任意に回折させることが可能である。格子光弁は、多くの市販されているSLMよりも速いレスポンス時間を有しており、本発明の実施の形態に使用することができるSLMに含まれる。
【0026】
本発明に使用されるSLMを選択する際に検討することの1つは、完全オンと完全オフとの間で変化する光レベル(グレースケール)を発生し、そしてこれらの中間光レベルを光電陰極上へ導く能力(または、それの欠如)である。マイクロミラーアレイは、典型的には、それへ入射する放射を光電陰極へ、またはそれ以外へ偏向させる、従ってグレースケールを発生しないオン・オフデバイスである。しかしながら、パルス幅変調を使用することによって、マイクロミラーデバイスに実効的なグレースケールを発生させるように使用することができる。パルス幅変調(“PWM”)は、露光を必要とする光電陰極の各空間的画素を時間ドメインで幾つかの別個のセグメントに分割し、空間的光電陰極画素の幾つかの、または全ての時間ドメインセグメントを露光させる、またはどのセグメントも露光させない技術である。例えば、空間的光電陰極画素の完全露光は、N個の分離した時間セグメントに分割することができる。空間的画素の0、1、2、…N時間セグメントを露光させることによって、(N+1)の露光レベルを使用することができる。パルス幅変調は、空間的画素の露光を一連のより小さいパルスによって遂行できるように、SLMのレスポンス時間(例えば、ミラーの偏向時間)が十分に速いことが必要である。これらのより小さい各パルスはそれぞれが完全オンまたは完全オフの何れかであり、空間的画素を露光させるのに使用するより小さいパルスの数によって決定されるグレースケールが発生する。
【0027】
幾つかの格子光弁は、変形を導入し、それによって光弁の光回折特性を同じように変更するように変更する能力を有している。従って、これらの光弁を用いれば、多くのグレースケールを得ることができる。
【0028】
従来のSLMの応用は、典型的には、本質的に光を用いて画像を投射し、電子入力(または、他の光学入力)から可視画像を形成させることに関している。従って、ディスプレイデバイスがSLMの一般的な用途である。本発明は、SLMを光電陰極上に画像化されたものとして使用し、多重電子ビームを形成させる。これらの多重電子ビームの特性は、SLMから導出された、またはSLMを通る光の特性によって決定される。本質的にはSLMの“画像”が光電陰極上に投射され、対応する放出電子パターンが作られる。この放出電子パターンは、コラム4によって空間的な広がりが、典型的には光を用いて達成できるよりも小さい寸法まで縮小される。以上のように、本発明はSLMの光学的長所(光平行及び改善されたスループットを含む)と、eビームオプティックス及びリソグラフィックシステムの長所(極めて小さいパターンを書く能力を含む)とを組合わせている。
【0029】
典型的には、光電陰極は電子ビームコラムのトップに配置され、図1に示すように透過型で動作する。即ち、光電陰極の一方の面に光が衝突すると、反対側の面から電子が放出される。しかしながら、光電陰極上に光が衝突した時に同一面から電子を放出させるように、反射性光電陰極を使用することもできる。光電陰極は、入射電磁放射に対して透明な基体上に取付けることができる。この透明基体自体は、電子ビームコラムの真空を外部環境から分離する窓であることも、または別の透明窓(光電陰極マウントから分離)であることもできる。当業者には、SLMから入射する放射を受けてeビームコラム内へ電子を送給するように光電陰極を取付ける他の形態も明白であろう。
【0030】
幾つかの設計検討は、典型的には、光電陰極材料及び取付け形態の選択を考慮に入れている。例えば、光子照射に応答して十分な数の電子を発生させるために、高効率(量子収量)を有する光電陰極材料が望ましい。しかしながら、負の電子親和性光電陰極(例えば、セシウム添加された(cesiated)ヒ化ガリウム)のような幾つかの材料は合理的に効率的な光電陰極になるが、大気汚染に極めて鋭敏である。従って、生産環境においてそれらを使用することは問題が多い。光電陰極の寿命は、光電陰極によって生成される電子ビームを商業的に成功裏に使用するにはかなり問題になり、光電陰極材料の選択の主要検討事項である。
【0031】
別の候補光電陰極材料は金である。金は、生産環境において十分に安定であり、空気中を輸送することができる。しかしながら、金の光収量(光子当たりの電子)はかなり低い。また、金は比較的高い仕事関数を有している。従って、この仕事関数を超えるエネルギを有する光子を供給して電子を放出できるようにするためには、紫外光を使用して金光電陰極を照射しなければならない。
【0032】
低い量子収量を有する光電陰極は、もし十分な電子放出を与えるために十分な光で照射すれば、本発明の実施の形態に使用することもできる。しかしながら、光電陰極を強い放射で照射すれば、光電陰極材料に過大な過熱、または他の損傷をもたらしかねない。
【0033】
以上の要因を考えると、テルル化セシウム(図1に示すように、CsTe)が、高量子収量、安定性、及び生産環境における使用の容易さの好ましいバランスを提供するように見える。放射源と光電陰極との間にSLMを挿入して使用すると、放射が光電陰極全体に広がり、光電陰極のどの局所化された領域への照射の強度(または、放出される電子)も低下する。この空間的な分散が、光電陰極材料に対する潜在的な損傷を低下させ、その有用サービス寿命を増大させる傾向がある。
【0034】
光電陰極材料の選択に影響を与える別の検討事項は、光電陰極から電子を追い出す仕事関数を、光電陰極上に導かれる光子のエネルギよりも遙かに小さくすべきことである。電子を放出させるのに必要な最小限を超えた入射光子のエネルギは、典型的には放出される電子の運動エネルギとして現れる。従って、電子は、光電陰極の表面に垂直及び平行の両方向をもった速度で光電陰極を去る。電子速度の平行成分は放出される電子に、それらがビーム形成用電子オプティックスに接近するにつれて広がるある角度を与える。ビーム形成用オプティックスの受入れ角の外側の電子は失われ、ターゲット5に送給されるビーム電流を減少させる。従って、光子エネルギが増加してより多くの電子がビーム形成用オプティックスの受入れ角の外側へ向かうと、eビーム電流は減少する傾向がある。一方、光電陰極をより高い強度の光で照射すると、速度の分布に影響を及ぼすことなく放出される電子の数が増加する。従って、光子エネルギが仕事関数を適度に超えるような強い光が好ましい。より高いビーム電流を達成する理由から、負の電子親和性光電陰極が有利である(しかしながら、これらは処理が困難な材料である)。負の電子親和性材料は極めて低い仕事関数を有しており、放出される殆ど全ての電子がビーム形成用オプティックスによって収集されるようになる。しかしながら、これらの材料は、典型的に高真空(典型的には、10−9−10−11トル)に保つ必要がある。多くの負の電子親和性光電陰極のセシウム成分は、時折補充(“リセシエート”)する(recesiated)必要がある。テルル化セシウムは、合理的な仕事関数の好ましいバランスを提供し、しかも処理が容易である。負の電子親和性光電陰極は高い量子収量(高効率)と、より長い波長で照射される能力の長所を有しているが、材料の処理の困難さはかなりである。補充(recesiation)の必要性及び真空状態に対する感応性が、負の電子親和性光電陰極の主たる欠陥である。
【0035】
図2は、eビームターゲット(“ステージ”)5を、上方から、即ちeビームがターゲット上に衝突する方向から見た図であるが、尺度は任意である。ステージは、典型的には図2に“ステージ方向”で示す方向に連続的に機械的運動する。eビームは、eビームパターンを書込む静止ステージを必ず見ているように、典型的にこの機械的なステージの運動を連続的に且つ同期して追跡するように偏向される。ステージの位置は、典型的にはレーザ干渉計によって監視され、極めて正確なステージ位置情報がもたらされる。書込みパターンは、eビーム偏向とこの補償偏向とが重畳されたものである。典型的に、パターン書込みにはx、yの両方向への偏向が伴う。
【0036】
パターン書込みの精度を増加させる1つの方法は、同一の総合フィールドを数回書込み、書込みを1つの書込みから次の書込みへ僅かにオフセットさせることである。このオフセットマルチパス書込み戦略は、フィールドが相接する領域における誤差を減少させるのを援助する。異なる境界を有する幾つかのフィールドをeビーム書込みすると、境界の接合において発生する誤差が典型的に減少する。更に、マルチパスオフセット書込みは、中間レベルのビーム露出を構築する、即ちグレースケールの数を増加させるのに使用することができる。幾つかの別個の書込みパスによって所与の画素が発生し、異なるパスにおいて異なる量で露出することによって多重レベルの露出が達成される(これは、画素の単一パス書込みでは達成することができない)。
【0037】
複数(“N”)の別個の平行なeビームで書込むことは、理想的にはeビームリソグラフィのスループットを、単一ビームシステムのN倍に増加させることができる。しかしながら、Nビーム生成デバイス(即ち、本発明ではSLM)のスイッチング速度は典型的にビームブランカーを有する単一eビームの速度より遅いから、実際にはこの増加は典型的に達成されない。Nは潜在的に数百万であることができるから、スイッチング速度のいくらかの犠牲は許容できる。例えば、1つの辺が125mmの方形領域は、多重ビームシステムを用いて約40分(プラスあるシステムオーバーヘッド)で書込みできることが推定されるが、これは単一ビームシステムよりも遙かに速い。単一ビームシステムは、同様の領域を書くのに3−30時間を要し得る。300MHzシステム(スイッチング速度)を使用して125mmの領域の50nm画素の格子を書く場合、システムオーバーヘッドを無視すれば、約6時間を要することが推定される。
【0038】
以上に本発明を詳細に説明したが、当業者ならば、本明細書に記載した本発明の思想から逸脱することなく多くの変更が明白であろう。従って、以上に説明した特定の、そして好ましい実施の形態が本発明の範囲を限定するものではないことを理解されたい。
【図面の簡単な説明】
【図1】変調された光を光電陰極へ導くことによって、多重電子ビームを生成させ空間光変調器の概要図である。
【図2】電子ビームが衝突する方向から見たステージ運動及び多重走査を示す概要図である。

Claims (24)

  1. 複数の電子ビームを生成するデバイスにおいて、
    a)放射の源と、
    b)前記放射の源から発する放射を変調するような位置を有する変調器と、
    c)前記変調された放射を受けるような位置を有する光電陰極と、
    を備え、
    前記光電陰極は、前記変調された放射によって照射されると複数の電子ビームを発生する、
    ことを特徴とするデバイス。
  2. 前記放射は、紫外放射であることを特徴とする請求項1に記載のデバイス。
  3. 前記放射の源は、水銀アーク灯であることを特徴とする請求項2に記載のデバイス。
  4. 前記光電陰極は、テルル化セシウムであることを特徴とする請求項3に記載のデバイス。
  5. 前記変調器は、空間光変調器であることを特徴とする請求項1に記載のデバイス。
  6. 前記空間光変調器は、マイクロミラーアレイであることを特徴とする請求項5に記載のデバイス。
  7. 電子ビームリソグラフィシステムにおいて、
    a)放射の源と、
    b)前記放射の源から発する放射を変調するような位置を有する変調器と、
    c)前記変調された放射を受けるような位置を有する光電陰極と、
    を備え、
    前記光電陰極は、前記変調された放射によって照射されると複数の電子ビームを発生し、
    d)前記複数の電子ビームを受け、前記複数の電子ビームをターゲット上へ導くような位置を有する電子ビーム光学コラム、
    を更に備えていることを特徴とするシステム。
  8. 前記放射は、紫外放射であることを特徴とする請求項7に記載のシステム。
  9. 前記放射の源は、水銀アーク灯であることを特徴とする請求項8に記載のシステム。
  10. 前記光電陰極は、テルル化セシウムであることを特徴とする請求項9に記載のシステム。
  11. 前記変調器は、空間光変調器であることを特徴とする請求項7に記載のシステム。
  12. 前記空間光変調器は、マイクロミラーアレイであることを特徴とする請求項11に記載のシステム。
  13. 複数の電子ビームを発生する方法において、
    a)放射を変調器上へ導き、それによって前記放射を変調させるステップと、
    b)前記変調された放射を光電陰極上へ導き、それによって複数の電子ビームを発生させるステップと、
    を含むことを特徴とする方法。
  14. 前記放射は、紫外放射であることを特徴とする請求項13に記載の方法。
  15. 前記放射の源は、水銀アーク灯であることを特徴とする請求項14に記載の方法。
  16. 前記光電陰極は、テルル化セシウムであることを特徴とする請求項15に記載の方法。
  17. 前記変調器は、空間光変調器であることを特徴とする請求項13に記載の方法。
  18. 前記空間光変調器は、マイクロミラーアレイであることを特徴とする請求項17に記載の方法。
  19. 多重電子ビームを用いてリソグラフィを遂行する方法において、
    a)放射を変調器上へ導き、それによって前記放射を変調させるステップと、
    b)前記変調された放射を光電陰極上へ導き、それによって複数の電子ビームを発生させるステップと、
    c)前記複数の電子ビームを電子ビーム光学コラムの受入れ領域上へ導き、それによって複数の電子ビームを、前記電子ビーム光学コラムのターゲット端に位置するターゲットに衝突させるステップと、
    を含むことを特徴とする方法。
  20. 前記放射は、紫外放射であることを特徴とする請求項19に記載の方法。
  21. 前記放射の源は、水銀アーク灯であることを特徴とする請求項20に記載の方法。
  22. 前記光電陰極は、テルル化セシウムであることを特徴とする請求項21に記載の方法。
  23. 前記変調器は、空間光変調器であることを特徴とする請求項19に記載の方法。
  24. 前記空間光変調器は、マイクロミラーアレイであることを特徴とする請求項23に記載の方法。
JP2002518493A 2000-08-08 2001-08-08 空間光変調器によって駆動される光電陰極を源とする電子ビームパターン発生器 Pending JP2004506296A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/634,258 US6828574B1 (en) 2000-08-08 2000-08-08 Modulator driven photocathode electron beam generator
PCT/US2001/041657 WO2002013226A2 (en) 2000-08-08 2001-08-08 Spatial light modulator driven photocathode source electron beam pattern generator

Publications (1)

Publication Number Publication Date
JP2004506296A true JP2004506296A (ja) 2004-02-26

Family

ID=24543041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002518493A Pending JP2004506296A (ja) 2000-08-08 2001-08-08 空間光変調器によって駆動される光電陰極を源とする電子ビームパターン発生器

Country Status (6)

Country Link
US (1) US6828574B1 (ja)
EP (1) EP1309983A2 (ja)
JP (1) JP2004506296A (ja)
KR (1) KR20030029814A (ja)
AU (1) AU2001285428A1 (ja)
WO (1) WO2002013226A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238902A (ja) * 2002-10-25 2012-12-06 Mapper Lithography Ip Bv リソグラフィシステム
WO2018155540A1 (ja) * 2017-02-24 2018-08-30 株式会社ニコン 電子ビーム装置及び露光方法、並びにデバイス製造方法
WO2019151025A1 (ja) 2018-02-01 2019-08-08 国立大学法人名古屋大学 空間位相変調した電子波の発生装置
DE112019007690T5 (de) 2019-10-31 2022-07-07 Hitachi High-Tech Corporation Elektronenkanone und elektronenstrahlvorrichtung

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3394237B2 (ja) * 2000-08-10 2003-04-07 株式会社日立製作所 荷電粒子ビーム露光方法及び装置
US6724002B2 (en) * 2001-01-31 2004-04-20 Applied Materials, Inc. Multiple electron beam lithography system with multiple beam modulated laser illumination
US7098468B2 (en) * 2002-11-07 2006-08-29 Applied Materials, Inc. Raster frame beam system for electron beam lithography
US6936981B2 (en) * 2002-11-08 2005-08-30 Applied Materials, Inc. Retarding electron beams in multiple electron beam pattern generation
FR2859756B1 (fr) 2003-09-16 2007-09-21 Bontaz Centre Sa Dispositif de refroidissement pour pistons de moteur.
WO2005079360A2 (en) * 2004-02-12 2005-09-01 Ionwerks, Inc. Advanced optics for rapidly patterned lasser profiles in analytical spectrometry
EP1617290A1 (en) * 2004-07-13 2006-01-18 International Business Machines Corporation Apparatus and method for maskless lithography
US7494230B2 (en) * 2005-06-23 2009-02-24 Hewlett-Packard Development Company, Lp Reflecting non-visible light off one or more mirrors
US7427765B2 (en) * 2005-10-03 2008-09-23 Jeol, Ltd. Electron beam column for writing shaped electron beams
US20070173040A1 (en) * 2006-01-09 2007-07-26 Freescale Semiconductor, Inc. Method of reducing an inter-atomic bond strength in a substance
US9263228B2 (en) 2014-03-10 2016-02-16 International Business Machines Corporation Integrated photoemission sources and scalable photoemission structures
DE112016006486B4 (de) 2016-03-29 2022-03-31 Hitachi High-Tech Corporation Elektronenmikroskop
WO2018155538A1 (ja) * 2017-02-24 2018-08-30 株式会社ニコン 電子ビーム装置及び露光方法、並びにデバイス製造方法
WO2018155537A1 (ja) * 2017-02-24 2018-08-30 株式会社ニコン 電子ビーム装置及び露光方法、並びにデバイス製造方法
US10741354B1 (en) 2018-02-14 2020-08-11 Kla-Tencor Corporation Photocathode emitter system that generates multiple electron beams
US10840055B2 (en) * 2018-03-20 2020-11-17 Kla Corporation System and method for photocathode illumination inspection
US11784022B2 (en) 2019-01-28 2023-10-10 Hitachi High-Tech Corporation Electron beam apparatus
US10937630B1 (en) * 2020-04-27 2021-03-02 John Bennett Modular parallel electron lithography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224234A (ja) * 1985-01-28 1986-10-04 サンガモ ウエストン インコ−ポレ−テツド 光電子増倍管のダイノ−ドの被膜材料及び被膜形成方法
JPS622535A (ja) * 1985-06-28 1987-01-08 Nippon Telegr & Teleph Corp <Ntt> 電子ビ−ム露光装置
JPH06260119A (ja) * 1992-08-21 1994-09-16 Sharp Corp 光電子放出装置
JPH1184271A (ja) * 1997-09-01 1999-03-26 Sharp Corp 映像表示装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2668778A (en) * 1952-01-10 1954-02-09 Gen Electric Method of forming a photo emitter
US4196257A (en) * 1978-07-20 1980-04-01 Rca Corporation Bi-alkali telluride photocathode
US4460831A (en) 1981-11-30 1984-07-17 Thermo Electron Corporation Laser stimulated high current density photoelectron generator and method of manufacture
US4763996A (en) * 1984-11-20 1988-08-16 Hamamatsu Photonics Kabushiki Kaisha Spatial light modulator
US4618217A (en) * 1985-01-08 1986-10-21 The United States Of America As Represented By The Secretary Of The Air Force Electron-bombarded silicon spatial light modulator
FR2599565B1 (fr) * 1986-05-30 1989-01-13 Thomson Csf Lasertron a faisceaux multiples.
US4906894A (en) * 1986-06-19 1990-03-06 Canon Kabushiki Kaisha Photoelectron beam converting device and method of driving the same
US5173954A (en) * 1988-01-14 1992-12-22 Hamamatsu Photonics Kabushiki Kaisha Spatial light modulation device and image reconstructing apparatus using the same
JPH024235A (ja) * 1988-06-23 1990-01-09 Hamamatsu Photonics Kk 空間光変調装置
FR2643507A1 (fr) * 1989-02-21 1990-08-24 Thomson Tubes Electroniques Canon a electrons a faisceau electronique module par un dispositif optique
US5395738A (en) * 1992-12-29 1995-03-07 Brandes; George R. Electron lithography using a photocathode
US5539567A (en) 1994-06-16 1996-07-23 Texas Instruments Incorporated Photolithographic technique and illuminator using real-time addressable phase shift light shift
US5684360A (en) * 1995-07-10 1997-11-04 Intevac, Inc. Electron sources utilizing negative electron affinity photocathodes with ultra-small emission areas
US5691836A (en) * 1995-07-11 1997-11-25 Sy Technology, Inc. Optically addressed spatial light modulator and method
US5691541A (en) 1996-05-14 1997-11-25 The Regents Of The University Of California Maskless, reticle-free, lithography
US6498349B1 (en) * 1997-02-05 2002-12-24 Ut-Battelle Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy
US6005247A (en) * 1997-10-01 1999-12-21 Intevac, Inc. Electron beam microscope using electron beam patterns
US6376985B2 (en) * 1998-03-31 2002-04-23 Applied Materials, Inc. Gated photocathode for controlled single and multiple electron beam emission
US6282213B1 (en) * 1998-09-14 2001-08-28 Interscience, Inc. Tunable diode laser with fast digital line selection
US6448568B1 (en) 1999-07-30 2002-09-10 Applied Materials, Inc. Electron beam column using high numerical aperture photocathode source illumination
US6429443B1 (en) * 2000-06-06 2002-08-06 Applied Materials, Inc. Multiple beam electron beam lithography system
US6724002B2 (en) * 2001-01-31 2004-04-20 Applied Materials, Inc. Multiple electron beam lithography system with multiple beam modulated laser illumination
US6544698B1 (en) * 2001-06-27 2003-04-08 University Of South Florida Maskless 2-D and 3-D pattern generation photolithography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224234A (ja) * 1985-01-28 1986-10-04 サンガモ ウエストン インコ−ポレ−テツド 光電子増倍管のダイノ−ドの被膜材料及び被膜形成方法
JPS622535A (ja) * 1985-06-28 1987-01-08 Nippon Telegr & Teleph Corp <Ntt> 電子ビ−ム露光装置
JPH06260119A (ja) * 1992-08-21 1994-09-16 Sharp Corp 光電子放出装置
JPH1184271A (ja) * 1997-09-01 1999-03-26 Sharp Corp 映像表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238902A (ja) * 2002-10-25 2012-12-06 Mapper Lithography Ip Bv リソグラフィシステム
WO2018155540A1 (ja) * 2017-02-24 2018-08-30 株式会社ニコン 電子ビーム装置及び露光方法、並びにデバイス製造方法
WO2019151025A1 (ja) 2018-02-01 2019-08-08 国立大学法人名古屋大学 空間位相変調した電子波の発生装置
CN111656482A (zh) * 2018-02-01 2020-09-11 株式会社日立高新技术 进行了空间相位调制的电子波的发生装置
JPWO2019151025A1 (ja) * 2018-02-01 2021-01-28 株式会社日立ハイテク 空間位相変調した電子波の発生装置
US11232927B2 (en) 2018-02-01 2022-01-25 Hitachi High-Tech Corporation Spatially phase-modulated electron wave generation device
US11651930B2 (en) 2018-02-01 2023-05-16 Hitachi High-Tech Corporation Spatially phase-modulated electron wave generation device
CN111656482B (zh) * 2018-02-01 2023-10-03 株式会社日立高新技术 进行了空间相位调制的电子波的发生装置
DE112019007690T5 (de) 2019-10-31 2022-07-07 Hitachi High-Tech Corporation Elektronenkanone und elektronenstrahlvorrichtung

Also Published As

Publication number Publication date
EP1309983A2 (en) 2003-05-14
US6828574B1 (en) 2004-12-07
WO2002013226A8 (en) 2003-11-13
WO2002013226A2 (en) 2002-02-14
AU2001285428A1 (en) 2002-02-18
WO2002013226A3 (en) 2002-09-06
KR20030029814A (ko) 2003-04-16

Similar Documents

Publication Publication Date Title
US6828574B1 (en) Modulator driven photocathode electron beam generator
US6936981B2 (en) Retarding electron beams in multiple electron beam pattern generation
US7842935B2 (en) Raster frame beam system for electron beam lithography
US6870172B1 (en) Maskless reflection electron beam projection lithography
US6841787B2 (en) Maskless photon-electron spot-grid array printer
US6724002B2 (en) Multiple electron beam lithography system with multiple beam modulated laser illumination
EP0986777B1 (en) Lithography system
US7696498B2 (en) Electron beam lithography method and apparatus using a dynamically controlled photocathode
US7095037B2 (en) Electron beam lithography system having improved electron gun
US6215128B1 (en) Compact photoemission source, field and objective lens arrangement for high throughput electron beam lithography
Pease Maskless lithography
US20120085919A1 (en) Apparatus and methods for pattern generation
US7692167B1 (en) High-fidelity reflection electron beam lithography
JP4344162B2 (ja) パターン描画装置及びパターン描画方法
EP1617290A1 (en) Apparatus and method for maskless lithography
Pfeiffer New prospects for electron beams as tools for semiconductor lithography
KR20000011344A (ko) 전사투영장치와상기장치를이용한디바이스제조방법및상기방법에의하여제조된디바이스
WO1999048129A1 (en) Tandem optical scanner/stepper and photoemission converter for electron beam lithography
JP2005142235A (ja) パターン描画装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120112