JP2004361863A - Method for storing optical element - Google Patents

Method for storing optical element Download PDF

Info

Publication number
JP2004361863A
JP2004361863A JP2003163095A JP2003163095A JP2004361863A JP 2004361863 A JP2004361863 A JP 2004361863A JP 2003163095 A JP2003163095 A JP 2003163095A JP 2003163095 A JP2003163095 A JP 2003163095A JP 2004361863 A JP2004361863 A JP 2004361863A
Authority
JP
Japan
Prior art keywords
optical element
storage container
cleaning medium
storing
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003163095A
Other languages
Japanese (ja)
Inventor
Shuichi Matsunari
秀一 松成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003163095A priority Critical patent/JP2004361863A/en
Publication of JP2004361863A publication Critical patent/JP2004361863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Packages (AREA)
  • Packaging Frangible Articles (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress deterioration in characteristics due to adsorption of harmful substance or chemical reaction on the surface of an optical element which is a problem for long-term storage of an optical element. <P>SOLUTION: The method for storing an optical element includes processes of: housing the optical element in a storage container; sealing the storage container which houses the optical element; injecting a cleaning medium into the sealed storage container. The concentration and the total amount of impurities in the cleaning medium and the total amount of impurities are controlled to specified values or lower depending on the kinds of impurities. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は光学素子、特に紫外線を露光光とする半導体露光装置用の光学素子の保管方法であって、保管中の光学性能劣化を抑制する方法に関するものである。
【0002】
【従来の技術】
半導体製造や液晶製造に用いられる露光装置は、数多くのレンズやミラーなどの光学素子から成り立っており、これら多数の光学素子が組み合わされることで所望の露光性能が得られている。そのため光学素子の光学性能が劣化すると、一枚あたりの劣化程度は小さいとしても、数多くの光学素子から構成されている露光装置は結果的に大きな影響を受けてしまう。例えばレンズ1面あたり0.5%程度の透過率低下でも、100面以上のレンズからなる露光装置全体では(1−0.995 100)×100=39%もの透過率低下となる。
【0003】
露光装置の光学素子はSiOやCaFなどの光学材料基板上に、SiO、TiO、Al等の酸化物、LiF、CaF、SrF、BaF、NaF、MgF、NaAlF、AlF、GdF、NdF、LaF等のフッ化物材料、Alなどの金属材料からなる光学薄膜が形成されたものである。これら光学素子を構成する材料は水蒸気、酸素、その他の有機ガスおよび無機ガスに弱く、これらのガスが光学薄膜に吸着したり、あるいは光学薄膜と化学反応を起こして新たな物質を生成したりすることが知られている。有害な有機ガスとしてはフタル酸エステル類、無機ガスとしてはNOxやSOx、NHなどが知られている。光学薄膜表面に他の物質が吸着すれば、表面層の屈折率が変化するため光学素子全体の特性が変化し、所定の性能が得られなくなる。また表面に新たな物質層が生成した場合も同様で、さらに表面形態の変化によって光線の散乱が増えるなど、様々な形態で光学素子の劣化を生じることになる。このような外部環境による光学素子の特性劣化は、特に露光装置の解像度が高まるにつれて深刻な問題として捉えられるようになってきた。
【0004】
露光装置の解像度Rは次式で表される。
R=kλ/(NA)
ここでλは露光波長、NAは投影レンズの開口数、kはプロセス定数である。上式から解像度向上には露光波長の短波長化が必須であることが示され、実際に露光波長はi線(波長365nm)、KrFレーザ(波長248nm)、ArFレーザ(波長193nm)と短波長化が進んできている。ところがKrFレーザ及びそれよりも短波長の光に対しては、光学素子の劣化原因となる物質の光吸収係数が大きくなるため、これらの物質が光学素子表面にわずかに存在するだけでも大きな光量損失を生じ、露光装置として十分な性能が得られないという極めて重大な問題が浮上したのである。
【0005】
この問題を回避するため、KrFレーザ及びそれよりも短波長の光を用いる露光装置用光学素子を保管する際には、保管容器内を清浄媒体で満たし、光学素子の劣化を抑制することが一般に行われている。清浄媒体として特許文献1には窒素、空気、不活性ガスが挙げられており、また特許文献2にはフッ化炭素や炭化水素系不活性液体を用いる方法が開示されている。これらの保管方法に用いられる保管容器は密閉可能な構造を有し、外部から清浄媒体を注入するための注入口が設けられることが多い。光学素子を保管する具体的な手順は次のとおりである。まず光学素子を保管容器に格納し、適当な保持具により固定した後、容器を密閉して前記注入口から保管容器内に清浄媒体を注入する。このとき保管容器内に存在する空気等の残留雰囲気ガスは必要に応じて設けられた排出口から排出され、保管容器内は完全に清浄媒体で置換される。保管容器内を清浄媒体で完全に置換した後は、注入口および排出口を閉鎖して清浄媒体の注入を止めた状態で保管する場合と、引き続き清浄媒体を注入し、清浄媒体を容器内に流通させながら保管する場合がある。保管容器の清浄度や密閉度が比較的低い場合には、清浄な雰囲気を維持しやすい後者の方法が用いられる。
【0006】
【特許文献1】
特開2000−302182号公報
【0007】
【特許文献2】
特開平11−194294号公報
【0008】
【発明が解決しようとする課題】
前述のように保管容器内を清浄媒体で満たす保管方法を用いても、使用する清浄媒体の純度や、保管容器への供給量といった保管条件によっては光学素子に劣化が生じ、その光学特性が露光装置用として不適当なものになってしまうという問題があった。
【0009】
【課題を解決するための手段】
本発明者は、光学素子を保管する際に用いる清浄媒体の性状および使用条件に関して詳細な研究を行った。その結果、前記清浄媒体中に含まれる不純物としての水分、酸素、その他の無機物および有機物物の濃度が、光学素子の劣化に大きく影響することを突き止めた。さらに光学素子の劣化の程度は、保管容器の大きさや保管時間、保管容器への清浄媒体の供給速度にも依存することが判明した。本発明者はこれらの結果をもとに、光学素子の劣化抑制に有効な保管条件を特定する指標として、新たに不純物総量という概念を提供する。
【0010】
保管容器内を清浄媒体で置換した後に、注入口および排出口を閉鎖して清浄媒体の供給を止めた状態で保管する場合、不純物総量Qは、保管容器内に封じ込められた清浄媒体の体積をV、清浄媒体中の不純物濃度をcとすれば、
Q=c×V
で表される値である。また清浄媒体を引き続き注入しながら保管する場合における不純物総量Qは、注入された清浄媒体の全体積、つまり保管容器を通過した清浄媒体の全体積をVとすれば、同様に
Q=c×V
で表される。清浄媒体の注入が一定速度Fで行われるならば、保管時間tの間に注入された清浄媒体の全体積Vは
V=F×t
である。
【0011】
上式で求められる不純物総量Qは、保管中に光学素子表面に到達しうる不純物の総量を意味し、Qが大であるほど光学素子が劣化しやすいと言うことができる。発明者の研究結果によれば清浄媒体中の不純物濃度cがある上限濃度を超えた場合に光学素子に劣化を生じるほか、cが前記上限濃度以下であっても不純物総量Qがある上限値を超えた場合は、cの値に関わらず光学素子に劣化を生じる。したがって保管中の光学素子の劣化を抑制するには清浄媒体中の不純物濃度がある上限値以下であり、かつ該清浄媒体中の不純物総量がある上限値以下であることが必要となる。光学素子の劣化程度は温度が一定であれば不純物と光学素子との接触回数に依存し、その接触回数は不純物総量に依存するため、不純物総量を上限値以下に維持することにより光学素子の劣化を抑制することができるのである。不純物濃度の上限値および不純物総量の上限値は、それぞれ不純物の種類により異なる値である。
【0012】
本発明は光学素子の劣化を抑制する保管方法として、清浄媒体に含まれる不純物が水または酸素である場合について、不純物濃度が5mg/m以下であり、かつ不純物総量が5mg以下である保管方法を提供する。
【0013】
また本発明は光学素子の劣化を抑制する保管方法として、清浄媒体に含まれる不純物が無機物(水および酸素を除く)または有機物である場合について、不純物濃度が50μg/m以下であり、かつ不純物総量が50μg以下である保管方法を提供する。なお、ここでいう不純物としての無機物および有機物には、清浄媒体自体を構成する無機物および有機物が含まれないことは言うまでもない。
【0014】
【発明の実施の形態】
以下、実際の工程に沿って本発明の実施の形態を説明する。
まず第一に、保管容器に光学素子を収納する。保管容器自身の材質にも注意が必要であり、光学素子の劣化原因となる不純物を放出しない材質であることが望ましい。具体的にはステンレスやアルミニウム等の金属材料またはガラスやセラミックス等の無機材料で構成されるべきである。これらの材料は予め十分に洗浄して用いる限り、使用中にガスを放出して光学素子を劣化させることがない。一方、塩化ビニルなど可塑剤を大量に含有する高分子材料は、使用中にガスを放出して光学素子を劣化させる恐れがあるため保管容器としては不適当である。容器の密閉部にガスケットとしてエラストマーを使用する場合は、比較的放出ガスの少ないバイトン(登録商標)等のフッ素系ゴムを用いるのが良い。
【0015】
保管容器は、外部からの不純物の流入を抑制するため、清浄媒体の注入口および排出口を除いて密閉可能であることが望ましい。清浄媒体の充填後に容器を密閉する場合は、注入口および排出口にもストップバルブ等の密閉手段を備える必要がある。また保管中も清浄媒体の注入を継続し、容器内に清浄媒体を流通させる場合には、注入口または排出口に流量調整バルブ等の供給量調整手段を設けることが望ましい。
【0016】
光学素子を保管容器に収納した後、容器内に清浄媒体を注入する。本発明に係る保管方法で使用する清浄媒体は、空気または不活性ガスまたは不活性液体である。ここで不活性ガスとは、窒素、ヘリウム、アルゴンなどの、光学素子表面と反応しない気体を指す。不活性液体は同様に光学素子表面と反応しない液体を指すが、具体的にはフッ化炭素や炭化水素類が好適である。これらは光学素子表面に付着しても紫外線オゾン洗浄等によって容易に除去することができる。
【0017】
光学素子の劣化を抑制するため、清浄媒体中の不純物としての水または酸素の濃度は5mg/m以下であることが要求される。光学素子が水により劣化する場合は水の濃度が、酸素により劣化する場合は酸素の濃度が5mg/m以下である必要がある。不純物としての無機物濃度は50μg/m以下、有機物濃度は50μg/m以下でなければならない。清浄媒体中の水、酸素、その他の無機物および有機物量は、ガスクロマトグラフ質量分析計により定量することができる。
【0018】
清浄媒体中の不純物濃度が上記範囲にある場合でも、保管容器中に清浄媒体と光学素子とを密閉して保管するときには、清浄媒体中に存在する全ての不純物が光学素子表面に到達しうる。また保管期間中に清浄媒体を連続的に注入しながら保管する場合には、容器に注入された清浄媒体に含まれる全ての不純物が光学素子表面に到達しうる。そこでこれらの場合には、清浄媒体中の不純物濃度に加え、不純物総量をも制限する必要が生じる。保管中に光学素子の劣化を生じないためには、清浄媒体中の不純物としての水または酸素の総量は5mg以下でなければならない。また清浄媒体中の不純物としての無機物総量は50μg以下、同じく有機物総量は50μg以下である必要がある。
【0019】
清浄媒体中の不純物濃度を本発明に係る上限値以下にするためには、公知の手段を特に制限なく使用することができる。具体的には活性炭やモレキュラーシーブ、活性アルミナなどを成分とするフィルタを用いればよい。また媒体中の浮遊微粒子等を除去するためにHEPAフィルタ等を通すことも有効である。
【0020】
不純物総量Qを本発明が提供する上限値以下に維持するためには、不純物濃度cを下げるほか、清浄媒体の体積Vを小さくするため小型の保管容器を用いること、注入速度Fを小さくすること、保管時間tを短くすることが有効である。
【0021】
不純物濃度または不純物総量が本発明の提供する上限値以下にあれば光学部品の劣化を抑制するには十分であるが、一旦劣化した光学素子を不純物濃度または不純物総量が極めて低い雰囲気に保管すると、劣化した光学素子の性能が回復するという更に強力な効果が得られる。
【0022】
保管容器から取り出された光学素子は、必要に応じて適切な洗浄方法により清浄媒体の残渣を除去し、光学装置への組み込み等の工程へ送られる。
(実施例1)
フッ化カルシウム基板の両面にフッ化物多層膜からなる反射防止膜が形成された光学素子を用意した。反射防止特性を有する波長範囲は145〜200nmである。該波長範囲における光学素子の初期透過率を分光光度計を用いて測定した後、清浄なステンレス製保管容器に格納して密閉した。図1は保管状態を示す図である。光学素子1はステンレス製保管容器2に格納され、図示しない保持手段により固定されている。
【0023】
次に水分濃度3mg/m以下かつ酸素濃度1mg/m以下かつ有機物濃度2μg/m以下に制御した清浄窒素ガスを、保管容器2の注入口5から流量10L/minで連続的に注入した。清浄窒素ガスの注入量は流量計6により計測し、流量制御バルブ7で調整した。注入された清浄窒素ガスは排出口4から容器外へ排出される。清浄窒素ガスの注入を続けながら15日間保管した後、光学素子を取り出し、保管後の透過率を測定した。その結果、保管中に生じた透過率低下は全波長範囲において0.1%以下であった。なお本実施例における清浄窒素ガス中の有機物濃度は、捕集管を用いて採取した試料ガス中の有機物をガスクロマトグラフ質量分析計で定量し、トルエン換算で表示したものである。
【0024】
(比較例1)
実施例1と同一の構成および初期透過率を有する光学素子を大気中に15日間保管した。このとき大気中の水分濃度は1.2×10mg/m、酸素濃度は2.6×10mg/m、有機物濃度は700μg/mであった。有機物濃度の測定方法は実施例1と同一である。15日経過後の前記波長範囲における透過率を測定したところ、保管中に生じた透過率低下は4%以上と極めて大きなものであった。
【0025】
(実施例2)
波長範囲180〜230nmにおいて反射防止特性を有する光学素子を、フタル酸エステルの一種であるフタル酸ジブチルを100μg/m含む雰囲気に暴露した。暴露時間は1日、3日、5日の3水準とし、各2枚の光学素子を暴露した。暴露前後の該波長範囲における透過率を分光光度計により測定したところ、暴露後の光学素子の透過率は暴露前に比べて6〜10%低下し、暴露時間が長いほど透過率低下量は大きかった。これは雰囲気中のフタル酸ジブチルが光学素子表面に吸着し、紫外光の吸収量が増大したことを示すものである。
【0026】
フタル酸ジブチルの吸着により透過率が低下した前記光学素子を、図1に示す形状の清浄なステンレス製保管容器に格納して密閉し、注入口から有機物濃度2μg/m以下の清浄空気を流量10L/minで注入しながら保管した。保管中、一定の経過時間ごとに光学素子を取り出し、その該波長範囲における透過率を測定した。透過率の測定結果を図2に示す。黒塗および白抜の記号はそれぞれ別個の光学素子についての測定値である。いずれの光学素子の透過率も時間経過に伴って回復することがわかる。これは一旦劣化した光学素子であっても、本発明が提供する雰囲気に保管することにより特性が回復するという効果を示すものである。
【0027】
【発明の効果】
本発明によれば、光学素子を清浄媒体中に保管する方法において、該清浄媒体中の不純物濃度および不純物総量を制御することにより、保管中の光学素子の劣化を抑制することができる。また保管容器体積や保管時間などの条件に応じて清浄媒体に要求される不純物濃度を特定することが可能となる。さらに不純物濃度または不純物総量が極めて低い場合には、一旦劣化した光学素子の性能回復効果を有する。
【図面の簡単な説明】
【図1】本発明に係る保管方法の一実施態様を示す図である。
【図2】本発明に係る保管方法による透過率回復効果を示す図である。
【符号の説明】
1:光学素子、2:保管容器、4:排出口、5:注入口、6:流量計、7:流量制御バルブ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for storing an optical element, particularly an optical element for a semiconductor exposure apparatus using ultraviolet light as exposure light, and relates to a method for suppressing deterioration of optical performance during storage.
[0002]
[Prior art]
2. Description of the Related Art An exposure apparatus used in semiconductor manufacturing and liquid crystal manufacturing is composed of a large number of optical elements such as lenses and mirrors, and a desired exposure performance is obtained by combining these numerous optical elements. For this reason, when the optical performance of the optical element is deteriorated, the exposure apparatus including a large number of optical elements is greatly affected as a result, even if the degree of deterioration per sheet is small. For example in transmittance reduction of 0.5% per surface lens, the entire exposure apparatus composed of 100 or more surfaces of the lens becomes (1-0.995 100) × 100 = 39 % ones transmittance reduction.
[0003]
The optical elements of the exposure apparatus are formed on an optical material substrate such as SiO 2 or CaF 2 on an oxide such as SiO 2 , TiO 2 , Al 2 O 3 , LiF, CaF 2 , SrF 2 , BaF 2 , NaF, MgF 2 , An optical thin film formed of a fluoride material such as Na 3 AlF 6 , AlF 3 , GdF 3 , NdF 3 , LaF 3 or a metal material such as Al is formed. The materials that make up these optical elements are vulnerable to water vapor, oxygen, and other organic and inorganic gases, and these gases may adsorb to the optical thin film or cause a chemical reaction with the optical thin film to generate new substances. It is known. Phthalates as toxic organic gases, NOx and SOx, such as NH 3 are known as inorganic gas. If another substance is adsorbed on the surface of the optical thin film, the refractive index of the surface layer changes, so that the characteristics of the entire optical element change, and a predetermined performance cannot be obtained. The same applies to the case where a new material layer is formed on the surface. In addition, deterioration of the optical element is caused in various forms, such as an increase in light scattering due to a change in the surface form. Such deterioration of the characteristics of the optical element due to the external environment has come to be regarded as a serious problem, particularly as the resolution of the exposure apparatus increases.
[0004]
The resolution R of the exposure apparatus is expressed by the following equation.
R = k 1 λ / (NA)
Here λ is the exposure wavelength, NA is the numerical aperture of the projection lens, k 1 is a process constant. The above equation shows that it is essential to shorten the exposure wavelength to improve the resolution, and the exposure wavelength is actually shorter than i-line (wavelength 365 nm), KrF laser (wavelength 248 nm), and ArF laser (wavelength 193 nm). Is becoming more advanced. However, for a KrF laser and light having a shorter wavelength, the light absorption coefficient of a substance causing deterioration of the optical element becomes large, so that even if these substances are slightly present on the surface of the optical element, a large amount of light is lost. And a serious problem that sufficient performance as an exposure apparatus cannot be obtained has emerged.
[0005]
In order to avoid this problem, when storing an optical element for an exposure apparatus that uses a KrF laser and light having a shorter wavelength, it is generally necessary to fill the storage container with a clean medium to suppress deterioration of the optical element. Is being done. Patent Document 1 discloses nitrogen, air, and an inert gas as a cleaning medium, and Patent Document 2 discloses a method using a fluorocarbon or hydrocarbon-based inert liquid. Storage containers used in these storage methods have a sealable structure and are often provided with an inlet for injecting a cleaning medium from the outside. The specific procedure for storing the optical element is as follows. First, the optical element is stored in a storage container, and is fixed by a suitable holder. Then, the container is sealed, and a cleaning medium is injected into the storage container from the injection port. At this time, residual atmospheric gas such as air existing in the storage container is discharged from an outlet provided as necessary, and the inside of the storage container is completely replaced with a clean medium. After completely replacing the inside of the storage container with the cleaning medium, the case where the inlet and the outlet are closed and the storage of the cleaning medium is stopped is stored, or the case where the cleaning medium is continuously injected and the cleaning medium is stored in the container. It may be stored while being distributed. When the storage container has a relatively low degree of cleanliness or airtightness, the latter method is used to easily maintain a clean atmosphere.
[0006]
[Patent Document 1]
JP 2000-302182 A
[Patent Document 2]
JP-A-11-194294
[Problems to be solved by the invention]
Even if the storage method that fills the inside of the storage container with the clean medium is used as described above, the optical element deteriorates depending on the storage conditions such as the purity of the clean medium to be used and the supply amount to the storage container, and the optical characteristics are exposed. There has been a problem that the device becomes unsuitable for the device.
[0009]
[Means for Solving the Problems]
The present inventor has conducted a detailed study on properties and use conditions of a cleaning medium used for storing an optical element. As a result, it has been found that the concentrations of moisture, oxygen, and other inorganic and organic substances as impurities contained in the cleaning medium greatly affect the deterioration of the optical element. Further, it has been found that the degree of deterioration of the optical element also depends on the size and storage time of the storage container and the supply speed of the cleaning medium to the storage container. Based on these results, the present inventors newly provide a concept of the total amount of impurities as an index for specifying storage conditions effective for suppressing deterioration of an optical element.
[0010]
When the storage container is replaced with a cleaning medium and then stored with the inlet and outlet closed and the supply of the cleaning medium stopped, the total amount of impurities Q is the volume of the cleaning medium sealed in the storage container. V, assuming that the impurity concentration in the cleaning medium is c,
Q = c × V
Is the value represented by Further, when the total amount of impurities Q when the cleaning medium is stored while being continuously injected, the total volume of the injected cleaning medium, that is, the total volume of the cleaning medium that has passed through the storage container is V, similarly, Q = c × V
Is represented by If the cleaning medium is injected at a constant speed F, the total volume V of the injected cleaning medium during the storage time t is V = F × t
It is.
[0011]
The total impurity amount Q determined by the above equation means the total amount of impurities that can reach the surface of the optical element during storage, and it can be said that the larger the Q, the more easily the optical element is deteriorated. According to the research results of the inventor, when the impurity concentration c in the cleaning medium exceeds a certain upper limit concentration, the optical element is deteriorated. If it exceeds, the optical element is deteriorated regardless of the value of c. Therefore, in order to suppress the deterioration of the optical element during storage, it is necessary that the impurity concentration in the cleaning medium is equal to or less than a certain upper limit and the total amount of impurities in the cleaning medium is equal to or less than a certain upper limit. If the temperature is constant, the degree of deterioration of the optical element depends on the number of contacts between the impurity and the optical element, and the number of contacts depends on the total amount of impurities. Can be suppressed. The upper limit of the impurity concentration and the upper limit of the total amount of impurities are different values depending on the type of the impurity.
[0012]
According to the present invention, as a storage method for suppressing deterioration of an optical element, when the impurity contained in a cleaning medium is water or oxygen, the impurity concentration is 5 mg / m 3 or less and the total amount of impurities is 5 mg or less. I will provide a.
[0013]
According to the present invention, as a storage method for suppressing deterioration of an optical element, when the impurity contained in a cleaning medium is an inorganic substance (excluding water and oxygen) or an organic substance, the impurity concentration is 50 μg / m 3 or less, and A storage method having a total amount of 50 μg or less is provided. It goes without saying that the inorganic and organic substances as impurities here do not include the inorganic and organic substances constituting the cleaning medium itself.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described along with actual steps.
First, the optical element is stored in a storage container. It is necessary to pay attention to the material of the storage container itself, and it is preferable that the material does not emit impurities that cause deterioration of the optical element. Specifically, it should be made of a metal material such as stainless steel or aluminum or an inorganic material such as glass or ceramics. As long as these materials are sufficiently cleaned before use, they do not release gas during use and do not deteriorate the optical element. On the other hand, a polymer material containing a large amount of a plasticizer, such as vinyl chloride, is unsuitable as a storage container because it may release gas during use and deteriorate the optical element. When an elastomer is used as a gasket for the sealed portion of the container, it is preferable to use a fluorine-based rubber such as Viton (registered trademark) which emits relatively little gas.
[0015]
The storage container is desirably sealable except for the inlet and outlet of the cleaning medium in order to suppress the inflow of impurities from the outside. When the container is sealed after filling with the cleaning medium, it is necessary to provide a sealing means such as a stop valve at the inlet and the outlet. In addition, when the cleaning medium is continuously injected during storage and the cleaning medium is circulated in the container, it is desirable to provide a supply amount adjusting means such as a flow rate adjusting valve at the inlet or the outlet.
[0016]
After storing the optical element in the storage container, a cleaning medium is injected into the container. The cleaning medium used in the storage method according to the present invention is air or an inert gas or an inert liquid. Here, the inert gas refers to a gas that does not react with the surface of the optical element, such as nitrogen, helium, or argon. The inert liquid similarly refers to a liquid that does not react with the surface of the optical element, and specifically, fluorocarbon and hydrocarbons are preferable. Even if these adhere to the surface of the optical element, they can be easily removed by ultraviolet ozone washing or the like.
[0017]
In order to suppress the deterioration of the optical element, the concentration of water or oxygen as an impurity in the cleaning medium is required to be 5 mg / m 3 or less. When the optical element is deteriorated by water, the concentration of water needs to be 5 mg / m 3 or less when the optical element deteriorates by oxygen. Inorganic concentration as impurities 50 [mu] g / m 3 or less, concentration of organic substances must be 50 [mu] g / m 3 or less. The amounts of water, oxygen, and other inorganic and organic substances in the cleaning medium can be determined by a gas chromatograph mass spectrometer.
[0018]
Even when the impurity concentration in the cleaning medium is within the above range, when the cleaning medium and the optical element are sealed and stored in the storage container, all the impurities present in the cleaning medium can reach the surface of the optical element. When the cleaning medium is stored while continuously being injected during the storage period, all impurities contained in the cleaning medium injected into the container can reach the surface of the optical element. Therefore, in these cases, it is necessary to limit not only the impurity concentration in the cleaning medium but also the total amount of impurities. In order to prevent deterioration of the optical element during storage, the total amount of water or oxygen as impurities in the cleaning medium must be 5 mg or less. The total amount of inorganic substances as impurities in the cleaning medium must be 50 μg or less, and the total amount of organic substances must be 50 μg or less.
[0019]
In order to make the impurity concentration in the cleaning medium equal to or less than the upper limit according to the present invention, known means can be used without any particular limitation. Specifically, a filter containing activated carbon, molecular sieve, activated alumina, or the like may be used. It is also effective to pass through a HEPA filter or the like in order to remove suspended particles and the like in the medium.
[0020]
In order to maintain the total impurity amount Q below the upper limit provided by the present invention, in addition to lowering the impurity concentration c, use a small storage container to reduce the volume V of the cleaning medium, and reduce the injection speed F. It is effective to shorten the storage time t.
[0021]
If the impurity concentration or the total amount of impurities is below the upper limit provided by the present invention, it is enough to suppress the deterioration of the optical component, but once the deteriorated optical element is stored in an atmosphere where the impurity concentration or the total amount of impurities is extremely low, A more powerful effect of recovering the performance of the deteriorated optical element can be obtained.
[0022]
The optical element taken out from the storage container is removed to a residue of the cleaning medium by an appropriate cleaning method as necessary, and is sent to a process such as incorporation into an optical device.
(Example 1)
An optical element in which an antireflection film made of a fluoride multilayer film was formed on both surfaces of a calcium fluoride substrate was prepared. The wavelength range having antireflection properties is 145 to 200 nm. After measuring the initial transmittance of the optical element in this wavelength range using a spectrophotometer, the optical element was stored in a clean stainless steel storage container and sealed. FIG. 1 is a diagram showing a storage state. The optical element 1 is stored in a storage container 2 made of stainless steel and fixed by holding means (not shown).
[0023]
Next, a clean nitrogen gas controlled to a water concentration of 3 mg / m 3 or less, an oxygen concentration of 1 mg / m 3 or less and an organic matter concentration of 2 μg / m 3 or less is continuously injected from the inlet 5 of the storage container 2 at a flow rate of 10 L / min. did. The injection amount of the clean nitrogen gas was measured by the flow meter 6 and adjusted by the flow control valve 7. The injected clean nitrogen gas is discharged from the outlet 4 to the outside of the container. After storing for 15 days while continuing to inject the clean nitrogen gas, the optical element was taken out and the transmittance after storage was measured. As a result, the decrease in transmittance that occurred during storage was 0.1% or less over the entire wavelength range. Note that the organic matter concentration in the clean nitrogen gas in this example is obtained by quantifying the organic matter in the sample gas collected by using a collection tube with a gas chromatograph mass spectrometer and expressing it in terms of toluene.
[0024]
(Comparative Example 1)
An optical element having the same configuration and initial transmittance as in Example 1 was stored in the atmosphere for 15 days. At this time, the moisture concentration in the atmosphere was 1.2 × 10 3 mg / m 3 , the oxygen concentration was 2.6 × 10 5 mg / m 3 , and the organic matter concentration was 700 μg / m 3 . The method for measuring the organic substance concentration is the same as that in the first embodiment. When the transmittance in the above wavelength range was measured after the lapse of 15 days, the decrease in transmittance caused during storage was as extremely large as 4% or more.
[0025]
(Example 2)
An optical element having an antireflection property in a wavelength range of 180 to 230 nm was exposed to an atmosphere containing 100 μg / m 3 of dibutyl phthalate, which is a kind of phthalate ester. The exposure time was set at three levels of one day, three days, and five days, and two optical elements were exposed. When the transmittance in the wavelength range before and after the exposure was measured by a spectrophotometer, the transmittance of the optical element after the exposure was reduced by 6 to 10% as compared with that before the exposure, and the longer the exposure time, the larger the transmittance reduction. Was. This indicates that dibutyl phthalate in the atmosphere was adsorbed on the surface of the optical element, and the absorption of ultraviolet light was increased.
[0026]
The optical element whose transmittance has decreased due to the adsorption of dibutyl phthalate is stored in a clean stainless steel storage container having the shape shown in FIG. 1 and hermetically sealed, and clean air having an organic substance concentration of 2 μg / m 3 or less is supplied from the inlet. It was stored while being injected at 10 L / min. During storage, the optical element was taken out at regular intervals, and the transmittance in the wavelength range was measured. FIG. 2 shows the measurement results of the transmittance. The black and white symbols are measurements for separate optical elements, respectively. It can be seen that the transmittance of each optical element recovers with the passage of time. This indicates that even if the optical element is once deteriorated, its characteristics can be restored by storing it in the atmosphere provided by the present invention.
[0027]
【The invention's effect】
According to the present invention, in a method of storing an optical element in a cleaning medium, deterioration of the optical element during storage can be suppressed by controlling the impurity concentration and the total amount of impurities in the cleaning medium. Further, it becomes possible to specify the impurity concentration required for the cleaning medium according to conditions such as the storage container volume and the storage time. Further, when the impurity concentration or the total amount of impurities is extremely low, there is an effect of restoring the performance of the once deteriorated optical element.
[Brief description of the drawings]
FIG. 1 is a diagram showing one embodiment of a storage method according to the present invention.
FIG. 2 is a diagram showing a transmittance recovery effect by a storage method according to the present invention.
[Explanation of symbols]
1: optical element, 2: storage container, 4: outlet, 5: inlet, 6: flow meter, 7: flow control valve

Claims (5)

保管容器に光学素子を格納する工程と、該光学素子が格納された保管容器を密閉する工程と、該密閉された保管容器に清浄媒体を注入する工程とを有する光学素子の保管方法であって、
前記清浄媒体中の水分濃度をc、前記保管容器に注入された清浄媒体の全体積をVとしたときに、
c≦5mg/m
であり、かつ
c×V≦5mg
であることを特徴とする光学素子の保管方法。
A method for storing an optical element, comprising: a step of storing an optical element in a storage container; a step of sealing the storage container in which the optical element is stored; and a step of injecting a clean medium into the sealed storage container. ,
When the moisture concentration in the cleaning medium is c and the total volume of the cleaning medium injected into the storage container is V,
c ≦ 5 mg / m 3
And c × V ≦ 5 mg
A method for storing an optical element, characterized in that:
保管容器に光学素子を格納する工程と、該光学素子が格納された保管容器を密閉する工程と、該密閉された保管容器に清浄媒体を注入する工程とを有する光学素子の保管方法であって、
前記清浄媒体中の酸素濃度をc、前記保管容器に注入された清浄媒体の全体積をVとしたときに、
c≦5mg/m
であり、かつ
c×V≦5mg
であることを特徴とする光学素子の保管方法。
A method for storing an optical element, comprising: a step of storing an optical element in a storage container; a step of sealing the storage container in which the optical element is stored; and a step of injecting a clean medium into the sealed storage container. ,
When the oxygen concentration in the cleaning medium is c and the total volume of the cleaning medium injected into the storage container is V,
c ≦ 5 mg / m 3
And c × V ≦ 5 mg
A method for storing an optical element, characterized in that:
保管容器に光学素子を格納する工程と、該光学素子が格納された保管容器を密閉する工程と、該密閉された保管容器に清浄媒体を注入する工程とを有する光学素子の保管方法であって、
前記清浄媒体中の、無機不純物(水および酸素を除く)の濃度をc、前記保管容器に注入された清浄媒体の全体積をVとしたときに、
c≦50μg/m
であり、かつ
c×V≦50μg
であることを特徴とする光学素子の保管方法。
A method for storing an optical element, comprising: a step of storing an optical element in a storage container; a step of sealing the storage container in which the optical element is stored; and a step of injecting a clean medium into the sealed storage container. ,
When the concentration of the inorganic impurities (excluding water and oxygen) in the cleaning medium is c, and the total volume of the cleaning medium injected into the storage container is V,
c ≦ 50 μg / m 3
And c × V ≦ 50 μg
A method for storing an optical element, characterized in that:
保管容器に光学素子を格納する工程と、該光学素子が格納された保管容器を密閉する工程と、該密閉された保管容器に清浄媒体を注入する工程とを有する光学素子の保管方法であって、
前記清浄媒体中の、有機不純物の濃度をc、前記保管容器に注入された清浄媒体の全体積をVとしたときに、
c≦50μg/m
であり、かつ
c×V≦50μg
であることを特徴とする光学素子の保管方法。
A method for storing an optical element, comprising: a step of storing an optical element in a storage container; a step of sealing the storage container in which the optical element is stored; and a step of injecting a clean medium into the sealed storage container. ,
When the concentration of the organic impurities in the cleaning medium is c and the total volume of the cleaning medium injected into the storage container is V,
c ≦ 50 μg / m 3
And c × V ≦ 50 μg
A method for storing an optical element, characterized in that:
前記清浄媒体が、空気または不活性気体または不活性液体である、請求項1ないし請求項4のいずれか一項記載の光学素子の保管方法。The method for storing an optical element according to claim 1, wherein the cleaning medium is air, an inert gas, or an inert liquid.
JP2003163095A 2003-06-09 2003-06-09 Method for storing optical element Pending JP2004361863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163095A JP2004361863A (en) 2003-06-09 2003-06-09 Method for storing optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163095A JP2004361863A (en) 2003-06-09 2003-06-09 Method for storing optical element

Publications (1)

Publication Number Publication Date
JP2004361863A true JP2004361863A (en) 2004-12-24

Family

ID=34055004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163095A Pending JP2004361863A (en) 2003-06-09 2003-06-09 Method for storing optical element

Country Status (1)

Country Link
JP (1) JP2004361863A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062986A (en) * 2006-09-11 2008-03-21 Taiheiyo Cement Corp Method for conveying and storing electrostatic chuck
JP2009111208A (en) * 2007-10-31 2009-05-21 Toyoda Gosei Co Ltd Method for dry-cleaning inside of resin ultraviolet curing device, and resin ultraviolet curing device with dry-cleaning function
US20110002424A1 (en) * 2008-02-07 2011-01-06 Nxp B.V. Method of operating a multi-stream reception scheme
CN103246176A (en) * 2013-04-02 2013-08-14 华中科技大学 Isolation chamber for isolating laser produced plasma extreme ultraviolet light source fragments
JP2016016904A (en) * 2014-07-11 2016-02-01 住友ベークライト株式会社 Optical transmission body packaging container and optical transmission body packaging method
CN108674812A (en) * 2018-05-12 2018-10-19 宀冲博 A kind of chemical reagent is sealed device
RU2758149C1 (en) * 2021-03-01 2021-10-26 АКЦИОНЕРНОЕ ОБЩЕСТВО "Научно-исследовательский институт оптико-электронного приборостроения" (АО "НИИ ОЭП") Container for optical-electronic devices

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062986A (en) * 2006-09-11 2008-03-21 Taiheiyo Cement Corp Method for conveying and storing electrostatic chuck
JP2009111208A (en) * 2007-10-31 2009-05-21 Toyoda Gosei Co Ltd Method for dry-cleaning inside of resin ultraviolet curing device, and resin ultraviolet curing device with dry-cleaning function
US20110002424A1 (en) * 2008-02-07 2011-01-06 Nxp B.V. Method of operating a multi-stream reception scheme
US9325927B2 (en) * 2008-02-07 2016-04-26 Nxp B.V. Method of operating a multi-stream reception scheme
CN103246176A (en) * 2013-04-02 2013-08-14 华中科技大学 Isolation chamber for isolating laser produced plasma extreme ultraviolet light source fragments
JP2016016904A (en) * 2014-07-11 2016-02-01 住友ベークライト株式会社 Optical transmission body packaging container and optical transmission body packaging method
CN108674812A (en) * 2018-05-12 2018-10-19 宀冲博 A kind of chemical reagent is sealed device
RU2758149C1 (en) * 2021-03-01 2021-10-26 АКЦИОНЕРНОЕ ОБЩЕСТВО "Научно-исследовательский институт оптико-электронного приборостроения" (АО "НИИ ОЭП") Container for optical-electronic devices

Similar Documents

Publication Publication Date Title
JP5270820B2 (en) Long-life excimer laser optical element
US6620256B1 (en) Non-plasma in-situ cleaning of processing chambers using static flow methods
US6327290B1 (en) Beam delivery system for molecular fluorine (F2) laser
TW200531180A (en) Purging of a wafer conveyance container
US6620630B2 (en) System and method for determining and controlling contamination
JP2004361863A (en) Method for storing optical element
CN1442756A (en) Inert gas displacement method and device, exposure device and graticule sheet device
WO2000048237A1 (en) Exposure method and apparatus
CN106374326A (en) Excimer gas purification
US20170139083A1 (en) Silica-modified-fluoride broad angle antireflection coatings
US6740893B1 (en) Optical instrument, and device manufacturing method
CN102512002B (en) Ultraviolet ozone drying cabinet for cleaning and storing vacuum ultraviolet optical elements
JP2004259828A (en) Semiconductor exposure system
JP2003344601A (en) Device and method for cleaning optical element and method for manufacturing it
JPH11149812A (en) Optical member for high output laser or high output lamp radiating light of 190-250 nm wavelength region
KR20020019121A (en) Exposing method and apparatus
US20050044802A1 (en) Method and module for improving the lifetime of metal fluoride optical elements
CN114667473B (en) System and method for protecting optical devices from vacuum ultraviolet light
JP2000147204A (en) Optical element with protective coat, its production, optical device and semiconductor exposure device
JP2006049654A (en) Storing/installation method of optical element for extreme ultraviolet ray exposure device
JP2005345489A (en) Antireflection film and optical element
JP2001102290A (en) Exposure method and aligner thereof
JP3639219B2 (en) Photomask storage device, photomask unit, photomask device, projection exposure apparatus, and projection exposure method
JPH11204627A (en) Packaging of wafer
TW202212864A (en) Protection of optical materials of optical components from radiation degradation