JP2000147204A - Optical element with protective coat, its production, optical device and semiconductor exposure device - Google Patents

Optical element with protective coat, its production, optical device and semiconductor exposure device

Info

Publication number
JP2000147204A
JP2000147204A JP10315222A JP31522298A JP2000147204A JP 2000147204 A JP2000147204 A JP 2000147204A JP 10315222 A JP10315222 A JP 10315222A JP 31522298 A JP31522298 A JP 31522298A JP 2000147204 A JP2000147204 A JP 2000147204A
Authority
JP
Japan
Prior art keywords
optical element
protective film
optical
group
active hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10315222A
Other languages
Japanese (ja)
Inventor
Shuichi Matsunari
秀一 松成
Keiji Matsuura
恵二 松浦
Satoru Oshikawa
識 押川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10315222A priority Critical patent/JP2000147204A/en
Publication of JP2000147204A publication Critical patent/JP2000147204A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an optical element with a protective coat less liable to affect the optical characteristics of the optical element and easy to peel by allowing active hydrogen groups on the surface of an optical element to react chemically with reactive groups. SOLUTION: Organic molecules having a fluorocarbon group in at least one end of each molecule and a functional group (reactive group) which reacts with an active hydrogen group in at least the other end are fed to the surface of an optical element 4 and active hydrogen groups on the surface of the optical element 4 are allowed to react chemically with the reactive groups to form a protective coat 6 on the surface. The optical element 4 is a substrate of an optical material such as synthetic quartz or fluorite or a member obtained by forming an optical thin film comprising an oxide such as SiO2, TiO2 or Al2O3, a fluoride such as LiF or CaF2 or a metallic sulfide on the substrate, e.g. a lens, a mirror or a prism having arbitrarily varied optical characteristics. The active hydrogen groups mean -OH (hydroxyl) and -NH- (imino).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、保護膜を具える光
学素子、その製造方法、及び前記光学素子を具えた光学
装置、半導体露光装置に関するものである。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a light having a protective film.
Element, method of manufacturing the same, and optical element including the optical element
The present invention relates to an apparatus and a semiconductor exposure apparatus.

【0002】[0002]

【従来の技術】様々な光応用技術の進展に伴い、光学素
子の性能への要求は益々高度化している。即ち、近年の
傾向としては、例えば半導体装置製造工程で微細なパタ
ーンを焼き付けるリソグラフィーのための半導体露光装
置や、微細な加工のためのレーザ加工装置、等の光学装
置は、一層の微細化を求められ、これらの光学装置で使
用される光は、可視光よりも短波長の光、即ち、水銀ラ
ンプのg線(約436nm)、i線( 約365nm) を
経て現在ではKrFエキシマレーザー光(248n
m)、ArFエキシマレーザー光(193nm)、等の
各種エキシマレーザ光、等へと、ますます短波長に移行
している。
2. Description of the Related Art With the development of various optical application technologies, the demand for the performance of optical elements is becoming increasingly sophisticated. That is, as a recent trend, for example, optical devices such as a semiconductor exposure device for lithography for printing a fine pattern in a semiconductor device manufacturing process and a laser processing device for fine processing require further miniaturization. The light used in these optical devices is a light having a wavelength shorter than that of visible light, that is, g-line (about 436 nm) and i-line (about 365 nm) of a mercury lamp, and is now a KrF excimer laser light (248n).
m), various excimer laser beams such as ArF excimer laser beam (193 nm), etc., are shifting to shorter and shorter wavelengths.

【0003】これら光学装置、特に半導体露光装置、等
に於いては、僅かな光吸収による光量損失が装置性能の
大きな劣化につながるため、各使用波長で、光学素子に
は極めて僅かな光吸収の存在も許容されない。僅かな光
吸収でも半導体露光装置に於けるように数十個という多
数の光学素子を用いる光学系では、光吸収が積算され、
総透過率が大きく低減するため、露光光量が低減し、そ
の結果スループットが低下する。また、僅かな光吸収で
も、これによって光学素子の温度上昇を生じ、この温度
上昇による光学素子の熱膨張が形状の歪みを引き起こす
ばかりでなく素材の特性を悪化させるのである。
[0003] In these optical devices, especially semiconductor exposure devices, etc., a slight loss of light due to light absorption leads to a large deterioration of the performance of the device. Existence is not acceptable. In an optical system using a large number of tens of optical elements as in a semiconductor exposure apparatus, even a slight amount of light absorption, light absorption is integrated,
Since the total transmittance is greatly reduced, the amount of exposure light is reduced, and as a result, the throughput is reduced. In addition, even a small amount of light absorption causes a rise in the temperature of the optical element, and the thermal expansion of the optical element due to the rise in the temperature causes not only distortion of the shape but also deterioration of the characteristics of the material.

【0004】そのため、これら光学素子は光学材料基板
のみならず、その表面上に形成される光学薄膜も紫外域
での光吸収率を極めて低く作製されねばならない。
[0004] Therefore, not only these optical elements but also the optical material substrate must be manufactured so that the optical thin film formed on the surface thereof has a very low light absorption in the ultraviolet region.

【0005】[0005]

【発明が解決しようとする課題】合成石英や蛍石などの
光学材料基板やSiO2、TiO2、Al2O3 、LiF 、CaF2、Sr
F2、BaF2、NaF 、MgF2、Na3AlF6 、AlF3、GdF3、NdF3
LaF3のような酸化物、フッ化物や金属硫化物などからな
る光学薄膜を具えた光学素子を長期保管をした場合、仮
にこの光学素子が光学材料基板のみならず、その表面上
に形成される光学薄膜も光吸収率を極めて低く作製され
ていても、保管環境中に含まれる水や有機物、無機物が
光学素子表面に付着、吸着して、汚れが生じてしまう。
場合によっては、光学素子を光学装置に組み込んで長期
使用している際にも、光学素子の設置環境中に含まれる
水や有機物・無機物が光学素子表面に付着、吸着し汚れ
が生じる。この汚れによって光学素子は、光吸収が生じ
てしまう。この表面汚染による光吸収は、光学素子の洗
浄を行えばなくなるが、光学素子の品質保持のために
は、頻繁な洗浄を行わなければならない。以上、頻繁な
洗浄は、コスト上昇や生産効率の低下をもたらす原因で
ある。
[Problems to be Solved by the Invention] Optical material substrates such as synthetic quartz and fluorite, SiO 2 , TiO 2 , Al 2 O 3 , LiF, CaF 2 , Sr
F 2, BaF 2, NaF, MgF 2, Na 3 AlF 6, AlF 3, GdF 3, NdF 3,
When an optical element with an optical thin film made of oxide, fluoride, metal sulfide, etc. such as LaF 3 is stored for a long time, this optical element is formed not only on the optical material substrate but also on its surface Even if the optical thin film is manufactured with an extremely low light absorption rate, water, organic substances, and inorganic substances contained in the storage environment adhere to and adhere to the surface of the optical element, thereby causing contamination.
In some cases, even when the optical element is incorporated into an optical device and used for a long period of time, water, organic substances, and inorganic substances contained in the installation environment of the optical element adhere to and adsorb to the surface of the optical element, thereby causing contamination. The dirt causes the optical element to absorb light. The light absorption due to this surface contamination can be eliminated by cleaning the optical element, but frequent cleaning must be performed to maintain the quality of the optical element. As described above, frequent cleaning is a cause of an increase in cost and a decrease in production efficiency.

【0006】このような問題に対処するために、従来で
はフッ化炭素や炭化水素を含む樹脂膜を光学素子表面上
に保護膜として形成し、フッ化炭素や炭化水素膜による
表面自由エネルギー低下を利用して撥水性や撥油性、そ
して防汚染性を光学素子に生じさせる方法が知られてい
る。しかし、上記の樹脂膜の膜厚は、数μmから数十n
mオーダーであるため、これらの膜の形成は光学素子の
光学特性に影響を与える。なぜならこれら樹脂膜は一般
に無視できない光吸収率を持ち、光吸収率を持つ物体に
光を透過させた場合、一般に厚い物体ほど光吸収率が大
きいため、厚い樹脂膜は保護したい光学素子の光吸収率
を大きく増加させてしまうのである。また、厚い樹脂膜
を反射防止膜、等の光学薄膜を具えた光学素子表面に形
成した場合、この膜が光学薄膜の光学特性を大きく変化
させてしまう。光学薄膜が反射防止膜の場合は、反射率
が大きく増加する結果、透過率が低下してしまうのであ
る。
In order to cope with such a problem, conventionally, a resin film containing carbon fluoride or hydrocarbon is formed as a protective film on the surface of an optical element to reduce the surface free energy due to the carbon fluoride or hydrocarbon film. There is known a method in which water repellency, oil repellency, and stain resistance are imparted to an optical element by utilizing the same. However, the thickness of the above resin film is from several μm to several tens n.
Because of the order of m, the formation of these films affects the optical characteristics of the optical element. This is because these resin films generally have a non-negligible light absorptivity. When light is transmitted through an object having a light absorptivity, a thicker object generally has a higher light absorptivity. That would greatly increase the rate. Further, when a thick resin film is formed on the surface of an optical element provided with an optical thin film such as an antireflection film, this film greatly changes the optical characteristics of the optical thin film. When the optical thin film is an antireflection film, the reflectance is greatly increased, and as a result, the transmittance is reduced.

【0007】 そのため、樹脂膜を光学素子の保護膜とし
て利用する際には、光学素子を実際に光学装置に組み込
む、等して使用する際には保護膜の樹脂膜を剥がすとい
う方法と、樹脂膜を光学薄膜の構成層の一部として光学
素子最表層に組み込む方法が用いられている。樹脂膜を
光学素子の保護膜として形成し、光学素子を実際に使用
する際には樹脂膜を剥がすという方法では、光学素子を
傷つけることなく樹脂膜を剥がさねばならないが、基板
材料に対する密着力の弱い、或いは柔らかい光学薄膜が
形成された光学素子ではこれは困難である。
[0007] Therefore, the resin film is used as a protective film for the optical element.
When using the optical device, the optical element is actually incorporated into the optical device.
When using the product, peel off the protective resin film.
Method and the resin film as an optical thin film
A method of incorporating the element into the outermost layer of the element has been used. Resin film
Formed as a protective film for optical elements and actually used optical elements
The method of peeling the resin film when performing
The resin film must be peeled off without damaging it.
Optical thin film with weak or soft adhesion to material
This is difficult with the formed optical element.

【0008】 また、長期保管において光学素子の劣化を
定期的に検査する場合、保護膜である樹脂膜が不透明で
あるために光学素子の光学特性が調べられないのも不便
で、検査の度に保護膜を剥離、再形成するのは製造期間
の延長、従ってコストアップに繋がる。一方、樹脂膜を
光学薄膜の一部として光学素子最表層に組み込む方法
は、樹脂膜の吸収が無視できなくなる可視から紫外域で
用いる光学薄膜においては樹脂の材料選定に制限を受け
る問題がある。
[0008] In addition, deterioration of optical elements during long-term storage
When performing periodic inspections, the resin film that is the protective film is opaque.
It is also inconvenient to be able to check the optical characteristics of the optical element
Therefore, it is the manufacturing period that the protective film is peeled off and re-formed every inspection.
Extension, and thus cost. On the other hand, the resin film
How to incorporate into the outermost layer of an optical element as part of an optical thin film
Is in the visible to ultraviolet range where the absorption of the resin film is not negligible
The optical thin film used is limited by resin material selection.
Problem.

【0009】さらに、上記の厚い樹脂膜は、塗布、湿式
引き上げ、スピンコート、真空蒸着、スパッタ法などで
作製されていたが、これらは大がかりな装置を必要とし
て作製工程としては複雑になるという問題や形状の複雑
な光学素子に樹脂膜を形成することが難しいという問題
もある。そこで本発明は、上記の問題を解決し、コスト
アップに繋がる高度な製造環境管理、保管環境管理、及
び工程管理や頻繁な洗浄が不要となる充分な防汚染性を
発揮する保護膜を具えた光学素子であって、光学素子の
光学特性に対する影響が極めて小さい、容易に剥離でき
る保護膜を具えた光学素子、およびその作製方法、及び
この光学素子を具えた光学装置、特に半導体露光装置を
提供することを目的とする。
Further, the above-mentioned thick resin film has been produced by coating, wet pulling, spin coating, vacuum evaporation, sputtering, etc., but these require a large-scale apparatus and are complicated in the production process. There is also a problem that it is difficult to form a resin film on an optical element having a complicated shape. Therefore, the present invention is provided with a protective film exhibiting a sufficient anti-staining property that solves the above-described problems and leads to an increase in cost, which requires advanced manufacturing environment management, storage environment management, and process management and frequent cleaning. Provided are an optical element, an optical element having an extremely small influence on the optical characteristics of the optical element, and having an easily peelable protective film, a method of manufacturing the same, and an optical device having the optical element, particularly a semiconductor exposure apparatus. The purpose is to do.

【0010】 [0010]

【課題を解決する為の手段】 本発明は、前述した課題を
解決するために、第一に「フッ化炭素基を分子の少なく
とも一端に有し活性水素基と反応する官能基(以下反応
基と呼ぶ)を前記分子の残りの少なくとも一端に有する
有機分子を光学素子の表面に供給することにより前記光
学素子表面上の活性水素基と前記反応基とを化学反応さ
せて成る保護膜を表面上に具えることを特徴とする光学
素子(請求項1)」を提供する。
[Means for solving the problem] The present invention solves the aforementioned problems.
In order to solve this problem, first of all, "
A functional group that reacts with an active hydrogen group
At the other end of the molecule)
By supplying organic molecules to the surface of the optical element,
The active hydrogen group on the element surface is chemically reacted with the reactive group.
Characterized by comprising a protective film formed on a surface thereof
(Claim 1).

【0011】第二に「前記保護膜の膜厚が10nm以下
であることを特徴とする請求項1記載の光学素子(請求
項2)」を提供する。第三に「前記保護膜が単分子膜で
あることを特徴とする請求項1記載の光学素子(請求項
3)」を提供する。第四に「前記保護膜の表面に対する
被覆率が1以下であることを特徴とする請求項1記載の
光学素子(請求項4)」を提供する。
Secondly, there is provided "the optical element according to claim 1, wherein the thickness of the protective film is 10 nm or less." Thirdly, there is provided "the optical element according to claim 1, wherein the protective film is a monomolecular film." Fourthly, the present invention provides “the optical element according to claim 1, wherein the coverage of the surface of the protective film is 1 or less”.

【0012】第五に「前記反応基が活性水素基と反応す
るメトキシシリル基であることを特徴とする請求項1〜
4何れか1項記載の光学素子(請求項5)」を提供す
る。第六に「請求項1〜5何れか1項記載の光学素子を
作製する方法であって、フッ化炭素基を分子の少なくと
も一端に有し活性水素基と反応する反応基を前記分子の
残りの少なくとも一端に有する有機分子の蒸気が満たさ
れた空間に光学素子を配置する段階を有することを特徴
とする光学素子の作製方法(請求項6)」を提供する。
Fifth, "the reactive group is a methoxysilyl group which reacts with an active hydrogen group.
4. An optical element according to any one of claims 4 to 5). Sixth, a method for producing an optical element according to any one of claims 1 to 5, wherein a reactive group having a fluorocarbon group at at least one end of the molecule and reacting with an active hydrogen group is present in the rest of the molecule. A step of arranging the optical element in a space filled with vapors of organic molecules at at least one end of the optical element (claim 6). "

【0013】第七に「前記保護膜が、紫外領域の光の照
射により除去可能であることを特徴とする請求項1〜4
何れか1項記載の光学素子(請求項7)」を提供する。
第八に「請求項1〜4何れか1項記載の光学素子を具え
ることを特徴とする光学装置(請求項8)」を提供す
る。第九に「請求項1〜4何れか1項記載の光学素子を
具えることを特徴とする半導体装置製造のリソグラフィ
ー工程に用いられる半導体露光装置(請求項9)」を提
供する。
Seventh, "the protective film can be removed by irradiation with light in an ultraviolet region.
An optical element according to any one of claims (Claim 7) "is provided.
Eighthly, there is provided an “optical device comprising the optical element according to any one of claims 1 to 4 (claim 8)”. Ninthly, there is provided a "semiconductor exposure apparatus used in a lithography step of manufacturing a semiconductor device, comprising the optical element according to any one of claims 1 to 4 (claim 9)".

【0014】 [0014]

【発明の実施の形態】 本発明は、前述した目的を達成す
るために、フッ化炭素基を分子の少なくとも一端に有
し、活性水素基と反応する官能基を分子の残りの少なく
とも一つの端に有する有機分子を光学素子の表面全体に
供給することにより光学素子上の活性水素基と前記反応
基とを化学反応させ、前記光学素子の表面を有機分子の
フッ素炭素基で覆った保護膜を作製する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention achieves the above-mentioned object.
Have a fluorocarbon group on at least one end of the molecule.
And the functional groups that react with the active hydrogen groups
Organic molecules at both ends are applied to the entire surface of the optical element
Supply the active hydrogen groups on the optical element
Group and a chemical reaction between the organic element and the surface of the optical element.
A protective film covered with a fluorocarbon group is produced.

【0015】ここで、光学素子とは合成石英や蛍石など
の光学材料基板、或いはその基板上にSiO2、TiO2、Al2O
3 、LiF 、CaF2、SrF2、BaF2、NaF 、MgF2、Na3AlF6
AlF3、GdF3、NdF3、LaF3のような酸化物、フッ化物や金
属硫化物などからなる光学薄膜が形成された部材で、分
光特性を任意に変えたレンズ、ミラー、プリズム、等が
代表的である。
Here, the optical element is an optical material substrate such as synthetic quartz or fluorite, or SiO 2 , TiO 2 , Al 2 O
3, LiF, CaF 2, SrF 2, BaF 2, NaF, MgF 2, Na 3 AlF 6,
A member with an optical thin film made of oxide, fluoride, metal sulfide, etc., such as AlF 3 , GdF 3 , NdF 3 , LaF 3. Representative.

【0016】 そして、活性水素基とは-OH (水酸基)や
-NH-(イミノ基)などを意味する。本発明の保護膜にお
いて使用する有機分子、つまり保護膜用有機分子は、分
子の少なくとも一端にCF3(CF2)n (CH2) m - (n,m は0
以上の整数)のようなフッ化炭素基を有し、分子の残り
の少なくとも一つの端に活性水素基と反応する官能基、
例えば-Si-OCH3(メトキシシリル基)、-Si-Cl(クロロ
シリル基)などを有するものである。
[0016] And active hydrogen groups are -OH (hydroxyl group) and
-NH- (imino group) and the like. The protective film of the present invention
Organic molecules used for
CF on at least one end of childThree(CFTwo)n(CHTwo)m-(N, m is 0
Having a fluorocarbon group such as
A functional group reactive with an active hydrogen group on at least one end of
For example -Si-OCHThree(Methoxysilyl group), -Si-Cl (chloro
(Silyl group).

【0017】 例えば、CF3(CF2)n (CH2) m SiX3- a (OCH
3)a (n,m は0 以上の整数、X はH、Cl、アルキル基、
フッ化炭素基、a は1 、2または3)で、以下のような
有機分子が好ましい例である。 CF3CH2CH2(OCH3) CF3CH2CH2Si(OCH3)3 CF3CH2CH2SiCH3(OCH3)2 CF3CH2CH2Si(CH3)2(OCH3) CF3CH2CH2SiCl3 CF3(CF2)5CH2CH2(OCH3) CF3(CF2)5CH2CH2Si(OCH3)3 CF3(CF2)5CH2CH2SiCH3(OCH3)2 CF3(CF2)5CH2CH2Si(CH3)2(OCH3) CF3(CF2)5CH2CH2SiCl3 CF3(CF2)7CH2CH2(OCH3) CF3(CF2)7CH2CH2Si(OCH3)3 CF3(CF2)7CH2CH2SiCH3(OCH3)2 CF3(CF2)7CH2CH2Si(CH3)2(OCH3) CF3(CF2)7CH2CH2SiCl3 光学素子表面上に保護膜を形成するに当たっては、先
ず、前記有機分子を含む溶剤3と、保護膜を形成する対
象の光学素子4とを密閉容器2に入れる。(図1)その
前処理として紫外線オゾン洗浄や他の洗浄法により光学
素子の表面を洗浄し、活性水素基を活性化しておくと、
保護膜と光学素子との密着力が増すので好ましい。本実
施の形態では保護膜用有機分子として、メトキシシリル
基を有するフッ化炭素シラン分子を用いたが、活性水素
基と反応する官能基であれば特に限定されるものではな
い。保護膜用有機分子を溶かす溶媒は、フロリナート
(住友スリーエム社製)のように活性水素基や保護膜用
有機分子と反応しない不活性非極性溶媒が好ましい。そ
して、密閉容器2全体を加熱炉1などで50〜150℃
に加熱し、保護膜用有機分子を蒸発させる。反応基とし
てメトキシシリル基またはクロロシリル基を有する保護
膜用有機分子を用いる場合には、50〜150℃の温
度、常圧で活性水素基と反応させることができる。反応
条件としては、保護膜用有機分子の反応基が活性水素基
と反応する温度圧力に設定されれば良い。ただし、20
0℃以上になるとフッ化炭素が分解し始めるので注意が
必要である。上記工程により保護膜用有機分子の蒸気が
密閉容器2内の空間を満たし、蒸気化した有機分子が光
学素子表面に到来し、光学素子表面において、表面の活
性水素基と保護膜用有機分子に含まれる反応基が化学反
応して、光学素子表面に保護膜用有機分子の単分子膜6
が形成できる。(図2)密閉容器2に光学素子を入れて
おく時間は、反応が完了するのに要する時間であれば良
く、保護膜用有機分子としてメトキシシリル基やハロゲ
ン化シリル基を用いる場合には約2時間である。ただ、
単分子保護膜の上に、更に保護膜用有機分子の膜が形成
される速度は、光学素子表面に保護膜用有機分子の単分
子膜が形成される速度に比べて格段に遅いため、密閉容
器2に光学素子4を入れておく時間は正確に制御する必
要がない。
[0017] For example, CFThree(CFTwo)n(CHTwo)mSiXThree-a(OCH
Three)a(N and m are integers of 0 or more, X is H, Cl, an alkyl group,
A fluorocarbon group, a is 1, 2 or 3), such as
Organic molecules are a preferred example. CFThreeCHTwoCHTwo(OCHThree) CFThreeCHTwoCHTwoSi (OCHThree)Three CFThreeCHTwoCHTwoSiCHThree(OCHThree)Two CFThreeCHTwoCHTwoSi (CHThree)Two(OCHThree) CFThreeCHTwoCHTwoSiClThree CFThree(CFTwo)FiveCHTwoCHTwo(OCHThree) CFThree(CFTwo)FiveCHTwoCHTwoSi (OCHThree)Three CFThree(CFTwo)FiveCHTwoCHTwoSiCHThree(OCHThree)Two CFThree(CFTwo)FiveCHTwoCHTwoSi (CHThree)Two(OCHThree) CFThree(CFTwo)FiveCHTwoCHTwoSiClThree CFThree(CFTwo)7CHTwoCHTwo(OCHThree) CFThree(CFTwo)7CHTwoCHTwoSi (OCHThree)Three CFThree(CFTwo)7CHTwoCHTwoSiCHThree(OCHThree)Two CFThree(CFTwo)7CHTwoCHTwoSi (CHThree)Two(OCHThree) CFThree(CFTwo)7CHTwoCHTwoSiClThree Before forming a protective film on the optical element surface,
And a solvent 3 containing the organic molecule and a solvent for forming a protective film.
The elephant optical element 4 is placed in the closed container 2. (Fig. 1)
Optical treatment by UV ozone cleaning or other cleaning methods as pretreatment
By cleaning the surface of the device and activating the active hydrogen groups,
This is preferable because the adhesion between the protective film and the optical element increases. Real truth
In the embodiment, methoxysilyl is used as the organic molecule for the protective film.
Fluorocarbon silane molecules with groups
There is no particular limitation as long as it is a functional group that reacts with the group.
No. Solvent that dissolves organic molecules for protective film is Fluorinert
For active hydrogen groups and protective films like (Sumitomo 3M)
Inert non-polar solvents that do not react with organic molecules are preferred. So
Then, the whole closed container 2 is heated to 50 to 150 ° C. in the heating furnace 1 or the like.
To evaporate the organic molecules for the protective film. As a reactive group
With methoxysilyl or chlorosilyl groups
When using organic molecules for a film, a temperature of 50 to 150 ° C.
It can be reacted with active hydrogen groups at normal pressure. reaction
The condition is that the reactive group of the organic molecule for the protective film is an active hydrogen group.
The temperature and the pressure may be set so as to react with the pressure. However, 20
Be careful as the fluorocarbon begins to decompose at 0 ° C or higher.
is necessary. By the above process, the vapor of organic molecules for the protective film is
The organic molecules that fill the space in the sealed container 2 and are vaporized
The surface of the optical element arrives, and the surface activity of the optical element
Reactive hydrogen groups and reactive groups contained in organic molecules for protective film
Accordingly, a monomolecular film 6 of an organic molecule for a protective film is formed on the surface of the optical element.
Can be formed. (FIG. 2) Put the optical element in the closed container 2
The time should be long enough to complete the reaction.
Methoxysilyl group and halogen
About 2 hours when a silyl halide group is used. However,
Organic molecule film for protective film is formed on the monomolecular protective film
Of the organic molecules for the protective film on the optical element surface
Because the rate at which the membrane is formed is much slower,
The time for keeping the optical element 4 in the vessel 2 must be accurately controlled.
No need.

【0018】保護膜用有機分子を光学素子表面に供給す
るために、保護膜用有機分子の蒸気で満たされた容器中
に光学素子を配置する気相法を用いないで、液相法、例
えば保護膜用有機分子溶液中に光学素子をディッピング
する法、スピンコート法、真空蒸着法、スパッタ法、塗
布法によっても保護膜を作製することは可能である。
かし、気相法は、保護膜用有機分子の蒸気が満たされた
空間に光学素子を配置して加熱するだけであるため作製
工程も簡単で、他の方法と較べて、大がかりな装置を必
要としない点、気相反応を利用しているため形状の複雑
な光学素子にも保護膜をつけることが容易な点で優れて
いる。
The organic molecules for the protective film are supplied to the surface of the optical element.
In a container filled with vapors of organic molecules for the protective film
Liquid phase method, without using the gas phase method to dispose the optical element
For example, dipping optical element in organic molecule solution for protective film
Method, spin coating method, vacuum evaporation method, sputtering method, coating method
It is also possible to produce a protective film by a cloth method. I
However, the vapor phase method is filled with the vapor of organic molecules for the protective film
Made simply by placing optical elements in space and heating
The process is simple and requires large equipment compared to other methods.
Not required, complicated shape due to use of gas phase reaction
Excellent in that it is easy to attach a protective film to even optical elements
I have.

【0019】このような工程で作製された保護膜におい
ては、保護膜用有機分子の一方の端のメトキシシリル基
が光学素子表面に固定されるため、分子の他方の端のフ
ッ化炭素基が、光学素子の表面(破線で示す)側に位置
することになる。(図2)CaF2、SrF2、BaF2、NaF 、Mg
F2などや酸化物、硫化物など光学薄膜の表面自由エネル
ギーが200 ×10-3N/m から800 ×10-3N/m であるのに対
し、フッ化炭素基が表面である固体の表面自由エネルギ
ーが5 ×10-3N/m から20×10-3N/m であり、フッ化炭素
基が光学素子の表面側に位置することにより、フッ化炭
素基に起因した光学素子の表面自由エネルギーの低下が
起き、撥水性や撥油性、そして防汚染性を光学素子に生
じさせることができる。また、吸着反応に大きく関与す
る活性な活性水素基を不活性なフッ化炭素基で置換する
ことができ、汚れの原因となる有機・無機分子の吸着を
抑えることができる。本発明の保護膜により、光学素子
を長期保管する際にも厳密な保管環境管理や頻繁な洗浄
を不要となり、たとえ、汚れたとしても、光学素子の表
面自由エネルギーが低下しており汚れ物質である有機・
無機分子と光学素子表面との結合力が小さいため、有機
溶剤をしみ込ませた拭き布で拭くだけで簡単に汚れを取
ることができる。
In the protective film formed by such a process, the methoxysilyl group at one end of the organic molecule for the protective film is fixed to the surface of the optical element, so that the fluorocarbon group at the other end of the molecule is removed. , On the surface (shown by the broken line) of the optical element. (Figure 2) CaF 2 , SrF 2 , BaF 2 , NaF, Mg
F 2 etc. or oxides, whereas the surface free energy of the optical thin film such as a sulfide is 200 × 10 -3 800 × from N / m 10 -3 N / m , the solid fluorocarbon group is a surface The surface free energy is from 5 × 10 −3 N / m to 20 × 10 −3 N / m, and the fluorocarbon group is located on the surface side of the optical element. A decrease in surface free energy occurs, and water repellency, oil repellency, and stain resistance can be imparted to the optical element. In addition, an active hydrogen group that greatly contributes to the adsorption reaction can be replaced with an inactive fluorocarbon group, and the adsorption of organic / inorganic molecules that cause contamination can be suppressed. The protective film of the present invention eliminates the need for strict storage environment management and frequent cleaning even when the optical element is stored for a long period of time. Some organic
Since the bonding force between the inorganic molecules and the surface of the optical element is small, dirt can be easily removed simply by wiping with a wiping cloth impregnated with an organic solvent.

【0020】上記の工程で作製された保護膜は単分子膜
であるが、かならずしもこの単分子膜が光学素子全面を
覆っている必要はない。 つまり、光学素子の表面が酸化
物である場合、その表面は図2で示すように全面が水酸
基5で覆われているため、保護膜は単分子膜として光学
素子全面を覆うが、紫外用光学素子の光学薄膜において
用いられるLiF 、CaF2、SrF2、 BaF2 、NaF 、MgF2、Na
3AlF6 、AlF3、GdF3、NdF3、LaF3のようなフッ化物、或
いは硫化物、等の非酸化物化合物が光学薄膜の最表面層
に用いられている場合、これらの物質の表面酸化、等に
よって一部存在している水酸基などが保護膜用有機分子
が反応する活性水素基5となる。(図2)この場合、こ
れら膜表面の活性水素基は少ないので被覆率が1より小
さくなることがある。しかし、保護膜用有機分子の被覆
率が1より小さく、平均膜厚が単分子以下でも、光学素
子表面に部分的に形成された保護膜用有機分子は、吸着
反応に大きく関与する活性な活性水素基を全て被覆して
いる。こうすることによって、光学素子表面は、吸着反
応に大きく関与する活性水素基が不活性なフッ化炭素基
で置換されることによって表面自由エネルギーが下が
り、光学素子表面に対する汚れの原因となる有機・無機
分子の吸着を抑えることができる。 勿論、本発明の光
学素子に形成される保護膜は、膜厚が単分子膜以上であ
っても、保護膜の防汚染性が落ちるわけでない。しか
し、[発明が解決しようとする課題]で述べたように保
護膜の存在は光学素子の特性に影響を与えるため、光学
的膜厚が薄いほど光学素子の光学特性に与える影響は小
さくなる。そのため、保護膜の膜厚は防汚染性を損なわ
ない範囲で薄いほうが良く、そのために保護膜用有機分
子の分子鎖を短くすること等により幾何学的膜厚を小さ
くしたり、吸着反応に大きく関与する活性水素基が光学
素子表面に部分的に存在する場合は、活性水素基が存在
する部分だけを被覆した単分子以下とすることが好まし
い。屈折率が低い有機分子や光吸収率が小さい保護膜用
有機分子を選ぶのも好ましい選択例である。
The protective film formed in the above steps is a monomolecular film
However, this monolayer always covers the entire optical element.
No need to cover. In other words, the surface of the optical element
If it is a substance, its surface is entirely hydroxylated as shown in FIG.
Since it is covered with base 5, the protective film is an optical monolayer.
Covers the entire surface of the element, but in the optical thin film of the ultraviolet optical element
LiF, CaF usedTwo, SrFTwo, BaFTwo, NaF, MgFTwo, Na
ThreeAlF6, AlFThree, GdFThree, NdFThree, LaFThreeSuch as fluoride, or
Non-oxide compound such as sulfide or sulfide is the outermost surface layer of optical thin film
If used for surface oxidation of these substances, etc.
Therefore, some of the hydroxyl groups are present as organic molecules for the protective film.
Becomes an active hydrogen group 5 to be reacted. (Fig. 2)
Less active hydrogen groups on the surface of these films, so coverage is less than 1.
May be cheaper. However, organic molecule coating for protective film
Even if the ratio is less than 1 and the average film thickness is
Organic molecules for the protective film partially formed on the surface of the
Covers all active active hydrogen groups that greatly participate in the reaction
I have. In this way, the surface of the optical element
Fluorocarbon groups in which the active hydrogen groups that are significantly involved are inactive
Reduces the surface free energy by
Organic and inorganic substances that cause contamination on the optical element surface
Adsorption of molecules can be suppressed. Of course, the light of the present invention
The protective film formed on the element has a thickness of at least a monomolecular film.
However, this does not mean that the protective film has reduced contamination resistance. Only
As described in [Problems to be solved by the invention],
Since the presence of the protective film affects the characteristics of the optical element,
The effect on the optical characteristics of the optical element is smaller as the target film thickness is smaller.
It will be cheap. Therefore, the thickness of the protective film impairs the antifouling property.
The thinner the better, the better.
Geometric film thickness by shortening molecular chains of
Active hydrogen groups that greatly affect the adsorption reaction
Active hydrogen groups are present when partially present on the device surface
Or less than a single molecule that covers only the part
No. For organic molecules with low refractive index and protective film with low light absorption
Choosing organic molecules is also a preferred choice.

【0021】保護膜の膜厚が薄くても保護膜は光学素子
表面と化学結合しているため、機械的には剥がれにく
く、分光器で使用するような重水素ランプからの弱い紫
外光に対しても化学結合が切れることがなく剥がれない
ので、光学素子の保護膜として充分な耐久性を有してい
る。本発明の光学素子は、保護膜が極めて薄く、それが
光学特性に与える影響が極めて小さいため、光学素子の
長期保管に於ける光学素子の光学特性の劣化を調べる際
には、保護膜を剥がさなくてそのまま分光器で測定、検
査することができる。
Even if the thickness of the protective film is small, the protective film is chemically bonded to the surface of the optical element, so that the protective film is not easily peeled off mechanically, and is not exposed to weak ultraviolet light from a deuterium lamp used in a spectroscope. However, since the chemical bond does not break and does not peel off, it has sufficient durability as a protective film of the optical element. Since the optical element of the present invention has a very thin protective film and its influence on the optical characteristics is very small, when examining the deterioration of the optical characteristics of the optical element during long-term storage of the optical element, the protective film is peeled off. It can be directly measured and inspected with a spectroscope without it.

【0022】本発明の光学素子は、前述のように良好な
耐久性を有する保護膜を具えるため、保護膜を剥離せず
そのまま半導体露光装置、等の光学装置に組み込む、等
して使用することが可能である。また、半導体露光装
置、等の光学装置に組み込んだ後においても、光学素子
表面が保護膜によって不活性化しているため、光学素子
の組み込み環境中の水や有機物・無機物が付着、吸着す
ることが少なく、光学素子を長期に清浄な状態に保つこ
とが出来る。更にまた、光学素子の使用条件によって
は、保護膜を取り除いて光学素子を使用したいことがあ
る。この場合、化学結合を切るのに充分な光子エネルギ
ーを有する紫外光の照射、例えばオゾン存在下でのUVラ
ンプによる紫外線連続照射や数J/cm2 のエキシマレーザ
ー照射などの簡単な方法を用いれば、保護膜の膜厚が薄
いため、容易に取り除くことが可能である。この保護膜
の除去は光学素子単体に対しても、光学素子に組み込ん
だ状態でも実行可能である。
Since the optical element of the present invention is provided with the protective film having good durability as described above, the optical element is directly incorporated into an optical device such as a semiconductor exposure apparatus without peeling the protective film and used. It is possible. In addition, even after being incorporated into an optical device such as a semiconductor exposure apparatus, the surface of the optical element is inactivated by the protective film, so that water, organic substances, and inorganic substances in the environment in which the optical element is incorporated may adhere and adsorb. The optical element can be kept clean for a long time. Furthermore, depending on the conditions of use of the optical element, it may be desired to remove the protective film and use the optical element. In this case, if a simple method such as irradiation of ultraviolet light having a photon energy sufficient to break a chemical bond, for example, continuous irradiation of ultraviolet light by a UV lamp in the presence of ozone or irradiation of an excimer laser of several J / cm 2 is used. Since the protective film is thin, it can be easily removed. The removal of the protective film can be performed on the optical element alone or in a state of being incorporated in the optical element.

【0023】以上本発明の実施形態を光学薄膜を具えた
光学素子に対して説明したが、本実施形態は、光学薄膜
のない、光学材料基板のみから成る光学素子にも適用さ
れることは言うまでもない。
Although the embodiments of the present invention have been described above with respect to an optical element having an optical thin film, it is needless to say that the present embodiment is also applicable to an optical element having no optical thin film and comprising only an optical material substrate. No.

【0024】 [0024]

【実施例】MgF2が最上層である光学薄膜が表面に形成さ
れた光学素子4を紫外線オゾン洗浄し、この光学素子の
分光特性を測定した。その後この光学素子4を再度紫外
線オゾン洗浄し、この光学素子4と保護膜の材料となる
有機分子を含む溶剤3とを密閉容器2にセットした。
(図1、2)この有機分子を含む溶剤3として本実施例
では、CF3CH2CH2Si(OCH3)3、CF3(CF2)5CH2CH2Si(OC
H3)3、CF3(CF2)7CH2CH2Si(OCH3)3の3種類の100 %溶液
を使用した。
EXAMPLE An optical element 4 having an optical thin film having MgF 2 as the uppermost layer formed on the surface was washed with ultraviolet and ozone, and the spectral characteristics of this optical element were measured. Thereafter, the optical element 4 was again washed with ultraviolet and ozone, and the optical element 4 and the solvent 3 containing an organic molecule serving as a material for the protective film were set in the closed container 2.
(FIGS. 1 and 2) In this embodiment, the solvent 3 containing the organic molecule is CF 3 CH 2 CH 2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 5 CH 2 CH 2 Si (OC
H 3) 3, was used CF 3 (CF 2) 7 CH 2 CH 2 Si (OCH 3) 3 three 100% solution.

【0025】 そして、密閉容器2全体を130〜150
℃、2〜4時間の間加熱炉1で加熱し、それぞれの有機
分子に対応する単分子保護膜6を光学素子表面に形成し
た。以上保護膜形成した光学素子の分光特性を測定した
が、保護膜形成の前後で光学素子の分光特性に大きな変
化は見られなかった。図3に保護膜を付ける前と、CF3C
H2CH2Si(OCH3)3を膜材料とする保護膜を形成した後の光
学素子の分光特性(分光透過率)変化を示す。190n
m以上の波長での透過率低下は±0.3%以下に収まって
いる。保護膜を付ける前後で光学素子の分光特性に大き
な変化が見られないのは、保護膜の膜厚が単分子厚相当
の1nm以下の非常に薄い膜厚であるためである。
[0025] Then, the entire closed container 2 is stored at 130 to 150
℃, heating in heating furnace 1 for 2 to 4 hours, each organic
A monomolecular protective film 6 corresponding to the molecule is formed on the surface of the optical element.
Was. The spectral characteristics of the optical element on which the protective film was formed were measured.
However, before and after the formation of the protective film, the spectral characteristics of the optical element change significantly.
No transformation was seen. Before attaching the protective film to FIG.ThreeC
HTwoCHTwoSi (OCHThree)ThreeAfter forming a protective film using
4 shows a change in spectral characteristics (spectral transmittance) of a chemical element. 190n
The drop in transmittance at wavelengths above m is within ± 0.3%
I have. The spectral characteristics of the optical element are large before and after the protective film is applied.
No significant change is seen when the protective film thickness is equivalent to a single molecular thickness
This is because the film thickness is as extremely small as 1 nm or less.

【0026】このような工程で作製された保護膜におい
ては、水滴の接触角が、保護膜無しのサンプルが32゜で
あったのに対し、CF3CH2CH2Si(OCH3)3、CF3(CF2)5CH2CH
2Si(OCH3)3、CF3(CF2)7CH2CH2Si(OCH3)3を反応させて保
護膜を付けたサンプルは、それぞれ45〜60゜、11
0゜、110゜と大きい角度を示し、保護膜による撥水
性発生が確認された。
In the protective film formed in such a process, the contact angle of the water droplet was 32 ° in the sample without the protective film, whereas the contact angle of the sample without the protective film was CF 3 CH 2 CH 2 Si (OCH 3 ) 3 . CF 3 (CF 2 ) 5 CH 2 CH
2 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3 were reacted and the protective films were applied to the samples, respectively.
The angles were as large as 0 ° and 110 °, and generation of water repellency by the protective film was confirmed.

【0027】保護膜無しの光学素子サンプルとCF3CH2CH
2Si(OCH3)3、CF3(CF2)7CH2CH2Si(OCH3)3により保護膜を
つけた光学素子サンプルを4週間大気中に曝して保管し
た場合、これら光学素子サンプルの193nmにおける透
過率の低下量(=保管前の193nmにおける透過率から
4週間大気中に曝して保管後の193nmにおける透過率
を減算した値)は保護膜無しの光学素子サンプルで4.
1%、CF3CH2CH2Si(OCH3)3により保護膜をつけた光学素
子サンプルで3. 3%、CF3(CF2)7CH2CH2Si(OCH3)3によ
り保護膜をつけた光学素子サンプルで1. 9%と保護膜
を付けることにより小さくなった。汚れ物質である有機
・無機分子が光学素子に付着、吸着すると、光学素子の
透過率が一般に低下する。つまり、透過率の低下量が保
護膜を付けることで小さくなったことは、保護膜により
汚染が抑制されたことを意味する。 以上を裏付けるた
め、保護膜無しの光学素子サンプルとCF3(CF2)7CH2CH2S
i(OCH3)3により保護膜を付けた光学素子サンプルを1週
間大気保管した後、大気圧イオン化質量分析装置(API-
MS)でそれぞれの光学素子サンプルからの脱ガス量を測
定すると、脱ガス量は保護膜有りの光学素子サンプルの
方が少なかった。(図4参照。縦軸は脱ガス量に比例す
るイオン強度値で、横軸は測定の際の光学素子サンプル
の温度である。グラフの曲線と横軸で挟まれた部分の面
積が小さいほど、脱ガス量が少ない。)これからも保護
膜により汚れ物質である有機・無機分子の付着が抑制さ
れることが分かる。
Optical element sample without protective film and CF 3 CH 2 CH
When the optical element samples coated with a protective film with 2 Si (OCH 3 ) 3 and CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3 were exposed to air for 4 weeks and stored, Of the transmittance at 193 nm (= the value obtained by subtracting the transmittance at 193 nm after exposure to the atmosphere for 4 weeks from the transmittance at 193 nm before storage and the transmittance at 193 nm after storage) is 4.
1%, optical element sample with a protective film of CF 3 CH 2 CH 2 Si (OCH 3 ) 3 3.3%, protective film of CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3 The optical element sample marked with was 1.9%, which was reduced by attaching the protective film. When organic / inorganic molecules, which are contaminants, adhere to and adhere to the optical element, the transmittance of the optical element generally decreases. That is, the fact that the amount of decrease in the transmittance is reduced by providing the protective film means that the contamination is suppressed by the protective film. To support the above, the optical element sample without protective film and CF 3 (CF 2 ) 7 CH 2 CH 2 S
An optical element sample coated with a protective film using i (OCH 3 ) 3 is stored in the atmosphere for one week, and then stored in an atmospheric pressure ionization mass spectrometer (API-
When the degassing amount from each optical element sample was measured by MS), the degassing amount was smaller in the optical element sample with the protective film. (See FIG. 4. The vertical axis is the ion intensity value proportional to the degassing amount, and the horizontal axis is the temperature of the optical element sample at the time of measurement. The smaller the area between the curve and the horizontal axis in the graph, the smaller the area The amount of degassing is small.) From this, it can be understood that the adhesion of organic and inorganic molecules, which are contaminants, is suppressed by the protective film.

【0028】保護膜有りの光学素子サンプルは、汚れた
としても、有機溶剤をしみ込ませた拭き布で拭くだけで
簡単に汚れを取ることができ、透過率が汚れる前にまで
回復するのが確認された。保護膜の剥離を行うため、CF
3(CF2)7CH2CH2Si(OCH3)3により保護膜を付けたサンプル
にUVランプからの紫外線をオゾン雰囲気中で照射した場
合、約15分の照射で水滴の接触角が照射前の110゜
から保護膜を付ける前の接触角値に戻り、保護膜の剥離
が認められた。(図5)これは保護膜の膜厚が極めて薄
いからである。従来の厚い膜厚の樹脂保護膜では、15
分の短い照射時間では剥離できなかった。
Even if the optical element sample with the protective film becomes dirty, it can be easily removed by simply wiping with a wiping cloth impregnated with an organic solvent, and it is confirmed that the transmittance recovers before the contamination. Was done. CF to remove the protective film
3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3 When a sample with a protective film is irradiated with UV light from a UV lamp in an ozone atmosphere, the contact angle of the water droplet is irradiated in about 15 minutes. From the previous 110 °, the contact angle value before applying the protective film was returned, and peeling of the protective film was observed. (FIG. 5) This is because the thickness of the protective film is extremely thin. With a conventional thick resin protective film, 15
It could not be peeled off with a short irradiation time of minutes.

【0029】ただし、保護膜の膜厚が薄くても保護膜は
光学素子表面と化学結合しているため、機械的には剥が
れにくく、製造工程の通常の取り扱いで剥離するような
ことはない。分光器で使用するような重水素ランプから
の弱い紫外光に対しても化学結合が切れることがなく剥
がれないので、光学素子の保護膜として十分な耐久性を
有している。
However, since the protective film is chemically bonded to the surface of the optical element even if the thickness of the protective film is small, the protective film is hardly peeled off mechanically, and does not peel off during normal handling in the manufacturing process. Since the chemical bond is not broken and does not peel off even with a weak ultraviolet light from a deuterium lamp used in a spectroscope, it has sufficient durability as a protective film of an optical element.

【0030】 本発明の光学素子の保護膜は前述のような
優れた耐久性を有し且つ膜厚が極めて薄いため、その耐
久性の範囲内で、保護膜を剥離せず光学素子を使用する
ことも可能である。こうすることにより光学素子を長期
使用している際に環境中に含まれる水や有機物・無機物
が表面へ付着、吸着することを抑えることができる。
[0030] The protective film of the optical element of the present invention is as described above.
It has excellent durability and extremely thin film thickness.
Use an optical element without removing the protective film within the range of durability
It is also possible. In this way, the optical element can be used for a long time.
Water, organic and inorganic substances contained in the environment during use
Can be suppressed from adhering and adsorbing to the surface.

【0031】 [0031]

【発明の効果】 本発明の光学素子は、活性水素基と反応
する官能基を有する有機分子を光学素子の表面全体に供
給することにより光学素子上の活性水素基と反応基とを
化学反応させて形成され、表面が有機分子のフッ素炭素
基で覆われた保護膜を具える。これにより、フッ化炭素
基に起因して光学素子の表面自由エネルギーが低下し
て、撥水性や撥油性、そして防汚染性を光学素子に生じ
させることができる。また、吸着反応に大きく関与する
活性な活性水素基を不活性なフッ化炭素基で置換するこ
とができ、汚れの原因となる有機・無機分子の吸着を抑
えることができる。
【The invention's effect】 The optical element of the present invention reacts with active hydrogen groups.
Organic molecules with functional groups
Supply the active hydrogen groups and reactive groups on the optical element.
Formed by a chemical reaction, the surface of which is an organic molecule of fluorocarbon
With a protective film covered with a base. With this, fluorocarbon
The surface free energy of the optical element
Water and oil repellency and stain resistance to the optical element
Can be done. Also greatly involved in the adsorption reaction
Replace active active hydrogen groups with inert fluorocarbon groups
To prevent the adsorption of organic and inorganic molecules that cause contamination.
Can be obtained.

【0032】 また、本発明の光学素子は、その表面に具
えた保護膜により、光学素子を長期保管する際にも厳密
な保管環境管理や頻繁な洗浄を不要となり、たとえ、汚
れたとしても、紫外可視用光学素子の表面自由エネルギ
ーが低下していており汚れ物質である有機・無機分子と
光学素子表面との結合力が小さいため、有機溶剤をしみ
込ませた拭き布で拭くだけで簡単に汚れを除去できる。
[0032] Further, the optical element of the present invention has
Strict protective film for long-term storage of optical elements
Storage environment management and frequent cleaning are no longer necessary.
Surface free energy of the UV-visible optical element
-Organic and inorganic molecules that are
Since the bonding strength with the optical element surface is small, the organic solvent
Dirt can be easily removed simply by wiping with the wiped cloth.

【0033】更にまた、本発明の光学素子は、保護膜が
良好な耐久性を有し、且つ膜厚が薄いため保護膜形成に
起因する性能劣化が極めて少ないので、保護膜を剥離せ
ずそのまま半導体露光装置、等の光学装置に組み込む、
等して使用することが可能である。 更にまた、これらの
光学素子を組み込んだ半導体露光装置、等の光学装置
は、光学素子を組み込んだ後においても、光学素子表面
が保護膜によって不活性化しているため、環境中の水や
有機物・無機物が付着、吸着することが少なく、光学素
子を長期に清浄な状態に保つことが出来、その結果光学
装置の光学性能を長期に渡って良好に保つことができ
る。更にまた、光学素子から保護膜を取り除いて光学素
子を使用する場合、強い紫外光の照射、などの簡単な方
法で、保護膜の膜厚が薄いため、容易に取り除くことが
可能である。
Furthermore, in the optical element of the present invention, the protective film
Good durability and thin film thickness for forming protective film
Since the performance deterioration caused by this is extremely small, peel off the protective film.
Directly into an optical device such as a semiconductor exposure device,
And so on. Furthermore, these
Optical devices such as semiconductor exposure devices incorporating optical elements
Is the surface of the optical element even after the
Has been inactivated by the protective film,
Organic and inorganic substances are less likely to adhere and adsorb,
Can be kept clean for a long time, resulting in optical
The optical performance of the device can be kept good for a long time
You. Furthermore, the protective film is removed from the optical element,
When using a child, simple methods such as strong ultraviolet light irradiation
Method, the thickness of the protective film is so thin that it can be easily removed.
It is possible.

【0034】更にまた、本発明の光学素子は、保護膜の
膜厚が薄くても保護膜は光学素子表面と化学結合してい
るため、機械的に剥がれにくく、分光器で使用するよう
な重水素ランプからの弱い紫外光に対しても化学結合が
切れることがなく分解しないので、耐久性は良好であ
る。本発明の保護膜が光学素子の光学特性に与える影響
は小さことも合わせ、長期保管において光学素子の光学
特性の劣化を分光器で定期的に検査することができる。
Furthermore, in the optical element of the present invention, even if the thickness of the protective film is small, the protective film is chemically bonded to the surface of the optical element, so that the protective film is not easily peeled off mechanically, and the optical element used for a spectroscope is hardly removed. The durability is good because the chemical bond is not broken and does not decompose even with weak ultraviolet light from the hydrogen lamp. In combination with the fact that the protective film of the present invention has a small effect on the optical characteristics of the optical element, deterioration of the optical characteristics of the optical element can be periodically inspected with a spectroscope during long-term storage.

【0035】更に本発明によれば、保護膜用有機分子の
蒸気が満たされた空間に光学素子を配置して加熱するだ
けで簡単に保護膜を具えた光学素子を製造でき、塗布・
湿式引き上げ・スピンコート・真空蒸着・スパッタ法と
比べ、大がかりな装置を必要としないため安価で、気相
反応を利用しているため形状の複雑な光学素子にも保護
膜をつけることができる。
Further, according to the present invention, an optical element having a protective film can be easily manufactured simply by arranging the optical element in a space filled with the vapor of the organic molecule for the protective film and heating.
Compared to the wet pulling, spin coating, vacuum deposition, and sputtering methods, a large-scale apparatus is not required, so that it is inexpensive, and since a gas phase reaction is used, an optical element having a complicated shape can be provided with a protective film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の保護膜付き光学素子の作製工程の概略
図である。
FIG. 1 is a schematic view of a manufacturing process of an optical element with a protective film of the present invention.

【図2】保護膜なし光学素子( 上段) と保護膜付き光学
素子( 下段) を分子レベルまで拡大した概略図である。
保護膜用有機分子としてCF3(CF2)7CH2CH2Si(OCH3)3を利
用した例である。
FIG. 2 is a schematic diagram in which an optical element without a protective film (upper part) and an optical element with a protective film (lower part) are enlarged to a molecular level.
This is an example in which CF3 (CF2) 7CH2CH2Si (OCH3) 3 is used as an organic molecule for a protective film.

【図3】保護膜の有無での分光特性の変化を示すグラフ
である。
FIG. 3 is a graph showing a change in spectral characteristics with and without a protective film.

【図4】保護膜なしサンプル( 上段) と保護膜付きサン
プル( 下段) から発生した脱ガス量を示すAPI-MSの測定
結果。縦軸は脱ガス量に比例するイオン強度値で、横軸
は測定の際のサンプルの温度である。mは質量数、Zは
電荷である。
[Fig. 4] API-MS measurement results showing the amount of outgas generated from the sample without the protective film (upper) and the sample with the protective film (lower). The vertical axis represents the ion intensity value proportional to the degassing amount, and the horizontal axis represents the temperature of the sample at the time of measurement. m is the mass number and Z is the charge.

【図5】保護膜を付けた光学素子をオゾン存在下でUVラ
ンプにより紫外線を連続照射した時の水滴の接触角変化
を示すグラフである。
FIG. 5 is a graph showing a change in contact angle of a water droplet when an optical element provided with a protective film is continuously irradiated with ultraviolet rays by a UV lamp in the presence of ozone.

【符号の説明】[Explanation of symbols]

1 恒温槽等の加熱炉 2 密閉容器 3 保護膜用有機分子 4 光学素子 5 水酸基 6 保護膜 7 容器
8蓋
DESCRIPTION OF SYMBOLS 1 Heating furnace of thermostat etc. 2 Airtight container 3 Organic molecule for protective films 4 Optical element 5 Hydroxyl group 6 Protective film 7 Container
8 lids

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2K009 AA00 BB02 BB04 CC03 CC06 CC21 DD03 EE02 EE05 4G059 AA11 AB01 AB11 AC04 AC18 BB01 FA05 FB01 GA01 GA02 GA04 GA16 5F046 AA28 CA04 CB12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2K009 AA00 BB02 BB04 CC03 CC06 CC21 DD03 EE02 EE05 4G059 AA11 AB01 AB11 AC04 AC18 BB01 FA05 FB01 GA01 GA02 GA04 GA16 5F046 AA28 CA04 CB12

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】フッ化炭素基を分子の少なくとも一端に有
し活性水素基と反応する官能基(以下反応基と呼ぶ)を
前記分子の残りの少なくとも一端に有する有機分子を光
学素子の表面に供給することにより前記光学素子表面上
の活性水素基と前記反応基とを化学反応させて成る保護
膜を表面上に具えることを特徴とする光学素子。
An organic molecule having a fluorocarbon group at at least one end of a molecule and a functional group reacting with an active hydrogen group (hereinafter referred to as a reactive group) at at least one end of the molecule is provided on the surface of the optical element. An optical element comprising a protective film formed on the surface by chemically reacting an active hydrogen group on the surface of the optical element with the reactive group when supplied.
【請求項2】前記保護膜の膜厚が10nm以下であるこ
とを特徴とする請求項1記載の光学素子。
2. The optical element according to claim 1, wherein said protective film has a thickness of 10 nm or less.
【請求項3】前記保護膜が単分子膜であることを特徴と
する請求項1記載の光学素子。
3. The optical element according to claim 1, wherein said protective film is a monomolecular film.
【請求項4】前記保護膜の表面に対する被覆率が1以下
であることを特徴とする請求項1記載の光学素子。
4. The optical element according to claim 1, wherein a coverage of the surface of the protective film is 1 or less.
【請求項5】前記反応基が活性水素基と反応するメトキ
シシリル基であることを特徴とする請求項1〜4何れか
1項記載の光学素子。
5. The optical element according to claim 1, wherein said reactive group is a methoxysilyl group which reacts with an active hydrogen group.
【請求項6】請求項1〜5何れか1項記載の光学素子を
作製する方法であって、フッ化炭素基を分子の少なくと
も一端に有し活性水素基と反応する反応基を前記分子の
残りの少なくとも一端に有する有機分子の蒸気が満たさ
れた空間に光学素子を配置する段階を有することを特徴
とする光学素子の製造方法。
6. A method for producing an optical element according to claim 1, wherein a reactive group having a fluorocarbon group at at least one end of the molecule and reacting with an active hydrogen group is added to the molecule. A method of manufacturing an optical element, comprising: arranging an optical element in a space filled with vapor of organic molecules at at least one end.
【請求項7】前記保護膜が、紫外領域の光の照射により
除去可能であることを特徴とする請求項1〜4何れか1
項記載の光学素子。
7. The method according to claim 1, wherein said protective film is removable by irradiation with light in an ultraviolet region.
Item 6. The optical element according to item 1.
【請求項8】請求項1〜4何れか1項記載の光学素子を
具えることを特徴とする光学装置。
8. An optical device comprising the optical element according to claim 1.
【請求項9】請求項1〜4何れか1項記載の光学素子を
具えることを特徴とする半導体装置製造のリソグラフィ
ー工程に用いられる半導体露光装置。
9. A semiconductor exposure apparatus for use in a lithography step of manufacturing a semiconductor device, comprising the optical element according to claim 1.
JP10315222A 1998-11-06 1998-11-06 Optical element with protective coat, its production, optical device and semiconductor exposure device Pending JP2000147204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10315222A JP2000147204A (en) 1998-11-06 1998-11-06 Optical element with protective coat, its production, optical device and semiconductor exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10315222A JP2000147204A (en) 1998-11-06 1998-11-06 Optical element with protective coat, its production, optical device and semiconductor exposure device

Publications (1)

Publication Number Publication Date
JP2000147204A true JP2000147204A (en) 2000-05-26

Family

ID=18062876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10315222A Pending JP2000147204A (en) 1998-11-06 1998-11-06 Optical element with protective coat, its production, optical device and semiconductor exposure device

Country Status (1)

Country Link
JP (1) JP2000147204A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514310A (en) * 2002-01-14 2005-05-19 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Ophthalmic lens processing method
JP2006179909A (en) * 2004-12-20 2006-07-06 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JPWO2008156176A1 (en) * 2007-06-20 2010-08-26 旭硝子株式会社 Surface treatment method of oxide glass with fluorinating agent
WO2015159839A1 (en) * 2014-04-15 2015-10-22 旭硝子株式会社 Anti-reflection laminate and method for producing same
US20210341848A1 (en) * 2019-01-10 2021-11-04 Carl Zeiss Smt Gmbh Method for in-situ dynamic protection of a surface and optical assembly

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160484A (en) * 2002-01-14 2010-07-22 Essilor Internatl Co Generale & D'optique Process for treating an ophthalmic lens
JP2005514310A (en) * 2002-01-14 2005-05-19 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Ophthalmic lens processing method
US7629053B2 (en) 2002-01-14 2009-12-08 Essilor International Compagnie Generale D'optique Process for treating an ophthalmic lens
KR100949350B1 (en) * 2002-01-14 2010-03-26 에실러에떼르나쇼날(꽁빠니제네랄돕띠끄) Process for treating an ophthalmic lens
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006179909A (en) * 2004-12-20 2006-07-06 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JPWO2008156176A1 (en) * 2007-06-20 2010-08-26 旭硝子株式会社 Surface treatment method of oxide glass with fluorinating agent
JP5359871B2 (en) * 2007-06-20 2013-12-04 旭硝子株式会社 Surface treatment method of oxide glass with fluorinating agent
WO2015159839A1 (en) * 2014-04-15 2015-10-22 旭硝子株式会社 Anti-reflection laminate and method for producing same
US20210341848A1 (en) * 2019-01-10 2021-11-04 Carl Zeiss Smt Gmbh Method for in-situ dynamic protection of a surface and optical assembly
JP2022517589A (en) * 2019-01-10 2022-03-09 カール・ツァイス・エスエムティー・ゲーエムベーハー How to dynamically protect surfaces and optical assemblies in situ
US11681236B2 (en) * 2019-01-10 2023-06-20 Carl Zeiss Smt Gmbh Method for in-situ dynamic protection of a surface and optical assembly
JP7348294B2 (en) 2019-01-10 2023-09-20 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for dynamically protecting surfaces and optical assemblies in situ

Similar Documents

Publication Publication Date Title
US8279402B2 (en) Optical arrangement for immersion lithography with a hydrophobic coating, as well as projection exposure apparatus comprising the same
JP4267813B2 (en) Antifouling coating layer for antireflection surface and preparation method
US7242843B2 (en) Extended lifetime excimer laser optics
US7078134B2 (en) Photolithographic mask having a structure region covered by a thin protective coating of only a few atomic layers and methods for the fabrication of the mask including ALCVD to form the thin protective coating
JP2005301208A (en) Method for manufacturing stain proof optical article
US20060257751A1 (en) Photo mask and method to form a self-assembled monolayer and an inorganic ultra thin film on the photo mask
EP0837345B1 (en) Method for manufacturing optical components for use in the ultraviolet region
JP2000147204A (en) Optical element with protective coat, its production, optical device and semiconductor exposure device
CN111913346A (en) Photomask assembly and photoetching system
US20050247120A1 (en) Gas phase deposition of perfluorinated alkyl silanes
JP3449070B2 (en) Dirt prevention treatment method
JP2012122991A (en) Surface contamination measurement method
JPH1120034A (en) Manufacture of optical member, optical member, and projection aligner using optical member
JP2005321623A (en) Optical element, its manufacturing method, and extreme ultraviolet ray exposure device
JP4112649B2 (en) UV pellicle and pellicle case
JP4823569B2 (en) Optical glass component and manufacturing method thereof
JP4371458B2 (en) Pellicle manufacturing method
KR20160085146A (en) Method of fabricating pellicles using supporting layer
JP3302268B2 (en) Pellicle manufacturing method
JPH1152102A (en) Optical member for excimer laser, its temporarily protecting method and projection aligner
Fahey et al. SVG 157-nm lithography technical review
JP2002296403A (en) Optical thin film, optical member and exposure device mounted with the same
Thomas et al. Processes for the elimination of fogging on KDP crystals prior to and during use in laser systems
JP2001141902A (en) Optical element, its manufacturing method and exposure device
CN116815130A (en) Super-structured surface preparation method capable of realizing ultraviolet self-cleaning