JP2004361255A - Electric inertia control system of power measuring system - Google Patents

Electric inertia control system of power measuring system Download PDF

Info

Publication number
JP2004361255A
JP2004361255A JP2003160207A JP2003160207A JP2004361255A JP 2004361255 A JP2004361255 A JP 2004361255A JP 2003160207 A JP2003160207 A JP 2003160207A JP 2003160207 A JP2003160207 A JP 2003160207A JP 2004361255 A JP2004361255 A JP 2004361255A
Authority
JP
Japan
Prior art keywords
torque
inertia
dynamometer
vehicle
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003160207A
Other languages
Japanese (ja)
Other versions
JP4321124B2 (en
JP2004361255A5 (en
Inventor
Toshimitsu Maruki
利光 丸木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2003160207A priority Critical patent/JP4321124B2/en
Publication of JP2004361255A publication Critical patent/JP2004361255A/en
Publication of JP2004361255A5 publication Critical patent/JP2004361255A5/ja
Application granted granted Critical
Publication of JP4321124B2 publication Critical patent/JP4321124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To permit a stable power measurement, in which detection of acceleration for controlling electric inertia is not required, and in which the response property in controlling the electric inertia is enhanced. <P>SOLUTION: Absorption torque in which traveling resistance of a vehicle and the mechanical inertia part of the vehicle are electrically compensated is generated by a dynamometer DY. An axial torque meter for detecting the axial torque τ<SB>p</SB>generated in the power transmission shaft of the vehicle is provided. The dynamometer obtains an electric inertia torque setting value τ<SB>e</SB>at an element H1, by the calculation on τ<SB>e</SB>=(1-J<SB>2</SB>/J<SB>s</SB>)(τ<SB>p</SB>-τ<SB>2</SB>), from a detection value of the axial torque τ<SB>p</SB>, a torque setting value τ<SB>2</SB>for the traveling resistance part except for the mechanical inertia part, and mechanical inertia J<SB>2</SB>and setting inertia J<SB>s</SB>of the dynamometer, and controls the absorption torque by the sum of the electric inertia torque setting value τ<SB>e</SB>and the torque setting value τ<SB>2</SB>of the traveling resistance part. In the drive source of the vehicle, the driving torque is controlled, similar to the arithmetic expression. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、動力計測システムの負荷側または駆動側で、動力計測対象の機械慣性分を電気的に補償した試験をするための電気慣性制御方式に関する。
【0002】
【従来の技術】
ダイナモメータは、車両の動力伝達系やエンジン単体での性能試験や耐久試験を屋内で可能とするもので、動力伝達系の試験には、例えば、図3に示すシステム構成にされる。
【0003】
エンジン1にクラッチ2および変速機3を一体にした組立て状態で、動力吸収手段としてのダイナモメータ4が結合される。エンジン1は、速度コントローラ5によって速度制御され、ダイナモメータ4はトルクコントローラ6によって走行抵抗制御が行われることで、変速機3に実車と等価な慣性を負荷し、実車走行を模擬した変速機試験が行われる。クラッチ2はコントローラ7によって変速時および発進時に断から徐々に自動操作され、変速機3もコントローラ8によって変速時の変速比切換操作がなされる。
【0004】
エンジン1の速度制御は、速度検出器9からの検出速度と設定速度Nとの比較により、スロットルコントローラ10にスロットル開度θを指令し、コントローラ10とアクチェータ11によるスロットル開度制御を行う。
【0005】
ここで、車両の走行抵抗は、タイヤ転がり抵抗と空気抵抗からなる平坦路定常走行抵抗に慣性抵抗を加えたもの、さらには登降坂抵抗を加えたものになり、この走行抵抗(制動抵抗)はダイナモメータでは各抵抗成分の係数変換によってトルクの単位で設定される。
【0006】
上記の走行抵抗のうち、慣性抵抗は、実車と等価な慣性分を設定するフライホイールが使用されていたが、フライホイールは設置スペースが大きくなることや高価になることから、ダイナモメータ4の吸収トルク分として制御する電気慣性制御方法が提案されている(例えば、特許文献1、特許文献2を参照)。
【0007】
特許文献1の電気慣性制御方法では、図4に示す等価ブロック構成にされる。図中、要素A〜Eはエンジンの速度制御系を示し、Aは速度コントローラ5がもつ比例積分要素、Bはスロットル速度制御系(10、11)がもつ開度制御遅れ要素、Cはスロットル開度θに対するエンジン1の出力トルク特性、Dはエンジンと変速機とダイナモメータ等がもつ慣性を合わせた試験装置の慣性要素であり、慣性Jは主にエンジン慣性Jとダイナモメータの機械慣性Jの和になる。Eは速度検出器9がもつ一次遅れ要素である。これら要素における各記号は次のとおりである。
【0008】
:速度コントローラ5のゲイン、T:速度コントローラ5の時定数、K:開度制御系のゲイン、T:開度制御系の時定数、J:試験装置の機械慣性、K:速度検出器のゲイン、T:速度検出器の時定数。
【0009】
次に、要素F〜Iはダイナモメータ4のトルク制御系を示し、Fはトルク制御系がもつ比例積分要素、Gはトルク制御系のマイナループになる電流制御系がもつ電流制御遅れ要素、Hはダイナモメータの電動機の電流−トルク変換要素、Iはダイナモメータのトルク検出器がもつ一次遅れ要素である。これら要素における各記号は次のとおりである。
【0010】
:トルク制御系のゲイン、T:トルク制御系の時定数、K:電流制御系のゲイン、T:電流制御系の遅れ時定数、K:電動機の電流−トルク変換係数、K:トルク検出器のゲイン、T:トルク検出器の遅れ時定数。
【0011】
次に、要素J,K,Lは電気慣性補償演算のためのオブザーバ(破線ブロック)の構成要素であり、Jは速度検出器9またはダイナモメータ4側に設ける速度検出器がもつ一次遅れ要素、Kは要素Jの検出速度を微分して加速度を得る加速度演算要素、Lは電気慣性設定分Jdから機械慣性分Jを減算して電気慣性補償分をトルクとして求める電気慣性分補償要素である。これら要素における各記号は次のとおりである。
【0012】
:速度検出器のゲイン、T:速度検出器の遅れ時定数、K:微分係数。
【0013】
このような等価ブロックにおいて、オブザーバは要素Dの出力になる速度nの検出値から要素Kによる微分でトルクに比例した値を求め、これを要素Lの演算結果になる電気慣性補償分に乗算することで、電気慣性補償分のトルクTを求める。
【0014】
【数5】
=K(J−J)(dn/dt)
このトルクTに対するダイナモメータ4の要素F〜Iによる出力トルクτが、要素Cのエンジン出力トルクτから等価的に減算されて電気慣性補償がなされる。
【0015】
【特許文献1】
特開平4−278434号公報
【0016】
【特許文献2】
特開平11−108802号公報
【0017】
【発明が解決しようとする課題】
動力計測システム、特にパワートレインテスタに代表されるシステムでは、動力計などがもつ機械慣性が比較的小さく、この機械慣性を除いて設定する電気慣性の割合が1対10〜1対20のように大きなものになる。このため、電気慣性制御の応答性が悪いと、車速に相当する動力計の回転が急上昇して、適切な試験データが収集できないという問題があった。
【0018】
この対策として、特許文献1や2で提案されるオブザーバによる電気慣性制御方法を適用することで、上記の問題は改善される。
【0019】
しかし、特許文献1、2では、電気慣性トルクTを設定するために、動力計の回転速度nを微分することで検出する加速度を利用している。このため、動力計にトルク変動が発生すると、回転速度にも僅かながら速度変動が発生し、この速度を微分して求める加速度検出では回転速度の僅かな変動分が増幅されて大きく現れ、これを基にした電気慣性トルク設定が大きく変動してしまい、結果的には動力計のトルク出力に大きな変動が現れるという不安定現象を起こす。
【0020】
上記の変動分は、機械系によりそのレベルや周波数が異なるものであり、比較的小さなレベルで、高い周波数をもつ変動分は、電気慣性制御のための加速度検出要素Kに小型のフィルタを設けることにより除去できる。しかし、比較的大きなレベルで低い周波数をもつ変動分は、大型のフィルタでなければ除去できないし、このフィルタには大きな遅れ時間が発生して、電気慣性制御の応答性を低下させてしまう。
【0021】
なお、エンジンと同等の出力特性をもたせたモータを駆動側とするトランジェント・ダイナモメータに従来の電気慣性制御方法を適用した場合にも同様の問題がある。
【0022】
本発明の目的は、電気慣性制御のための加速度検出を不要にし、電気慣性制御の応答性を高めかつ安定化した動力計測ができる電気慣性制御方式を提供することにある。
【0023】
【課題を解決するための手段】
本発明は、前記の課題を解決するため、動力計の発生トルクを軸トルクメータで検出し、この軸トルクを基にダイナモメータ側または駆動源側の電気慣性トルクを制御する。以下、本発明を原理的に説明する。
【0024】
図5は、動力計測システムにおける動力伝達系の模式図を示す。駆動側モータ(またはエンジン)PMDYとダイナモメータDYの間が、変速機等の動力伝達装置(ドライブトレインシステム)DSを介して機械結合され、PMDYとDYがそれぞれ慣性J,Jを有して、トルクτ,τ、角速度ω,ωで動力発生と吸収を行い、両者の結合軸には軸トルクτが発生しているとすると、これらの間には以下の(1)式が成り立つ。
【0025】
【数6】

Figure 2004361255
【0026】
ここで、図3と同様に、動力吸収側になるダイナモメータを電気慣性制御する場合で、そのときの制動トルク(τ+τ)、角速度ω、設定慣性Jとし、このときの加速度(dω/dt)を(dω/dt)とすると、(1)式の左辺の項は、下記(2)式になる。
【0027】
【数7】
Figure 2004361255
【0028】
ここで、(1)式の電気慣性制御時のDY制動トルクτを(τ+τ)と表し、dω/dtをdω/dtと置き換えると、(1)、(2)式の関係から、下記の(3)式の関係を得ることができる。
【0029】
【数8】
Figure 2004361255
【0030】
この(3)式は、設定慣性Jsに加速トルク(τ−τ)を加えたときの角加速度(dω/dt)と、固定慣性Jに加速トルク(τ−τ)を加えた場合に加速トルクから電気慣性補償トルクτを差し引いた加速トルクを加えたときの角加速度(dω/dt)が等しくなるよう、電気慣性補償トルクτを設定すればよいことを示している。
【0031】
上記の(3)式を変形して、電気慣性補償トルクτを求めると、下記の(4)式になる。
【0032】
【数9】
Figure 2004361255
【0033】
または、設定慣性Jsから固定慣性Jを差し引いたものを電気慣性Jeとすると、下記の(5)式で表すことができる。
【0034】
【数10】
Figure 2004361255
【0035】
上記のことから、本発明は、ダイナモメータを電気慣性制御する場合には、上記の(4)式を基に、設定慣性分J、ダイナモメータの機械慣性分J、軸トルクτ、ダイナモメータの発生トルクτから電気慣性トルクτを設定する。これにより、従来の回転速度nを微分することで検出する加速度を利用した電気慣性制御による不都合を解消する。
【0036】
以上までの説明は、ダイナモメータで電気慣性制御を行う場合であり、これに代えて、駆動側モータを電気慣性制御する場合も同様になり、これを以下に説明する。
【0037】
図5の動力伝達系の模式図において、駆動側モータによる電気慣性制御時の駆動トルク(τ+τ)、角速度ω、設定慣性Jとすると、前記(2)式と同様に、下記式が成り立つ。
【0038】
【数11】
Figure 2004361255
【0039】
この式と(1)式から、(3)式と同様に、下記式が成立する。
【0040】
【数12】
Figure 2004361255
【0041】
この(7)式は、設定慣性Jsに加速トルク{−(τ−τ)}を加えたときの角加速度(dω/dt)と、固定慣性Jに加速トルク{−(τ−τ)}を加えた場合に加速トルクから電気慣性補償トルクτを差し引いた加速トルクを加えたときの角加速度(dω/dt)が等しくなるよう、電気慣性補償トルクτを設定すればよいことを示している。
【0042】
上記の(7)式を変形して、電気慣性補償トルクτを求めると、下記の(8)式になる。
【0043】
【数13】
Figure 2004361255
【0044】
または、設定慣性Jsから固定慣性Jを差し引いたものを電気慣性Jeとすると、下記の(9)式で表すことができる。
【0045】
【数14】
Figure 2004361255
【0046】
上記のことから、本発明は、駆動側モータを電気慣性制御する場合には、上記の(8)式を基に、設定慣性分J、モータの機械慣性分J、軸トルクτ、モータの発生トルクτから電気慣性トルクτを設定する。これにより、従来の回転速度nを微分することで検出する加速度を利用した電気慣性制御による不都合を解消する。
【0047】
以上までのことから、本発明は以下の構成を特徴とする。
【0048】
(1)動力計測対象となる車両の走行抵抗に相当する吸収トルクをダイナモメータで発生し、該ダイナモメータは車両がもつ機械慣性分を電気的に補償した吸収トルク制御をする電気慣性制御方式であって、
車両の動力伝達軸に発生する軸トルクτを検出する軸トルクメータを設け、
前記ダイナモメータは、前記軸トルクτの検出値と、前記機械慣性分を除いた走行抵抗分のトルク設定値τと、ダイナモメータの機械慣性Jおよび設定慣性Jから、次式、
【0049】
【数15】
Figure 2004361255
【0050】
または、次式、
【0051】
【数16】
Figure 2004361255
【0052】
から電気慣性トルク設定値τを求め、この電気慣性トルク設定値τと前記走行抵抗分のトルク設定値τとの和で吸収トルクを制御する手段を備えたことを特徴とする。
【0053】
(2)動力計測対象となる車両の走行抵抗から機械慣性分を除いた吸収トルクをダイナモメータで発生し、車両の駆動源は車両がもつ機械慣性分を電気的に補償した駆動トルク制御をする電気慣性制御方式であって、
車両の動力伝達軸に発生する軸トルクτを検出する軸トルクメータを設け、
前記車両の駆動源は、前記軸トルクτの検出値と、前記機械慣性分を除いた駆動トルク設定値τと、駆動源の機械慣性Jおよび設定慣性Jから、次式、
【0054】
【数17】
Figure 2004361255
【0055】
または、次式、
【0056】
【数18】
Figure 2004361255
【0057】
から電気慣性トルク設定値τを求め、この電気慣性トルク設定値τと前記駆動トルク設定値τとの和で駆動トルクを制御する手段を備えたことを特徴とする。
【0058】
【発明の実施の形態】
(実施形態1)
図1は、本発明の実施形態を示す電気慣性制御の等価ブロック図であり、ダイナモメータ側を電気慣性制御する場合である。
【0059】
図中、PMDYは駆動側のブロック構成であり、モータ(PM)を駆動手段とした速度制御系と電流制御系によりモータの速度制御を行う。DYは吸収側のブロック構成であり、ダイナモメータによるトルク制御系と電流制御系により電気慣性制御したトルク制御を行う。DSはPMDYとDYとの間を機械結合する変速機などの動力伝達系のブロック構成である。
【0060】
PMDYにおいて、A1は駆動モータの速度指令Nと検出速度Nとの差分を比例積分演算した速度制御をする速度制御要素、B1は速度制御要素の出力になる電流指令Iに応じた電流制御を行う電流制御要素、C1は駆動モータの電流入力Iに応じた出力トルクTを得る駆動モータの特性要素である。D1とE1は駆動モータの機械慣性Jによってモータ速度(入力軸角速度ω)として現れる慣性要素であり、駆動モータのトルク出力τのうち動力伝達系DSへ伝達する軸トルクτ分を差し引いたトルクで、駆動モータがもつ機械慣性Jによって加速度が変化し、この加速度の積分でモータ速度が変化する。F1は角速度ωを検出して速度Nに変換する速度検出要素である。
【0061】
DYにおいて、G1はダイナモメータの出力軸検出速度Nを基に走行抵抗(慣性分を除く)を求め、この走行抵抗分のトルク指令τとして発生する走行抵抗設定要素である。
【0062】
H1は、前記の(4)式に従って、トルク指令τと軸トルクτとの差分に係数(1−J/J)を乗じて電気慣性トルク設定値τesを求める電気慣性トルク演算要素である。
【0063】
I1は走行抵抗分のトルク指令τと電気慣性トルクτesを加算したものをトルク指令とし、ダイナモメータの出力トルク(τ+τ)との差分を比例積分演算したトルク制御をするトルク制御要素、J1はトルク制御要素の出力になる電流指令に応じた電流制御を行う電流制御要素である。なお、電流制御指令として、要素I1からの電流指令に電気慣性トルク設定値τesを加算したものとし、応答性を高めるためのフィードフォワード制御を組み込む。
【0064】
K1はダイナモメータの電流入力Iに応じた出力トルクTを得るダイナモメータの特性要素である。L1とM1はダイナモメータの機械慣性Jによってダイナモメータ速度(出力軸角速度ω)として現れる慣性要素であり、伝達軸DSから加えられる軸トルクτからダイナモメータのトルク出力τを差し引いたトルクで、ダイナモメータがもつ機械慣性Jによって加速度が変化し、この加速度の積分でダイナモメータ速度が変化する。N1は角速度ωを検出して速度Nに変換する速度検出要素である。
【0065】
DSにおいて、O1は機械結合軸に加えられる入力角速度ωと出力角速度ωとの差分にバネ定数kを乗じて積分する積分要素、P1は該差分に結合軸がもつダンピング(減衰)係数Dを乗じる係数要素であり、これらの出力を加算したものが伝達軸両端に発生する軸トルクτとなる。
【0066】
以上のように、本実施形態では、軸トルクメータで軸トルクτを検出し、これを基に要素H1で電気慣性トルク設定値τesを求め、これを走行抵抗設定要素G1で設定する走行抵抗分のトルク設定値τを加算することで、電流慣性制御が可能となる。
【0067】
そして、従来のオブザーバにおける加速度検出による電気慣性制御に比べて、加速度検出の変動分を除去するための大型のローパスフィルタを不要にし、しかもその遅れがないために高速の電気慣性制御が可能となる。
【0068】
また、軸トルクを直接検出して電気慣性制御するため、理論的にも遅れの最も小さい最速の制御が実現できる。例えば、駆動側の速度を変化させたとき、入力軸角速度ωが僅かに変化を始めて、ダイナモメータの出力軸角速度ω(これはまだ変化していない)との偏差で、軸トルクτが発生する。この軸トルクτを検出して電気慣性制御が開始され、これはダイナモメータの出力軸角速度ωが変化する前に行われる。これに対して、従来の電流慣性制御方法では、ダイナモメータの出力角速度ω(回転数n)に変化が発生した時点からオブザーバで加速度検出するため、遅れを伴う。
【0069】
なお、本実施形態は、前記の(5)式に従って電気慣性トルク設定値τを設定した制御ができる。
【0070】
(実施形態2)
図2は、本発明の実施形態を示す電気慣性制御の等価ブロック図であり、駆動側モータを電気慣性制御する場合であり、図1と同等の要素は同一符号で示す。
【0071】
図2において、ダイナモメータ側は、走行抵抗設定要素G1で設定する走行抵抗分トルクをそのままトルク制御要素I1のトルク指令とし、ダイナモメータの吸収トルクτを発生する。
【0072】
駆動モータ側では、エンジンの出力トルクを模擬したエンジン特性要素Q1によってトルク設定値τ1sを発生する。電気慣性トルク設定要素H1は、前記の(8)式に従って、軸トルクメータで検出する軸トルクτとエンジン出力トルク設定値τ1sとの差分に係数(1−J/J)を乗じて電気慣性トルク設定値τesを求め、これをトルク設定値τ1sに加算し、電流制御要素B1の電流指令とする。
【0073】
以上のように、本実施形態では、軸トルクメータで軸トルクτを検出し、これとエンジン特性要素Q1で設定するエンジン出力トルク設定値τ1sとの差分を基に電気慣性トルク設定値τesを求め、これにエンジン出力トルク設定値τ1sを加算することで、モータの出力トルクには電流指令に電気慣性分を含めたトルク出力(τ+τ)を得ることが可能となる。このときには、実施形態1と同様に、トルク制御(PI演算)ループを構成してもよい。
【0074】
本実施形態においても、実施形態1と同様に、従来のオブザーバにおける加速度検出による電気慣性制御に比べて、加速度検出の変動分を除去するための大型のローパスフィルタを不要にし、しかもその遅れがないために高速の電気慣性制御が可能となる。また、軸トルクを直接検出して電気慣性制御するため、理論的にも遅れの最も小さい最速の制御が実現できる。
【0075】
なお、本実施形態は、前記の(9)式に従って電気慣性トルク設定値τを設定した制御ができる。
【0076】
【発明の効果】
以上のとおり、本発明によれば、動力計の発生トルクを軸トルクメータで検出し、この軸トルクを基にダイナモメータ側または駆動源側の電気慣性トルクを制御するようにしたため、電気慣性制御のための加速度検出を不要にし、電気慣性制御の応答性を高めかつ安定化した動力計測ができる。
【図面の簡単な説明】
【図1】本発明の実施形態1を示す動力計測システムの等価ブロック図。
【図2】本発明の実施形態2を示す動力計測システムの等価ブロック図。
【図3】ダイナモメータシステムの構成図。
【図4】従来の電気慣性ブロック図。
【図5】動力計測システムの模式図。
【符号の説明】
1…エンジン
4…ダイナモメータ
5〜7…コントローラ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electric inertia control method for performing a test in which a mechanical inertia component of a power measurement target is electrically compensated on a load side or a drive side of a power measurement system.
[0002]
[Prior art]
The dynamometer enables a performance test and an endurance test of a power transmission system of a vehicle or an engine alone to be performed indoors. For the test of the power transmission system, for example, a system configuration shown in FIG. 3 is used.
[0003]
In an assembled state where the clutch 2 and the transmission 3 are integrated with the engine 1, a dynamometer 4 as a power absorbing means is connected. The speed of the engine 1 is controlled by a speed controller 5, and the dynamometer 4 is subjected to running resistance control by a torque controller 6, so that the transmission 3 is loaded with inertia equivalent to that of a real vehicle, and a transmission test simulating real vehicle running is performed. Is performed. The clutch 2 is automatically operated gradually by the controller 7 from the disengagement at the time of shifting and starting, and the transmission 8 is also operated by the controller 8 to change the gear ratio during shifting.
[0004]
Speed control of the engine 1, by comparison with the detected speed from the speed detector 9 and the set speed N S, the throttle opening θ and the command to the throttle controller 10 performs throttle opening control by the controller 10 and the actuator 11.
[0005]
Here, the running resistance of the vehicle is obtained by adding an inertial resistance to a steady running resistance on a flat road composed of a tire rolling resistance and an air resistance, and further adding an uphill-downhill resistance. In the dynamometer, it is set in units of torque by coefficient conversion of each resistance component.
[0006]
Among the above-mentioned running resistances, the flywheel that sets the inertia equivalent to that of the actual vehicle has been used as the inertial resistance. However, the flywheel has a large installation space and is expensive. An electric inertia control method for controlling torque has been proposed (for example, see Patent Documents 1 and 2).
[0007]
In the electric inertia control method of Patent Document 1, an equivalent block configuration shown in FIG. 4 is used. In the figure, elements A to E indicate an engine speed control system, A is a proportional integral element of the speed controller 5, B is an opening control delay element of the throttle speed control system (10, 11), and C is a throttle opening. output torque characteristic of the engine 1 with respect to degree theta, D is the inertia element of the testing apparatus combined inertia with the engine and the transmission and dynamometer or the like, the inertia J is primarily engine inertia J E and dynamometer machine inertia J D. E is a primary delay element of the speed detector 9. The symbols in these elements are as follows.
[0008]
K e: gain of the speed controller 5, T e: constant of the speed controller 5, K s: gain of opening control system, T s: time constant of opening control system, J: Mechanical inertia of the test device, K v : Gain of the speed detector, T v : time constant of the speed detector.
[0009]
Next, elements F to I show a torque control system of the dynamometer 4, F is a proportional integral element of the torque control system, G is a current control delay element of the current control system that forms a minor loop of the torque control system, and H is A current-torque conversion element I of the motor of the dynamometer, and I is a first-order lag element included in the torque detector of the dynamometer. The symbols in these elements are as follows.
[0010]
K d : gain of torque control system, T d : time constant of torque control system, K c : gain of current control system, T c : delay time constant of current control system, K t : current-torque conversion coefficient of electric motor, K l : gain of torque detector, T l : delay time constant of torque detector.
[0011]
Next, elements J, K, and L are constituent elements of an observer (broken line block) for the electric inertia compensation calculation. J is a first-order delay element of the speed detector 9 or the speed detector provided on the dynamometer 4 side. K is an acceleration calculation element that obtains acceleration by differentiating the detection speed of the element J, and L is an electric inertia compensation element that subtracts the mechanical inertia J from the electric inertia set Jd to obtain the electric inertia compensation as torque. The symbols in these elements are as follows.
[0012]
K v: gain of the speed detector, T v: delay time constant of the speed detector, K: derivative.
[0013]
In such an equivalent block, the observer obtains a value proportional to the torque by the differentiation by the element K from the detected value of the speed n which becomes the output of the element D, and multiplies this value by the electric inertia compensation amount which is the calculation result of the element L. Thus, the torque Tc for the electric inertia compensation is obtained.
[0014]
(Equation 5)
T c = K (J d -J ) (dn / dt)
The output torque tau by elements F~I dynamometer 4 for the torque T c, equivalently subtracted electrically inertia compensation from the engine output torque tau e element C is made.
[0015]
[Patent Document 1]
JP-A-4-278434
[Patent Document 2]
JP-A-11-108802
[Problems to be solved by the invention]
In a power measurement system, particularly a system represented by a power train tester, the mechanical inertia of a dynamometer or the like is relatively small, and the ratio of the electric inertia set excluding the mechanical inertia is 1 to 10 to 1 to 20. It will be big. Therefore, if the response of the electric inertia control is poor, the rotation of the dynamometer corresponding to the vehicle speed rises rapidly, and there is a problem that appropriate test data cannot be collected.
[0018]
As a countermeasure against this, the above problem is improved by applying an electric inertia control method using an observer proposed in Patent Documents 1 and 2.
[0019]
However, in Patent Documents 1 and 2, the acceleration detected by differentiating the rotational speed n of the dynamometer is used to set the electric inertia torque Tc . For this reason, when a torque fluctuation occurs in the dynamometer, a slight speed fluctuation also occurs in the rotation speed, and in the acceleration detection obtained by differentiating this speed, a slight fluctuation in the rotation speed is amplified and greatly appears. The electric inertia torque setting based on the fluctuation greatly fluctuates, and as a result, an unstable phenomenon occurs in which a large fluctuation appears in the torque output of the dynamometer.
[0020]
The above-mentioned fluctuations have different levels and frequencies depending on the mechanical system. For fluctuations having a relatively low level and a high frequency, a small filter is provided for the acceleration detection element K for electric inertia control. Can be removed. However, a fluctuation having a relatively large level and a low frequency cannot be removed unless a large filter is used, and a large delay time is generated in this filter, thereby deteriorating the responsiveness of the electric inertia control.
[0021]
A similar problem occurs when a conventional electric inertia control method is applied to a transient dynamometer in which a motor having an output characteristic equivalent to that of an engine is used as a driving side.
[0022]
SUMMARY OF THE INVENTION An object of the present invention is to provide an electric inertia control method which eliminates the need for acceleration detection for electric inertia control, improves the responsiveness of electric inertia control, and enables stable power measurement.
[0023]
[Means for Solving the Problems]
According to the present invention, in order to solve the above-mentioned problem, a torque generated by a dynamometer is detected by a shaft torque meter, and an electric inertia torque on a dynamometer side or a drive source side is controlled based on the shaft torque. Hereinafter, the present invention will be described in principle.
[0024]
FIG. 5 is a schematic diagram of a power transmission system in the power measurement system. The drive side motor (or engine) PMDY and the dynamometer DY are mechanically connected via a power transmission device (drive train system) DS such as a transmission, and PMDY and DY have inertia J 1 and J 2 , respectively. Assuming that power is generated and absorbed at torques τ 1 , τ 2 and angular velocities ω 1 , ω 2 , and that a shaft torque τ p is generated on the joint shaft of both, the following (1) ) Formula holds.
[0025]
(Equation 6)
Figure 2004361255
[0026]
Here, similarly to FIG. 3, in the case where the dynamometer on the power absorption side is subjected to the electric inertia control, the braking torque (τ 2 + τ e ) at that time, the angular velocity ω s , and the set inertia J s are set, and the acceleration at this time Assuming that (dω / dt) is (dω s / dt), the term on the left side of the equation (1) becomes the following equation (2).
[0027]
(Equation 7)
Figure 2004361255
[0028]
Here, when the DY braking torque τ 2 at the time of the electric inertia control of the equation (1) is expressed as (τ 2 + τ e ), and dω 2 / dt is replaced with dω s / dt, the equations (1) and (2) From the relation, the following equation (3) can be obtained.
[0029]
(Equation 8)
Figure 2004361255
[0030]
The equation (3), the angular acceleration (d [omega s / dt) when the acceleration torque (tau p-tau 2) was added to the set inertia Js, acceleration torque to a fixed inertial J 2 a (tau p-tau 2) This shows that the electric inertia compensation torque τ e may be set so that the angular acceleration (dω s / dt) when the acceleration torque obtained by subtracting the electric inertia compensation torque τ e from the acceleration torque is added when the acceleration torque is added. ing.
[0031]
When the electric inertia compensation torque τ e is obtained by modifying the above equation (3), the following equation (4) is obtained.
[0032]
(Equation 9)
Figure 2004361255
[0033]
Alternatively, minus the fixed inertia J 2 from the setting of inertia Js When electrical inertia Je, can be expressed by equation (5) below.
[0034]
(Equation 10)
Figure 2004361255
[0035]
From the above, according to the present invention, when the dynamometer is controlled by the electric inertia, the set inertia J s , the mechanical inertia J 2 of the dynamometer, the shaft torque τ p , based on the above equation (4), The electric inertia torque τ e is set from the generated torque τ 2 of the dynamometer. This eliminates the inconvenience of the conventional electric inertia control using the acceleration detected by differentiating the rotation speed n.
[0036]
The above description relates to the case where the electric inertia control is performed by the dynamometer. Instead, the same applies to the case where the electric inertia control is performed on the driving motor, which will be described below.
[0037]
In the schematic diagram of the power transmission system in FIG. 5, assuming that the driving torque (τ 1 + τ e ), the angular velocity ω s , and the set inertia JS during the electric inertia control by the driving motor are the same as in the above equation (2), The formula holds.
[0038]
(Equation 11)
Figure 2004361255
[0039]
From this equation and equation (1), the following equation is established as in equation (3).
[0040]
(Equation 12)
Figure 2004361255
[0041]
The equation (7), the acceleration torque setting inertia Js - and {(tau p-tau 1)} angular acceleration when the plus (d [omega s / dt), the acceleration torque {the fixed inertial J 1 - (tau p −τ 1 )}, the electric inertia compensation torque τ e is set so that the angular acceleration (dω s / dt) when the acceleration torque obtained by subtracting the electric inertia compensation torque τ e from the acceleration torque is added becomes equal. It indicates that we should do it.
[0042]
When the electric inertia compensation torque τ e is obtained by modifying the above equation (7), the following equation (8) is obtained.
[0043]
(Equation 13)
Figure 2004361255
[0044]
Alternatively, minus the fixed inertia J 1 from the setting of inertia Js When electrical inertia Je, can be represented by the following formula (9).
[0045]
[Equation 14]
Figure 2004361255
[0046]
From the above, according to the present invention, when the drive-side motor is controlled by the electric inertia, the set inertia J s , the mechanical inertia J 1 of the motor, the shaft torque τ p , The electric inertia torque τ e is set from the generated torque τ 1 of the motor. This eliminates the inconvenience of the conventional electric inertia control using the acceleration detected by differentiating the rotation speed n.
[0047]
From the above, the present invention is characterized by the following configuration.
[0048]
(1) A dynamometer generates an absorption torque corresponding to the running resistance of a vehicle whose power is to be measured, and the dynamometer is an electric inertia control system that performs absorption torque control by electrically compensating for mechanical inertia of the vehicle. So,
A shaft torque meter for detecting a shaft torque τ p generated in a power transmission shaft of the vehicle is provided,
From the detected value of the shaft torque τ p , the torque set value τ 2 of the running resistance excluding the mechanical inertia component, and the mechanical inertia J 2 and the set inertia J s of the dynamometer,
[0049]
(Equation 15)
Figure 2004361255
[0050]
Or:
[0051]
(Equation 16)
Figure 2004361255
[0052]
Obtains electrical inertia torque setting tau e from, characterized in that it comprises means for controlling the absorption torque as the sum of the torque setpoint tau 2 of the running resistance of this electrical inertia torque setting tau e.
[0053]
(2) A dynamometer generates an absorption torque obtained by removing a mechanical inertia component from a running resistance of a vehicle to be measured, and a drive source of the vehicle performs a drive torque control that electrically compensates for the mechanical inertia component of the vehicle. An electric inertia control system,
A shaft torque meter for detecting a shaft torque τ p generated in a power transmission shaft of the vehicle is provided,
From the detected value of the shaft torque τ p , the drive torque set value τ 1 excluding the mechanical inertia component, and the mechanical inertia J 1 and the set inertia J s of the drive source, the following equation is used.
[0054]
[Equation 17]
Figure 2004361255
[0055]
Or:
[0056]
(Equation 18)
Figure 2004361255
[0057]
Obtains electrical inertia torque setting tau e from, characterized in that it comprises means for controlling the driving torque by the sum of this electric inertia torque setting tau e and the drive torque setting tau 1.
[0058]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
FIG. 1 is an equivalent block diagram of the electric inertia control showing the embodiment of the present invention, in which the dynamometer is controlled by the electric inertia.
[0059]
In the drawing, PMDY is a block configuration on the drive side, and controls the speed of the motor by a speed control system using a motor (PM) as a drive unit and a current control system. DY is a block configuration on the absorption side, and performs torque control with electric inertia control using a torque control system using a dynamometer and a current control system. DS is a block configuration of a power transmission system such as a transmission that mechanically couples PMDY and DY.
[0060]
In PMDY, A1 is the speed control element to a proportional integral operation with speed control the difference between the detected speed N 1 and the speed command N S of the drive motor, B1 is in accordance with the current command I O comprising the output of the speed control element current A current control element C1 for controlling the drive motor is a characteristic element of the drive motor that obtains an output torque T O according to the current input IO of the drive motor. D1 and E1 are inertial elements appearing as a motor speed (input shaft angular speed ω 1 ) due to the mechanical inertia J 1 of the drive motor, and represent the shaft torque τ P transmitted to the power transmission system DS in the torque output τ 1 of the drive motor. in subtracted torque, acceleration is changed by mechanical inertia J 1 the drive motor has a motor speed varies with the integral of the acceleration. F1 is a speed detection element for converting the speed N 1 detects the angular velocity omega 1.
[0061]
In DY, G1 obtains a running resistance based on an output shaft detected speed N 2 of the dynamometer (excluding inertial component), a running resistance setting element for generating a torque command tau 2 of the running resistance component.
[0062]
H1 is an electric inertia torque calculation for obtaining an electric inertia torque set value τ es by multiplying a difference between the torque command τ 2 and the shaft torque τ p by a coefficient (1−J 2 / J S ) according to the above equation (4). Element.
[0063]
I1 is the one obtained by adding the torque command tau 2 and electrical inertia torque tau es running resistance component torque command, the torque control of a proportional integral calculation torque control a difference between the output torque of the dynamometer (τ 2 + τ e) An element J1 is a current control element that performs current control according to a current command that is output from the torque control element. The current control command is obtained by adding the electric inertia torque set value τ es to the current command from the element I1, and incorporates feedforward control for improving responsiveness.
[0064]
K1 is the characteristic element of the dynamometer to obtain an output torque T O corresponding to the current input I O of the dynamometer. L1 and M1 are inertia elements that appear as a dynamometer speed (output shaft angular velocity omega 2) by mechanical inertia J 2 of the dynamometer, by subtracting the torque output tau 2 of the dynamometer from the shaft torque tau P applied from the transmission shaft DS torque, acceleration is changed by mechanical inertia J 2 with the dynamometer, the dynamometer speed changes in the integral of the acceleration. N1 is a speed detection element for converting the speed N 2 detects the angular velocity omega 2.
[0065]
In DS, the integral element O1 integrates by multiplying the spring constant k to the difference between the input angular velocity omega 1 applied to coupling shaft and the output angular velocity omega 2, damping P1 is held by the coupling shaft to said difference (damping) coefficient D A coefficient element multiplied by m , and the sum of these outputs is the shaft torque τ p generated at both ends of the transmission shaft.
[0066]
As described above, in the present embodiment, the shaft torque τ p is detected by the shaft torque meter, the electric inertia torque setting value τ es is obtained by the element H1 based on the shaft torque τ p , and the traveling is set by the traveling resistance setting element G1. by adding the resistance of the torque setting tau 2, thereby enabling the current inertia control.
[0067]
Compared with the conventional electric inertia control based on acceleration detection in an observer, a large-sized low-pass filter for removing a variation in acceleration detection is not required, and high-speed electric inertia control is possible because there is no delay. .
[0068]
In addition, since the electric inertia control is performed by directly detecting the shaft torque, the fastest control with the smallest delay can be realized theoretically. For example, when changing the speed of the drive side, started to slightly change the input shaft angular velocity omega 1, in deviation between the output shaft angular velocity omega 2 of the dynamometer (which has not yet changed), shaft torque tau p Occurs. The detected axial torque tau p electrical inertia control is initiated, this is done before the output shaft angular velocity omega 2 of the dynamometer is changed. On the other hand, in the conventional current inertial control method, the acceleration is detected by the observer from the time when a change occurs in the output angular velocity ω 2 (rotation speed n) of the dynamometer, so that a delay is involved.
[0069]
In the present embodiment, control can be performed by setting the electric inertia torque set value τ e in accordance with the above equation (5).
[0070]
(Embodiment 2)
FIG. 2 is an equivalent block diagram of the electric inertia control according to the embodiment of the present invention, in which the drive side motor is subjected to the electric inertia control, and the same elements as those in FIG. 1 are denoted by the same reference numerals.
[0071]
2, dynamometer side, a running resistance corresponding torque to be set at a running resistance setting element G1 is directly a torque command of the torque control element I1, generates absorption torque tau 2 of the dynamometer.
[0072]
On the drive motor side, a torque set value τ 1s is generated by an engine characteristic element Q1 simulating the output torque of the engine. The electric inertia torque setting element H1 multiplies the difference between the shaft torque τ p detected by the shaft torque meter and the engine output torque set value τ 1s by a coefficient (1−J 1 / J S ) according to the above equation (8). To obtain the electric inertia torque setting value τ es , and add this to the torque setting value τ 1 s to obtain a current command for the current control element B1.
[0073]
As described above, in the present embodiment, the shaft torque meter detects the shaft torque τ p , and based on the difference between the shaft torque τ p and the engine output torque set value τ 1s set by the engine characteristic element Q1, sets the electric inertia torque set value τ p By obtaining es and adding the engine output torque set value τ 1 s to the es , it is possible to obtain a torque output (τ 1 + τ e ) including the electric command and the electric inertia component in the motor output torque. At this time, a torque control (PI calculation) loop may be configured as in the first embodiment.
[0074]
Also in the present embodiment, similarly to the first embodiment, a large-sized low-pass filter for removing a variation in acceleration detection is not required, and there is no delay as compared with the conventional electric inertia control using acceleration detection in an observer. Therefore, high-speed electric inertia control becomes possible. In addition, since the electric inertia control is performed by directly detecting the shaft torque, the fastest control with the smallest delay can be realized theoretically.
[0075]
In this embodiment, control can be performed by setting the electric inertia torque set value τ e in accordance with the above equation (9).
[0076]
【The invention's effect】
As described above, according to the present invention, the torque generated by the dynamometer is detected by the shaft torque meter, and the electric inertia torque on the dynamometer side or the drive source side is controlled based on the shaft torque. This eliminates the need for acceleration detection, thereby increasing the responsiveness of the electric inertia control and stabilizing power measurement.
[Brief description of the drawings]
FIG. 1 is an equivalent block diagram of a power measurement system according to a first embodiment of the present invention.
FIG. 2 is an equivalent block diagram of a power measurement system according to a second embodiment of the present invention.
FIG. 3 is a configuration diagram of a dynamometer system.
FIG. 4 is a conventional electric inertia block diagram.
FIG. 5 is a schematic diagram of a power measurement system.
[Explanation of symbols]
1: Engine 4: Dynamometers 5-7: Controller

Claims (2)

動力計測対象となる車両の走行抵抗に相当する吸収トルクをダイナモメータで発生し、該ダイナモメータは車両がもつ機械慣性分を電気的に補償した吸収トルク制御をする電気慣性制御方式であって、
車両の動力伝達軸に発生する軸トルクτを検出する軸トルクメータを設け、
前記ダイナモメータは、前記軸トルクτの検出値と、前記機械慣性分を除いた走行抵抗分のトルク設定値τと、ダイナモメータの機械慣性Jおよび設定慣性Jから、次式、
Figure 2004361255
または、次式、
Figure 2004361255
から電気慣性トルク設定値τを求め、この電気慣性トルク設定値τと前記走行抵抗分のトルク設定値τとの和で吸収トルクを制御する手段を備えたことを特徴とする動力計測システムの電気慣性制御方式。
The dynamometer generates an absorption torque corresponding to the running resistance of the vehicle to be measured for power, and the dynamometer is an electric inertia control system that performs absorption torque control that electrically compensates for a mechanical inertia component of the vehicle.
A shaft torque meter for detecting a shaft torque τ p generated in a power transmission shaft of the vehicle is provided,
From the detected value of the shaft torque τ p , the torque set value τ 2 of the running resistance excluding the mechanical inertia component, and the mechanical inertia J 2 and the set inertia J s of the dynamometer,
Figure 2004361255
Or:
Figure 2004361255
Obtains electrical inertia torque setting tau e from power measurements characterized by comprising means for controlling the absorption torque as the sum of the torque setpoint tau 2 of the running resistance of this electrical inertia torque setting tau e Electric inertia control system of the system.
動力計測対象となる車両の走行抵抗から機械慣性分を除いた吸収トルクをダイナモメータで発生し、車両の駆動源は車両がもつ機械慣性分を電気的に補償した駆動トルク制御をする電気慣性制御方式であって、
車両の動力伝達軸に発生する軸トルクτを検出する軸トルクメータを設け、
前記車両の駆動源は、前記軸トルクτの検出値と、前記機械慣性分を除いた駆動トルク設定値τと、駆動源の機械慣性Jおよび設定慣性Jから、次式、
Figure 2004361255
または、次式、
Figure 2004361255
から電気慣性トルク設定値τを求め、この電気慣性トルク設定値τと前記駆動トルク設定値τとの和で駆動トルクを制御する手段を備えたことを特徴とする動力計測システムの電気慣性制御方式。
Electric inertia control that generates absorption torque by subtracting the mechanical inertia component from the running resistance of the vehicle whose power is to be measured using a dynamometer, and the drive source of the vehicle is drive inertia control that electrically compensates for the mechanical inertia component of the vehicle Method,
A shaft torque meter for detecting a shaft torque τ p generated in a power transmission shaft of the vehicle is provided,
From the detected value of the shaft torque τ p , the drive torque set value τ 1 excluding the mechanical inertia component, and the mechanical inertia J 1 and the set inertia J s of the drive source, the following equation is used.
Figure 2004361255
Or:
Figure 2004361255
Obtains electrical inertia torque setting tau e from electrical power measuring system characterized by comprising means for controlling the driving torque by the sum of this electric inertia torque setting tau e and the drive torque setting tau 1 Inertial control method.
JP2003160207A 2003-06-05 2003-06-05 Electric inertia control system for power measurement system Expired - Lifetime JP4321124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003160207A JP4321124B2 (en) 2003-06-05 2003-06-05 Electric inertia control system for power measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003160207A JP4321124B2 (en) 2003-06-05 2003-06-05 Electric inertia control system for power measurement system

Publications (3)

Publication Number Publication Date
JP2004361255A true JP2004361255A (en) 2004-12-24
JP2004361255A5 JP2004361255A5 (en) 2006-04-06
JP4321124B2 JP4321124B2 (en) 2009-08-26

Family

ID=34053051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160207A Expired - Lifetime JP4321124B2 (en) 2003-06-05 2003-06-05 Electric inertia control system for power measurement system

Country Status (1)

Country Link
JP (1) JP4321124B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242592A (en) * 2005-02-28 2006-09-14 Shinko Electric Co Ltd Testing device of power transmission system, and its control method
JP2009074834A (en) * 2007-09-19 2009-04-09 Meidensha Corp Method of controlling chassis dynamometer system
JP2009145364A (en) * 2009-03-30 2009-07-02 Sinfonia Technology Co Ltd Testing device of power transmission system, and its control method
JP2009288036A (en) * 2008-05-29 2009-12-10 Meidensha Corp Estimation method and its device of roller surface drive force
JP2009300290A (en) * 2008-06-16 2009-12-24 Meidensha Corp Axial torque control method of dynamometer system
JP2009300432A (en) * 2008-05-14 2009-12-24 Kokusai Keisokki Kk Chassis dynamometer
JP2009300129A (en) * 2008-06-11 2009-12-24 Meidensha Corp Driving force control method of dynamometer system and apparatus of the same
JP2010014409A (en) * 2008-07-01 2010-01-21 Meidensha Corp Speed controller of chassis dynamometer
JP2010019712A (en) * 2008-07-11 2010-01-28 Meidensha Corp Electric inertia control device
JP2010019713A (en) * 2008-07-11 2010-01-28 Meidensha Corp Electric inertia control device of power meter system
JP2010019711A (en) * 2008-07-11 2010-01-28 Meidensha Corp Speed control method of power measurement system and device therefor
JP2010112903A (en) * 2008-11-10 2010-05-20 Meidensha Corp Vehicle behavior test device
JP2010112901A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for controlling chassis dynamometer
JP2010112902A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for testing vehicle behavior
JP2010223861A (en) * 2009-03-25 2010-10-07 Sinfonia Technology Co Ltd Device for testing power system, and method of controlling the same
JP2013015386A (en) * 2011-07-04 2013-01-24 Meidensha Corp Engine bench system control method
JP2016090448A (en) * 2014-11-07 2016-05-23 株式会社ロボテック Motor pseudo load device
WO2018190303A1 (en) * 2017-04-14 2018-10-18 株式会社明電舎 Electric inertia control device
US10371589B2 (en) * 2015-01-19 2019-08-06 Meidensha Corporation Control device for dynamometer system
US11204302B2 (en) 2018-11-07 2021-12-21 Meidensha Corporation Dynamometer system having electric inertia control device to simulate behavior of inertial body

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242592A (en) * 2005-02-28 2006-09-14 Shinko Electric Co Ltd Testing device of power transmission system, and its control method
JP4655677B2 (en) * 2005-02-28 2011-03-23 シンフォニアテクノロジー株式会社 Power transmission system test apparatus and control method thereof
JP2009074834A (en) * 2007-09-19 2009-04-09 Meidensha Corp Method of controlling chassis dynamometer system
JP2009300432A (en) * 2008-05-14 2009-12-24 Kokusai Keisokki Kk Chassis dynamometer
JP2009288036A (en) * 2008-05-29 2009-12-10 Meidensha Corp Estimation method and its device of roller surface drive force
JP2009300129A (en) * 2008-06-11 2009-12-24 Meidensha Corp Driving force control method of dynamometer system and apparatus of the same
JP2009300290A (en) * 2008-06-16 2009-12-24 Meidensha Corp Axial torque control method of dynamometer system
JP2010014409A (en) * 2008-07-01 2010-01-21 Meidensha Corp Speed controller of chassis dynamometer
JP2010019712A (en) * 2008-07-11 2010-01-28 Meidensha Corp Electric inertia control device
JP2010019713A (en) * 2008-07-11 2010-01-28 Meidensha Corp Electric inertia control device of power meter system
JP2010019711A (en) * 2008-07-11 2010-01-28 Meidensha Corp Speed control method of power measurement system and device therefor
JP2010112901A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for controlling chassis dynamometer
JP2010112903A (en) * 2008-11-10 2010-05-20 Meidensha Corp Vehicle behavior test device
JP2010112902A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp Apparatus for testing vehicle behavior
JP2010223861A (en) * 2009-03-25 2010-10-07 Sinfonia Technology Co Ltd Device for testing power system, and method of controlling the same
JP4656245B2 (en) * 2009-03-30 2011-03-23 シンフォニアテクノロジー株式会社 Power transmission system test apparatus and control method thereof
JP2009145364A (en) * 2009-03-30 2009-07-02 Sinfonia Technology Co Ltd Testing device of power transmission system, and its control method
JP2013015386A (en) * 2011-07-04 2013-01-24 Meidensha Corp Engine bench system control method
JP2016090448A (en) * 2014-11-07 2016-05-23 株式会社ロボテック Motor pseudo load device
US10371589B2 (en) * 2015-01-19 2019-08-06 Meidensha Corporation Control device for dynamometer system
WO2018190303A1 (en) * 2017-04-14 2018-10-18 株式会社明電舎 Electric inertia control device
JP2018179802A (en) * 2017-04-14 2018-11-15 株式会社明電舎 Electric inertia control device
KR20190127965A (en) 2017-04-14 2019-11-13 메이덴샤 코포레이션 Electric inertial control unit
KR102069653B1 (en) 2017-04-14 2020-01-28 메이덴샤 코포레이션 Electric inertial control unit
US10895511B2 (en) 2017-04-14 2021-01-19 Meidensha Corporation Dynamometer system
US11204302B2 (en) 2018-11-07 2021-12-21 Meidensha Corporation Dynamometer system having electric inertia control device to simulate behavior of inertial body

Also Published As

Publication number Publication date
JP4321124B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP2004361255A (en) Electric inertia control system of power measuring system
JP3775284B2 (en) Engine bench system and method for measuring engine characteristics
JP3772721B2 (en) Engine bench system and method for measuring engine characteristics
JP5708704B2 (en) Engine bench system
WO2016117394A1 (en) Control device for dynamometer system
JP5605127B2 (en) Shaft torque control device
WO2018164266A1 (en) Input/output characteristic estimation method for testing system
WO2019053979A1 (en) Dynamometer control device
JP4645231B2 (en) Power transmission system test apparatus and control method thereof
JP6481792B2 (en) Power system test equipment
JP4655677B2 (en) Power transmission system test apparatus and control method thereof
JP2020139854A (en) Dynamometer control device
US11313761B2 (en) Test system
JP4591177B2 (en) Engine test equipment
CN114258480B (en) Method for operating a test stand
KR102211047B1 (en) Control device of dynamometer system
US8689640B2 (en) Method and device for simulating a body that is moved in a translational or rotational manner
JP7303112B2 (en) Method for controlling a powertrain test bench with physical transmission, in particular for closed-loop control
JP4019709B2 (en) Engine bench system
US20230133592A1 (en) Method for adjusting a piezoelectric torque sensor
JP4045860B2 (en) Power transmission system test apparatus and control method thereof
JP2014142317A (en) Testing device for power system
JPH04278434A (en) Method for compensating electric inertia of dynamo meter
KR20010031717A (en) Method for determining slip
JP5292922B2 (en) Method and apparatus for estimating roller surface driving force

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090409

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Ref document number: 4321124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

EXPY Cancellation because of completion of term