JP2004359433A - Deceleration setting method and device in conveyance device - Google Patents

Deceleration setting method and device in conveyance device Download PDF

Info

Publication number
JP2004359433A
JP2004359433A JP2003161978A JP2003161978A JP2004359433A JP 2004359433 A JP2004359433 A JP 2004359433A JP 2003161978 A JP2003161978 A JP 2003161978A JP 2003161978 A JP2003161978 A JP 2003161978A JP 2004359433 A JP2004359433 A JP 2004359433A
Authority
JP
Japan
Prior art keywords
deceleration
article
conveyor
conveyor device
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003161978A
Other languages
Japanese (ja)
Other versions
JP4382395B2 (en
Inventor
Masahiro Sugiura
正浩 杉浦
Takeshi Mizukoshi
剛 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2003161978A priority Critical patent/JP4382395B2/en
Publication of JP2004359433A publication Critical patent/JP2004359433A/en
Application granted granted Critical
Publication of JP4382395B2 publication Critical patent/JP4382395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To set a predetermined deceleration for stopping a conveyor device to the greatest possible deceleration within a scope in which an article does not slip in a conveyance device stopping the conveyor device by set feed amount and positioning the article at a target position after detecting a specific section of the article by a sensor. <P>SOLUTION: The conveyor device is driven by set feed amount during a period of time from feeding-out of a detection signal from the sensor to deceleration by predetermined deceleration and stop to position the article at the target position. When the detection signal is fed, the conveyor device is decelerated from predetermined conveyance speed and is stopped by trial deceleration determined to be slightly large deceleration based on experience. Braking distance of the article from the start of deceleration to stop of the conveyor device is measured. The deceleration of the conveyor device decelerating and stopping by the braking distance of the article from predetermined conveyance speed is set to be predetermined deceleration. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プリント基板等の物品を搬送して目標位置に高効率に減速停止する搬送装置に関する。
【0002】
【従来の技術】
基盤を搬送装置のコンベア装置により搬送経路に沿って搬送し、基板の前端縁が搬送経路の基準位置を通過したことを検出するセンサを搬送経路に設け、センサが基板の前端縁を検出するとコンベア装置を設定送り量で停止して基板を目標位置に位置決めすることが特開2001−274594号公報に記載されている。
【0003】
【特許文献1】
特開2001−274594号公報(第6頁、図8)
【0004】
【発明が解決すべき課題】
基板を短時間に目標位置に位置決めするために、基板の前端縁が搬送経路の基準位置を通過したことをセンサが検出した検出信号に基づいてコンベア装置を搬送速度から大きい減速度で停止すると、基板がコンベア装置に対して滑ってしまい、基板を目標位置に正確に位置決めできなくなる。逆に減速度が小さ過ぎると位置決め時間が長くなる不具合があった。
【0005】
本発明は係る従来の不具合を解消するためになされたもので、物品の特定部位をセンサが検出してからコンベア装置を所定減速度で設定送り量で停止して物品を目標位置に位置決めする搬送装置において、該所定減速度を物品が滑らない範囲でなるべく大きい減速度に設定することである。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、請求項1に記載の発明の構成上の特徴は、物品を搬送経路に沿って搬送するコンベア装置が、前記物品の特定部位が前記搬送経路の基準位置に位置したことをセンサが検出して検出信号を送出してから所定減速度で減速して停止されるまでの間に設定送り量だけ駆動されて前記物品を目標位置に位置決めする搬送装置において、前記検出信号に基づいて前記コンベア装置が所定搬送速度から試行減速度で減速停止されたとき、前記コンベア装置の減速開始から停止までの間の前記物品の制動距離を計測し、前記コンベア装置が前記物品の制動距離で前記所定搬送速度から減速停止される減速度を前記所定減速度として設定することである。
【0007】
請求項2に記載の発明の構成上の特徴は、請求項1において、前記検出信号に基づいて前記コンベア装置が前記所定搬送速度から前記試行減速度で減速停止するまでの前記コンベア装置の正方向送り量を求め、前記コンベア装置が減速停止してから微小時間経過後に、前記コンベア装置を前記物品が滑らない加速度で逆方向に駆動し、前記基準センサが検出信号を送出するまでの間の前記コンベア装置の逆方向送り量を求め、前記逆方向送り量から前記正方向送り量を減算して前記物品の滑り量を算出し、前記コンベア装置が前記所定搬送速度から前記試行減速度での減速を開始してから停止するまでの間の距離に前記滑り量を加算して前記物品の制動距離を求めることである。
【0008】
請求項3に記載の発明の構成上の特徴は、物品を搬送経路に沿って搬送するコンベア装置が、前記物品の特定部位が前記搬送経路の基準位置に位置したことをセンサが検出して検出信号を送出してから所定減速度で減速して停止されるまでの間に設定送り量だけ駆動されて前記物品を目標位置に位置決めする搬送装置において、前記コンベア装置を物品が滑らない加速度で加速した後に減速度で停止し、停止後に物品が滑ったか否か判定する探査サイクルを物品が滑らない減速度から減速度を僅かな量ずつ順次増大して繰り返し、物品が滑ったと判定された探査サイクルの前回の探査サイクルでの減速度を前記所定減速度に設定することである。
【0009】
請求項4に記載の発明の構成上の特徴は、物品を搬送経路に沿って搬送するコンベア装置が、前記物品の特定部位が前記搬送経路の基準位置に位置したことをセンサが検出して検出信号を送出してから所定減速度で減速して停止されるまでの間に設定送り量だけ駆動されて前記物品を目標位置に位置決めする搬送装置において、前記物品の特定部位が前記センサから離れて前記検出信号が送出されてから探査送り量だけ前記コンベア装置を前記物品が滑らない状態で逆方向に駆動した後に、前記コンベア装置を停止状態から物品が滑らない加速度で加速し減速度で減速して前記探査送り量だけ正方向に駆動して停止し、コンベア装置の停止後微小時間経過しても前記検出信号が無いと判定されると、前記コンベア装置を物品が滑らない状態で探査送り量だけ逆方向に駆動する探査サイクルを前記検出信号が送出されるまで前記正方向駆動での減速度を順次増大して繰り返し、前記検出信号が有りと判定された探査サイクルの前回の探査サイクルの正方向駆動での減速度を前記所定減速度に設定することである。
【0010】
請求項5に記載の発明の構成上の特徴は、請求項1乃至4のいずれかにおいて、前記物品は基板であり、前記コンベア装置はパルスモータ又はサーボモータにより駆動されるコンベアベルトを備えたベルトコンベアであることである。
【0011】
請求項6に記載の発明の構成上の特徴は、物品を搬送経路に沿って搬送するコンベア装置が、前記物品の特定部位が前記搬送経路の基準位置に位置したことをセンサが検出して検出信号を送出してから所定減速度で減速して停止されるまでの間に所定送り量だけ駆動されて前記物品を目標位置に位置決めする搬送装置において、前記検出信号に基づいて前記コンベア装置を所定搬送速度から試行減速度で減速停止したとき、前記コンベア装置の減速開始から停止までの間の前記物品の制動距離を計測する手段と、前記コンベア装置を前記物品の制動距離で前記所定搬送速度から減速停止させるための減速度を前記所定減速度として設定する手段を設けたことである。
【0012】
【発明の作用・効果】
上記のように構成した請求項1に係る発明においては、基板等の物品がコンベア装置により搬送経路に沿って搬送され、物品の特定部位、例えば前端縁が搬送経路の基準位置を通過するなどして基準位置に位置したことがセンサにより検出されるとセンサは検出信号を送出する。コンベア装置は、検出信号が送出されてから所定減速度で減速して停止されるまでの間に設定送り量だけ駆動されて物品を目標位置に位置決めする。この所定減速度を物品が滑らず且つ効率的な減速度に設定するために、センサが検出信号を送出すると、若干大きめに経験的に決められた試行減速度でコンベア装置を所定搬送速度から減速停止する。コンベア装置が減速を開始したときから停止するまでの間の物品の制動距離を計測する。コンベア装置が所定搬送速度からこの物品の制動距離で減速停止するときの減速度を所定減速度として設定する。これにより、コンベア装置を搬送速度から減速停止するときの所定減速度を物品が滑らない範囲でなるべく大きい減速度に、低コストで容易に設定することができる。
【0013】
上記のように構成した請求項2に係る発明においては、検出信号が送出されるとコンベア装置を若干大きめに経験的に決められた試行減速度で所定搬送速度から減速停止し、コンベア装置が検出信号が送出されてから停止されるまでの間に駆動された送り量を求める。この減速停止時にコンベア装置に対して滑る物品が停止するまでの微小時間が経過した後に、コンベア装置を物品が滑らない加速度で逆方向に駆動する。センサが検出信号を送出するまでの間のコンベア装置の逆方向送り量を、例えばコンベア装置を駆動するパルスモータに送出したパルス数をカウントして計測する。この逆方向送り量から前記正方向送り量を減算して物品の滑り量を算出する。コンベア装置が所定搬送速度から試行減速度での減速を開始してから停止するまでの間の距離に物品の滑り量を加算して物品の制動距離を求める。コンベア装置が所定搬送速度からこの物品の制動距離で減速停止するときの減速度を所定減速度として設定する。これにより、搬送装置を減速停止するときの所定減速度を物品が滑らないと想定される範囲でなるべく大きい減速度に、特別の装置を設けることなく、低コストで容易に設定することができる。
【0014】
上記のように構成した請求項3に係る発明においては、コンベア装置を物品が滑らない加速度で加速した後に減速度で停止し、停止後に物品が滑ったか否か判定する探査サイクルを物品が滑らない減速度から減速度を僅かな量ずつ順次増大して繰り返す。物品が滑ったと判定された探査サイクルの前回の探査サイクルでの減速度を所定減速度に設定する。これにより、コンベア装置を減速停止するときの所定減速度を物品が滑らない範囲でなるべく大きい減速度に、特別の装置を設けることなく、低コストで確実に設定することができる。
【0015】
上記のように構成した請求項4に係る発明においては、物品の特定部位がセンサから離れて検出信号が送出されてから探査送り量だけ搬送装置を物品が滑らない状態で逆方向に駆動する。コンベア装置を物品が滑らない加速度で加速し、減速度で減速して停止するまでの間に探査送り量だけ正方向に駆動する。停止後微小時間経過しても検出信号が無いと判定されると、コンベア装置を物品が滑らない状態で探査送り量だけ逆方向に駆動する。探査送り量の正方向駆動、検出信号の有無判定および探査送り量の逆方向駆動からなる探査サイクルを検出信号が送出されるまで正方向駆動での減速度を順次増大して繰り返す。検出信号が有りと判定された探査サイクルの前回の探査サイクルの正方向駆動での減速度を所定減速度に設定する。これにより、コンベア装置を減速停止するときの所定減速度を物品が滑らない範囲でなるべく大きい減速度に、特別の装置を設けることなく、低コストで確実に設定することができる。
【0016】
上記のように構成した請求項5に係る発明においては、ベルトコンベアのパルスモータ又はサーボモータにより駆動されるコンベアベルトを請求項1乃至3のいずれかに記載の方法により設定した所定減速度で減速して停止するので、基板をコンベアベルトに対して滑ることなく搬送装置の所望目標位置に正確に位置決め停止することができる。
【0017】
上記のように構成した請求項6に係る発明においては、コンベア装置を搬送速度から所定減速度で減速して停止して物品を効率的に正確に目標位置に停止するために、センサが検出信号を送出すると、若干大きめに経験的に決められた試行減速度でコンベア装置を所定搬送速度から減速停止する。コンベア装置が減速を開始したときから停止するまでの間の物品の制動距離を計測する。コンベア装置が所定搬送速度からこの物品の制動距離で減速停止するときの減速度を所定減速度として設定する。これにより、搬送装置を搬送速度から減速停止するための所定減速度を物品が滑らない範囲でなるべく大きい減速度に、低コストで容易に設定可能な搬送装置における減速度設定装置を提供することができる。
【0018】
【発明の実施の形態】
以下、本発明に係る搬送装置における減速度設定方法および装置の第1の実施形態を、図面を参照して具体的に説明する。図1は、本搬送装置を備えた部品実装機の概略斜視図である。この実装機は、部品を供給する部品供給装置10と、部品供給装置10より供給される部品Pを取出して配線パターンが形成されたプリント基板PB(以下、基板PBと称す。)に実装する実装ヘッド装置11と、基板PBを搬送し目標位置に位置決め停止する基板搬送装置12を主たる構成要素とする。
【0019】
部品供給装置10は、複数列の部品供給リール13を支承する本体14と、本体14の先端に設けた部品取出部15からなる。実装ヘッド装置11は、実装ヘッド16を水平なX−Y平面で移動させる走行駆動系と、ノズルホルダ17に支承され作動位置に割出されたスピンドル18を上下のZ軸方向に移動させる上下駆動機構を備えている。実装ヘッド16に割出し回転可能に装架されたノズルホルダ17には、複数のスピンドル18が垂直軸線を中心とする円周上に等ピヅチ間隔でZ軸方向に往復動可能に支承され、各スピンドル18の下端には、部品Pを吸着するノズルNが取り付けられている。
【0020】
基板搬送装置12を図1のA−A線矢視方向に沿って破断した図2及び図2のB−B線矢視方向に沿って破断した図3に示すように、基板搬送装置12は、搬送方向正面から観て左右一対の基台19上に基板PBの幅(基板PBの搬送方向と直交する方向の長さ)に対応して配設され搬送経路を形成する一対のガイドレール20,21と、ガイドレール20,21に沿って直下に設けられベルトガイド22,23により案内される断面凸形の一対のエンドレスのコンベアベルト24,25と、該コンベアベルト24,25によって所定位置まで搬送された基板PBを位置決めクランプするクランプ装置26より構成されている。
【0021】
クランプ装置26は、搬送する複数種の基板に対応して適宜配置される複数の支持ピン27が立設した上下動する台座28を有する。基板PBがレール20,21でガイドされつつコンベアベルト24,25により実装位置に搬入されると、複数のパイロットバー29により案内された台座28が流体圧シリンダ30により駆動されて上昇し、支持ピン27にて基板PBを上方に押し上げてガイドレール20,21に設けた係合凸部20a、21aとの間でクランプする。基板PBの搬出は台座28を下降して基板PBをコンベアベルト24,25上に載せて行なわれる。
【0022】
左右のエンドレスのコンベアベルト24,25は、図2に示すように、前後一対の搬送ガイドプーリ31、前後一対の戻しプーリ32、方向変換プーリ33、駆動プーリ34、及びテンション付与プーリ35間に巻装されている。駆動プーリ34は、スプライン軸36と一体回転されるように支持され、スプライン軸36はパルスモータ37と結合されて回転駆動される。コンベアベルト24,25にはタイミングベルトを使用し、駆動プーリ34等のプーリはタイミングプーリとするのがよい。コンベアベルト24,25、搬送ガイドプーリ31、駆動プーリ34、パルスモータ37等によりベルトコンベアがコンベア装置38として構成されている。
【0023】
さらに、ガイドレール20には、図3に示すように、基板PBの搬送方向の前端縁を検出するセンサ39が基板PBの一側面に向けて取り付けられている。このセンサ39は基板PBの一側面に対向してないときは「OFF」信号を、また一側面と対向するときは「ON」信号を出力するON−OFF動作形のものである。このセンサ39の搬送方向における取付位置は、基板搬送装置12の中央位置よりも少し上流側に寄った位置である。センサ39は、基板PBの特定部位、例えば前端縁が基準位置を通過するなど基準位置に位置したことを検出して「OFF」から「ON」に変化して検出信号を送出する。コンベア装置38は、検出信号が送出されてから所定減速度で減速して停止されるまでの間に設定送り量だけ駆動されて基板PBを目標位置に位置決めする。
【0024】
部品実装機では、搬送方向に長さが異なる複数種類の基板PBが選択的に基板搬送装置12内へ搬入され、実装ヘッド装置11により部品Pが実装される。図4に概略示すように、複数種類の各基板PBは、その搬送方向の任意な部位、好ましくは、多数の部品が装着される実装領域の中央部位Bjが基板前端からの3桁の数字(nnn)で指定される。通常、前記部位Bjと基板の搬送方向中央Bmとはほぼ一致するが、基板によっては実装領域が基板の搬送方向の前方側或いは後方側に偏奇しており、このような基板の実装領域の中心を任意に特定するために前記部位Bjが指定される。
【0025】
そして、基板PBは、中央Bm又は任意の整列部位Bjを基板搬送装置12上の最適実装位置に整列するように位置決め停止される。ここで、最適実装位置とは、センサ39と整列するセンサ整列位置P0、部品カメラ40と整列する部品カメラ整列位置P1、基板搬送装置12の搬送方向中央と整列する搬送装置中央位置P2及び部品供給装置10の部品取出部15の中央或いは実装数の大きな部品を配置する位置P3の何れか1つの位置であり、最適実装位置としてこれら整列位置P0〜P3が選択的に指定され、基板種に応じて整列部位Bjを最適実装位置にフレキシブルに割り出すことを可能としている。
【0026】
再び図1において、符号41は実装ヘッド16のヘッド本体42に取り付けられた基板カメラを示し、このカメラ41は、実装位置にクランプされた基板PBに形成された少なくとも2個の基準マークを撮像し、基板PBのクランプ位置の位置ずれ、角度ずれをモニタする。また、前述した部品カメラ40は、部品取出部15と基板搬送装置12との間で機枠43に固定設置され、実装ヘッド装置11のノズルNに吸着された部品PのノズルNに対する位置ずれ、角度ずれをモニタする。
【0027】
図5は、上記のように構成される部品実装機の制御装置の構成を示すブロック図である。この制御装置は中央処理装置CPUにROMとRAMがデータバスにより接続された演算処理部44を含む。この処理部44に、テンキー等の入力装置45、デスプレイ等の表示装置46、記憶装置47、図略のホストコンピュータに接続された通信装置48、XY軸駆動装置49、Z軸駆動装置50、ノズルNを開閉するノズル駆動装置51、基板カメラ41及び部品カメラ40からのカメラデータを受け入れるカメラインターフェース52が接続されている。さらに、演算処理部44には、センサ39からの検出信号が入力されるセンサインターフェース53と、前記パルスモータ37を制御してコンベア装置38を駆動し、基板搬送装置12上における各種基板PBを搬送する基板搬送駆動装置54と、前記クランプ装置26の流体圧シリンダ30のようなアクチエータを制御するアクチエータ制御装置55が接続されている。
【0028】
XY軸駆動装置49は、ヘッド本体42をX軸方向及びY軸方向に沿って移動させ、ノズルNを部品取出部15から基板PB上の多数の指令箇所まで搬送する。Z軸駆動装置50は、ノズルホルダ17をR軸回りに回転させ、吸着する部品Pに対応するノズルNが取り付けられたスピンドル18を下降させ、ノズルNを先端が部品背面位置に極めて接近するまで下降させる。ノズル駆動装置51は、切換弁を切り換えてノズルNに負圧を選択的に供給及び遮断し、ノズルNに部品Pを吸着又は離脱させる。基板搬送駆動装置54は、パルスモータ37を駆動制御してベルトコンベア24,25を駆動することにより基板PBを実装位置に搬入すると共にここから搬出し、またアクチエータ制御装置55は流体圧シリンダ30を制御して台座28を昇降させ、基板PBをクランプ又はアンクランプする。
【0029】
実装データは、複数の基板ID毎の実装部品の種類、部品の装着位置及び部品毎の適合ノズル情報からなる。このデータは、部品の実装順番を設定する基礎データであり、予めホストコンピュータから演算処理部44に送られ、記憶装置47に記憶される。基板カメラ41により得られる基板Sの位置ずれ、角度ずれデータは、基板PBに対する部品Pの実装位置を示すために基板PBに対応して設定された基板座標系を部品実装機の機械座標系に変換する座標変換のデータとして使用される。部品カメラ40から得られる部品PのノズルNに対する位置ずれ、角度ずれデータは、装着位置データを補正するのに使用される。ROMには、部品実装順序設定プログラムなどが登録されている。
【0030】
図6は、図5の記憶装置47内に形成される基板情報テーブルBDTであり、このテーブルBDTには、基板Sの種別番号PB001〜PBn毎に、基板長(L)と、基板PB上の整列部位B(Bm/Bj)、搬送装置上の最適実装位置(P0〜P3)及びその基板PBに対し実装ヘッド装置11が実行すべき実装プログラムの番号PR001〜PRnが記憶されている。これら情報は、予め図略のホストコンピュータから転送されるか、或いは入力装置45を用いて入力される。基板長(L)及び基板PB上の整列部位(Bm/Bj)は、長さの異なる各種の基板PBを基板搬送装置12の最適実装位置(P0〜P3)の選択された1つの位置に整列させるために使用する情報である。
【0031】
次に、第1の実施形態の作動を図7に示す制御プログラムに基づいて説明する。図8に2点鎖線で示すように、種別番号PB001の基板PBが基板搬送装置12の入口側に設置した搬入コンベア装置56の一対のガイドレール57,58に案内されて待機しているものと仮定する。この待機位置で適宜識別センサ59(例えば、バーコード読取器)により基板PBの種類の識別が行われる。このような状況において、搬入動作指令が与えられると、図7の処理が開始され、実装動作の対象となる基板PBが識別され、識別された基板PBの種別、この場合、基板情報テーブルBDTのPB001の識別フラッグに「1」がセットされる(ステップS1)。
【0032】
ステップS2で減速度設定モードであるか否か判定され、否の場合、続くステップS3においては、前記センサ39による前端縁の検出位置(基準位置)からさらに基板PBが前進すべき設定送り量としての前進量が演算される。ここで、前進量Xnの演算は、後述するように、基板上の中央Bm或いは指定の整列部位Bjを基板搬送装置12の最適実装位置P0〜P3の何れに整列させるかによって異なるが、この演算は、図6に示す基板情報テーブルBDTに記憶されたデータに基づいて実行される。例えば、基板PB001上の整列部位を指定する情報として「中央」、最適実装位置情報としてP1が基板情報テーブルBDTに指定されているときは、基板PB001を中央Bmが部品カメラ整列位置P1に整列する位置に停止するように、基板長L1の半分にセンサ整列位置P0に対する部品カメラ整列位置P1のオフセット値Aを加算する式(X1=L1/2+A)を用いて、前進量X1が算出される。基板PB001上の任意の部位Bjを部品カメラ40との整合位置P1に整合させる場合は、部位Bjの指定数値情報nnnに前記オフセット値Aを加算する式(X1=nnn+A)を用いて前進量X1が算出される。
【0033】
制御装置の演算処理部44は、基板搬送駆動装置54に指令を与え、搬入コンベア装置56および基板搬送装置12のパルスモータ37を同期駆動して基板PBを基板搬送装置12内に所定搬送速度Vで搬入する。この場合、演算処理部44は、この搬入動作指令の投与の間中、センサインターフェース53がセンサ39の「ON」動作信号を受領したかどうかの監視を微小時間インターバルで行う。そして、センサインターフェース81がセンサ39から「ON」動作信号を受領した瞬間において、演算処理部44はそれ以降の目標移動量をステップS3において演算した前進量Xnに設定し、基板搬送駆動装置54に対し基板PBの前端縁がセンサ39と整合した位置P0を基準としてこの位置から前進量Xnだけ基板PBを前進させるように制御を行う。この前進量Xnの移動制御中において演算処理部44は前進量Xnを時々刻々と減算し、この前進量Xnの残値が所定数に達すると基板搬送駆動装置54に所定減速度Rでの減速制御を実行させ、コンベア装置38はセンサ39が検出信号を送出してから所定減速度Rで減速して停止するまでの間に設定送り量である前進量Xnだけ駆動されて基板PBを目標位置に位置決めする(ステップS4)。
【0034】
基板カメラ41は、種別番号PB001の基板PBが目標位置に計算通り正確に位置決めされたとき、この基板PBの一方の基準マーク60と対向する位置に移動され、一方の基準マーク60を読み取る(ステップS5)。基準マーク60が基板カメラ41の視野内に入った場合、演算処理部44はアクチエータ制御回路55に指令を与え、クランプ装置26の流体圧シリンダ30を動作させて台座28を上昇し、基板PBを図3の鎖線で示すクランプ位置に固定する(ステップS6)。クランプ後、基板カメラ41は一方の基準マーク60を再び読み込んだ後に移動されて他方の基準マーク61を読み取り、演算処理部44は、基板カメラ41により得られる基板Sの位置ずれ、角度ずれデータに基づいて、種別番号PB001の基板PBに対する部品Pの実装位置を示すために基板PBに対応して設定された基板座標系を部品実装機の機械座標系に変換し、基板PBに対する実装動作プログラムPR001を実行して実装ヘッド装置11により部品実装を行う(ステップS7)。部品実装が完了すると実装ヘッド装置11は、部品取出部15の上方で部品カメラ40に隣接して設定された原位置へ復帰される。これと共に、クランプ装置26がアンクランプ動作され、基板搬送装置12及び搬出コンベア装置62のパルスモータ37が同期駆動されて各コンベアベルト24,25が前進周回送りされ、基板PBが図8に示す搬出コンベア装置62に搬出される(ステップS8)。
【0035】
ステップS5で基準マーク60が基板カメラ41の視野内に入らなかった場合、搬入コンベア装置56およびコンベア装置38のパルスモータ37が同期して逆転駆動され、基板PBが搬入コンベア装置56の待機位置に戻される(ステップS9)。基板PBを目標位置に最位置決めするか否か判定され(ステップS10)、再位置決めする場合、ステップS4にジャンプして基板PBの再位置決めが行われる。
【0036】
ステップS2,S10で減速度の設定が指令されると、搬入コンベア装置56およびコンベア装置38のパルスモータ37が同期駆動され、図9に示すようにコンベア装置38が所定搬送速度Vで駆動され(ステップS11)、基板PBの前端縁がt0点で基準位置を通過するとセンサ39から検出信号が送出される(ステップS12)。コンベア装置38はt0点で検出信号が送出されてから微少時間後のt1点で減速を開始し、試行減速度Rtで減速してt2点で停止されるまでの間に正方向送り量y1だけ駆動される(ステップS13)。試行減速度Rtは、コンベア装置38が試行減速度Rtで減速して停止すると基板PBがコンベア装置38に対して僅かに滑る程度に若干大きめに経験的に決められている。コンベア装置38が停止されてからコンベア装置38に対して滑る基板PBが停止するまでの微小時間が経過したt3点で(ステップS14)、コンベア装置38は基板PBがコンベア装置38に対して滑らない加速度A0でパルスモータ37により逆方向に加速されてt4点から所定搬送速度Vで駆動され(ステップS15)、t5点でセンサ39が検出信号を送出するまでの間のコンベア装置38の逆方向送り量y2が求められる。この場合、演算処理部44は、センサ39が「ON」から「OFF」に変化したかどうかの監視を微小時間インターバルで行い、センサ39が「ON」から「OFF」に変化したとき、基板PBの前端縁が基準位置に位置したことをセンサが検出して検出信号を送出したと判断する(ステップS16)。t3点からt5点までの間に基板搬送駆動装置54がパルスモータ37に送出したパルス数が演算処理部44で計数されて逆方向送り量y2が計測される(ステップS17)。この逆方向送り量y2から正方向送り量y1を減算して基板PBの滑り量y3が算出される(ステップS18)。コンベア装置38が所定搬送速度Vから減速を開始した時点t1から試行減速度Rtで減速して停止した時点t2までの間に駆動された送り量y4に滑り量y3が加算されて基板PBの制動距離y5が求められる(ステップS19)。コンベア装置38が所定搬送速度Vから制動距離y5で減速停止される減速度が所定減速度Rとして設定される(ステップS20)。減速度の設定が完了すると、搬入コンベア装置56およびコンベア装置38のパルスモータ37が同期して逆転駆動され、基板PBが搬入コンベア装置56の待機位置に戻され、ステップS6〜S8が実行されて基板PBの位置決め、部品実装が行われる。
【0037】
上記第1の実施形態では、コンベア装置38を検出信号に基づいて試行減速度Rtで減速停止してから微小時間経過後に、コンベア装置を基板PBが滑らない加速度で逆方向に駆動し、基準センサ39が検出信号を送出するまでの間のコンベア装置38の逆方向送り量y2に基づいて基板PBの滑り量y3を計測しているが、コンベア装置38が試行減速度Rtで減速停止してから微小時間経過後に、停止した基板PBの前端縁を所定位置に位置決めされた基板カメラ41で撮像して、基板PBの滑り量y3を計測するようにしてもよい。
【0038】
次に、本発明に係る搬送装置における減速度設定方法および装置の第2の実施形態について説明する。第2の実施形態は、図10に示すように制御プログラムにおいて所定減速度Rを設定するステップのみが第1の実施形態と異なるので、この相違点のみについて説明する。ステップS2,S9で減速度の設定が指令されると、搬入コンベア装置56およびコンベア装置38のパルスモータ37が同期駆動され、図11に示すように搬入コンベア装置56およびコンベア装置38が搬送速度Vで正方向に駆動され(ステップS21)、基板PBの前端縁が基準位置を通過するとセンサ39は、OFFからONに変化して検出信号を送出する(ステップS22)。コンベア装置38は検出信号が送出されてから減速停止するまでの間に正方向に第1送り量y21だけ駆動され(ステップS23)、所定時間停止される(ステップS24)。第1送り量y21は、コンベア装置38が停止状態から基板PBを滑らない状態で搬送速度Vで搬送する状態になるまでに必要な送り量以上に設定されている。換言すれば、コンベア装置38が停止状態から加速度A0で搬送速度Vまで加速されて第1送り量y21だけ駆動される間に、基板PBはコンベア装置38に対して滑らない状態となって搬送速度Vで搬送される。
【0039】
コンベア装置38は、所定時間経過後に基板PBがコンベア装置38に対して滑らない加速度A0で搬送速度Vまで逆方向に加速され(ステップS25)、センサ39は基板PBの前端縁から離れてONからOFFに変化して検出信号を送出する(ステップS26)。コンベア装置38は、検出信号が送出されてから搬送速度Vから基板PBが滑らない減速度R0で減速して停止するまでの間に第2送り量y22だけ逆方向に駆動され(ステップS27)、所定時間停止される(ステップS28)。第2送り量y22は、コンベア装置38が停止状態から基板PBが滑らない加速度A0で前記搬送速度Vまで加速され、この搬送速度Vから初期減速度R0で減速して停止するまでの間に必要な送り量以上の探査送り量に設定される。
【0040】
コンベア装置38は加速度A0で搬送速度Vまで加速され、搬送速度Vから初期減速度R0より僅かに増大した減速度R1で減速して停止されるまでの間に第2送り量y22(探査送り量)だけ正方向に駆動される(ステップS29)。コンベア装置38が減速度R1で減速停止されるときに基板PBがコンベア装置38に対して滑る場合に、基板PBが停止するまでに必要な微小時間が経過するまで(ステップS30)、センサ39からの検出信号の有無が判定される(ステップS31)。微小時間が経過しても検出信号が無い場合、コンベア装置38は加速度A0で搬送速度Vまで逆方向に加速され、搬送速度Vから初期減速度R0で減速して停止するまでの間に第2送り量y22だけ逆方向に駆動される(ステップS32)。ステップS29の探査送り量の正方向駆動、ステップS28の検出信号の有無判定およびステップS32の探査送り量の逆方向駆動からなる探査サイクルが、正方向駆動での減速度を僅かな量ずつ順次増大して(ステップS33)、検出信号が送出されるまで繰り返される。検出信号が有りと判定された探査サイクルの前回の探査サイクルの正方向駆動での減速度が所定減速度Rに設定される(ステップS34)。なお、探査送り量は各探査サイクルで一定にするのが好ましいが、今回のサイクルの正方向の探査送り量と前回のサイクルの逆方向の探査送り量とを等しくすれば変化させてもよい。また、物品が滑らない加速度A0および搬送速度Vも各探査サイクルにおいて一定にするのが好ましいが、僅かに変えるようにしてもよい。
【図面の簡単な説明】
【図1】本発明に係わる搬送装置における減速度設定装置の第1の実施形態を適用した電子部品実装機の全体構成を示す斜視図。
【図2】図1のA−A線矢視方向に破断した搬送装置の縦断面図。
【図3】図2のB−B線矢視方向に破断した搬送装置の要部拡大断面図。
【図4】基板上の部位と搬送装置上の各種目標位置との搬送方向における相対位置関係を説明するための説明図。
【図5】電子部品実装機の制御装置の構成を示すブロック線図。
【図6】図5に示す記憶装置に登録された基板情報テーブルを説明するための説明図。
【図7】搬送装置における減速度設定装置の第1の実施形態を適用した電子部品実装機を制御するプログラムを示すフロー図。
【図8】基板を搬送装置上に位置決め制御するための動作を説明する説明図。
【図9】第1の実施形態における所定減速度の設定方法を説明する線図。
【図10】第2の実施形態における所定減速度を設定するプログラムを示すフロー図。
【図11】第2の実施形態における所定減速度の設定方法を説明する線図。
【符号の説明】
10…部品供給装置、P…電子部品、11…実装ヘッド装置、12…基板搬送装置(搬送装置)、15…部品取出部、16…実装ヘッド、41…基板カメラ、PB…基板(物品)、20,21…ガイドレール(搬送径路)、24,25…コンベアベルト、38…コンベア装置、39…センサ、40…部品カメラ、BDT…基板情報テーブル、44…演算処理部、47…記憶装置、37…パルスモータ、58…搬入コンベア、59…バーコード読取器、62…搬出コンベア装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transport device that transports an article such as a printed circuit board and stops at a target position with high efficiency at high efficiency.
[0002]
[Prior art]
The substrate is transported along the transport path by the conveyor device of the transport device, and a sensor is provided in the transport path for detecting that the front edge of the substrate has passed the reference position of the transport path. JP-A-2001-274594 describes that the apparatus is stopped at a set feed amount and the substrate is positioned at a target position.
[0003]
[Patent Document 1]
JP 2001-274594 A (page 6, FIG. 8)
[0004]
[Problems to be solved by the invention]
In order to position the substrate at the target position in a short time, when the conveyor device is stopped at a large deceleration from the transport speed based on a detection signal detected by the sensor that the front edge of the substrate has passed the reference position of the transport path, The substrate slips with respect to the conveyor device, and the substrate cannot be accurately positioned at the target position. Conversely, if the deceleration is too small, there is a problem that the positioning time becomes longer.
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and a conveyor for stopping a conveyor device at a predetermined deceleration at a set feed amount after a sensor detects a specific part of an article and positioning the article at a target position. In the apparatus, the predetermined deceleration is set to a deceleration as large as possible within a range where the article does not slip.
[0006]
[Means for Solving the Problems]
In order to solve the above problem, a structural feature of the invention according to claim 1 is that a conveyor device that conveys an article along a conveyance path has a specific part of the article located at a reference position of the conveyance path. In a transport device that is driven by a set feed amount and positions the article at a target position during a period from when the sensor detects that the sensor sends a detection signal to when the sensor is decelerated at a predetermined deceleration and stopped, the detection signal When the conveyor device is decelerated and stopped at a trial deceleration from a predetermined transport speed based on the measured braking distance of the article from the start of deceleration to the stop of the conveyor device, the conveyor device brakes the article. The deceleration to be decelerated and stopped from the predetermined transport speed by a distance is set as the predetermined deceleration.
[0007]
A structural feature of the invention according to claim 2 is that, in claim 1, the forward direction of the conveyor device until the conveyor device decelerates and stops at the trial deceleration from the predetermined transport speed based on the detection signal. The feed amount is obtained, and after a lapse of a minute time from the deceleration stop of the conveyor device, the conveyor device is driven in the reverse direction at an acceleration at which the article does not slip, and the reference sensor sends a detection signal until the reference sensor sends a detection signal. The reverse feed amount of the conveyor device is obtained, the forward feed amount is subtracted from the reverse feed amount to calculate the slip amount of the article, and the conveyor device is decelerated at the trial deceleration from the predetermined transport speed. To calculate the braking distance of the article by adding the slip amount to the distance from the start to the stop.
[0008]
A configuration feature of the invention according to claim 3 is that the sensor detects that the specific portion of the article is located at the reference position of the transport path by the conveyor device that transports the article along the transport path. In a transport device that drives the set feed amount to position the article at a target position during a period from when the signal is transmitted to when the article is decelerated at a predetermined deceleration and stopped, the conveyor apparatus is accelerated at an acceleration at which the article does not slip. An exploration cycle that stops at a deceleration after stopping and repeats a search cycle to determine whether or not the article has slipped after the stop by sequentially increasing the deceleration by a small amount from a deceleration at which the article does not slip, and determining that the article has slipped Is to set the deceleration in the previous search cycle to the predetermined deceleration.
[0009]
A structural feature of the invention according to claim 4 is that the sensor detects that the specific portion of the article is located at the reference position of the transport path by the conveyor device that transports the article along the transport path. In a transport device that is driven by a set feed amount and positions the article at a target position during a period from sending a signal to decelerating at a predetermined deceleration and stopping, a specific portion of the article is separated from the sensor. After driving the conveyor device in the reverse direction in a state where the article does not slip after the detection signal is sent, the conveyor device accelerates at a speed at which the item does not slip from the stopped state and decelerates at a deceleration. When it is determined that there is no detection signal even after a lapse of a short time after the conveyor device is stopped, the conveyor device is driven in the forward direction by the search feed amount and stopped, and the conveyor device is moved in a state where the article does not slip. A search cycle of driving in the reverse direction by the inspection feed amount is repeated by sequentially increasing the deceleration in the forward drive until the detection signal is transmitted, and the previous search of the search cycle in which the detection signal is determined to be present is performed. This is to set the deceleration in the forward drive of the cycle to the predetermined deceleration.
[0010]
A structural feature of the invention according to claim 5 is that, in any one of claims 1 to 4, the article is a substrate, and the conveyor device has a conveyor belt driven by a pulse motor or a servomotor. It is a conveyor.
[0011]
A structural feature of the invention according to claim 6 is that, in the conveyor device that conveys the article along the conveyance path, the sensor detects that the specific portion of the article is located at the reference position of the conveyance path. In a transport device that is driven by a predetermined feed amount to position the article at a target position during a period from sending a signal to decelerating at a predetermined deceleration and stopping, the conveyor device is moved to a predetermined position based on the detection signal. When decelerating and stopping at the trial deceleration from the transport speed, means for measuring the braking distance of the article from the start of the deceleration to the stop of the conveyor apparatus, and the conveyor apparatus moves the braking distance of the article from the predetermined transport speed at the braking distance of the article. Means is provided for setting a deceleration for decelerating and stopping as the predetermined deceleration.
[0012]
[Action and Effect of the Invention]
In the invention according to claim 1 configured as described above, an article such as a substrate is transported along a transport path by a conveyor device, and a specific portion of the article, for example, a front edge passes through a reference position of the transport path. When the sensor detects that the sensor is located at the reference position, the sensor sends a detection signal. The conveyor device is driven by a set feed amount during the period from when the detection signal is sent to when the conveyor is decelerated at a predetermined deceleration and stopped, and positions the article at the target position. In order to set this predetermined deceleration to an efficient deceleration without slipping, when the sensor sends out a detection signal, the conveyor device is decelerated from the predetermined transport speed with a slightly larger empirically determined trial deceleration. Stop. The braking distance of the article from when the conveyor device starts to decelerate to when it stops is measured. The deceleration when the conveyor device decelerates and stops at the braking distance of the article from the predetermined transport speed is set as the predetermined deceleration. This makes it possible to easily set the predetermined deceleration at the time of decelerating and stopping the conveyor device from the transport speed to a deceleration as large as possible within a range where the article does not slip, at low cost.
[0013]
In the invention according to claim 2 configured as described above, when the detection signal is transmitted, the conveyor device is decelerated and stopped from a predetermined transport speed at an experimentally determined deceleration slightly larger than the conveyor device, and the conveyor device is detected. The feed amount driven between the time when the signal is transmitted and the time when the signal is stopped is obtained. After a lapse of a minute time until the article slipping on the conveyor apparatus at the time of the deceleration stop, the conveyor apparatus is driven in the reverse direction at an acceleration at which the article does not slip. The reverse feed amount of the conveyor device until the sensor sends the detection signal is measured, for example, by counting the number of pulses sent to a pulse motor that drives the conveyor device. The slip amount of the article is calculated by subtracting the forward feed amount from the reverse feed amount. The braking distance of the article is obtained by adding the slip amount of the article to the distance from when the conveyor device starts to decelerate at the trial deceleration from the predetermined transport speed to when the article stops. The deceleration when the conveyor device decelerates and stops at the braking distance of the article from the predetermined transport speed is set as the predetermined deceleration. This makes it possible to easily set the predetermined deceleration at the time of decelerating and stopping the transporting device to a deceleration as large as possible within a range in which the article does not slip, without providing a special device, at low cost.
[0014]
In the invention according to claim 3 configured as described above, the conveyor apparatus stops at deceleration after accelerating at an acceleration at which the article does not slip, and the article does not slip during the exploration cycle of determining whether the article has slipped after the stop. From the deceleration, the deceleration is sequentially increased by a small amount and repeated. The deceleration in the previous search cycle of the search cycle in which it is determined that the article has slipped is set to a predetermined deceleration. As a result, the predetermined deceleration when the conveyor device is decelerated and stopped can be reliably set at a low cost without providing a special device, to a deceleration as large as possible without slipping the articles.
[0015]
In the invention according to claim 4 configured as described above, after the specific portion of the article is separated from the sensor and the detection signal is transmitted, the transport device is driven in the reverse direction in a state where the article does not slip by the search feed amount. The conveyor device is accelerated at an acceleration at which the article does not slip, is decelerated at a deceleration, and is driven in the forward direction by the search feed amount until it stops. If it is determined that there is no detection signal even after a lapse of a short time after the stop, the conveyor device is driven in the reverse direction by the search feed amount in a state where the article does not slip. A search cycle consisting of forward drive of the search feed amount, determination of the presence / absence of a detection signal, and reverse drive of the search feed amount is repeated by sequentially increasing the deceleration in the forward drive until a detection signal is transmitted. The deceleration in the forward drive in the previous search cycle of the search cycle in which the detection signal is determined to be present is set to a predetermined deceleration. As a result, the predetermined deceleration when the conveyor device is decelerated and stopped can be reliably set at a low cost without providing a special device, to a deceleration as large as possible without slipping the articles.
[0016]
In the invention according to claim 5 configured as described above, the conveyor belt driven by the pulse motor or the servo motor of the belt conveyor is decelerated at a predetermined deceleration set by the method according to any one of claims 1 to 3. Therefore, the substrate can be accurately positioned and stopped at a desired target position of the transfer device without slipping the substrate with respect to the conveyor belt.
[0017]
In the invention according to claim 6 configured as described above, in order to stop the conveyor device at a predetermined deceleration from the transport speed and stop to efficiently and accurately stop the article at the target position, the sensor detects the detection signal. Is sent, the conveyor device is decelerated and stopped from a predetermined transport speed at a slightly larger empirically determined trial deceleration. The braking distance of the article from when the conveyor device starts to decelerate to when it stops is measured. The deceleration when the conveyor device decelerates and stops at the braking distance of the article from the predetermined transport speed is set as the predetermined deceleration. Accordingly, it is possible to provide a deceleration setting device in a transport device that can easily set a predetermined deceleration for decelerating and stopping the transport device from the transport speed to a deceleration as large as possible within a range where articles do not slip, at low cost. it can.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of a deceleration setting method and device in a transport device according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic perspective view of a component mounter provided with the present transport device. This mounting machine mounts a component supply device 10 for supplying components and a component P supplied from the component supply device 10 to take out and mount the component P on a printed board PB (hereinafter, referred to as a board PB) on which a wiring pattern is formed. The main components are a head device 11 and a substrate transport device 12 that transports a substrate PB and stops positioning at a target position.
[0019]
The component supply device 10 includes a main body 14 that supports a plurality of rows of component supply reels 13, and a component extraction unit 15 provided at a tip of the main body 14. The mounting head device 11 includes a traveling drive system that moves the mounting head 16 in a horizontal XY plane, and a vertical drive that moves a spindle 18 supported by a nozzle holder 17 and indexed to an operating position in the vertical Z-axis direction. It has a mechanism. A plurality of spindles 18 are supported on a nozzle holder 17 rotatably mounted on the mounting head 16 so as to reciprocate in the Z-axis direction at equal pitches on a circumference centered on a vertical axis. At the lower end of the spindle 18, a nozzle N for sucking the component P is attached.
[0020]
As shown in FIG. 2 in which the substrate transfer device 12 is broken along the line AA of FIG. 1 and FIG. 3 in which the substrate transfer device 12 is cut along the line BB of FIG. A pair of guide rails 20 arranged on a pair of left and right bases 19 corresponding to the width of the substrate PB (length in a direction orthogonal to the transport direction of the substrate PB) as viewed from the front in the transport direction to form a transport path. , 21, a pair of endless conveyor belts 24, 25, which are provided directly below the guide rails 20, 21 and are guided by belt guides 22, 23 and have a convex cross section, and are brought to a predetermined position by the conveyor belts 24, 25. It comprises a clamp device 26 for positioning and clamping the transported substrate PB.
[0021]
The clamp device 26 has a vertically movable pedestal 28 on which a plurality of support pins 27 appropriately arranged corresponding to a plurality of types of substrates to be conveyed are erected. When the substrate PB is carried into the mounting position by the conveyor belts 24 and 25 while being guided by the rails 20 and 21, the pedestal 28 guided by the plurality of pilot bars 29 is driven up by the fluid pressure cylinder 30 and rises, and the support pins At 27, the board PB is pushed upward to clamp the board PB between the engaging projections 20a and 21a provided on the guide rails 20 and 21. The substrate PB is carried out by lowering the pedestal 28 and placing the substrate PB on the conveyor belts 24 and 25.
[0022]
As shown in FIG. 2, the left and right endless conveyor belts 24 and 25 are wound between a pair of front and rear transport guide pulleys 31, a pair of front and rear return pulleys 32, a direction conversion pulley 33, a driving pulley 34, and a tension applying pulley 35. Is equipped. The drive pulley 34 is supported so as to rotate integrally with the spline shaft 36, and the spline shaft 36 is coupled to a pulse motor 37 and driven to rotate. Timing belts are preferably used for the conveyor belts 24 and 25, and pulleys such as the drive pulley 34 are preferably timing pulleys. A belt conveyor is configured as a conveyor device 38 by the conveyor belts 24 and 25, the transport guide pulley 31, the drive pulley 34, the pulse motor 37, and the like.
[0023]
Further, as shown in FIG. 3, a sensor 39 for detecting the front edge of the board PB in the transport direction is attached to the guide rail 20 toward one side of the board PB. The sensor 39 is of an ON-OFF operation type that outputs an “OFF” signal when not facing one side surface of the substrate PB, and outputs an “ON” signal when facing the one side surface. The mounting position of the sensor 39 in the transport direction is a position slightly closer to the upstream side than the center position of the substrate transport device 12. The sensor 39 detects that the specific position of the substrate PB, for example, the front edge is located at the reference position such as passing through the reference position, and changes the state from “OFF” to “ON” to transmit a detection signal. The conveyor device 38 is driven by the set feed amount during the period from when the detection signal is sent to when the conveyor device 38 is decelerated at a predetermined deceleration and stopped, and positions the substrate PB at the target position.
[0024]
In the component mounter, a plurality of types of substrates PB having different lengths in the transport direction are selectively carried into the substrate transport device 12, and the component P is mounted by the mounting head device 11. As shown schematically in FIG. 4, each of the plurality of types of substrates PB has a three-digit number (from the front end of the substrate) of an arbitrary portion in the transport direction, preferably, a central portion Bj of a mounting area where a large number of components are mounted. nnn). Normally, the portion Bj and the center Bm of the board in the transport direction substantially coincide with each other, but depending on the board, the mounting area is deviated forward or backward in the board transport direction. Is arbitrarily specified in order to specify the position Bj.
[0025]
Then, the positioning of the substrate PB is stopped so that the center Bm or an arbitrary alignment portion Bj is aligned with the optimal mounting position on the substrate transfer device 12. Here, the optimum mounting position is a sensor alignment position P0 aligned with the sensor 39, a component camera alignment position P1 aligned with the component camera 40, a transport device center position P2 aligned with the center of the board transport device 12 in the transport direction, and component supply. This is one of the center of the component take-out part 15 of the device 10 or the position P3 where a component with a large number of components is arranged, and these alignment positions P0 to P3 are selectively designated as the optimal mounting positions, depending on the type of board. Thus, it is possible to flexibly determine the alignment portion Bj at the optimum mounting position.
[0026]
Referring again to FIG. 1, reference numeral 41 denotes a board camera attached to the head body 42 of the mounting head 16, and this camera 41 captures images of at least two reference marks formed on the board PB clamped at the mounting position. , The displacement and the angular displacement of the clamp position of the substrate PB are monitored. Further, the component camera 40 described above is fixedly installed on the machine frame 43 between the component pick-up unit 15 and the board transfer device 12, and the position of the component P sucked by the nozzle N of the mounting head device 11 with respect to the nozzle N, Monitor the angle shift.
[0027]
FIG. 5 is a block diagram showing a configuration of a control device of the component mounting machine configured as described above. This control device includes an arithmetic processing unit 44 in which a ROM and a RAM are connected to a central processing unit CPU by a data bus. The processing unit 44 includes an input device 45 such as a numeric keypad, a display device 46 such as a display, a storage device 47, a communication device 48 connected to a host computer (not shown), an XY-axis driving device 49, a Z-axis driving device 50, and a nozzle. A nozzle drive device 51 for opening and closing N, a camera interface 52 for receiving camera data from the board camera 41 and the component camera 40 are connected. Further, the arithmetic processing unit 44 controls the sensor interface 53 to which a detection signal from the sensor 39 is input, and drives the conveyor device 38 by controlling the pulse motor 37 to transport various substrates PB on the substrate transport device 12. The substrate transfer driving device 54 is connected to an actuator control device 55 for controlling an actuator such as the fluid pressure cylinder 30 of the clamp device 26.
[0028]
The XY-axis driving device 49 moves the head main body 42 along the X-axis direction and the Y-axis direction, and conveys the nozzle N from the component extracting unit 15 to a number of command locations on the board PB. The Z-axis driving device 50 rotates the nozzle holder 17 around the R-axis, lowers the spindle 18 on which the nozzle N corresponding to the component P to be sucked is attached, and moves the nozzle N until the tip comes very close to the component back position. Lower it. The nozzle driving device 51 switches the switching valve to selectively supply and shut off the negative pressure to the nozzle N, and causes the nozzle N to suck or release the component P. The substrate transport driving device 54 controls the driving of the pulse motor 37 to drive the belt conveyors 24 and 25 to carry the substrate PB into and out of the mounting position, and the actuator control device 55 controls the fluid pressure cylinder 30 The pedestal 28 is moved up and down under control, and the substrate PB is clamped or unclamped.
[0029]
The mounting data includes types of mounted components for each of a plurality of board IDs, mounting positions of the components, and compatible nozzle information for each component. This data is basic data for setting the order of mounting components, is sent from the host computer to the arithmetic processing unit 44 in advance, and is stored in the storage device 47. The position shift and angle shift data of the board S obtained by the board camera 41 are obtained by converting the board coordinate system set corresponding to the board PB into the machine coordinate system of the component mounter in order to indicate the mounting position of the component P with respect to the board PB. Used as coordinate transformation data to be transformed. The positional deviation and angular deviation data of the component P with respect to the nozzle N obtained from the component camera 40 are used to correct the mounting position data. A component mounting order setting program and the like are registered in the ROM.
[0030]
FIG. 6 shows a board information table BDT formed in the storage device 47 of FIG. 5. The table BDT includes a board length (L) and a board length (L) for each type number PB001 to PBn of the board S. The alignment part B (Bm / Bj), the optimal mounting position (P0 to P3) on the transfer device, and the mounting program numbers PR001 to PRn to be executed by the mounting head device 11 on the board PB are stored. These pieces of information are transferred in advance from a host computer (not shown) or are input using the input device 45. The board length (L) and the alignment portion (Bm / Bj) on the board PB are such that various boards PB having different lengths are aligned at one of the optimal mounting positions (P0 to P3) of the board transfer device 12. This is the information used to make it work.
[0031]
Next, the operation of the first embodiment will be described based on a control program shown in FIG. As shown by a two-dot chain line in FIG. 8, a substrate PB of type number PB001 is guided by a pair of guide rails 57, 58 of a carry-in conveyor device 56 installed at the entrance side of the substrate transport device 12 and is on standby. Assume. At this standby position, the type of the substrate PB is appropriately identified by the identification sensor 59 (for example, a barcode reader). In such a situation, when a carry-in operation command is given, the processing in FIG. 7 is started, the board PB to be subjected to the mounting operation is identified, and the type of the identified board PB, in this case, the board information table BDT. "1" is set to the identification flag of PB001 (step S1).
[0032]
In step S2, it is determined whether or not the mode is the deceleration setting mode. If not, in the following step S3, the set feed amount at which the substrate PB should be further advanced from the detection position (reference position) of the front edge by the sensor 39 is set. Is calculated. Here, the calculation of the advance amount Xn differs depending on which one of the optimal mounting positions P0 to P3 of the substrate transfer device 12 aligns the center Bm on the substrate or the specified alignment portion Bj, as described later. Is executed based on the data stored in the board information table BDT shown in FIG. For example, when “center” is specified as information for specifying an alignment portion on the board PB001 and P1 is specified as the optimum mounting position information in the board information table BDT, the center Bm of the board PB001 is aligned with the component camera alignment position P1. The forward movement amount X1 is calculated using an equation (X1 = L1 / 2 + A) that adds the offset value A of the component camera alignment position P1 with respect to the sensor alignment position P0 to half of the board length L1 so as to stop at the position. When an arbitrary part Bj on the board PB001 is aligned with the alignment position P1 with the component camera 40, the advance amount X1 is calculated by using the equation (X1 = nnn + A) in which the offset value A is added to the designated numerical information nnn of the part Bj. Is calculated.
[0033]
The arithmetic processing unit 44 of the control device gives a command to the substrate transport driving device 54 to synchronously drive the carry-in conveyor device 56 and the pulse motor 37 of the substrate transport device 12 to move the substrate PB into the substrate transport device 12 at a predetermined transport speed V. To carry in. In this case, the arithmetic processing unit 44 monitors whether the sensor interface 53 has received the “ON” operation signal of the sensor 39 during the administration of the carry-in operation command at minute time intervals. At the moment when the sensor interface 81 receives the “ON” operation signal from the sensor 39, the arithmetic processing unit 44 sets the subsequent target movement amount to the forward movement amount Xn calculated in step S3, and On the other hand, the control is performed such that the substrate PB is advanced by the advance amount Xn from the position P0 where the front edge of the substrate PB is aligned with the sensor 39 as a reference. During the movement control of the forward movement amount Xn, the arithmetic processing unit 44 decrements the forward movement amount Xn every moment, and when the remaining value of the forward movement amount Xn reaches a predetermined number, the substrate transport driving device 54 decelerates at a predetermined deceleration R. The control is executed, and the conveyor device 38 is driven by the advance amount Xn, which is the set feed amount, between the time when the sensor 39 sends the detection signal and the time when the sensor 39 decelerates at the predetermined deceleration R and stops, and moves the substrate PB to the target position (Step S4).
[0034]
When the board PB of the type number PB001 is accurately positioned at the target position as calculated, the board camera 41 is moved to a position opposing one of the reference marks 60 on the board PB and reads one of the reference marks 60 (step S1). S5). When the reference mark 60 is within the field of view of the board camera 41, the arithmetic processing unit 44 gives a command to the actuator control circuit 55, operates the fluid pressure cylinder 30 of the clamp device 26, moves up the pedestal 28, and lifts the board PB. It is fixed at the clamp position indicated by the chain line in FIG. 3 (step S6). After the clamping, the substrate camera 41 is moved after reading the one reference mark 60 again, and reads the other reference mark 61. The arithmetic processing unit 44 calculates the positional deviation and the angular deviation data of the substrate S obtained by the substrate camera 41. Based on this, the board coordinate system set for the board PB is converted to the machine coordinate system of the component mounter to indicate the mounting position of the component P on the board PB of the type number PB001, and the mounting operation program PR001 for the board PB is set. Is performed, and components are mounted by the mounting head device 11 (step S7). When the component mounting is completed, the mounting head device 11 is returned to the original position set adjacent to the component camera 40 above the component extracting unit 15. At the same time, the clamp device 26 is unclamped, the pulse motors 37 of the substrate transfer device 12 and the unloading conveyor device 62 are synchronously driven, and the conveyor belts 24 and 25 are moved forward and around, and the substrate PB is unloaded as shown in FIG. It is carried out to the conveyor device 62 (step S8).
[0035]
If the reference mark 60 does not enter the field of view of the board camera 41 in step S5, the carry-in conveyor device 56 and the pulse motor 37 of the conveyor device 38 are synchronously driven in reverse and the substrate PB is moved to the standby position of the carry-in conveyor device 56. It is returned (step S9). It is determined whether or not the substrate PB is most re-positioned at the target position (step S10). When re-positioning, the process jumps to step S4 to re-position the substrate PB.
[0036]
When the setting of the deceleration is commanded in steps S2 and S10, the pulse motors 37 of the carry-in conveyor device 56 and the conveyor device 38 are driven synchronously, and the conveyor device 38 is driven at the predetermined transport speed V as shown in FIG. In step S11, when the front edge of the substrate PB passes the reference position at point t0, a detection signal is sent from the sensor 39 (step S12). Conveyor device 38 starts decelerating at time t1 after a short time from when the detection signal is transmitted at time t0, decelerates at trial deceleration Rt, and stops at time t2 only by forward feed amount y1. It is driven (step S13). The trial deceleration Rt is empirically determined to be slightly larger so that the substrate PB slides slightly with respect to the conveyor device 38 when the conveyor device 38 stops at the trial deceleration Rt. At a time t3 when a minute time elapses from the stop of the conveyor device 38 to the stop of the substrate PB slipping on the conveyor device 38 (step S14), the conveyor device 38 does not slide the substrate PB on the conveyor device 38. It is accelerated in the reverse direction by the pulse motor 37 at the acceleration A0 and driven at the predetermined transport speed V from the point t4 (step S15), and the reverse feed of the conveyor device 38 until the sensor 39 sends the detection signal at the point t5. The quantity y2 is determined. In this case, the arithmetic processing unit 44 monitors whether the sensor 39 has changed from “ON” to “OFF” at a short time interval, and when the sensor 39 changes from “ON” to “OFF”, the substrate PB The sensor detects that the front edge of is located at the reference position, and determines that the detection signal has been transmitted (step S16). The number of pulses sent to the pulse motor 37 by the substrate transfer driving device 54 from the time point t3 to the time point t5 is counted by the arithmetic processing unit 44, and the backward feeding amount y2 is measured (step S17). The amount of slip y3 of the substrate PB is calculated by subtracting the amount of forward feed y1 from the amount of backward feed y2 (step S18). The slip amount y3 is added to the feed amount y4 driven from the time point t1 when the conveyor device 38 starts to decelerate from the predetermined transport speed V to the time point t2 when the conveyor device 38 starts to decelerate at the trial deceleration Rt and stops the substrate PB. The distance y5 is obtained (step S19). The deceleration at which the conveyor device 38 is decelerated and stopped at the braking distance y5 from the predetermined transport speed V is set as the predetermined deceleration R (step S20). When the setting of the deceleration is completed, the carry-in conveyor device 56 and the pulse motor 37 of the conveyor device 38 are synchronously driven to rotate in reverse, the substrate PB is returned to the standby position of the carry-in conveyor device 56, and steps S6 to S8 are executed. Positioning and component mounting of the substrate PB are performed.
[0037]
In the first embodiment, the conveyor device 38 is decelerated and stopped at the trial deceleration Rt based on the detection signal, and after a lapse of a short time, the conveyor device is driven in the reverse direction at an acceleration at which the board PB does not slip, and the reference sensor Although the slip amount y3 of the substrate PB is measured based on the reverse feed amount y2 of the conveyor device 38 until the detection signal is transmitted from the conveyor 39, the conveyor device 38 decelerates and stops at the trial deceleration Rt. After a lapse of a minute time, the front edge of the stopped substrate PB may be imaged by the substrate camera 41 positioned at a predetermined position, and the slip amount y3 of the substrate PB may be measured.
[0038]
Next, a description will be given of a second embodiment of the deceleration setting method and apparatus in the transport apparatus according to the present invention. The second embodiment differs from the first embodiment only in the step of setting the predetermined deceleration R in the control program as shown in FIG. 10, so only this difference will be described. When the setting of the deceleration is commanded in steps S2 and S9, the pulse motors 37 of the carry-in conveyor device 56 and the conveyor device 38 are driven synchronously, and as shown in FIG. Is driven in the positive direction (step S21), and when the front edge of the substrate PB passes the reference position, the sensor 39 changes from OFF to ON and sends out a detection signal (step S22). The conveyor device 38 is driven in the forward direction by the first feed amount y21 between the time when the detection signal is sent and the time when the deceleration is stopped (step S23), and is stopped for a predetermined time (step S24). The first feed amount y21 is set to be equal to or more than a feed amount necessary for the conveyor device 38 to move from the stopped state to a state where the substrate PB is transported at the transport speed V without slipping. In other words, while the conveyor device 38 is accelerated from the stopped state to the transport speed V at the acceleration A0 and is driven by the first feed amount y21, the substrate PB does not slip on the conveyor device 38 and the transport speed is reduced. V transported.
[0039]
After a lapse of a predetermined time, the conveyor device 38 is accelerated in the reverse direction to the transport speed V at an acceleration A0 at which the board PB does not slip with respect to the conveyor device 38 (step S25), and the sensor 39 is separated from the front edge of the board PB and turned on. It changes to OFF and sends out a detection signal (step S26). The conveyor device 38 is driven in the reverse direction by the second feed amount y22 from the time when the detection signal is sent to the time when the substrate PB decelerates and stops at the deceleration R0 at which the substrate PB does not slip from the transport speed V (step S27), The operation is stopped for a predetermined time (step S28). The second feed amount y22 is required until the conveyor device 38 is accelerated from the stopped state to the transfer speed V at an acceleration A0 at which the substrate PB does not slip, and is decelerated from the transfer speed V at the initial deceleration R0 to stop. The search feed amount is set to a value larger than the minimum feed amount.
[0040]
The conveyor device 38 is accelerated to the transport speed V at the acceleration A0, and decelerates from the transport speed V at the deceleration R1 slightly increased from the initial deceleration R0 to stop at the second feed amount y22 (exploration feed amount). ) In the positive direction (step S29). When the substrate PB slides with respect to the conveyor device 38 when the conveyor device 38 is decelerated and stopped at the deceleration R1, the sensor 39 outputs the signal until the required minute time elapses before the substrate PB stops (step S30). Is determined (step S31). If there is no detection signal even after the elapse of the minute time, the conveyor device 38 is accelerated in the reverse direction to the transport speed V at the acceleration A0, and decelerates from the transport speed V at the initial deceleration R0 to the second speed. It is driven in the reverse direction by the feed amount y22 (step S32). The search cycle including the forward drive of the search feed amount in step S29, the presence / absence determination of the detection signal in step S28, and the reverse drive of the search feed amount in step S32 sequentially increases the deceleration in the forward drive by a small amount. Then, the process is repeated until the detection signal is transmitted (step S33). The deceleration in the forward drive in the previous search cycle of the search cycle in which the detection signal is determined to be present is set to the predetermined deceleration R (step S34). The search feed amount is preferably constant in each search cycle, but may be changed if the search feed amount in the forward direction of the current cycle is equal to the search feed amount in the reverse direction of the previous cycle. Further, it is preferable that the acceleration A0 at which the article does not slip and the transport speed V be constant in each search cycle, but they may be slightly changed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an overall configuration of an electronic component mounting machine to which a first embodiment of a deceleration setting device in a transport device according to the present invention is applied.
FIG. 2 is a vertical cross-sectional view of the transport device taken along line AA of FIG. 1;
FIG. 3 is an enlarged cross-sectional view of a main part of the transport device taken along a line BB in FIG. 2;
FIG. 4 is an explanatory diagram for explaining a relative positional relationship in a transport direction between a portion on a substrate and various target positions on a transport device.
FIG. 5 is a block diagram showing a configuration of a control device of the electronic component mounting machine.
FIG. 6 is an explanatory diagram for explaining a board information table registered in the storage device shown in FIG. 5;
FIG. 7 is a flowchart showing a program for controlling an electronic component mounting machine to which the first embodiment of the deceleration setting device in the transport device is applied.
FIG. 8 is an explanatory diagram illustrating an operation for controlling the positioning of a substrate on a transfer device.
FIG. 9 is a diagram illustrating a method of setting a predetermined deceleration in the first embodiment.
FIG. 10 is a flowchart showing a program for setting a predetermined deceleration in the second embodiment.
FIG. 11 is a diagram illustrating a method for setting a predetermined deceleration in the second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Component supply apparatus, P ... Electronic component, 11 ... Mounting head device, 12 ... Substrate conveyance device (conveyance device), 15 ... Component extraction part, 16 ... Mounting head, 41 ... Substrate camera, PB ... 20, 21: guide rail (conveying path), 24, 25: conveyor belt, 38: conveyor device, 39: sensor, 40: component camera, BDT: board information table, 44: arithmetic processing unit, 47: storage device, 37 ... a pulse motor, 58 ... a carry-in conveyor, 59 ... a barcode reader, 62 ... a carry-out conveyor device.

Claims (6)

物品を搬送経路に沿って搬送するコンベア装置が、前記物品の特定部位が前記搬送経路の基準位置に位置したことをセンサが検出して検出信号を送出してから所定減速度で減速して停止されるまでの間に設定送り量だけ駆動されて前記物品を目標位置に位置決めする搬送装置において、前記検出信号に基づいて前記コンベア装置が所定搬送速度から試行減速度で減速停止されたとき、前記コンベア装置の減速開始から停止までの間の前記物品の制動距離を計測し、前記コンベア装置が前記物品の制動距離で前記所定搬送速度から減速停止される減速度を前記所定減速度として設定することを特徴とする搬送装置における減速度設定方法。The conveyor device that conveys the article along the conveyance path, the sensor detects that the specific part of the article is located at the reference position of the conveyance path, sends a detection signal, and then decelerates at a predetermined deceleration and stops. In the transport device that is driven by the set feed amount until the position is reached and is positioned at the target position, when the conveyor device is decelerated and stopped at a trial deceleration from a predetermined transport speed based on the detection signal, the Measuring the braking distance of the article from the start of deceleration to the stop of the conveyor apparatus, and setting the deceleration at which the conveyor apparatus is decelerated and stopped from the predetermined transport speed at the braking distance of the article as the predetermined deceleration. A deceleration setting method in a transfer device, characterized in that: 請求項1において、前記検出信号に基づいて前記コンベア装置が前記所定搬送速度から前記試行減速度で減速停止するまでの前記コンベア装置の正方向送り量を求め、前記コンベア装置が減速停止してから微小時間経過後に、前記コンベア装置を前記物品が滑らない加速度で逆方向に駆動し、前記基準センサが検出信号を送出するまでの間の前記コンベア装置の逆方向送り量を求め、前記逆方向送り量から前記正方向送り量を減算して前記物品の滑り量を算出し、前記コンベア装置が前記所定搬送速度から前記試行減速度での減速を開始してから停止するまでの間の距離に前記滑り量を加算して前記物品の制動距離を求めることを特徴とする搬送装置における搬送速度の減速度設定方法。2. The method according to claim 1, wherein a forward feed amount of the conveyor device until the conveyor device decelerates and stops at the trial deceleration from the predetermined transport speed based on the detection signal is obtained, and after the conveyor device decelerates and stops. After the elapse of a minute time, the conveyor device is driven in the reverse direction at an acceleration at which the article does not slip, and the reverse feed amount of the conveyor device is determined until the reference sensor sends a detection signal, and the reverse feed is performed. Calculate the slip amount of the article by subtracting the forward feed amount from the amount, and set the distance between the start of the deceleration at the trial deceleration from the predetermined transport speed and the stop until the conveyor device stops. A method of setting a deceleration of a transport speed in a transport device, wherein a braking distance of the article is obtained by adding a slip amount. 物品を搬送経路に沿って搬送するコンベア装置が、前記物品の特定部位が前記搬送経路の基準位置に位置したことをセンサが検出して検出信号を送出してから所定減速度で減速して停止されるまでの間に設定送り量だけ駆動されて前記物品を目標位置に位置決めする搬送装置において、前記コンベア装置を物品が滑らない加速度で加速した後に減速度で停止し、停止後に物品が滑ったか否か判定する探査サイクルを物品が滑らない減速度から減速度を僅かな量ずつ順次増大して繰り返し、物品が滑ったと判定された探査サイクルの前回の探査サイクルでの減速度を前記所定減速度に設定することを特徴とする搬送装置における減速度設定方法。The conveyor device that conveys the article along the conveyance path, the sensor detects that the specific part of the article is located at the reference position of the conveyance path, sends a detection signal, and then decelerates at a predetermined deceleration and stops. In the conveyance device that is driven by the set feed amount and positions the article at the target position until the article is accelerated, the conveyor apparatus accelerates at an acceleration at which the article does not slip, then stops at a deceleration, and determines whether the article slips after stopping. The search cycle for determining whether or not the article is not slipping is repeated by gradually increasing the deceleration by a small amount from the deceleration in which the article does not slip, and the deceleration in the previous search cycle of the search cycle in which it is determined that the article has slipped is the predetermined deceleration. A deceleration setting method for the transfer device, wherein 物品を搬送経路に沿って搬送するコンベア装置が、前記物品の特定部位が前記搬送経路の基準位置に位置したことをセンサが検出して検出信号を送出してから所定減速度で減速して停止されるまでの間に設定送り量だけ駆動されて前記物品を目標位置に位置決めする搬送装置において、前記物品の特定部位が前記センサから離れて前記検出信号が送出されてから探査送り量だけ前記コンベア装置を前記物品が滑らない状態で逆方向に駆動した後に、前記コンベア装置を停止状態から物品が滑らない加速度で加速し減速度で減速して前記探査送り量だけ正方向に駆動して停止し、コンベア装置の停止後微小時間経過しても前記検出信号が無いと判定されると、前記コンベア装置を物品が滑らない状態で探査送り量だけ逆方向に駆動する探査サイクルを前記検出信号が送出されるまで前記正方向駆動での減速度を順次増大して繰り返し、前記検出信号が有りと判定された探査サイクルの前回の探査サイクルの正方向駆動での減速度を前記所定減速度に設定することを特徴とする搬送装置における減速度設定方法。The conveyor device that conveys the article along the conveyance path, the sensor detects that the specific part of the article is located at the reference position of the conveyance path, sends a detection signal, and then decelerates at a predetermined deceleration and stops. In the conveying device driven by the set feed amount until the position is reached, the conveyor moves by the search feed amount after the detection signal is transmitted after the specific portion of the article is separated from the sensor and the detection signal is transmitted. After driving the apparatus in the reverse direction in a state where the article does not slip, the conveyor apparatus is accelerated at an acceleration at which the article does not slip from the stopped state, decelerated at a deceleration, and driven in the forward direction by the search feed amount and stopped. If it is determined that there is no detection signal even after a lapse of a short time after the conveyor device is stopped, an exploration system that drives the conveyor device in the reverse direction by the exploration feed amount in a state where the article does not slip. The deceleration in the forward drive is sequentially increased while the deceleration in the forward drive is sequentially increased until the detection signal is transmitted, and the deceleration in the forward drive in the previous search cycle of the search cycle in which the detection signal is determined to be present is determined. A deceleration setting method for a transport device, wherein the predetermined deceleration is set. 請求項1乃至4のいずれかにおいて、前記物品は基板であり、前記コンベア装置はパルスモータ又はサーボモータにより駆動されるコンベアベルトを備えたベルトコンベアであることを特徴とする搬送装置における減速度設定方法。5. The deceleration setting in the transport device according to claim 1, wherein the article is a substrate, and the conveyor device is a belt conveyor having a conveyor belt driven by a pulse motor or a servomotor. 6. Method. 物品を搬送経路に沿って搬送するコンベア装置が、前記物品の特定部位が前記搬送経路の基準位置に位置したことをセンサが検出して検出信号を送出してから所定減速度で減速して停止されるまでの間に設定送り量だけ駆動されて前記物品を目標位置に位置決めする搬送装置において、前記検出信号に基づいて前記コンベア装置を所定搬送速度から試行減速度で減速停止したとき、前記コンベア装置の減速開始から停止までの間の前記物品の制動距離を計測する手段と、前記コンベア装置を前記物品の制動距離で前記所定搬送速度から減速停止させるための減速度を前記所定減速度として設定する手段を設けたことを特徴とする搬送装置における減速度設定装置。The conveyor device that conveys the article along the conveyance path, the sensor detects that the specific part of the article is located at the reference position of the conveyance path, sends a detection signal, and then decelerates at a predetermined deceleration and stops. In the transport device that is driven by the set feed amount until it is moved and positions the article at a target position, when the conveyor device is decelerated and stopped at a trial deceleration from a predetermined transport speed based on the detection signal, the conveyor Means for measuring the braking distance of the article from the start to the stop of deceleration of the apparatus, and a deceleration for decelerating and stopping the conveyor apparatus from the predetermined transport speed at the braking distance of the article as the predetermined deceleration. A deceleration setting device in a transport device, characterized in that a deceleration setting device is provided.
JP2003161978A 2003-06-06 2003-06-06 Deceleration setting method and apparatus for conveying apparatus Expired - Lifetime JP4382395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161978A JP4382395B2 (en) 2003-06-06 2003-06-06 Deceleration setting method and apparatus for conveying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161978A JP4382395B2 (en) 2003-06-06 2003-06-06 Deceleration setting method and apparatus for conveying apparatus

Publications (2)

Publication Number Publication Date
JP2004359433A true JP2004359433A (en) 2004-12-24
JP4382395B2 JP4382395B2 (en) 2009-12-09

Family

ID=34054253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161978A Expired - Lifetime JP4382395B2 (en) 2003-06-06 2003-06-06 Deceleration setting method and apparatus for conveying apparatus

Country Status (1)

Country Link
JP (1) JP4382395B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164230A (en) * 2007-12-28 2009-07-23 Hitachi High-Tech Instruments Co Ltd Substrate transfer apparatus
JP2013004638A (en) * 2011-06-15 2013-01-07 Fuji Mach Mfg Co Ltd Multi-robot system and electronic component mounting machine
JP2014157960A (en) * 2013-02-18 2014-08-28 Panasonic Corp Substrate positioning method
EP2575419A3 (en) * 2011-09-27 2014-12-03 Yamaha Hatsudoki Kabushiki Kaisha Substrate transfer apparatus, substrate transfer method, and surface mounter
CN107973082A (en) * 2017-12-06 2018-05-01 徐工集团工程机械有限公司 A kind of movable crusher Control System of Belt Conveyer
WO2018207260A1 (en) * 2017-05-09 2018-11-15 株式会社Fuji Substrate working machine
CN113955394A (en) * 2021-09-03 2022-01-21 江苏同威信达技术有限公司 Automatic close arrangement device and method for irradiated objects of electron accelerator irradiation system on transmission chain
CN114620445A (en) * 2022-03-26 2022-06-14 河南中烟工业有限责任公司 Tobacco shred conveying belt deviation self-checking device based on tobacco shred making process

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164230A (en) * 2007-12-28 2009-07-23 Hitachi High-Tech Instruments Co Ltd Substrate transfer apparatus
JP2013004638A (en) * 2011-06-15 2013-01-07 Fuji Mach Mfg Co Ltd Multi-robot system and electronic component mounting machine
EP2575419A3 (en) * 2011-09-27 2014-12-03 Yamaha Hatsudoki Kabushiki Kaisha Substrate transfer apparatus, substrate transfer method, and surface mounter
US9054145B2 (en) 2011-09-27 2015-06-09 Yamaha Hatsudoki Kabushiki Kaisha Substrate transfer apparatus
JP2014157960A (en) * 2013-02-18 2014-08-28 Panasonic Corp Substrate positioning method
WO2018207260A1 (en) * 2017-05-09 2018-11-15 株式会社Fuji Substrate working machine
CN110583102A (en) * 2017-05-09 2019-12-17 株式会社富士 Substrate working machine
US11518621B2 (en) 2017-05-09 2022-12-06 Fuji Corporation Substrate working machine
CN107973082A (en) * 2017-12-06 2018-05-01 徐工集团工程机械有限公司 A kind of movable crusher Control System of Belt Conveyer
CN107973082B (en) * 2017-12-06 2024-03-29 江苏徐工工程机械研究院有限公司 Belt conveyor control system for mobile crusher
CN113955394A (en) * 2021-09-03 2022-01-21 江苏同威信达技术有限公司 Automatic close arrangement device and method for irradiated objects of electron accelerator irradiation system on transmission chain
CN113955394B (en) * 2021-09-03 2023-10-20 同威信达技术(江苏)股份有限公司 Automatic close-packed device of irradiated objects on transmission chain of electron accelerator irradiation system
CN114620445A (en) * 2022-03-26 2022-06-14 河南中烟工业有限责任公司 Tobacco shred conveying belt deviation self-checking device based on tobacco shred making process

Also Published As

Publication number Publication date
JP4382395B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
EP1940215A2 (en) Device for transferring/holding sheetlike member and its method
JP4465401B2 (en) Substrate stop position control method and apparatus
WO2003015489A2 (en) Apparatus and method for mounting electronic parts
KR20010018646A (en) PCB Transfering System of Surface Mounting Device
JP2004228326A (en) Method and device for controlling substrate stop position
JP4382395B2 (en) Deceleration setting method and apparatus for conveying apparatus
JP4941442B2 (en) Component mounting line and board transfer method between work machines
EP0919323B1 (en) Part supplying device and method for supplying parts using the same device
JP4499661B2 (en) Substrate transfer method and apparatus
JP4832244B2 (en) Predetermined working method and predetermined working apparatus on printed circuit board
US7221178B2 (en) Working system for circuit boards
JP2003078287A (en) Method and apparatus for conveyance of board in component mounting machine
JP6043871B2 (en) Substrate transport apparatus, surface mounter, and substrate transport method
JP7220308B2 (en) Work machine for board
JP2002050894A (en) Method and apparatus for transferring substrate in part mounting system
JP2006086261A (en) Conveying apparatus, surface mounting machine, solder-coating device, inspecting device for printed circuit board and method of conveying the printed circuit board
JP6752566B2 (en) Board transfer device
JP5059362B2 (en) Component mounting equipment
JP7300575B2 (en) Component mounting device and mounting board manufacturing method
JP6602584B2 (en) Component mounter
JP6626750B2 (en) Transfer device
CN111434200B (en) Component mounting machine
CN217037565U (en) Automatic positioning device for PCB (printed circuit board)
WO2023053274A1 (en) Work machine for board and board manufacturing method
JP4147539B2 (en) Electronic circuit component mounting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4382395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term