JP2004359307A - Sterilization method and apparatus for container, and processing tank for sterilization used for the same - Google Patents

Sterilization method and apparatus for container, and processing tank for sterilization used for the same Download PDF

Info

Publication number
JP2004359307A
JP2004359307A JP2003160863A JP2003160863A JP2004359307A JP 2004359307 A JP2004359307 A JP 2004359307A JP 2003160863 A JP2003160863 A JP 2003160863A JP 2003160863 A JP2003160863 A JP 2003160863A JP 2004359307 A JP2004359307 A JP 2004359307A
Authority
JP
Japan
Prior art keywords
container
outer peripheral
dielectric
electrode
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003160863A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mishima
弘之 三島
Satoshi Masaoka
諭 正岡
Hidetoshi Hasegawa
秀翁 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd, Sanyo Electric Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2003160863A priority Critical patent/JP2004359307A/en
Publication of JP2004359307A publication Critical patent/JP2004359307A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sterilize the inner and outer surfaces of a container simultaneously using atmospheric plasma. <P>SOLUTION: A processing tank 3 has a housing space S, at least the inside of which is enclosed with a dielectric, and the container 2 to be sterilized is arranged in the housing space S so that the outer peripheral surface 2a and the bottom surface 2b of the container 2 are enclosed with the dielectric. A discharge electrode 4 is inserted in the container 2, and the outer peripheral surface 2a of the container 2 is surrounded by an outer peripheral counter electrode 5 via the dielectric while the bottom surface 2b of the container 2 is set counter to a bottom counter electrode 6 via the dielectric. A prescribed gas is introduced into the housing space S. In this arrangement, high-voltage pulses are applied across the discharge electrode 4 and the outer peripheral counter electrode 5, and the bottom counter electrode 6 under normal temperature and pressure to generate atmospheric plasma inside/outside of the container 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、包装容器等を大気圧プラズマにより殺菌する方法及び装置に関する。
【0002】
【従来の技術】
PETボトル等の包装容器の内面を殺菌する方法として、殺菌対象の容器の内部にアルゴンガス等の希ガスを導入するとともに放電極を挿入し、容器の外周を誘電体を挟んで対向電極で取り囲み、放電極と対向電極との間に高電圧パルスを印加して容器内に大気圧プラズマを発生させ、そのプラズマ状態のガスを容器と接触させて容器の内面を殺菌する方法が知られている(例えば特許文献1参照)。
【0003】
【特許文献1】
特開2003−62047号公報
【0004】
【発明が解決しようとする課題】
上述したプラズマ殺菌方法は専ら容器の内面を対象としているが、容器に内容物を無菌環境で充填する無菌充填機の汚染を防ぐためには、充填機に搬入される容器の内面のみならず外面も殺菌する必要がある。従来、容器の外面殺菌は過酸化水素等の殺菌剤を容器の外面にミスト化して吹き付ける等の方法で行われているが、容器の外面と内面とをそれぞれ異なる方法で殺菌するのは作業工数が増え、設備投資の負担も増えて好ましくない。
【0005】
そこで、本発明は大気圧プラズマを利用して容器の内外面を同時に殺菌できる方法及び装置、並びにそれらに適した殺菌用の処理槽を提供することを目的とする。
【0006】
【課題を解決するための手段】
以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。
【0007】
本発明の第1の殺菌方法においては、少なくとも内面側が誘電体にて囲まれた処理槽(3)内の収容スペース(S)に、開口部を有する殺菌対象の容器(2)を配置して該容器の外周面(2a)及び底面(2b)を前記誘電体にて覆い、前記容器の前記開口部から放電極(4)を挿入し、前記容器の外周面を前記誘電体を挟んで外周対向電極(5)で取り囲み、前記容器の前記底面を前記誘電体を挟んで底面対向電極(6)と対向させた状態で、前記放電極と前記外周対向電極及び前記底面対向電極との間に常温常圧下で高電圧パルスを印加して前記容器の内外に大気圧プラズマを生じさせることにより前記容器の内面及び外面を同時に殺菌する。
【0008】
この殺菌方法によれば、容器の外周面及び底面のそれぞれが誘電体を挟んで外周対向電極又は底面対向電極と対向するので、放電極と各対向電極との間に高電圧パルスを印加することにより容器の内外に存在するガスがプラズマ化して容器の内面のみならず外周面及び底面もプラズマ化されたガス(以下、プラズマガスと呼ぶことがある。)と接触させることができる。これにより、容器の内面と外面とを同時に効率よく殺菌することができる。
【0009】
本発明の第1の殺菌方法においては、前記収容スペースに配置された前記容器の内部及び外部に所定のガスを導入してもよい。この態様によれば、容器の内外のプラズマ強度が高くなるので殺菌効果を高めることができる。
【0010】
また、前記高電圧パルスの印加に先立って、前記容器の内面及び外面に水分を付着させてもよい。水分が付着した状態でプラズマを生じさせることにより殺菌効果をさらに高めることができる。第1の殺菌方法において、水分の付着は容器の内外へのガスの導入と併せて実施してもよい。
【0011】
本発明の第2の殺菌方法においては、少なくとも内面側が誘電体にて囲まれた処理槽(3)内の収容スペース(S)に、開口部を有する殺菌対象の容器(2)を配置して該容器の外周面(2a)及び底面(2b)を前記誘電体にて覆い、前記容器の前記開口部から放電極(4)を挿入し、前記容器の外周面を前記誘電体を挟んで外周対向電極(5)で取り囲み、前記収容スペースに配置された前記容器の内部及び外部に所定のガスを導入した状態で、前記放電極と前記外周対向電極との間に常温常圧下で高電圧パルスを印加して前記容器の内外に大気圧プラズマを生じさせることにより前記容器の内面及び外面を同時に殺菌する。
【0012】
この殺菌方法によれば、容器の内外に導入されたガスが高電圧パルスの印加によってプラズマ化し、容器の内面及び外面を満遍なくプラズマガスと接触させてそれらを同時に効率よく殺菌することができる。なお、第2の殺菌方法において容器の底面側を底面対向電極と対向させるか否かは任意である。容器の底面形状によっては、底面対向電極がなくとも容器の底面側にプラズマガスが供給されて殺菌効果が生じることがある。特に、底面に比して外周面が十分に大きい容器(例えばボトル)においてそのような傾向がある。本発明の第2の殺菌方法においても、前記高電圧パルスの印加に先立って前記容器の内面及び外面に水分を付着させてもよい。
【0013】
本発明の第3の殺菌方法においては、少なくとも内面側が誘電体にて囲まれた処理槽(3)内の収容スペース(S)に、開口部を有する殺菌対象の容器(2)を配置して該容器の外周面(2a)及び底面(2b)を前記誘電体にて覆い、前記容器の前記開口部から放電極(4)を挿入し、前記容器の外周面を前記誘電体を挟んで外周対向電極(5)で取り囲み、前記容器の内面及び外面に水分を付着させた状態で、前記放電極と前記外周対向電極との間に常温常圧下で高電圧パルスを印加して前記容器の内外に大気圧プラズマを生じさせることにより前記容器の内面及び外面を同時に殺菌する。
【0014】
この殺菌方法によれば、容器の内外に水分を付着させた状態でプラズマを発生させるので、容器の内外で殺菌効果が高まりそれらを同時に効率よく殺菌することができる。なお、第3の殺菌方法においても、容器の底面側を底面対向電極と対向させるか否かは任意である。第2の殺菌方法と同様に、底面対向電極がなくても殺菌効果が生じ得るからである。
【0015】
以上の殺菌方法において特に容器の内外にガスを導入する場合には、前記高電圧パルスの印加中において、前記処理槽の前記容器を出し入れするための開口部(11b)を蓋(12)にて狭めるようにしてもよい。このような蓋を設けることにより、処理槽内に導入されたガスの処理槽外への拡散を抑えてプラズマをより効率よく発生させることができる。
【0016】
また、前記高電圧パルスの印加前に前記ガスを導入し、前記高電圧パルスの印加中は印加前よりも前記ガスの導入流量を減少させてもよい。高電圧パルスの印加前には比較的大流量でガスを導入して処理槽内に存在するガスを、新たに導入された所望のガスにて迅速に置換することができる。一方、高電圧パルスの印加中はガスの導入流量を減少させることにより、均一なプラズマを安定的に発生させることができる。
【0017】
さらに、ガスを導入する場合においては、前記収容スペース内において、前記容器と前記処理槽の内底面との間に前記ガスが流通する隙間(19)が生じるように、少なくとも表面が誘電体にて構成された支持手段(18;10c;20,21;22,23)にて前記容器を支持してもよい。このような隙間を設けることにより、処理槽の内底面側にも十分にガスを導入して殺菌効果を高めることができる。なお、容器と処理槽の内底面との間に隙間を生じさせることができる限りにおいて支持手段の支持形態は問わない。従って、容器と処理槽の内底面との間に支持手段を配置して容器を下から支えるようにしてもよいし、容器の上方に支持手段を配置してその一部で容器を吊り下げ支持してもよい。
【0018】
本発明の殺菌方法において容器に水分を付着させる場合には、前記容器の内外面に曇が生じるように前記水分を付着させることが望ましい。この程度に水分を付着させることにより殺菌効果を十分に向上させることができる。
【0019】
本発明の殺菌方法において底面対向電極を設ける場合には、前記底面対向電極の外周(6a)を前記外周対向電極と一致させ、又は前記外周対向電極よりも外側に位置させてもよい。この態様によれば、底面対向電極の外周と放電極との間の放電の集中を防止して、外周対向電極及び底面対向電極のそれぞれと放電極との間に均一に放電を生じさせることができる。
【0020】
本発明の殺菌方法においては、前記放電極の前記容器内への挿入範囲の表面に、該挿入範囲の略全域に亘って凹凸を設けてもよい。放電極の表面に凹凸を設けることにより、放電極の先端における放電の集中を抑え、容器への挿入範囲のほぼ全域において均一な放電を生じさせることができる。前記凹凸は、前記挿入範囲の表面を螺旋状に形成することにより設けることができる。
【0021】
本発明の第1の殺菌装置(1)は、内部に殺菌対象の容器(2)の収容スペース(S)が設けられ、該収容スペースに配置される前記容器の外周面(2a)及び底面(2b)を覆う内面側が誘電体(10、11)にて構成され、前記誘電体を挟んで前記容器の外周面を取り囲むように外周対向電極(5)が設けられるとともに、前記誘電体を挟んで前記容器の前記底面と対向するように底面対向電極(6)が設けられた処理槽(3)と、前記収容スペースに配置された前記容器の内部に挿入可能な放電極(4)と、前記放電極と前記外周対向電極及び前記底面対向電極との間に高電圧パルスを印加する高電圧パルス印加手段(8)とを備えている。
【0022】
この殺菌装置によれば、放電極を容器内に挿入して放電極と各対向電極との間に高電圧パルスを印加することにより、容器の内外に存在しているガスをプラズマ化し、それにより本発明の殺菌方法を実現して容器の内外面をプラズマにより殺菌することができる。
【0023】
本発明の第1の殺菌装置においては、前記収容スペースに配置された前記容器の内部及び外部に所定のガスを導入するガス導入手段(7)を備えてもよい。この場合には容器内外のプラズマ強度が高くなるので殺菌効果を高めることができる。
【0024】
また、前記容器の内面及び外面に水分を付着させる水着装置(30)を備えてもよい。高電圧パルスの印加に先立って容器の内面及び外面に水分を付着させることにより、殺菌効果をさらに高めることができる。なお、水着装置はガス導入手段と併せて設けてもよい。
【0025】
本発明の第2の殺菌装置(1)は、内部に殺菌対象の容器(2)の収容スペース(S)が設けられ、該収容スペースに配置される前記容器の外周面(2a)及び底面(2b)を覆う内面側が誘電体(10、11)にて構成され、前記誘電体を挟んで前記容器の外周面を取り囲むように外周対向電極(5)が設けられた処理槽(3)と、前記収容スペースに配置された前記容器の内部に挿入可能な放電極(4)と、前記収容スペースに配置された前記容器の内部及び外部に所定のガスを導入するガス導入手段(7)と、前記放電極と前記外周対向電極との間に高電圧パルスを印加する高電圧パルス印加手段(8)とを備えている。
【0026】
この殺菌装置によれば、容器の内外にガスを導入して高電圧パルスを印加することにより、容器内外のプラズマ強度が高くなるのでそれらを同時に効率よく殺菌することができる。なお、第2の殺菌方法と同様に、第2の殺菌装置においても容器の底面側を底面対向電極と対向させるか否かは任意である。本発明の第2の殺菌装置においても、前記容器の内面及び外面に水分を付着させる水着装置(30)を備えてもよい。
【0027】
本発明の第3の殺菌装置は、内部に殺菌対象の容器(2)の収容スペース(S)が設けられ、該収容スペースに配置される前記容器の外周面(2a)及び底面(2b)を覆う内面側が誘電体(10、11)にて構成され、前記誘電体を挟んで前記容器の外周面を取り囲むように外周対向電極(5)が設けられた処理槽(3)と、前記収容スペースに配置された前記容器の内部に挿入可能な放電極(4)と、前記容器の内面及び外面に水分を付着させる水着装置(30)と、前記放電極と前記外周対向電極との間に高電圧パルスを印加する高電圧パルス印加手段(8)とを備えている。
【0028】
この殺菌装置によれば、水着装置により容器の内外に水分を付着させて電極間に高電圧パルスを印加することにより、容器の内外において高い殺菌効果を発生させてそれらを同時に効率よく殺菌することができる。なお、第3の殺菌方法と同様に、第3の殺菌装置においても、容器の底面側を底面対向電極と対向させるか否かは任意である。
【0029】
本発明の殺菌装置においてガス導入手段を設ける場合には、前記処理槽には、前記容器を出し入れする開口部(11b)と、当該開口部を狭める開閉可能な蓋(12)とがさらに設けられてもよい。この態様によれば、処理槽内に導入されたガスの処理槽外への拡散を防止することができる。
【0030】
また、前記収容スペース内において、前記容器と前記処理槽の内底面との間に前記ガスが流通する隙間(19)が生じるように前記容器を支持する、少なくとも表面が誘電体にて構成された支持手段(18;10c;20,21;22,23)を備えてもよい。この場合には、処理槽の内底面側にも十分にガスを導入して殺菌効果を高めることができる。なお、上述した殺菌方法の場合と同様に、本発明の殺菌装置においても、容器と処理槽の内底面との間に隙間を生じさせることができる限りにおいて支持手段の支持形態は問わない。
【0031】
本発明の殺菌装置において、底面対向電極が設けられている場合には、前記底面対向電極の外周が前記外周対向電極と一致し、又は前記外周対向電極よりも外側に位置してもよい。この場合には、上述したように底面対向電極の外周と放電極との間における放電の集中を抑え、放電極と各対向電極との間に均一に放電を発生させることができる。
【0032】
本発明の殺菌装置においては、前記処理槽内に生じる放電現象を外部から観察できるように、前記処理槽の少なくとも一部に透光性を付与してもよい。この態様によれば、処理槽の外側にて放電現象に伴う発光スペクトルを解析する等して、処理槽内におけるプラズマの発生状況を把握し、殺菌工程を管理することができる。
【0033】
本発明の殺菌装置においては、前記外周対向電極が前記処理槽を構成する誘電体に金属蒸着されてもよい。金属蒸着を利用すれば外周対向電極を薄くかつ均一に形成することができる。さらに、外周対向電極を薄く形成することにより、当該外周対向電極に透光性を付与することもできる。この場合には外周対向電極を透かして処理槽内部の放電現象を観察することが可能となる。
【0034】
また、本発明の殺菌装置においては、前記外周対向電極が、前記処理槽を構成する誘電体に対して導電性塗料を塗工することにより形成されてもよい。
【0035】
さらに、前記外周対向電極の外側に保護層(25)が設けられてもよい。これにより、外周対向電極の破損と劣化の防止効果を高めることができる。
【0036】
本発明の殺菌装置において特に底面対向電極が設けられる場合には、上述した外周対向電極に関する態様を底面対向電極にも適用することができる。すなわち、前記底面対向電極が前記処理槽を構成する誘電体に金属蒸着されてもよく、その蒸着された底面対向電極が透光性を有してもよい。底面対向電極が、前記処理槽を構成する誘電体に対して導電性塗料を塗工することにより形成されてもよい。前記底面対向電極の外側に保護層(26)が設けられてもよい。
【0037】
本発明の殺菌装置において、前記放電極の前記容器内への挿入範囲の表面には、該挿入範囲の略全域に亘って凹凸が設けられてもよい。これにより、上述したように放電極の挿入範囲のほぼ全域に均一に放電を生じさせることができる。また、凹凸は前記挿入範囲の表面を螺旋状に形成して設けることができる。
【0038】
さらに、前記放電極の前記容器内への挿入範囲が前記容器の内周面に沿った形状に形成されてもよい。これにより、容器の断面形状や断面寸法の変化に放電極を合わせて対向電極と放電極との距離の変化を抑えることができ、容器の断面形状や断面寸法の変化に関わらず容器の各部を等しくプラズマガスと接触させることができる。
【0039】
本発明の第1の処理槽は、内部に殺菌対象の容器(2)の収容スペース(S)が設けられ、該収容スペースに配置される前記容器の外周面(2a)及び底面(2b)を覆う内面側が誘電体(10、11)にて構成され、前記誘電体を挟んで前記容器の外周面及び底面の少なくともいずれか一方の面と対向するように対向電極(5及び/又は6)が設けられた大気圧プラズマ殺菌用の処理槽(3)であって、前記対向電極が金属蒸着にて形成されているものである。
【0040】
また、本発明の第2の処理槽は、内部に殺菌対象の容器(2)の収容スペース(S)が設けられ、該収容スペースに配置される前記容器の外周面(2a)及び底面(2b)を覆う内面側が誘電体(10、11)にて構成され、前記誘電体を挟んで前記容器の外周面及び底面の少なくともいずれか一方と対向するように対向電極(5及び/又は6)が設けられた大気圧プラズマ殺菌用の処理槽(3)であって、前記対向電極が前記誘電体に対して導電性塗料を塗工することにより形成されているものである。
【0041】
さらに、本発明の第3の処理槽は、内部に殺菌対象の容器(2)の収容スペース(S)が設けられ、該収容スペースに配置される前記容器の外周面(2a)及び底面(2b)を覆う内面側が誘電体(10、11)にて構成され、前記誘電体を挟んで前記容器の外周面及び底面の少なくともいずれか一方と対向するように対向電極(5及び/又は6)が設けられた大気圧プラズマ殺菌用の処理槽(3)であって、前記対向電極の外側に保護層が設けられているものである。
【0042】
これらの処理槽はいずれも本発明の殺菌装置に好適に利用できるものである。但し、これらの処理槽の用途は容器の内外面の同時殺菌に限定されず、容器の内面又は外面のみを単独で殺菌する場合にも利用できる。
【0043】
なお、本発明の殺菌方法及び装置において、各対向電極は必ずしも容器の外周面又は底面を完全に覆う必要はなく、容器の一部に対向電極に覆われていない部分が残ってもよい。但し、対向電極は放電極からみて誘電体に完全に覆われていることが望ましい。換言すれば放電極と対向電極との間には必ず誘電体が挟まれていることが望ましい。
【0044】
本発明において、容器の外面は容器の外側に露出している面を意味し、外周面は容器の外面のうち容器の側方に向けられた面を意味し、底面は容器の外面のうち容器の底側に向けられた面を意味する。
【0045】
【発明の実施の形態】
図1は本発明の一実施形態に係る殺菌装置を示している。殺菌装置1は、内部に殺菌対象の容器2の収容スペースSが設けられ、該収容スペースSに配置される容器2の外周面2a及び底面2bを覆う内面が誘電体にて構成された処理槽3と、収容スペースSに配置された容器2の内部に挿入可能な放電極4と、処理槽3の誘電体を挟んで容器2の外周面2aを取り囲むように設けられた外周対向電極5と、処理槽3の誘電体を挟んで容器2の底面2bと対向するように設けられた底面対向電極6と、収容スペースSにガスを導入するガス導入手段としてのガス導入装置7と、放電極4と外周対向電極5及び底面対向電極6との間に高電圧パルスを印加する高電圧パルス印加手段としてのパルス電源8とを備えている。容器2は金属以外の各種の材料にて構成されたものであればよく、ここでは一例としてPETボトルのように上端に開口部2cが設けられ、その開口部2cに続いて首部2dが設けられたボトル型容器を容器2として想定している。
【0046】
処理槽3は、容器2を下方から支持するステージ10と、そのステージ10上に載置される円筒形の筒状体11と、蓋としての蓋12とを備えている。ステージ10、筒状体11及び蓋12はいずれも誘電体製である。外周対向電極5は筒状体11の外周に、底面対向電極6はステージ10の下面にそれぞれ密着して配置されることにより処理槽3の一部を構成する。
【0047】
ステージ10等を構成する誘電体としては、アクリル樹脂、セラミックス、ポリカーボネート、ポリ塩化ビニル等の各種の誘電性材料を使用してよい。但し、処理槽3内に発生する放電現象を観察するため、少なくとも筒状体11は放電現象を観察できる程度の透光性を有していることが望ましい。例えば、透明なアクリル樹脂にて筒状体11を構成すればよい。筒状体11に代え、又は加えてステージ10に透光性を付与してもよい。
【0048】
筒状体11の直径は容器2を収容可能な最小限の大きさに多少の余裕を加えた程度でよい。なお、筒状体11の直径を必要以上に大きくすれば、放電極4と外周対向電極5との距離が不必要に増加して放電現象の安定性が損なわれるおそれがある。ステージ10及び筒状体11の厚さは、放電極4と対向電極5、6との間に安定した放電を生じさせる範囲で適宜に変更してよい。例えば透明なアクリル樹脂にてステージ10及び筒状体11を構成した場合に、それらの厚さは好ましくは0.5mm〜40mmの範囲に設定する。
【0049】
ステージ10及び蓋12は筒状体11の下端及び上端の開口部11a、11bをそれぞれ確実に覆うように筒状体11よりも大きく形成されている。ステージ10は適当な支持手段にてさらに支持される。ステージ10と筒状体11とは一体化されてもよいし、分離可能であってもよい。蓋12は筒状体11に対して開閉可能に取り付けられてもよいし、筒状体11から分離され、適当な駆動手段により筒状体11に対して開閉駆動されてもよい。なお、蓋12は開口部11bを完全に閉じる必要はなく、収容スペースSからのガスの拡散を妨げるように開口部11bを狭められるものであればよい。図1では、蓋12に放電極4及びガス導入装置7のガスノズル15、16を通すための抜き孔12a、12bが設けられている。これらの抜き孔12a、12bは多少大きめに形成されることにより、置換されるガスを処理槽3外へ排出するためのガス抜き孔として機能する。抜き孔12a、12bとは別にガス抜き用の孔を設けてもよい。
【0050】
さらに、処理槽3内のステージ10上には、容器2の底面2bとステージ10の上面(内底面)10aとの間にガスが流通する隙間19が生じるように容器2を支持する支持手段としての複数のスペーサ18が容器2の周方向に適宜に間隔を空けて配置されている。スペーサ18はステージ10と同様に誘電体にて構成されている。スペーサ18の個数及び大きさは容器2を安定して支持しつつ、容器2の底面2bとステージ10の上面10aとの間にガスが十分に回り込める隙間19が空くように定めることが望ましい。隙間19の適正範囲は0.1mm〜20mmの範囲が望ましい。スペーサ18はステージ10に対して別部材として構成されてもよいし、ステージ10と一体に設けられてもよい。
【0051】
放電極4はステンレス等の導電性材料を容器2内に挿入可能な太さの棒状部材に成形してなるものである。放電極4はパルス電源8の正極と接続されて正極として機能する。パルス電源8の負極、外周対向電極5及び底面対向電極6はいずれも接地される。放電極4と外周対向電極5との距離を短縮してなるべく小さいエネルギで放電現象を発生させるため、放電極4の太さは容器2に挿入可能な範囲でなるべく大きく設定することが望ましい。放電極4の長さは容器2に必要十分な深さで挿入できるように定めればよい。放電極4の容器2への挿入量(長さ)は容器2の全高の1/10〜9/10の範囲に設定することが好ましい。放電極4の挿入量が容器2の全高の1/10に満たないと容器2内における放電量が不足し、挿入量が9/10を超えると底面対向電極6側に放電が集中して容器2の底側が熱変形するおそれがあるとともに、容器2の外面2a側にて十分な殺菌効果が得られないおそれがある。
【0052】
図2(a)に放電極4の一部を拡大して示し、同(b)には放電極4のさらに一部を拡大して示す。これらの図から明らかなように、放電極4の容器2内への挿入範囲の全域には一条の螺旋状のねじ山4aが形成され、それにより放電極4の挿入範囲のほぼ全域に亘って凹凸が設けられている。このように凹凸を設けるのは、放電現象を放電極4の先端に集中させることなく、放電極4の容器2内への挿入範囲のほぼ全長に亘って均一に放電を生じさせるためである。つまり、放電極4においては尖った部分で電界が集中して放電が生じるため、放電極4の容器2への挿入範囲の全域に凹凸を満遍なく設けることにより、放電極4の先端に限らずねじ山10の頂点から均一に放電を生じさせて容器2の各部で等しい殺菌作用を生じさせることができる。放電極4の先端4bはこの部分への放電の集中を避けるべくなるべく平坦に形成することが望ましい。
【0053】
放電極4に形成されるねじ山4aのピッチpは0.01mm〜10mmの範囲が好ましく、さらには0.1mm〜5mmの範囲が好ましい。ピッチpが0.01mm未満の場合には凹凸の間隔が狭すぎて均一な放電が得られないおそれがあり、他方、ピッチpが10mmを超える場合には凸部が疎らに分布して放電密度が減少する。また、ねじ山4aの頂角θは5°〜60°の範囲が好ましく、さらには10°〜45°の範囲が好ましい。頂角θが5°未満の場合はねじ山4aの強度が不足するおそれがあり、頂角θが60°を超えるとねじ山4aの頂部からの放電が弱められるおそれがある。
【0054】
図1に戻って、外周対向電極5は筒状体11の外周をその全周に亘って取り囲む円筒形状に形成されている。外周対向電極5の上端は収容スペースSに配置された容器2よりも高く、かつ筒状体11の上端よりは低い位置にある。外周対向電極5の下端はステージ10の上面と同一の高さに位置している。但し、外周対向電極5の下端は容器2の底面2bよりも幾らか高い位置にあってもよい。
【0055】
外周対向電極5は導電性の材料(例えばステンレス等の金属)からなる板又は網を筒状体11の外周に巻き付けることによって形成される。処理槽3の内部における放電現象を観察可能とするため、外周対向電極5は透光性を有することが望ましい。例えば図1の右隅部分に模式的に示したように金属網にて外周対向電極5を構成すれば、その網目を通して放電現象を確認可能な程度の透光性を外周対向電極5に付与することができる。
【0056】
外周対向電極5は筒状体11の外周に導電性材料を蒸着して形成してもよい。蒸着によれば電極5を薄く構成し、処理槽3の内部の放電現象を観察できる程度の透光性を外周対向電極5に付与することができる。電極5を形成するために蒸着する材料としては銅、アルミニウム、金、白金等の金属材料、その他各種の導電性材料を使用することができる。また、蒸着に代え、筒状体11の外周に導電性塗料を塗工して外周対向電極5を形成してもよい。
【0057】
底面対向電極6も外周対向電極5と同様にしてステージ10の下面に設けることができる。すなわち、ステージ10の下面に導電性材料からなる板又は網を配置し、ステージ10の下面に導電性材料を蒸着し、又はステージ10の下面に導電性塗料を塗工して底面対向電極6を形成することができる。図3(a)に示したように、底面対向電極6はその外周6aが外周対向電極5よりも外側に位置するか、又は図3(b)に示すようにその外周6aが外周対向電極5と一致するように設けることが望ましい。図3(c)に示すように底面対向電極6の外周6aが外周対向電極5よりも内側に位置していると、放電極4と底面対向電極6の外周6aとの間に放電が集中し、放電極4と外周対向電極5との間に十分な放電が生じないおそれがある。ステージ10が透光性を有する場合には底面対向電極6にも透光性を与えて処理槽3内部の放電現象を処理槽3の底側から観察可能としてもよい。
【0058】
図1に示すように、ガス導入装置7は上述したガスノズル15、16と、これらのノズル15、16に所定のガスを供給するガス供給源17とを備えている。処理槽3の中心側に配置された第1のガスノズル15は放電極4と同様に蓋12の抜き孔12aを介して処理槽3内に挿入され、さらにその先端は容器2の内部に挿入される。これにより、ガス供給源17と第1のガスノズル15とによって内側導入手段が構成される。一方、蓋12の外周側に配置された2本の第2のガスノズル16は蓋12の抜き孔12bを介して処理槽3内に挿入されている。また、第2のガスノズル16のそれぞれの先端は容器2の外面側に向けられている。従って、ガス供給源17と第2のガスノズル16とによって外側導入手段が構成される。ガス供給源17は大気圧プラズマの生成に寄与する所定のガスをガスノズル15、16に対して供給する。ガス供給源17からのガスの供給流量は不図示の流量調整弁にて制御可能である。
【0059】
ガス供給源17から供給するガスとしては、酸素、水素、窒素、二酸化炭素、空気、アルゴン、及びヘリウムからなる群から選ばれる少なくとも一種類のガスを使用することができる。これらのガスによれば高電圧パルスを印加した際の絶縁破壊電圧を低下させることができて好ましい。上記群から選ばれる2種類以上のガスを混合してガスノズル15、16に供給してもよい。その他にもプラズマ生成に寄与する限りにおいて種々のガスを利用してよい。
【0060】
パルス電源8には例えば電圧38〜80kV、周波数100〜3000Hz(又はpps)の高電圧パルスを放電極4と対向電極5、6との間に印加できるものが使用される。但し、パルス電源8の性能は殺菌対象の容器2の大きさや処理槽3の容量に応じて適宜に変更してよい。
【0061】
殺菌装置1は、その付帯設備として殺菌対象の容器2の内外面に水分を付着させる水着装置を備えている。図4はその水着装置の一例を示している。図4の水着装置30は、不図示のタンクから水を汲み上げて送り出すポンプ31と、ポンプ31から送られた水分を容器2の内部に向かって噴霧する第1のスプレーノズル32と、ポンプ31から送られた水分を容器2の外面に向かって噴霧する第2のスプレーノズル33…33とを備えている。スプレーノズル32、33は、容器2の内外面に均一に水分が付着するように設ける必要がある。
【0062】
水分は容器2の内外面に曇が生じる程度に供給すればよい。ポンプ31から供給する水としては不純物を含まない純水が適している。純水を用いた場合、その供給量は容器2の内外面に直径数μm程度の水微粒子が付着する程度でよい。例えば容器2が容量500mL(ミリリットル)の樹脂製ボトルの場合において、容器2の内面及び外面のいずれに対しても0.01g〜10gの範囲の純水を供給すればよい。なお、純水に代え、エタノールやアセトン等を含む有機系水溶液や電解質等を含む無機系水溶液を容器2に向かって噴霧してもよい。ノズル32、33に代え、ネブライザーを用いて水分を噴霧してもよい。
【0063】
次に、殺菌装置1を用いた容器2の殺菌方法を説明する。まず、殺菌に先立って図4の水着装置30により容器2の内外面に水分を付着させる。水分の適正な供給量は上述した通りである。水分の付与後は図5(a)に示すように処理槽3の筒状体11の開口部11bから収容スペースSに容器2を収容し、続いて図5(b)に示すように蓋12を被せて開口部11bを閉じるとともに、放電極4、ガスノズル15、16を処理槽3内に挿入する。その後、図5(c)に示すようにガスノズル15、16から処理槽3にガスを導入する。このとき第1のガスノズル15から容器2の内部にガスが導入され、第2のガスノズル16からは容器2の外部にガスが導入され、容器2の内外にそれまで滞留していた空気は蓋12の抜き孔12a、12bから逐次パージされる。これにより、収容スペースSにおいて容器2の内外でガスが置換される。また、処理槽3の開口部11bが蓋12で狭められるので置換されたガスの処理槽3外への拡散を抑え、ガスを処理槽3内に十分に溜めておくことができる。
【0064】
なお、高電圧パルスを印加する前の段階におけるガスの流量は適宜に定めてよいが、例えば容器2が容量500mLの樹脂製ボトルの場合には、第1のガスノズル15からのガス流量を0.1L/min.〜1000L/min.の範囲、より好ましくは10L/min.〜400L/min.の範囲に、第2のガスノズル16からのガス流量を0.1L/min.〜1000L/min.の範囲、より好ましくは10L/min.〜400L/min.の範囲にそれぞれ設定するとよい。また、ガスの供給時間は第1のガスノズル15及び第2のガスノズル16のいずれにおいても、0.05秒〜60秒、より好ましくは0.1秒〜10秒の範囲に設定するとよい。
【0065】
以上のようにして処理槽3の内部の空気をガスノズル15、16からのガスで置換した後、図5(d)に示すように放電極4と対向電極5、6との間に常温常圧下で高電圧パルスを印加して放電極4と対向電極5、6との間に放電を生じさせ、それにより容器2の内外に存在するガスを電離させて大気圧プラズマを発生させる。これにより、容器2の内外面を同時に殺菌する。パルス電源8から印加する高電圧パルスの範囲は上記の通りである。高電圧パルスの印加を継続する時間は容器2の容量にもよるが、0.1秒〜60秒、より好ましくは1秒〜10秒程度でよい。
【0066】
放電継続中のガスノズル15、16からのガス流量は高電圧パルスの印加開始前のガス流量よりも減少させることが望ましい。高電圧パルスの印加前はガスの置換をなるべく早期に完了するためにガス流量が大きく設定されるが、高電圧パルスの印加中にもそのような大流量でガスを供給すれば放電が必要以上に活発化されて容器2の内外面に均一に殺菌効果を生じさせることが困難となるからである。高電圧パルスの印加中のガス流量は放電極4と対向電極5、6との間の特定箇所に偏ってプラズマが生じることなく、放電極4の全周でプラズマが均一に維持される程度の流量に設定することが望ましい。例えば、容量500mLの樹脂製ボトルの場合、高電圧パルスの印加中は第1のガスノズル15からのガス流量を0.1L/min.〜10L/min.の範囲に、第2のガスノズル16からのガス流量を0.1L/min.〜10L/min.の範囲にそれぞれ設定するとよい。高電圧パルスの印加時間が十分に短い場合には、印加中においてガスの流量を0、すなわちガスの導入を停止してもよい。
【0067】
以上のようにして容器2を殺菌した後には、放電極4、ガスノズル15、16及び蓋12を取り外して容器2を処理槽3から取り出せばよい。
【0068】
以上に説明した実施形態はあくまで本発明の一例であって、本発明は各種の形態にて実施してよい。例えば処理槽については、図6に示すように処理槽3を上下に反転させ、容器2の出し入れを下側から行うようにしてもよい。
【0069】
処理槽3内における容器2の支持構造については例えば図7〜図9に示すような形態で実施してもよい。図7及び図8に示す形態では、ステージ10の上面10aに容器2よりも半径方向に大きい凹部10bを形成し、その凹部10b内に容器2の底面2bを支える複数のリブ10c…10cを周方向に間隔を空けて設けることによりリブ10cを支持手段として機能させている。この場合には図7に示したように処理槽3の内底面を構成する凹部10bの底面と容器2の底面2bとの間に隙間19が形成される。そして、凹部10bの外周からその隙間19に矢印Gで示すごとくガスが導入される。
【0070】
図9に示す形態では、容器2よりも大径の網20の裏面側に脚部21を設けて支持手段を構成している。この場合には、ステージ10の上面10aに脚部21を載せ、網20に容器2の底面2bを載せることにより、容器2の底面2bと処理槽3の内底面10aとの間に隙間19が生じる。そして、矢印Gで示すように網20を通過して隙間19にガスが導入される。脚部21は周方向に間隔を空けて設けられてもよいし、リング状でもよい。
【0071】
図10に示す形態では、処理槽3を上下に反転させ、容器2の首部2dを把持可能な爪部材22と、その爪部材22を蓋12の内面12c上に支持する脚部23とによって支持手段を構成している。この場合には、処理槽3の内底面を構成する蓋12の内面12cと容器2との隙間19に、爪部材22又は脚部23の隙間から矢印Gで示したようにガスを導入することにより、開口部2cを取り囲む天面をガスと接触させることができる。
【0072】
なお、容器2の底面2bに例えばペタロイドのような凹凸が付されることにより、容器2の底面2bと処理槽3の内底面との間に十分な隙間が生じる場合にはスペーサ18等の支持手段を省略してもよい。
【0073】
図11は、外周対向電極5及び底面対向電極6を保護するため、処理槽3の筒状体11の外側及びステージ10の下面側に、外周対向電極5及び底面対向電極6を覆う保護層25、26を設けた例である。これらの保護層25、26は、筒状体11及びステージ10と同じく誘電体にて構成することが望ましい。また、処理槽3の内部における放電現象を観察可能とするため、これらの保護層25、26にも透光性を付与することが望ましい。なお、保護層25、26のいずれか一方のみを設けてもよい。
【0074】
放電極4は図2に示したねじ山4aを有するものに限らない。例えば、図12に示すように軸4b上に複数の円板状の電極板4cを一定ピッチpで繰り返し設けることにより、放電極4の表面に凹凸を設けてもよい。
【0075】
さらに、放電極4の容器2内への挿入範囲を、容器2の内周面に沿った形状に形成してもよい。例えば図13に示すように容器2の内周面2eが開口部2cに向かって漸次拡大するテーパ面状に形成されている場合、放電極4の外周を容器2の内周面2eに倣って漸次拡大させてもよい。
【0076】
放電極4は棒状又は軸状に形成されたものに限らない。例えば図14に示すように容器2がその深さに比して開口部分の直径が十分に大きい丼又はボウル型の場合には、放電極4をリング状に形成してこれを容器2に水平に挿入することも可能である。なお、図13及び図14の例ではいずれも放電極4の外周を螺旋状に形成しているが、これらの放電極4についても図12に示したような変形が可能である。
【0077】
容器2の内外面に対する水着装置30は図4に示したように、殺菌装置1の処理槽3等とは別設備として設けられるものに限らない。例えば、図15に示すようにガス供給源17と処理槽3との間に水を蓄えるタンク35を設け、ガス供給源17から送り出されたガスをタンク35の水中に一旦放出し、タンク35の液面よりも上方にてガスを回収してこれを処理槽3のガスノズル15、16に導くことにより、処理槽3内におけるガスの置換と同時に容器2の内外に水分を付着させてもよい。但し、この場合には放電極4に水分が付着しないようにガス置換後に放電極4を挿入する等の配慮が必要である。
【0078】
図16に示したように容器2の内部にガスを導入するための第1のガスノズル15の内側に放電極4を同軸に配置することにより、放電極4の周囲から容器2の内部にガスを放出するようにしてもよい。この場合、第1のガスノズル15は蓋12に取り付けてもよいし、蓋12以外の適当な手段にて支持してもよい。このような構成によれば、容器2の内部に放電極4及び第1のガスノズル15を容易に挿入でき、容器2の開口部が狭い場合に特に有利である。また、放電極4及びガスノズル15をいずれも容器2の中心線上に配置できるので、放電極4と外周対向電極5との距離を容器2の全周において等しく維持しつつ、容器2の内部において中心線上から周囲に均等にガスを拡散させて容器2の内部におけるガスの分布の偏りを防ぐことができる。
【0079】
その他にも、本発明は適宜の形態で実施できる。容器はPETボトル等の樹脂製容器に限らず、導電性材料にて構成されていない限りは本発明の殺菌対象に含めることができる。本発明において殺菌効果を高めるためには容器の内外面に対するガスの導入とともに、容器の内外面に水分を付着させることが望ましい。但し、要求される殺菌効果のレベルが低い場合には水分の付着を省略しても十分な殺菌効果が得られることがある。処理槽の筒状体は円筒形に限らず、断面多角形状であってもよい。放電極は複数設けてもよい。
【0080】
【実施例】
上述した実施形態の殺菌装置を作製してその殺菌効果を評価した。殺菌対象の容器は容量500mlのPETボトルとした。殺菌操作は次の通りとした。
【0081】
(殺菌評価用ボトル)
(1)内面殺菌評価用ボトル
Bacillus subtilisあるいはAspergillus nigerの胞子をPETボトル内面に所定量均一に付着させ内面殺菌評価用ボトルとした。
(2)外面殺菌評価用ボトル
上記胞子の所定量をPETボトルの外面口部すなわちネジ部,外面胴部および外面底部に10箇所付着させ外面殺菌評価用ボトルとした。
【0082】
(基本殺菌条件)
(1)水付着条件
図4の装置を用いて上記殺菌評価用ボトルの内面のみに水を曇る程度に付着させた。
(2)放電条件
図1の装置に水を付着させた殺菌評価用ボトルを設置してボトル内の空気をアルゴン及び窒素の混合ガスで置換した後、以下の条件で高電圧パルスを印加した。
置換ガス:容積比でアルゴン5%,窒素95%の混合ガスを使用し、ボトル内面に120L/minの流量で0.5秒間導入した。
放電極:直径4mmのステンレス製のらせん状電極を使用し、ボトル底部から50mm上方に設置した。
筒状体:内径78mm,厚さ5mmのアクリル製円筒
ステージ:厚さ7mmのアクリル板
蓋:放電極挿入孔20mmおよび2個の外面用ガス導入孔6mmを有する厚さ7mmのアクリル板
外周対向電極:筒状体の上端および下端から5mmを除く全外表面に400オングストロームのアルミニウム層を蒸着させた。
放電ガス:置換ガスと同一組成の混合ガスを使用し、ボトル内面に5L/minの流量で導入した。
パルス印加条件:電圧65kV,周波数2500Hz,放電時間30秒以下
【0083】
(培養方法)
放電終了後、殺菌評価用ボトルを装置から取りだし以下の方法で殺菌効果を評価した。
(1)内面殺菌評価
トリプトソーヤブイヨン液体培地約100mlをボトル内に直ちに注ぎ、予め滅菌処理したキャップをはめて充分振ったのち以下の条件で培養した。
Bacillus subtilis :35℃,10日間
Aspergillus niger :25℃,10日間
(2)外面殺菌評価
菌付けした口部,胴部及び底部を切取り滅菌ビーカーに移し、寒天培地を注いで以下の条件で培養した。
Bacillus subtilis :標準寒天培地,35℃,10日間
Aspergillus niger :ポテトデキストロース寒天培地,25℃,10日間
培養後、下記の式1から殺菌効果D値を算出した。
【数1】
殺菌効果D値=−log(生存菌数/初発菌数)…式1
【0084】
(実施例1)
基本条件に加えて、直径90mmの銅板をステージ下面に密着させて底面対向電極を設置して殺菌テストを行い、殺菌効果D値の結果を表1に示した。
(実施例2)
実施例1に加えて、ボトル外面の置換ガスとして容積比でアルゴン5%,窒素95%の混合ガスを120L/minの流量で0.5秒間導入し、さらにボトル外面の放電ガスとして置換ガスと同一組成のガスを5L/minの流量で導入して殺菌テストを行い、結果を表1に示した。
(実施例3)
実施例1に加えて、図4の装置を用いてボトル外面に水を曇る程度に付着させて殺菌テストを行い、結果を表1に示した。
(実施例4)
実施例2に加えて、図4の装置を用いてボトル外面に水を曇る程度に付着させて殺菌テストを行い、結果を表1に示した。
(実施例5)
基本条件に加えて、ボトル外面の置換ガスとして容積比でアルゴン5%,窒素95%の混合ガスを120L/minの流量で0.5秒間導入し、さらにボトル外面の放電ガスとして置換ガスと同一組成のガスを5L/minの流量で導入して殺菌テストを行い、結果を表1に示した。
(実施例6)
実施例5に加えて、図4の装置を用いてボトル外面に水を曇る程度に付着させて殺菌テストを行い、結果を表1に示した。
(実施例7)
基本条件に加えて、図4の装置を用いてボトル外面に水を曇る程度に付着させて殺菌テストを行い、結果を表1に示した。
(実施例8)
放電極が直径4mmのステンレス棒であること以外は実施例4と同様に殺菌テストを行い、結果を表1に示した。
(比較例)
基本条件にしたがって殺菌テストを行い、結果を表1に示した。
【0085】
【表1】

Figure 2004359307
【0086】
【発明の効果】
以上説明したように、本発明によれば、放電極と対向電極との間に高電圧パルスを印加することにより容器の内外に大気圧プラズマを発生させ、プラズマ化されたガスと容器の内面と外面とを接触させてそれらの面を同時に効率よく殺菌することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る殺菌装置の要部を示す部分破断断面図。
【図2】放電極に付された凹凸を示す図。
【図3】外周対向電極と底面対向電極との関係を示す図。
【図4】殺菌装置の付帯設備として設けられる水着装置を示す図。
【図5】図1の殺菌装置を使用した殺菌手順を示す図。
【図6】処理槽の他の実施形態を示す図。
【図7】支持手段の他の実施形態を示す図。
【図8】図7のステージを同図の矢印VIII方向からみた状態を示す図。
【図9】支持手段のさらに他の実施形態を示す図。
【図10】容器の首部を把持する支持手段の実施形態を示す図。
【図11】外周対向電極及び底面対向電極の外側に保護層を設けた実施形態を示す図。
【図12】放電極の他の実施形態を示す図。
【図13】放電極のさらに他の実施形態を示す図。
【図14】放電極をリング状に形成した実施形態を示す図。
【図15】水着装置の他の実施形態を示す図。
【図16】容器内にガスを導入するノズルの他の実施形態を示す図。
【符号の説明】
1 殺菌装置
2 容器
2a 外周面
2b 底面
2d 首部
2e 内周面
3 処理槽
4 放電極
4a ねじ山
4b 軸
4c 円板
5 外周対向電極
6 底面対向電極
6a 底面対向電極の外周
7 ガス導入装置(ガス導入手段)
8 パルス電源(高電圧パルス印加手段)
10 ステージ
10c リブ(支持手段)
11 筒状体
11a、11b 開口部
11d 上部筒状体
11e 下部筒状体
12 蓋板
15 第1のガスノズル
16 第2のガスノズル
17 ガス供給源
18 スペーサ(支持手段)
19 隙間
20 網(支持手段)
21 脚部(支持手段)
22 爪部材(支持手段)
23 脚部(支持手段)
25、26 保護層
30 水着装置
32、33 スプレーノズル
35 タンク[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for sterilizing packaging containers and the like by atmospheric pressure plasma.
[0002]
[Prior art]
As a method for sterilizing the inner surface of a packaging container such as a PET bottle, a rare gas such as argon gas is introduced into the container to be sterilized, a discharge electrode is inserted, and the outer periphery of the container is surrounded by a counter electrode with a dielectric interposed therebetween. A method is known in which a high-voltage pulse is applied between a discharge electrode and a counter electrode to generate atmospheric pressure plasma in a container, and the gas in the plasma state is brought into contact with the container to sterilize the inner surface of the container. (See, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 2003-62047 A
[0004]
[Problems to be solved by the invention]
Although the above-described plasma sterilization method is exclusively for the inner surface of the container, in order to prevent contamination of the aseptic filling machine that fills the container with the contents in an aseptic environment, not only the inner surface but also the outer surface of the container carried into the filling machine is used. It needs to be sterilized. Conventionally, the outer surface of a container is sterilized by a method such as spraying a mist of a disinfectant such as hydrogen peroxide onto the outer surface of the container, but sterilizing the outer surface and the inner surface of the container by different methods is a labor-intensive process. And the burden of capital investment also increases, which is not desirable.
[0005]
Accordingly, an object of the present invention is to provide a method and an apparatus capable of simultaneously sterilizing the inner and outer surfaces of a container using atmospheric pressure plasma, and a sterilizing treatment tank suitable for them.
[0006]
[Means for Solving the Problems]
Hereinafter, the present invention will be described. In addition, in order to facilitate understanding of the present invention, reference numerals in the accompanying drawings are added in parentheses, but the present invention is not limited to the illustrated embodiment.
[0007]
In the first sterilization method of the present invention, a container (2) to be sterilized having an opening is disposed in a storage space (S) in a processing tank (3) whose inner surface is at least surrounded by a dielectric. An outer peripheral surface (2a) and a bottom surface (2b) of the container are covered with the dielectric, a discharge electrode (4) is inserted from the opening of the container, and an outer peripheral surface of the container is sandwiched by the dielectric. Surrounded by a counter electrode (5), with the bottom surface of the container facing the bottom counter electrode (6) with the dielectric interposed therebetween, between the discharge electrode and the outer peripheral counter electrode and the bottom counter electrode. A high voltage pulse is applied under normal temperature and normal pressure to generate atmospheric pressure plasma inside and outside the container, thereby simultaneously sterilizing the inner surface and the outer surface of the container.
[0008]
According to this sterilization method, since each of the outer peripheral surface and the bottom surface of the container faces the outer peripheral counter electrode or the bottom counter electrode with the dielectric interposed therebetween, a high voltage pulse is applied between the discharge electrode and each counter electrode. As a result, gas existing inside and outside the container is turned into plasma, so that not only the inner surface but also the outer peripheral surface and the bottom surface of the container can be brought into contact with the gas that has been turned into plasma (hereinafter sometimes referred to as plasma gas). Thereby, the inner surface and the outer surface of the container can be efficiently and simultaneously sterilized.
[0009]
In the first sterilization method of the present invention, a predetermined gas may be introduced into and out of the container arranged in the storage space. According to this aspect, since the plasma intensity inside and outside the container increases, the sterilizing effect can be enhanced.
[0010]
Further, prior to the application of the high voltage pulse, moisture may be attached to the inner surface and the outer surface of the container. The sterilization effect can be further enhanced by generating plasma in a state where moisture is attached. In the first sterilization method, the adhesion of moisture may be performed in conjunction with the introduction of gas into and out of the container.
[0011]
In the second sterilization method of the present invention, a container (2) to be sterilized having an opening is disposed in a storage space (S) in a processing tank (3) whose inner surface is at least surrounded by a dielectric. An outer peripheral surface (2a) and a bottom surface (2b) of the container are covered with the dielectric, a discharge electrode (4) is inserted from the opening of the container, and an outer peripheral surface of the container is sandwiched by the dielectric. A high-voltage pulse is applied between the discharge electrode and the outer peripheral counter electrode under normal temperature and normal pressure with a predetermined gas being introduced into and out of the container placed in the receiving space and surrounded by the counter electrode (5). Is applied to generate atmospheric pressure plasma inside and outside the container, thereby simultaneously sterilizing the inner and outer surfaces of the container.
[0012]
According to this sterilization method, the gas introduced into and out of the container is turned into plasma by application of a high-voltage pulse, and the inner surface and the outer surface of the container are uniformly contacted with the plasma gas so that they can be simultaneously and efficiently sterilized. In the second sterilization method, it is optional whether or not the bottom surface side of the container faces the bottom surface counter electrode. Depending on the shape of the bottom surface of the container, the plasma gas may be supplied to the bottom surface side of the container even without the bottom facing electrode, and a sterilizing effect may be generated. In particular, there is such a tendency in a container (for example, a bottle) whose outer peripheral surface is sufficiently large as compared with the bottom surface. Also in the second sterilization method of the present invention, moisture may be attached to the inner surface and the outer surface of the container before the application of the high voltage pulse.
[0013]
In the third sterilization method of the present invention, a container (2) to be sterilized having an opening is disposed in a storage space (S) in a processing tank (3) whose inner surface is at least surrounded by a dielectric. An outer peripheral surface (2a) and a bottom surface (2b) of the container are covered with the dielectric, a discharge electrode (4) is inserted from the opening of the container, and an outer peripheral surface of the container is sandwiched by the dielectric. A high voltage pulse is applied between the discharge electrode and the outer peripheral counter electrode under normal temperature and normal pressure while surrounding the inner and outer surfaces of the container with moisture by surrounding with the counter electrode (5). The inner and outer surfaces of the vessel are simultaneously sterilized by generating atmospheric pressure plasma.
[0014]
According to this sterilization method, the plasma is generated in a state where moisture is adhered to the inside and outside of the container, so that the sterilization effect is enhanced inside and outside the container, and these can be simultaneously and efficiently sterilized. In the third sterilization method as well, it is optional whether or not the bottom surface side of the container faces the bottom surface counter electrode. This is because, similarly to the second sterilization method, a sterilization effect can be produced even without the bottom facing electrode.
[0015]
In the above sterilization method, particularly when gas is introduced into and out of the container, the opening (11b) for taking the container in and out of the treatment tank is closed with the lid (12) during the application of the high-voltage pulse. You may make it narrow. By providing such a lid, diffusion of the gas introduced into the processing tank to the outside of the processing tank can be suppressed, and plasma can be generated more efficiently.
[0016]
Further, the gas may be introduced before the application of the high-voltage pulse, and the flow rate of the gas introduced may be reduced during the application of the high-voltage pulse as compared to before the application. Before the application of the high-voltage pulse, a gas is introduced at a relatively large flow rate so that the gas present in the processing tank can be quickly replaced with a newly introduced desired gas. On the other hand, a uniform plasma can be stably generated by reducing the gas introduction flow rate during the application of the high voltage pulse.
[0017]
Further, when introducing the gas, at least the surface is made of a dielectric so that a gap (19) through which the gas flows is formed between the container and the inner bottom surface of the processing tank in the accommodation space. The container may be supported by the configured support means (18; 10c; 20, 21; 22, 23). By providing such a gap, it is possible to sufficiently introduce a gas also to the inner bottom surface side of the processing tank and enhance the sterilizing effect. In addition, as long as a gap can be generated between the container and the inner bottom surface of the processing tank, the supporting form of the supporting means is not limited. Therefore, the supporting means may be arranged between the container and the inner bottom surface of the processing tank to support the container from below, or the supporting means may be arranged above the container and the container may be suspended and supported by a part thereof. May be.
[0018]
In the case of attaching moisture to the container in the sterilization method of the present invention, it is desirable to attach the moisture so that fogging occurs on the inner and outer surfaces of the container. By adhering water to such an extent, the sterilizing effect can be sufficiently improved.
[0019]
When the bottom facing electrode is provided in the sterilization method of the present invention, the outer periphery (6a) of the bottom facing electrode may be aligned with the outer periphery facing electrode, or may be located outside the outer periphery facing electrode. According to this aspect, it is possible to prevent the concentration of discharge between the outer periphery of the bottom facing electrode and the discharge electrode, and to uniformly generate a discharge between each of the outer periphery counter electrode and the bottom facing electrode and the discharge electrode. it can.
[0020]
In the sterilization method of the present invention, the surface of the insertion range of the discharge electrode into the container may be provided with irregularities over substantially the entire insertion range. By providing irregularities on the surface of the discharge electrode, the concentration of discharge at the tip of the discharge electrode can be suppressed, and uniform discharge can be generated in almost the entire insertion range of the container. The irregularities can be provided by forming the surface of the insertion area in a spiral shape.
[0021]
In the first sterilization apparatus (1) of the present invention, a storage space (S) for a container (2) to be sterilized is provided therein, and an outer peripheral surface (2a) and a bottom surface (2a) of the container disposed in the storage space are provided. The inner surface covering 2b) is composed of a dielectric (10, 11), and an outer peripheral counter electrode (5) is provided so as to surround the outer peripheral surface of the container with the dielectric interposed therebetween. A treatment tank (3) provided with a bottom facing electrode (6) so as to face the bottom surface of the container, a discharge electrode (4) insertable into the container disposed in the accommodation space, High voltage pulse applying means (8) for applying a high voltage pulse between the discharge electrode and the outer peripheral counter electrode and the bottom counter electrode is provided.
[0022]
According to this sterilizer, by inserting the discharge electrode into the container and applying a high voltage pulse between the discharge electrode and each counter electrode, the gas existing inside and outside the container is turned into plasma, thereby By implementing the sterilization method of the present invention, the inner and outer surfaces of the container can be sterilized by plasma.
[0023]
The first sterilization apparatus of the present invention may include a gas introduction unit (7) for introducing a predetermined gas into and out of the container disposed in the storage space. In this case, since the plasma intensity inside and outside the container is increased, the sterilizing effect can be enhanced.
[0024]
Further, a swimsuit device (30) for attaching moisture to the inner surface and the outer surface of the container may be provided. By attaching moisture to the inner and outer surfaces of the container prior to the application of the high voltage pulse, the sterilizing effect can be further enhanced. The swimwear device may be provided in combination with the gas introduction means.
[0025]
In the second sterilization apparatus (1) of the present invention, an accommodation space (S) for a container (2) to be sterilized is provided therein, and an outer peripheral surface (2a) and a bottom surface (2) of the container arranged in the accommodation space are provided. A treatment tank (3) in which an inner surface side covering 2b) is composed of a dielectric (10, 11), and an outer peripheral counter electrode (5) is provided so as to surround the outer peripheral surface of the container with the dielectric interposed therebetween; A discharge electrode (4) that can be inserted into the container disposed in the storage space, and gas introduction means (7) for introducing a predetermined gas into and out of the container disposed in the storage space; High voltage pulse applying means (8) for applying a high voltage pulse between the discharge electrode and the outer peripheral counter electrode is provided.
[0026]
According to this sterilizing apparatus, by introducing gas into and out of the container and applying a high-voltage pulse, the plasma intensity inside and outside the container is increased, so that they can be simultaneously and efficiently sterilized. In addition, similarly to the second sterilization method, in the second sterilization apparatus, whether or not the bottom surface side of the container faces the bottom surface counter electrode is optional. The second sterilization apparatus of the present invention may also include a swimwear device (30) for attaching moisture to the inner surface and the outer surface of the container.
[0027]
In the third sterilization apparatus of the present invention, a storage space (S) for the container (2) to be sterilized is provided therein, and the outer peripheral surface (2a) and the bottom surface (2b) of the container disposed in the storage space are provided. A processing tank (3) in which an inner surface to be covered is made of a dielectric (10, 11) and an outer peripheral counter electrode (5) is provided so as to surround an outer peripheral surface of the container with the dielectric interposed therebetween; A discharge electrode (4) that can be inserted into the inside of the container, a swimsuit device (30) that attaches moisture to the inner surface and the outer surface of the container, and a height between the discharge electrode and the outer peripheral counter electrode. High voltage pulse applying means (8) for applying a voltage pulse.
[0028]
According to this sterilizing device, by applying moisture to the inside and outside of the container by the swimsuit device and applying a high voltage pulse between the electrodes, a high sterilizing effect is generated inside and outside the container, and these are simultaneously and efficiently sterilized. Can be. In addition, similarly to the third sterilization method, in the third sterilization apparatus, whether or not the bottom surface side of the container faces the bottom surface counter electrode is optional.
[0029]
When the gas introducing means is provided in the sterilization apparatus of the present invention, the treatment tank is further provided with an opening (11b) for taking the container in and out, and an openable / closable lid (12) for narrowing the opening. You may. According to this aspect, it is possible to prevent the gas introduced into the processing tank from diffusing out of the processing tank.
[0030]
Further, in the housing space, the container is supported so that a gap (19) through which the gas flows between the container and the inner bottom surface of the processing tank is formed. At least the surface is formed of a dielectric. Support means (18; 10c; 20, 21; 22, 23) may be provided. In this case, the sterilizing effect can be enhanced by sufficiently introducing gas into the inner bottom surface of the processing tank. In addition, similarly to the case of the above-mentioned sterilization method, in the sterilization apparatus of the present invention, the supporting form of the support means is not limited as long as a gap can be generated between the container and the inner bottom surface of the processing tank.
[0031]
In the sterilization apparatus of the present invention, when the bottom facing electrode is provided, the outer periphery of the bottom facing electrode may coincide with the outer periphery facing electrode, or may be located outside the outer periphery facing electrode. In this case, as described above, the concentration of discharge between the outer periphery of the bottom facing electrode and the discharge electrode can be suppressed, and the discharge can be uniformly generated between the discharge electrode and each counter electrode.
[0032]
In the sterilization apparatus of the present invention, at least a part of the processing tank may be provided with a light transmitting property so that a discharge phenomenon occurring in the processing tank can be observed from the outside. According to this aspect, the state of generation of plasma in the processing tank can be grasped by analyzing the emission spectrum associated with the discharge phenomenon outside the processing tank, and the sterilization process can be managed.
[0033]
In the sterilization apparatus of the present invention, the outer peripheral counter electrode may be metal-deposited on a dielectric constituting the treatment tank. If metal vapor deposition is used, the outer peripheral counter electrode can be formed thinly and uniformly. Further, by forming the outer peripheral counter electrode to be thin, the outer peripheral counter electrode can be provided with a light-transmitting property. In this case, it is possible to observe the discharge phenomenon inside the processing tank through the outer peripheral counter electrode.
[0034]
In the sterilization apparatus of the present invention, the outer peripheral counter electrode may be formed by applying a conductive paint to a dielectric constituting the treatment tank.
[0035]
Further, a protective layer (25) may be provided outside the outer peripheral counter electrode. Thus, the effect of preventing the outer peripheral counter electrode from being damaged and deteriorated can be enhanced.
[0036]
In the sterilization apparatus of the present invention, in particular, when the bottom facing electrode is provided, the above-described aspect relating to the outer periphery facing electrode can be applied to the bottom facing electrode. That is, the bottom facing electrode may be metal-deposited on the dielectric constituting the processing bath, and the deposited bottom facing electrode may have a light-transmitting property. The bottom facing electrode may be formed by applying a conductive paint to the dielectric constituting the treatment tank. A protective layer (26) may be provided outside the bottom facing electrode.
[0037]
In the sterilizing apparatus of the present invention, the surface of the insertion range of the discharge electrode into the container may be provided with irregularities over substantially the entire insertion range. As a result, as described above, a discharge can be uniformly generated over substantially the entire insertion range of the discharge electrode. In addition, the unevenness can be provided by forming the surface of the insertion range in a spiral shape.
[0038]
Further, a range in which the discharge electrode is inserted into the container may be formed in a shape along an inner peripheral surface of the container. This makes it possible to adjust the discharge electrode to the change in the cross-sectional shape and cross-sectional dimension of the container, thereby suppressing a change in the distance between the counter electrode and the discharge electrode. It can be equally contacted with the plasma gas.
[0039]
In the first processing tank of the present invention, an accommodation space (S) for a container (2) to be sterilized is provided therein, and an outer peripheral surface (2a) and a bottom surface (2b) of the container disposed in the accommodation space are provided. The inner surface to be covered is made of a dielectric material (10, 11), and the opposing electrodes (5 and / or 6) are opposed to at least one of the outer peripheral surface and the bottom surface of the container with the dielectric material interposed therebetween. A treatment tank (3) for atmospheric pressure plasma sterilization provided, wherein the counter electrode is formed by metal deposition.
[0040]
In the second processing tank of the present invention, an accommodation space (S) for the container (2) to be sterilized is provided therein, and an outer peripheral surface (2a) and a bottom surface (2b) of the container arranged in the accommodation space are provided. ) Is formed of a dielectric (10, 11), and the opposing electrodes (5 and / or 6) are opposed to at least one of the outer peripheral surface and the bottom surface of the container with the dielectric interposed therebetween. A treatment tank (3) for atmospheric pressure plasma sterilization provided, wherein the counter electrode is formed by applying a conductive paint to the dielectric.
[0041]
Further, in the third processing tank of the present invention, an accommodation space (S) for the container (2) to be sterilized is provided therein, and an outer peripheral surface (2a) and a bottom surface (2b) of the container arranged in the accommodation space are provided. ) Is formed of a dielectric (10, 11), and the opposing electrodes (5 and / or 6) are opposed to at least one of the outer peripheral surface and the bottom surface of the container with the dielectric interposed therebetween. A treatment tank (3) for atmospheric pressure plasma sterilization provided, wherein a protective layer is provided outside the counter electrode.
[0042]
Any of these treatment tanks can be suitably used for the sterilization apparatus of the present invention. However, the use of these treatment tanks is not limited to the simultaneous sterilization of the inner and outer surfaces of the container, and can be used when only the inner or outer surface of the container is sterilized alone.
[0043]
In the sterilization method and apparatus of the present invention, each counter electrode does not necessarily need to completely cover the outer peripheral surface or the bottom surface of the container, and a portion of the container that is not covered by the counter electrode may remain. However, it is desirable that the counter electrode is completely covered with the dielectric material as viewed from the discharge electrode. In other words, it is desirable that a dielectric is always sandwiched between the discharge electrode and the counter electrode.
[0044]
In the present invention, the outer surface of the container means a surface exposed to the outside of the container, the outer peripheral surface means a surface of the outer surface of the container which is directed to the side of the container, and the bottom surface is the container of the outer surface of the container. Means the side facing the bottom side of the
[0045]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a sterilization apparatus according to one embodiment of the present invention. The sterilization apparatus 1 is provided with a storage space S for a container 2 to be sterilized therein, and a processing tank in which the inner surface covering the outer peripheral surface 2a and the bottom surface 2b of the container 2 disposed in the storage space S is made of a dielectric material. 3, a discharge electrode 4 that can be inserted into the container 2 disposed in the accommodation space S, and an outer peripheral counter electrode 5 provided so as to surround the outer peripheral surface 2a of the container 2 with the dielectric of the processing tank 3 interposed therebetween. A bottom facing electrode 6 provided to face the bottom surface 2b of the container 2 with the dielectric of the processing tank 3 interposed therebetween; a gas introduction device 7 serving as a gas introduction means for introducing gas into the storage space S; And a pulse power supply 8 as high voltage pulse applying means for applying a high voltage pulse between the outer electrode 4 and the outer peripheral counter electrode 5 and the bottom counter electrode 6. The container 2 only needs to be made of various materials other than metal. Here, as an example, an opening 2c is provided at the upper end like a PET bottle, and a neck 2d is provided following the opening 2c. It is assumed that a bottle-shaped container is used as the container 2.
[0046]
The processing tank 3 includes a stage 10 for supporting the container 2 from below, a cylindrical tubular body 11 placed on the stage 10, and a lid 12 as a lid. The stage 10, the cylindrical body 11, and the lid 12 are all made of a dielectric material. The outer peripheral counter electrode 5 is arranged on the outer periphery of the cylindrical body 11 and the bottom counter electrode 6 is arranged on the lower surface of the stage 10 in close contact with each other, thereby constituting a part of the processing tank 3.
[0047]
Various dielectric materials such as acrylic resin, ceramics, polycarbonate, polyvinyl chloride, and the like may be used as the dielectric constituting the stage 10 and the like. However, in order to observe a discharge phenomenon occurring in the treatment tank 3, it is desirable that at least the cylindrical body 11 has a light transmitting property enough to observe the discharge phenomenon. For example, the tubular body 11 may be made of a transparent acrylic resin. The stage 10 may be provided with a light transmitting property instead of or in addition to the cylindrical body 11.
[0048]
The diameter of the cylindrical body 11 may be a minimum size capable of accommodating the container 2 with some margin added. If the diameter of the tubular body 11 is made larger than necessary, the distance between the discharge electrode 4 and the outer peripheral counter electrode 5 may be unnecessarily increased, and the stability of the discharge phenomenon may be impaired. The thicknesses of the stage 10 and the cylindrical body 11 may be appropriately changed within a range in which a stable discharge is generated between the discharge electrode 4 and the counter electrodes 5 and 6. For example, when the stage 10 and the cylindrical body 11 are made of a transparent acrylic resin, their thickness is preferably set in a range of 0.5 mm to 40 mm.
[0049]
The stage 10 and the lid 12 are formed larger than the cylindrical body 11 so as to reliably cover the lower and upper openings 11a and 11b of the cylindrical body 11, respectively. Stage 10 is further supported by suitable support means. The stage 10 and the cylindrical body 11 may be integrated, or may be separable. The lid 12 may be attached to the tubular body 11 so as to be openable and closable, or may be separated from the tubular body 11 and driven to open and close the tubular body 11 by an appropriate driving means. The lid 12 does not need to completely close the opening 11b, but may be any as long as the opening 11b can be narrowed so as to prevent gas diffusion from the storage space S. In FIG. 1, the cover 12 is provided with holes 12a and 12b through which the discharge electrode 4 and the gas nozzles 15 and 16 of the gas introduction device 7 pass. The vent holes 12a and 12b are formed to be slightly larger, and thus function as gas vent holes for discharging the gas to be replaced out of the processing tank 3. A hole for venting gas may be provided separately from the vent holes 12a and 12b.
[0050]
Further, as support means for supporting the container 2 on the stage 10 in the processing tank 3 such that a gap 19 through which gas flows is formed between the bottom surface 2b of the container 2 and the upper surface (inner bottom surface) 10a of the stage 10. Are arranged at appropriate intervals in the circumferential direction of the container 2. The spacer 18 is made of a dielectric material like the stage 10. It is desirable that the number and size of the spacers 18 be determined such that a gap 19 is provided between the bottom surface 2b of the container 2 and the upper surface 10a of the stage 10 so that the gas can sufficiently flow around while the container 2 is stably supported. The appropriate range of the gap 19 is desirably in the range of 0.1 mm to 20 mm. The spacer 18 may be configured as a separate member from the stage 10, or may be provided integrally with the stage 10.
[0051]
The discharge electrode 4 is formed by molding a conductive material such as stainless steel into a rod-like member having a thickness that can be inserted into the container 2. The discharge electrode 4 is connected to the positive electrode of the pulse power supply 8 and functions as a positive electrode. The negative electrode of the pulse power source 8, the outer peripheral counter electrode 5, and the bottom counter electrode 6 are all grounded. In order to reduce the distance between the discharge electrode 4 and the outer peripheral counter electrode 5 to generate a discharge phenomenon with as small an energy as possible, it is desirable to set the thickness of the discharge electrode 4 as large as possible within a range that can be inserted into the container 2. The length of the discharge electrode 4 may be determined so that it can be inserted into the container 2 at a necessary and sufficient depth. It is preferable that the insertion amount (length) of the discharge electrode 4 into the container 2 is set in a range of 1/10 to 9/10 of the total height of the container 2. If the insertion amount of the discharge electrode 4 is less than 1/10 of the total height of the container 2, the discharge amount in the container 2 is insufficient, and if the insertion amount exceeds 9/10, the discharge concentrates on the bottom facing electrode 6 side and the container The bottom side of the container 2 may be thermally deformed, and a sufficient sterilizing effect may not be obtained on the outer surface 2a side of the container 2.
[0052]
FIG. 2A shows an enlarged part of the discharge electrode 4, and FIG. 2B shows an enlarged part of the discharge electrode 4. As is apparent from these figures, a single spiral thread 4a is formed over the entire range of insertion of the discharge electrode 4 into the container 2, whereby almost the entire insertion range of the discharge electrode 4 is formed. Irregularities are provided. The reason why the unevenness is provided in this manner is to cause the discharge to occur uniformly over substantially the entire length of the insertion range of the discharge electrode 4 into the container 2 without concentrating the discharge phenomenon at the tip of the discharge electrode 4. In other words, since the electric field is concentrated at the sharp portion of the discharge electrode 4 to cause a discharge, the unevenness is provided evenly throughout the insertion range of the discharge electrode 4 into the container 2 so that the screw is not limited to the tip of the discharge electrode 4. Discharge can be uniformly generated from the top of the crest 10 so that equal sterilization action can be generated in each part of the container 2. It is desirable that the tip 4b of the discharge electrode 4 be formed as flat as possible to avoid concentration of discharge at this portion.
[0053]
The pitch p of the thread 4a formed on the discharge electrode 4 is preferably in the range of 0.01 mm to 10 mm, and more preferably in the range of 0.1 mm to 5 mm. When the pitch p is less than 0.01 mm, there is a possibility that a uniform discharge may not be obtained because the interval between the irregularities is too small. On the other hand, when the pitch p is more than 10 mm, the protrusions are sparsely distributed and the discharge density is reduced. Decrease. The apex angle θ of the thread 4a is preferably in the range of 5 ° to 60 °, and more preferably in the range of 10 ° to 45 °. If the apex angle θ is less than 5 °, the strength of the thread 4a may be insufficient, and if the apex angle θ exceeds 60 °, the discharge from the top of the thread 4a may be weakened.
[0054]
Returning to FIG. 1, the outer peripheral counter electrode 5 is formed in a cylindrical shape surrounding the outer periphery of the cylindrical body 11 over the entire periphery. The upper end of the outer peripheral counter electrode 5 is higher than the container 2 arranged in the accommodation space S and lower than the upper end of the cylindrical body 11. The lower end of the outer peripheral counter electrode 5 is located at the same height as the upper surface of the stage 10. However, the lower end of the outer peripheral counter electrode 5 may be located at a position slightly higher than the bottom surface 2b of the container 2.
[0055]
The outer peripheral counter electrode 5 is formed by winding a plate or net made of a conductive material (for example, metal such as stainless steel) around the outer periphery of the tubular body 11. The outer peripheral counter electrode 5 desirably has translucency so that the discharge phenomenon inside the processing tank 3 can be observed. For example, if the outer peripheral counter electrode 5 is formed of a metal mesh as schematically shown in the right corner of FIG. 1, the outer peripheral counter electrode 5 is provided with a light transmissivity enough to allow a discharge phenomenon to be confirmed through the mesh. be able to.
[0056]
The outer peripheral counter electrode 5 may be formed by depositing a conductive material on the outer periphery of the cylindrical body 11. According to the vapor deposition, the electrode 5 can be configured to be thin, and the outer peripheral counter electrode 5 can be provided with a light transmissivity enough to observe a discharge phenomenon inside the processing tank 3. As a material to be deposited for forming the electrode 5, a metal material such as copper, aluminum, gold, and platinum, and other various conductive materials can be used. Instead of vapor deposition, a conductive paint may be applied to the outer periphery of the cylindrical body 11 to form the outer peripheral counter electrode 5.
[0057]
The bottom facing electrode 6 can also be provided on the lower surface of the stage 10 in the same manner as the outer periphery facing electrode 5. That is, a plate or net made of a conductive material is arranged on the lower surface of the stage 10, a conductive material is deposited on the lower surface of the stage 10, or a conductive paint is applied on the lower surface of the stage 10 to form the bottom facing electrode 6. Can be formed. As shown in FIG. 3A, the outer periphery 6a of the bottom facing electrode 6 is located outside the outer periphery facing electrode 5, or the outer periphery 6a is located at the outer periphery facing electrode 5 as shown in FIG. It is desirable to provide them so as to match. As shown in FIG. 3C, when the outer periphery 6 a of the bottom facing electrode 6 is located inside the outer periphery facing electrode 5, discharge concentrates between the discharge electrode 4 and the outer periphery 6 a of the bottom facing electrode 6. However, there is a possibility that sufficient discharge does not occur between the discharge electrode 4 and the outer peripheral counter electrode 5. When the stage 10 has a light-transmitting property, a light-transmitting property may be given to the bottom facing electrode 6 so that the discharge phenomenon inside the processing tank 3 can be observed from the bottom side of the processing tank 3.
[0058]
As shown in FIG. 1, the gas introduction device 7 includes the above-described gas nozzles 15 and 16 and a gas supply source 17 that supplies a predetermined gas to the nozzles 15 and 16. The first gas nozzle 15 disposed on the center side of the processing tank 3 is inserted into the processing tank 3 through the hole 12 a of the lid 12 similarly to the discharge electrode 4, and the tip thereof is inserted into the container 2. You. Thus, the gas supply source 17 and the first gas nozzle 15 constitute an inside introduction unit. On the other hand, two second gas nozzles 16 arranged on the outer peripheral side of the lid 12 are inserted into the processing tank 3 through the hole 12 b of the lid 12. Further, each tip of the second gas nozzle 16 is directed to the outer surface side of the container 2. Therefore, the gas supply source 17 and the second gas nozzle 16 constitute an outside introduction unit. The gas supply source 17 supplies a predetermined gas contributing to the generation of the atmospheric pressure plasma to the gas nozzles 15 and 16. The supply flow rate of the gas from the gas supply source 17 can be controlled by a flow control valve (not shown).
[0059]
As the gas supplied from the gas supply source 17, at least one gas selected from the group consisting of oxygen, hydrogen, nitrogen, carbon dioxide, air, argon, and helium can be used. These gases are preferable because the dielectric breakdown voltage when a high voltage pulse is applied can be reduced. Two or more gases selected from the above group may be mixed and supplied to the gas nozzles 15 and 16. In addition, various gases may be used as long as they contribute to plasma generation.
[0060]
As the pulse power supply 8, a power supply capable of applying a high voltage pulse having a voltage of 38 to 80 kV and a frequency of 100 to 3000 Hz (or pps) between the discharge electrode 4 and the counter electrodes 5 and 6 is used. However, the performance of the pulse power supply 8 may be appropriately changed according to the size of the container 2 to be sterilized and the capacity of the processing tank 3.
[0061]
The disinfection device 1 is provided with a swimsuit device for attaching moisture to the inner and outer surfaces of the container 2 to be disinfected as an incidental facility. FIG. 4 shows an example of the swimsuit device. The swimsuit device 30 in FIG. 4 includes a pump 31 that pumps up and sends out water from a tank (not shown), a first spray nozzle 32 that sprays the water sent from the pump 31 toward the inside of the container 2, and a pump 31. There are provided second spray nozzles 33... 33 for spraying the sent moisture toward the outer surface of the container 2. The spray nozzles 32 and 33 need to be provided so that moisture is uniformly attached to the inner and outer surfaces of the container 2.
[0062]
The water may be supplied to such an extent that clouding occurs on the inner and outer surfaces of the container 2. As the water supplied from the pump 31, pure water containing no impurities is suitable. When pure water is used, the supply amount may be such that water particles having a diameter of about several μm adhere to the inner and outer surfaces of the container 2. For example, when the container 2 is a resin bottle having a capacity of 500 mL (milliliter), pure water in a range of 0.01 g to 10 g may be supplied to both the inner surface and the outer surface of the container 2. Instead of pure water, an organic aqueous solution containing ethanol or acetone, or an inorganic aqueous solution containing an electrolyte or the like may be sprayed toward the container 2. Water may be sprayed using a nebulizer instead of the nozzles 32 and 33.
[0063]
Next, a method of sterilizing the container 2 using the sterilizing apparatus 1 will be described. First, moisture is attached to the inner and outer surfaces of the container 2 by the swimwear device 30 of FIG. 4 prior to sterilization. The appropriate amount of water supply is as described above. After the application of the water, the container 2 is stored in the storage space S from the opening 11b of the cylindrical body 11 of the processing tank 3 as shown in FIG. And the opening 11 b is closed, and the discharge electrode 4 and the gas nozzles 15 and 16 are inserted into the processing tank 3. Thereafter, as shown in FIG. 5C, gas is introduced into the processing tank 3 from the gas nozzles 15 and 16. At this time, gas is introduced from the first gas nozzle 15 into the inside of the container 2, gas is introduced from the second gas nozzle 16 to the outside of the container 2, and the air that has stayed inside and outside of the container 2 until now is covered by the lid 12. Purge holes 12a and 12b are sequentially purged. Thereby, the gas is replaced inside and outside the container 2 in the storage space S. Further, since the opening 11b of the processing tank 3 is narrowed by the lid 12, diffusion of the replaced gas to the outside of the processing tank 3 can be suppressed, and the gas can be sufficiently stored in the processing tank 3.
[0064]
The flow rate of the gas before the application of the high-voltage pulse may be appropriately determined. For example, when the container 2 is a resin bottle having a capacity of 500 mL, the gas flow rate from the first gas nozzle 15 is set to 0.1. 1 L / min. ~ 1000 L / min. , More preferably 10 L / min. ~ 400 L / min. , The gas flow rate from the second gas nozzle 16 is set to 0.1 L / min. ~ 1000 L / min. , More preferably 10 L / min. ~ 400 L / min. It is good to set each in the range of. Further, the gas supply time is preferably set in the range of 0.05 seconds to 60 seconds, more preferably 0.1 seconds to 10 seconds, for both the first gas nozzle 15 and the second gas nozzle 16.
[0065]
After the air inside the processing tank 3 is replaced with the gas from the gas nozzles 15 and 16 as described above, the air is discharged between the discharge electrode 4 and the counter electrodes 5 and 6 at normal temperature and normal pressure as shown in FIG. A high voltage pulse is applied to generate a discharge between the discharge electrode 4 and the counter electrodes 5 and 6, thereby ionizing gas existing inside and outside the container 2 to generate atmospheric pressure plasma. Thereby, the inner and outer surfaces of the container 2 are sterilized at the same time. The range of the high voltage pulse applied from the pulse power supply 8 is as described above. The time for which the application of the high voltage pulse is continued depends on the capacity of the container 2, but may be about 0.1 to 60 seconds, more preferably about 1 to 10 seconds.
[0066]
It is desirable that the gas flow rate from the gas nozzles 15 and 16 during the discharge is smaller than the gas flow rate before the start of the application of the high voltage pulse. Before the application of the high-voltage pulse, the gas flow rate is set large to complete the replacement of the gas as early as possible.However, if the gas is supplied at such a large flow rate during the application of the high-voltage pulse, discharge becomes unnecessary. This is because it is difficult to uniformly generate a sterilizing effect on the inner and outer surfaces of the container 2. The gas flow rate during the application of the high-voltage pulse is such that the plasma is not uniformly generated at a specific location between the discharge electrode 4 and the counter electrodes 5 and 6, and the plasma is maintained uniformly over the entire circumference of the discharge electrode 4. It is desirable to set the flow rate. For example, in the case of a resin bottle having a capacity of 500 mL, the gas flow rate from the first gas nozzle 15 is set to 0.1 L / min. -10 L / min. , The gas flow rate from the second gas nozzle 16 is set to 0.1 L / min. -10 L / min. It is good to set each in the range of. When the application time of the high voltage pulse is sufficiently short, the flow rate of the gas may be set to 0 during application, that is, the introduction of the gas may be stopped.
[0067]
After sterilizing the container 2 as described above, the discharge electrode 4, the gas nozzles 15, 16 and the lid 12 may be removed and the container 2 may be taken out of the processing tank 3.
[0068]
The embodiments described above are merely examples of the present invention, and the present invention may be implemented in various forms. For example, as for the processing tank, as shown in FIG. 6, the processing tank 3 may be turned upside down, and the container 2 may be taken in and out from below.
[0069]
The support structure of the container 2 in the processing tank 3 may be implemented in a form as shown in FIGS. 7 to 9, for example. In the embodiment shown in FIGS. 7 and 8, a recess 10 b larger in the radial direction than the container 2 is formed on the upper surface 10 a of the stage 10, and a plurality of ribs 10 c ... 10 c supporting the bottom surface 2 b of the container 2 are formed in the recess 10 b. The ribs 10c are made to function as supporting means by providing them at intervals in the direction. In this case, as shown in FIG. 7, a gap 19 is formed between the bottom surface of the concave portion 10b constituting the inner bottom surface of the processing tank 3 and the bottom surface 2b of the container 2. Then, gas is introduced from the outer periphery of the concave portion 10b into the gap 19 as shown by the arrow G.
[0070]
In the embodiment shown in FIG. 9, the leg 21 is provided on the back side of the net 20 having a diameter larger than that of the container 2 to constitute the support means. In this case, the leg 21 is placed on the upper surface 10a of the stage 10, and the bottom surface 2b of the container 2 is placed on the net 20, so that the gap 19 is formed between the bottom surface 2b of the container 2 and the inner bottom surface 10a of the processing tank 3. Occurs. Then, the gas is introduced into the gap 19 through the net 20 as shown by the arrow G. The legs 21 may be provided at intervals in the circumferential direction, or may be ring-shaped.
[0071]
In the embodiment shown in FIG. 10, the processing tank 3 is turned upside down and supported by a claw member 22 capable of gripping the neck 2 d of the container 2 and a leg 23 supporting the claw member 22 on the inner surface 12 c of the lid 12. Means. In this case, gas is introduced into the gap 19 between the inner surface 12c of the lid 12 constituting the inner bottom surface of the processing tank 3 and the container 2 from the gap of the claw member 22 or the leg 23 as shown by the arrow G. Thereby, the top surface surrounding the opening 2c can be brought into contact with the gas.
[0072]
If a sufficient gap is formed between the bottom surface 2b of the container 2 and the inner bottom surface of the processing tank 3 by providing the bottom surface 2b of the container 2 with irregularities such as petaloid, for example, The means may be omitted.
[0073]
FIG. 11 shows a protective layer 25 covering the outer peripheral counter electrode 5 and the bottom counter electrode 6 on the outer side of the cylindrical body 11 of the processing tank 3 and on the lower surface side of the stage 10 in order to protect the outer peripheral counter electrode 5 and the bottom counter electrode 6. , 26 are provided. It is desirable that these protective layers 25 and 26 be made of a dielectric material like the cylindrical body 11 and the stage 10. Further, in order to make it possible to observe a discharge phenomenon inside the processing tank 3, it is desirable that these protective layers 25 and 26 are also provided with a light transmitting property. Note that only one of the protective layers 25 and 26 may be provided.
[0074]
The discharge electrode 4 is not limited to one having the thread 4a shown in FIG. For example, as shown in FIG. 12, the surface of the discharge electrode 4 may be provided with irregularities by repeatedly providing a plurality of disc-shaped electrode plates 4c on the shaft 4b at a constant pitch p.
[0075]
Further, the insertion range of the discharge electrode 4 into the container 2 may be formed in a shape along the inner peripheral surface of the container 2. For example, as shown in FIG. 13, when the inner peripheral surface 2 e of the container 2 is formed in a tapered shape that gradually expands toward the opening 2 c, the outer periphery of the discharge electrode 4 follows the inner peripheral surface 2 e of the container 2. It may be gradually enlarged.
[0076]
The discharge electrode 4 is not limited to a rod or shaft. For example, as shown in FIG. 14, when the container 2 is a bowl or bowl type whose opening portion is sufficiently large in diameter compared to its depth, the discharge electrode 4 is formed in a ring shape and this is horizontally placed on the container 2. It is also possible to insert in. 13 and 14, the outer circumference of the discharge electrode 4 is formed in a spiral shape, but these discharge electrodes 4 can also be modified as shown in FIG.
[0077]
As shown in FIG. 4, the swimwear device 30 for the inner and outer surfaces of the container 2 is not limited to a device provided separately from the treatment tank 3 of the sterilization device 1. For example, as shown in FIG. 15, a tank 35 for storing water is provided between the gas supply source 17 and the processing tank 3, and the gas sent from the gas supply source 17 is once discharged into the water of the tank 35, and By collecting the gas above the liquid level and guiding it to the gas nozzles 15 and 16 of the processing tank 3, moisture may be attached to the inside and outside of the container 2 at the same time as the replacement of the gas in the processing tank 3. In this case, however, it is necessary to insert the discharge electrode 4 after gas replacement so that moisture does not adhere to the discharge electrode 4.
[0078]
As shown in FIG. 16, by disposing the discharge electrode 4 coaxially inside the first gas nozzle 15 for introducing the gas into the container 2, the gas can be introduced into the container 2 from around the discharge electrode 4. You may make it discharge | release. In this case, the first gas nozzle 15 may be attached to the lid 12 or may be supported by an appropriate means other than the lid 12. According to such a configuration, the discharge electrode 4 and the first gas nozzle 15 can be easily inserted into the inside of the container 2, which is particularly advantageous when the opening of the container 2 is narrow. In addition, since both the discharge electrode 4 and the gas nozzle 15 can be arranged on the center line of the container 2, the distance between the discharge electrode 4 and the outer peripheral counter electrode 5 is maintained equal in the entire circumference of the container 2, and the center inside the container 2 The gas can be evenly diffused from the line to the periphery to prevent the gas distribution in the container 2 from being biased.
[0079]
In addition, the present invention can be implemented in an appropriate form. The container is not limited to a resin container such as a PET bottle, and can be included in the sterilization target of the present invention as long as the container is not made of a conductive material. In the present invention, in order to enhance the sterilizing effect, it is desirable that moisture be attached to the inner and outer surfaces of the container while introducing the gas to the inner and outer surfaces of the container. However, when the required level of the sterilizing effect is low, a sufficient sterilizing effect may be obtained even if the adhesion of moisture is omitted. The cylindrical body of the processing tank is not limited to a cylindrical shape, and may have a polygonal cross section. A plurality of discharge electrodes may be provided.
[0080]
【Example】
The sterilizing apparatus of the above-described embodiment was manufactured, and its sterilizing effect was evaluated. The container to be sterilized was a PET bottle with a capacity of 500 ml. The sterilization operation was as follows.
[0081]
(Bottle for sterilization evaluation)
(1) Inner surface sterilization evaluation bottle
A predetermined amount of spores of Bacillus subtilis or Aspergillus niger was uniformly adhered to the inner surface of the PET bottle to prepare a bottle for inner surface sterilization evaluation.
(2) Bottle for external sterilization evaluation
A predetermined amount of the above-mentioned spores was attached to the outer surface mouth of the PET bottle, that is, the screw portion, the outer surface body, and the outer surface bottom at 10 places to obtain an outer surface sterilization evaluation bottle.
[0082]
(Basic sterilization conditions)
(1) Water adhesion conditions
Using the apparatus shown in FIG. 4, water was adhered only to the inner surface of the bottle for sterilization evaluation to a degree of cloudiness.
(2) Discharge conditions
A bottle for sterilization with water adhered thereto was installed in the apparatus of FIG. 1 and the air in the bottle was replaced with a mixed gas of argon and nitrogen, and then a high-voltage pulse was applied under the following conditions.
Replacement gas: A mixed gas of 5% argon and 95% nitrogen was used at a volume ratio of 0.5% for 120 seconds at a flow rate of 120 L / min.
Discharge electrode: A stainless steel spiral electrode having a diameter of 4 mm was used and placed 50 mm above the bottom of the bottle.
Cylindrical body: Acrylic cylinder with an inner diameter of 78 mm and a thickness of 5 mm
Stage: 7mm thick acrylic plate
Lid: 7 mm thick acrylic plate with 20 mm discharge electrode insertion hole and 6 mm outer gas introduction holes
Outer peripheral counter electrode: A 400 angstrom aluminum layer was deposited on the entire outer surface except for 5 mm from the upper and lower ends of the cylindrical body.
Discharge gas: A mixed gas having the same composition as the replacement gas was used and introduced into the inner surface of the bottle at a flow rate of 5 L / min.
Pulse application conditions: voltage 65 kV, frequency 2500 Hz, discharge time 30 seconds or less
[0083]
(Culture method)
After the discharge, the sterilization evaluation bottle was taken out of the apparatus, and the sterilization effect was evaluated by the following method.
(1) Inner surface sterilization evaluation
Approximately 100 ml of tryptoise bouillon liquid medium was immediately poured into the bottle, and a cap that had been sterilized in advance was shaken sufficiently, followed by culturing under the following conditions.
Bacillus subtilis: 35 ° C, 10 days
Aspergillus niger: 25 ° C, 10 days
(2) External surface sterilization evaluation
The mouth, trunk and bottom of the inoculated bacteria were cut off, transferred to a sterilized beaker, poured into an agar medium, and cultured under the following conditions.
Bacillus subtilis: standard agar medium, 35 ° C, 10 days
Aspergillus niger: Potato dextrose agar medium, 25 ° C, 10 days
After the culture, the bactericidal effect D value was calculated from the following equation 1.
(Equation 1)
Bactericidal effect D value = -log (viable bacterial count / initial bacterial count) Formula 1
[0084]
(Example 1)
In addition to the basic conditions, a sterilization test was performed by placing a copper plate having a diameter of 90 mm in close contact with the lower surface of the stage and placing a bottom facing electrode, and the results of the sterilization effect D value are shown in Table 1.
(Example 2)
In addition to Example 1, a mixed gas of 5% by volume of argon and 95% of nitrogen was introduced at a flow rate of 120 L / min for 0.5 seconds as a replacement gas on the outer surface of the bottle for 0.5 second. A sterilization test was performed by introducing a gas having the same composition at a flow rate of 5 L / min, and the results are shown in Table 1.
(Example 3)
In addition to Example 1, water was adhered to the outer surface of the bottle to a degree of cloudiness using the apparatus shown in FIG. 4, and a sterilization test was performed. The results are shown in Table 1.
(Example 4)
In addition to Example 2, water was adhered to the outer surface of the bottle to a degree of cloudiness using the apparatus shown in FIG. 4 to perform a sterilization test. The results are shown in Table 1.
(Example 5)
In addition to the basic conditions, a mixed gas of 5% by volume and 95% of nitrogen by volume as a replacement gas on the outer surface of the bottle is introduced at a flow rate of 120 L / min for 0.5 seconds, and the same discharge gas as the replacement gas on the outer surface of the bottle is used. A sterilization test was conducted by introducing a gas having a composition at a flow rate of 5 L / min. The results are shown in Table 1.
(Example 6)
In addition to Example 5, water was adhered to the outer surface of the bottle to a degree of cloudiness using the apparatus shown in FIG. 4, and a sterilization test was performed. The results are shown in Table 1.
(Example 7)
In addition to the basic conditions, a sterilization test was performed by using the apparatus shown in FIG. 4 to attach water to the outer surface of the bottle to a degree of cloudiness, and the results are shown in Table 1.
(Example 8)
A sterilization test was performed in the same manner as in Example 4 except that the discharge electrode was a stainless steel rod having a diameter of 4 mm, and the results are shown in Table 1.
(Comparative example)
A sterilization test was performed according to the basic conditions, and the results are shown in Table 1.
[0085]
[Table 1]
Figure 2004359307
[0086]
【The invention's effect】
As described above, according to the present invention, atmospheric pressure plasma is generated inside and outside the container by applying a high voltage pulse between the discharge electrode and the counter electrode, and the plasma gas and the inner surface of the container are generated. By contacting the outer surfaces, those surfaces can be simultaneously and efficiently sterilized.
[Brief description of the drawings]
FIG. 1 is a partially cutaway sectional view showing a main part of a sterilization apparatus according to one embodiment of the present invention.
FIG. 2 is a diagram showing irregularities provided on a discharge electrode.
FIG. 3 is a diagram showing a relationship between an outer peripheral counter electrode and a bottom counter electrode.
FIG. 4 is a view showing a swimsuit device provided as an auxiliary facility of the sterilizing device.
FIG. 5 is a view showing a sterilization procedure using the sterilization apparatus of FIG. 1;
FIG. 6 is a view showing another embodiment of the processing tank.
FIG. 7 is a view showing another embodiment of the support means.
FIG. 8 is a view showing a state in which the stage in FIG. 7 is viewed from a direction of an arrow VIII in FIG. 7;
FIG. 9 is a view showing still another embodiment of the support means.
FIG. 10 is a diagram showing an embodiment of a support means for gripping the neck of the container.
FIG. 11 is a diagram showing an embodiment in which a protective layer is provided outside the outer peripheral counter electrode and the bottom counter electrode.
FIG. 12 is a view showing another embodiment of a discharge electrode.
FIG. 13 is a view showing still another embodiment of the discharge electrode.
FIG. 14 is a diagram showing an embodiment in which discharge electrodes are formed in a ring shape.
FIG. 15 is a view showing another embodiment of a swimsuit device.
FIG. 16 is a view showing another embodiment of a nozzle for introducing a gas into a container.
[Explanation of symbols]
1 Sterilizer
2 containers
2a Outer surface
2b bottom
2d neck
2e inner surface
3 Processing tank
4 discharge electrode
4a thread
4b axis
4c disk
5 Peripheral counter electrode
6 Bottom facing electrode
6a Outer circumference of bottom facing electrode
7 Gas introduction device (gas introduction means)
8 pulse power supply (high voltage pulse applying means)
10 stages
10c rib (supporting means)
11 Cylindrical body
11a, 11b opening
11d Upper cylindrical body
11e Lower cylindrical body
12 lid plate
15 First gas nozzle
16 Second gas nozzle
17 Gas supply source
18 spacer (supporting means)
19 gap
20 net (supporting means)
21 Legs (supporting means)
22 Claw members (supporting means)
23 legs (supporting means)
25, 26 protective layer
30 Swimsuit equipment
32, 33 spray nozzle
35 tank

Claims (39)

少なくとも内面側が誘電体にて囲まれた処理槽内の収容スペースに、開口部を有する殺菌対象の容器を配置して該容器の外周面及び底面を前記誘電体にて覆い、前記容器の前記開口部から放電極を挿入し、前記容器の外周面を前記誘電体を挟んで外周対向電極で取り囲み、前記容器の前記底面を前記誘電体を挟んで底面対向電極と対向させた状態で、前記放電極と前記外周対向電極及び前記底面対向電極との間に常温常圧下で高電圧パルスを印加して前記容器の内外に大気圧プラズマを生じさせることにより前記容器の内面及び外面を同時に殺菌することを特徴とする容器の殺菌方法。A container to be sterilized having an opening is disposed in a storage space in a processing tank surrounded by a dielectric at least on an inner surface side, and an outer peripheral surface and a bottom surface of the container are covered with the dielectric, and the opening of the container is opened. A discharge electrode is inserted from the portion, the outer peripheral surface of the container is surrounded by an outer peripheral counter electrode with the dielectric interposed therebetween, and the discharge electrode is placed in a state where the bottom surface of the container is opposed to the bottom electrode with the dielectric interposed therebetween. Simultaneously sterilizing the inner and outer surfaces of the container by applying a high-voltage pulse between the electrode and the outer peripheral counter electrode and the bottom counter electrode under normal temperature and normal pressure to generate atmospheric plasma inside and outside the container. A method for sterilizing a container, comprising: 前記収容スペースに配置された前記容器の内部及び外部に所定のガスを導入することを特徴とする請求項1に記載の殺菌方法。The sterilization method according to claim 1, wherein a predetermined gas is introduced into and out of the container disposed in the storage space. 前記高電圧パルスの印加に先立って、前記容器の内面及び外面に水分を付着させることを特徴とする請求項1に記載の殺菌方法。The sterilization method according to claim 1, wherein moisture is attached to an inner surface and an outer surface of the container before the application of the high voltage pulse. 前記高電圧パルスの印加に先立って、前記容器の内面及び外面に水分を付着させるとともに、前記収容スペースに配置された前記容器の内部及び外部に所定のガスを導入することを特徴とする請求項1に記載の殺菌方法。Prior to the application of the high voltage pulse, moisture is attached to the inner and outer surfaces of the container, and a predetermined gas is introduced into and from the container disposed in the storage space. The sterilization method according to claim 1. 少なくとも内面側が誘電体にて囲まれた処理槽内の収容スペースに、開口部を有する殺菌対象の容器を配置して該容器の外周面及び底面を前記誘電体にて覆い、前記容器の前記開口部から放電極を挿入し、前記容器の外周面を前記誘電体を挟んで外周対向電極で取り囲み、前記収容スペースに配置された前記容器の内部及び外部に所定のガスを導入した状態で、前記放電極と前記外周対向電極との間に常温常圧下で高電圧パルスを印加して前記容器の内外に大気圧プラズマを生じさせることにより前記容器の内面及び外面を同時に殺菌することを特徴とする容器の殺菌方法。A container to be sterilized having an opening is disposed in a storage space in a processing tank surrounded by a dielectric at least on an inner surface side, and an outer peripheral surface and a bottom surface of the container are covered with the dielectric, and the opening of the container is opened. A discharge electrode is inserted from the part, the outer peripheral surface of the container is surrounded by an outer peripheral counter electrode with the dielectric interposed therebetween, and a predetermined gas is introduced into and out of the container disposed in the housing space, Applying a high-voltage pulse under normal temperature and normal pressure between the discharge electrode and the outer peripheral counter electrode to generate atmospheric pressure plasma inside and outside the container, thereby simultaneously sterilizing the inner surface and the outer surface of the container. Container sterilization method. 前記高電圧パルスの印加に先立って、前記容器の内面及び外面に水分を付着させることを特徴とする請求項5に記載の殺菌方法。The sterilization method according to claim 5, wherein moisture is attached to an inner surface and an outer surface of the container before the application of the high voltage pulse. 少なくとも内面側が誘電体にて囲まれた処理槽内の収容スペースに、開口部を有する殺菌対象の容器を配置して該容器の外周面及び底面を前記誘電体にて覆い、前記容器の前記開口部から放電極を挿入し、前記容器の外周面を前記誘電体を挟んで外周対向電極で取り囲み、前記容器の内面及び外面に水分を付着させた状態で、前記放電極と前記外周対向電極との間に常温常圧下で高電圧パルスを印加して前記容器の内外に大気圧プラズマを生じさせることにより前記容器の内面及び外面を同時に殺菌することを特徴とする容器の殺菌方法。A container to be sterilized having an opening is disposed in a storage space in a processing tank surrounded at least on the inner surface side by a dielectric, and the outer peripheral surface and the bottom surface of the container are covered with the dielectric, and the opening of the container is opened. The discharge electrode is inserted from the part, the outer peripheral surface of the container is surrounded by the outer peripheral counter electrode with the dielectric interposed therebetween, and in a state where moisture is attached to the inner surface and the outer surface of the container, the discharge electrode and the outer peripheral counter electrode are A sterilizing method for a container, wherein an inner surface and an outer surface of the container are sterilized simultaneously by applying a high-voltage pulse under normal temperature and normal pressure to generate atmospheric pressure plasma inside and outside the container. 前記高電圧パルスの印加前後において、前記処理槽の前記容器を出し入れするための開口部を蓋にて狭めることを特徴とする請求項2、4、5、又は6に記載の殺菌方法。The sterilization method according to claim 2, wherein before and after the application of the high-voltage pulse, an opening for taking the container in and out of the processing tank is narrowed by a lid. 前記高電圧パルスの印加前に前記ガスを導入し、前記高電圧パルスの印加中は印加前よりも前記ガスの導入流量を減少させることを特徴とする請求項2、4、5、6、又は8に記載の殺菌方法。The gas is introduced before the application of the high-voltage pulse, and the application flow rate of the gas is reduced during the application of the high-voltage pulse compared to before the application of the high-voltage pulse. 9. The sterilization method according to 8. 前記収容スペース内において、前記容器と前記処理槽の内底面との間に前記ガスが流通する隙間が生じるように、少なくとも表面が誘電体にて構成された支持手段にて前記容器を支持することを特徴とする請求項2、4、5、6、8、又は9に記載の殺菌方法。In the storage space, the container is supported by a support unit having at least a surface formed of a dielectric so that a gap through which the gas flows is formed between the container and the inner bottom surface of the processing tank. The disinfection method according to claim 2, 4, 5, 6, 8, or 9, wherein 前記容器の内外面に曇が生じるように前記水分を付着させることを特徴とする請求項3、4、6又は7に記載の殺菌方法。The sterilization method according to claim 3, wherein the moisture is attached so that fogging occurs on the inner and outer surfaces of the container. 前記底面対向電極の外周を前記外周対向電極と一致させ、又は前記外周対向電極よりも外側に位置させることを特徴とする請求項1〜4のいずれか一項に記載の殺菌方法。The sterilization method according to any one of claims 1 to 4, wherein an outer periphery of the bottom surface facing electrode is made to coincide with the outer periphery facing electrode, or is located outside the outer periphery facing electrode. 前記放電極の前記容器内への挿入範囲の表面に、該挿入範囲の略全域に亘って凹凸を設けることを特徴とする請求項1〜12のいずれか一項に記載の殺菌方法。The sterilization method according to any one of claims 1 to 12, wherein irregularities are provided on a surface of an insertion range of the discharge electrode into the container over substantially the entire insertion range. 前記挿入範囲の表面を螺旋状に形成して前記凹凸を設けることを特徴とする請求項13に記載の殺菌方法。The sterilization method according to claim 13, wherein the surface of the insertion area is formed in a spiral shape to provide the irregularities. 内部に殺菌対象の容器の収容スペースが設けられ、該収容スペースに配置される前記容器の外周面及び底面を覆う内面側が誘電体にて構成され、前記誘電体を挟んで前記容器の外周面を取り囲むように外周対向電極が設けられるとともに、前記誘電体を挟んで前記容器の前記底面と対向するように底面対向電極が設けられた処理槽と、
前記収容スペースに配置された前記容器の内部に挿入可能な放電極と、
前記放電極と、前記外周対向電極及び前記底面対向電極との間に高電圧パルスを印加する高電圧パルス印加手段と、
を備えたことを特徴とする容器の殺菌装置。
A storage space for a container to be sterilized is provided therein, and an inner surface side that covers an outer peripheral surface and a bottom surface of the container disposed in the storage space is formed of a dielectric, and an outer peripheral surface of the container with the dielectric interposed therebetween. An outer peripheral counter electrode is provided so as to surround, and a processing tank provided with a bottom counter electrode so as to face the bottom surface of the container with the dielectric interposed therebetween,
A discharge electrode that can be inserted into the container disposed in the housing space,
The discharge electrode, a high voltage pulse applying means for applying a high voltage pulse between the outer peripheral counter electrode and the bottom counter electrode,
A container sterilization device comprising:
前記収容スペースに配置された前記容器の内部及び外部に所定のガスを導入するガス導入手段を備えたことを特徴とする請求項15に記載の殺菌装置。The sterilization apparatus according to claim 15, further comprising a gas introduction unit that introduces a predetermined gas into and out of the container disposed in the storage space. 前記容器の内面及び外面に水分を付着させる水着装置を備えたことを特徴とする請求項15に記載の殺菌装置。The disinfection device according to claim 15, further comprising a swimsuit device for attaching moisture to an inner surface and an outer surface of the container. 前記収容スペースに配置された前記容器の内部及び外部に所定のガスを導入するガス導入手段と、前記容器の内面及び外面に水分を付着させる水着装置とを備えたことを特徴とする請求項15に記載の殺菌装置。16. The container according to claim 15, further comprising: gas introduction means for introducing a predetermined gas into and out of the container disposed in the storage space, and a swimsuit device for attaching moisture to an inner surface and an outer surface of the container. A sterilization apparatus according to claim 1. 内部に殺菌対象の容器の収容スペースが設けられ、該収容スペースに配置される前記容器の外周面及び底面を覆う内面側が誘電体にて構成され、前記誘電体を挟んで前記容器の外周面を取り囲むように外周対向電極が設けられた処理槽と、
前記収容スペースに配置された前記容器の内部に挿入可能な放電極と、
前記収容スペースに配置された前記容器の内部及び外部に所定のガスを導入するガス導入手段と、
前記放電極と前記外周対向電極との間に高電圧パルスを印加する高電圧パルス印加手段と、
を備えたことを特徴とする容器の殺菌装置。
A storage space for a container to be sterilized is provided therein, and an inner surface side that covers an outer peripheral surface and a bottom surface of the container disposed in the storage space is formed of a dielectric, and an outer peripheral surface of the container with the dielectric interposed therebetween. A processing tank provided with an outer peripheral counter electrode so as to surround it,
A discharge electrode that can be inserted into the container disposed in the housing space,
Gas introduction means for introducing a predetermined gas into and out of the container arranged in the storage space,
High voltage pulse applying means for applying a high voltage pulse between the discharge electrode and the outer peripheral counter electrode,
A container sterilization device comprising:
前記容器の内面及び外面に水分を付着させる水着装置を備えたことを特徴とする請求項19に記載の殺菌装置。20. The sterilizing apparatus according to claim 19, further comprising a swimwear device for attaching moisture to an inner surface and an outer surface of the container. 内部に殺菌対象の容器の収容スペースが設けられ、該収容スペースに配置される前記容器の外周面及び底面を覆う内面側が誘電体にて構成され、前記誘電体を挟んで前記容器の外周面を取り囲むように外周対向電極が設けられた処理槽と、
前記収容スペースに配置された前記容器の内部に挿入可能な放電極と、
前記容器の内面及び外面に水分を付着させる水着装置と、
前記放電極と前記外周対向電極との間に高電圧パルスを印加する高電圧パルス印加手段と、
を備えたことを特徴とする容器の殺菌装置。
A storage space for a container to be sterilized is provided therein, and an inner surface side that covers an outer peripheral surface and a bottom surface of the container disposed in the storage space is formed of a dielectric, and an outer peripheral surface of the container with the dielectric interposed therebetween. A processing tank provided with an outer peripheral counter electrode so as to surround it,
A discharge electrode that can be inserted into the container disposed in the housing space,
A swimsuit device for attaching moisture to the inner and outer surfaces of the container,
High voltage pulse applying means for applying a high voltage pulse between the discharge electrode and the outer peripheral counter electrode,
A container sterilization device comprising:
前記処理槽には、前記容器を出し入れする開口部と、当該開口部を狭める開閉可能な蓋とが設けられていることを特徴とする請求項16、18、19又は20に記載の殺菌装置。21. The sterilizer according to claim 16, wherein the processing tank is provided with an opening through which the container is put in and out, and an openable / closable lid for narrowing the opening. 前記収容スペース内において、前記容器と前記処理槽の内底面との間に前記ガスが流通する隙間が生じるように前記容器を支持する、少なくとも表面が誘電体にて構成された支持手段を備えたことを特徴とする請求項16、18、19、20又は22に記載の殺菌装置。In the storage space, the container is supported such that a gap through which the gas flows between the container and the inner bottom surface of the processing tank is formed, and at least a surface of the container is provided with a support unit made of a dielectric. The sterilizer according to claim 16, 18, 19, 20 or 22, wherein: 前記底面対向電極の外周が前記外周対向電極と一致し、又は前記外周対向電極よりも外側に位置していることを特徴とする請求項15〜18のいずれか一項に記載の殺菌装置。The sterilization apparatus according to any one of claims 15 to 18, wherein an outer periphery of the bottom-surface facing electrode coincides with the outer periphery-facing electrode or is located outside the outer periphery-facing electrode. 前記処理槽内に生じる放電現象を外部から観察できるように、前記処理槽の少なくとも一部に透光性を付与したことを特徴とする請求項15〜24のいずれか一項に記載の殺菌装置。The sterilizer according to any one of claims 15 to 24, wherein at least a part of the processing tank is provided with a light-transmitting property so that a discharge phenomenon occurring in the processing tank can be externally observed. . 前記外周対向電極が前記処理槽を構成する誘電体に金属蒸着されていることを特徴とする請求項15〜24のいずれか一項に記載の殺菌装置。The sterilization apparatus according to any one of claims 15 to 24, wherein the outer peripheral counter electrode is metal-deposited on a dielectric constituting the treatment tank. 前記蒸着された前記外周対向電極が透光性を有していることを特徴とする請求項26に記載の殺菌装置。The sterilizing apparatus according to claim 26, wherein the outer peripheral counter electrode deposited has a light-transmitting property. 前記外周対向電極が、前記処理槽を構成する誘電体に対して導電性塗料を塗工することにより形成されていることを特徴とする請求項15〜25のいずれか一項に記載の殺菌装置。The sterilization apparatus according to any one of claims 15 to 25, wherein the outer peripheral counter electrode is formed by applying a conductive paint to a dielectric constituting the treatment tank. . 前記外周対向電極の外側に保護層が設けられていることを特徴とする請求項15〜28のいずれか一項に記載の殺菌装置。The sterilizer according to any one of claims 15 to 28, wherein a protective layer is provided outside the outer peripheral counter electrode. 前記底面対向電極が前記処理槽を構成する誘電体に金属蒸着されていることを特徴とする請求項15〜18、及び24のいずれか一項に記載の殺菌装置。The sterilization apparatus according to any one of claims 15 to 18, and 24, wherein the bottom facing electrode is metal-deposited on a dielectric constituting the treatment tank. 前記蒸着された前記底面対向電極が透光性を有していることを特徴とする請求項30に記載の殺菌装置。31. The sterilizer according to claim 30, wherein the deposited bottom facing electrode has a light transmitting property. 前記底面対向電極が、前記処理槽を構成する誘電体に対して導電性塗料を塗工することにより形成されていることを特徴とする請求項15〜18及び24のいずれか一項に記載の殺菌装置。The said bottom surface counter electrode is formed by apply | coating a conductive paint with respect to the dielectric material which comprises the said processing tank, The Claims any one of Claims 15-18 and 24 characterized by the above-mentioned. Sterilizer. 前記底面対向電極の外側に保護層が設けられていることを特徴とする請求項15〜18、30〜32のいずれか一項に記載の殺菌装置。The sterilization apparatus according to any one of claims 15 to 18, and 30 to 32, wherein a protective layer is provided outside the bottom facing electrode. 前記放電極の前記容器内への挿入範囲の表面には、該挿入範囲の略全域に亘って凹凸が設けられていることを特徴とする請求項15〜33のいずれか一項に記載の殺菌装置。The sterilization according to any one of claims 15 to 33, wherein the surface of the insertion range of the discharge electrode into the container is provided with irregularities over substantially the entire insertion range. apparatus. 前記挿入範囲の表面が螺旋状に形成されて前記凹凸が設けられていることを特徴とする請求項34に記載の殺菌装置。35. The sterilizer according to claim 34, wherein the surface of the insertion area is formed in a spiral shape to provide the unevenness. 前記放電極の前記容器内への挿入範囲が前記容器の内周面に沿った形状に形成されていることを特徴とする請求項15〜35のいずれか一項に記載の殺菌装置。The sterilizer according to any one of claims 15 to 35, wherein an insertion range of the discharge electrode into the container is formed in a shape along an inner peripheral surface of the container. 内部に殺菌対象の容器の収容スペースが設けられ、該収容スペースに配置される前記容器の外周面及び底面を覆う内面側が誘電体にて構成され、前記誘電体を挟んで前記容器の外周面及び底面の少なくともいずれか一方の面と対向するように対向電極が設けられた大気圧プラズマ殺菌用の処理槽であって、前記対向電極が金属蒸着にて形成されていることを特徴とする殺菌用の処理槽。A storage space for a container to be sterilized is provided inside, and an inner surface side that covers an outer peripheral surface and a bottom surface of the container disposed in the storage space is formed of a dielectric, and an outer peripheral surface of the container with the dielectric interposed therebetween. A treatment tank for atmospheric pressure plasma sterilization provided with a counter electrode so as to face at least one of the bottom surfaces, wherein the counter electrode is formed by metal deposition. Processing tank. 内部に殺菌対象の容器の収容スペースが設けられ、該収容スペースに配置される前記容器の外周面及び底面を覆う内面側が誘電体にて構成され、前記誘電体を挟んで前記容器の外周面及び底面の少なくともいずれか一方と対向するように対向電極が設けられた大気圧プラズマ殺菌用の処理槽であって、前記対向電極が前記誘電体に対して導電性塗料を塗工することにより形成されていることを特徴とする殺菌用の処理槽。A storage space for a container to be sterilized is provided inside, and an inner surface side that covers an outer peripheral surface and a bottom surface of the container disposed in the storage space is formed of a dielectric, and an outer peripheral surface of the container with the dielectric interposed therebetween. A treatment tank for atmospheric pressure plasma sterilization provided with a counter electrode so as to face at least one of the bottom surfaces, wherein the counter electrode is formed by applying a conductive paint to the dielectric. A processing tank for sterilization, characterized in that: 内部に殺菌対象の容器の収容スペースが設けられ、該収容スペースに配置される前記容器の外周面及び底面を覆う内面側が誘電体にて構成され、前記誘電体を挟んで前記容器の外周面及び底面の少なくともいずれか一方と対向するように対向電極が設けられた大気圧プラズマ殺菌用の処理槽であって、前記対向電極の外側に保護層が設けられていることを特徴とする殺菌用の処理槽。A storage space for a container to be sterilized is provided inside, and an inner surface side that covers an outer peripheral surface and a bottom surface of the container disposed in the storage space is formed of a dielectric, and an outer peripheral surface of the container with the dielectric interposed therebetween. A processing tank for atmospheric pressure plasma sterilization provided with a counter electrode so as to face at least one of the bottom surfaces, for sterilization, wherein a protective layer is provided outside the counter electrode. Processing tank.
JP2003160863A 2003-06-05 2003-06-05 Sterilization method and apparatus for container, and processing tank for sterilization used for the same Pending JP2004359307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003160863A JP2004359307A (en) 2003-06-05 2003-06-05 Sterilization method and apparatus for container, and processing tank for sterilization used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003160863A JP2004359307A (en) 2003-06-05 2003-06-05 Sterilization method and apparatus for container, and processing tank for sterilization used for the same

Publications (1)

Publication Number Publication Date
JP2004359307A true JP2004359307A (en) 2004-12-24

Family

ID=34053524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160863A Pending JP2004359307A (en) 2003-06-05 2003-06-05 Sterilization method and apparatus for container, and processing tank for sterilization used for the same

Country Status (1)

Country Link
JP (1) JP2004359307A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145407A (en) * 2005-11-30 2007-06-14 Sanyo Electric Co Ltd Sterilization method and sterilization apparatus
JP2009022391A (en) * 2007-07-17 2009-02-05 Hirayama Seisakusho:Kk Plasma sterilizer and plasma sterilization method
WO2009078361A1 (en) * 2007-12-14 2009-06-25 Saga University Plasma sterilizer
WO2018043468A1 (en) * 2016-08-30 2018-03-08 国立大学法人東北大学 Pathogen and pest exterminating device, and reaction vessel thereof
JP2019001512A (en) * 2017-06-15 2019-01-10 澁谷工業株式会社 Surface treatment method and surface treatment device for container made of resin

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145407A (en) * 2005-11-30 2007-06-14 Sanyo Electric Co Ltd Sterilization method and sterilization apparatus
JP2009022391A (en) * 2007-07-17 2009-02-05 Hirayama Seisakusho:Kk Plasma sterilizer and plasma sterilization method
WO2009078361A1 (en) * 2007-12-14 2009-06-25 Saga University Plasma sterilizer
JP5458253B2 (en) * 2007-12-14 2014-04-02 国立大学法人佐賀大学 Plasma sterilizer
WO2018043468A1 (en) * 2016-08-30 2018-03-08 国立大学法人東北大学 Pathogen and pest exterminating device, and reaction vessel thereof
US10925285B2 (en) 2016-08-30 2021-02-23 Tohoku University Pathogen and pest exterminating device and reaction vessel thereof
JP2019001512A (en) * 2017-06-15 2019-01-10 澁谷工業株式会社 Surface treatment method and surface treatment device for container made of resin

Similar Documents

Publication Publication Date Title
EP1375357B1 (en) Method and device for sterilizing packaging materials by using high voltage pulses
AU733540B2 (en) Lumen device reprocessor without occlusion
FR2790962A1 (en) PLASMA STERILIZATION PROCESS AND DEVICES
JP3859691B2 (en) Sterilization method and apparatus
US6656427B2 (en) Sterilization process without sterile rinse
US6187266B1 (en) Integrated cleaning/sterilization process with lumen devices
JP4842626B2 (en) Sterilization method and sterilization apparatus
US6015529A (en) Tray/container system for cleaning/sterilization processes
US8696983B2 (en) Plasma sterilizing device and method
JP4841236B2 (en) Sterilization method and sterilization apparatus
JP6272214B2 (en) Container sterilization method and sterilization system
US9913922B2 (en) Sterilizing component removal device, disinfection device, disinfected environment maintaining system, and sterilizing component removal method
JP2016107998A5 (en)
AU733363B2 (en) Apparatus and method for providing fluid to devices with reduced or without occlusion
JP2004359307A (en) Sterilization method and apparatus for container, and processing tank for sterilization used for the same
JP2008188032A (en) Plasma sterilization device and plasma sterilization method using the same
US5904866A (en) Method of sterilizing electrically, non-conductive, pressure-sensitive containers having a filling opening
JPH1099415A (en) Sterilizing device
JPH11505166A (en) Dry sterilization method and apparatus for medical equipment
US20230046192A1 (en) Device For Generating A Dielectric Barrier Discharge And Method For Treating An Object To Be Activated
EP3817516B1 (en) Eyedrop for treating epidemic keratoconjunctivitis, plasma-activated eyedrop generation device for generating said eyedrop, and method for treating epidemic keratoconjunctivitis
JP2013094468A (en) Device and method of killing microorganisms by atmospheric pressure plasma
AU6552001A (en) Method and apparatus for processing device with fluid submersion
WO2002070025A1 (en) System for plasma sterilisation of objects comprising through channels
JP2003062047A (en) Method and apparatus for sanitazing container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112