JP2003062047A - Method and apparatus for sanitazing container - Google Patents

Method and apparatus for sanitazing container

Info

Publication number
JP2003062047A
JP2003062047A JP2001251172A JP2001251172A JP2003062047A JP 2003062047 A JP2003062047 A JP 2003062047A JP 2001251172 A JP2001251172 A JP 2001251172A JP 2001251172 A JP2001251172 A JP 2001251172A JP 2003062047 A JP2003062047 A JP 2003062047A
Authority
JP
Japan
Prior art keywords
discharge
container
counter electrode
electrode
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001251172A
Other languages
Japanese (ja)
Inventor
Satoshi Masaoka
諭 正岡
Akira Hayashi
亮 林
Kensuke Akutsu
顕右 阿久津
Akinori Iwata
顕範 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Nippon Paint Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd, Nippon Paint Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2001251172A priority Critical patent/JP2003062047A/en
Publication of JP2003062047A publication Critical patent/JP2003062047A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for sanitizing suitable for sanitizing containers at normal temperature and pressure. SOLUTION: A discharge electrode 3 is inserted into a container 2 to be sanitized positioned under normal temperature and pressure condition and at the same time a dielectric 5 and a counter electrode 6 are arranged in such a manner that they surround the container 3. A corona discharge is generated between both electrode 3, 6, applying a pulse high voltage having a pulse width of 10 nsec or more, an electric field intensity from 4 to 100 kV/cm and a pulse frequency of 10 pps or more between the discharge electrode 3 and the counter electrode 6. At least one kind of gas selected from the group comprising oxygen, nitrogen, hydrogen, carbon dioxide, air, argon and helium is introduced into the corona discharge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、常温常圧下にてパ
ルス高電圧によるコロナ放電を発生させて容器を殺菌す
る方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for sterilizing a container by generating a corona discharge by a pulsed high voltage under normal temperature and pressure.

【0002】[0002]

【従来の技術】PETボトル等の各種の包装容器をプラ
ズマにより殺菌する方法としては、真空容器内に殺菌対
象の容器と電極とを収容し、真空容器内にアルゴンガス
等を供給しつつ高周波電源から電極に高周波を供給して
殺菌を行う方法が知られている(例えば特開平7−18
4618号公報参照)。なお、真空中でプラズマを発生
させる場合の電源としては、高周波電源に代えてマイク
ロ波電源が使用されることもある。
2. Description of the Related Art As a method of sterilizing various packaging containers such as PET bottles with plasma, a container for sterilization and an electrode are housed in a vacuum container, and a high frequency power source is supplied while supplying argon gas or the like into the vacuum container. There is known a method of sterilizing by supplying a high frequency to the electrode from the electrode (for example, JP-A-7-18).
4618 gazette). A microwave power source may be used instead of the high frequency power source as a power source for generating plasma in a vacuum.

【0003】一方、常温常圧下でプラズマを発生させて
殺菌を行う方法も提案されている。例えば特開平11−
187872号公報には、大気圧中に設定された放電極
と対向電極との間にパルス高電圧を印加してコロナ放電
を発生させ、その中に物品を曝して殺菌を行う方法が開
示されている。
On the other hand, a method has also been proposed in which plasma is generated at room temperature and atmospheric pressure for sterilization. For example, JP-A-11-
Japanese Patent No. 187872 discloses a method in which a pulse high voltage is applied between a discharge electrode and a counter electrode set to atmospheric pressure to generate corona discharge, and an article is exposed to the corona discharge to sterilize the article. There is.

【0004】[0004]

【発明が解決しようとする課題】常温常圧下で殺菌を行
う従来の方法は、真空容器を利用する方法と比較して設
備の負担が軽く、真空排気が不要となるので作業効率の
面でも優れている。しかし、特開平11−187872
号公報は、球状、ブラシ状又はナイフエッジ状の放電極
と平板状の対向電極とのスペース(放電領域)に殺菌対
象の物品を配置する方法を開示するのみであり、特に容
器の殺菌に適した装置又は方法については具体的に開示
されていない。
The conventional method of performing sterilization at room temperature and atmospheric pressure is superior in terms of work efficiency because the burden on the equipment is lighter than the method using a vacuum container and no vacuum exhaust is required. ing. However, JP-A-11-187872
The publication only discloses a method of disposing an article to be sterilized in a space (discharge area) between a discharge electrode having a spherical shape, a brush shape or a knife edge shape and a counter electrode having a plate shape, and is particularly suitable for sterilizing a container. The disclosed device or method is not specifically disclosed.

【0005】そこで、本発明は、常温常圧下で容器を殺
菌する場合に適した殺菌方法及び殺菌装置を提供するこ
とを目的とする。
Therefore, an object of the present invention is to provide a sterilizing method and a sterilizing apparatus suitable for sterilizing a container under normal temperature and normal pressure.

【0006】[0006]

【課題を解決するための手段】本発明の殺菌方法は、常
温常圧下に置かれた殺菌対象の容器内に放電極を挿入す
るとともに、その容器を囲むようにして対向電極を配置
し、パルス幅10nsec以上、電界強度4〜100k
V/cm、パルス頻度10pps以上のパルス高電圧を
前記放電極と前記対向電極との間に印加して両電極間に
コロナ放電を発生させることにより、上述した課題を解
決するものである。
According to the sterilization method of the present invention, a discharge electrode is inserted into a container to be sterilized placed at room temperature and normal pressure, and a counter electrode is arranged so as to surround the container, and a pulse width is 10 nsec. Above, electric field strength 4-100k
The problem described above is solved by applying a pulsed high voltage of V / cm and a pulse frequency of 10 pps or more between the discharge electrode and the counter electrode to generate corona discharge between both electrodes.

【0007】本発明の殺菌方法によれば、容器内に放電
極が挿入され、かつ対向電極が容器を囲むように配置さ
れた状態で、両電極間にパルス幅10nsec以上、電
界強度4〜100kv/cm、パルス頻度10pps以
上というパルス高電圧を印加して高エネルギーのコロナ
放電を発生させるので、常温常圧下であっても、容器の
内面が確実に放電に曝されて高い殺菌効果が得られる。
しかも、本発明では、殺菌に効果的な強さの放電を発生
させるにもかかわらず、上記のようなパルス波形が選択
されているため、容器に熱的な作用を及ぼさない。
According to the sterilization method of the present invention, with the discharge electrode inserted in the container and the counter electrode arranged so as to surround the container, the pulse width is 10 nsec or more between both electrodes and the electric field strength is 4 to 100 kv. High energy corona discharge is generated by applying a pulsed high voltage of 10 pps / cm or more and a pulse frequency of 10 pps or more, so even under normal temperature and pressure, the inner surface of the container is reliably exposed to the discharge and a high sterilization effect can be obtained. .
Moreover, in the present invention, although the discharge having the intensity effective for sterilization is generated, since the pulse waveform as described above is selected, it does not exert a thermal action on the container.

【0008】本発明の優れた殺菌作用は、急峻な立ち上
がりと高い波高値を特徴とするパルス状高電圧から発生
するコロナ放電によって、その放電領域内に挿入された
容器に付着する細菌やカビの胞子に強力な電界を加える
こと、及び、容器の内部や表面近傍にオゾンや活性イオ
ンからなる活性雰囲気を生成させることに基づいて得ら
れるものである。これらの電界や活性雰囲気の相乗作用
によって強い殺菌作用が生じる。
The excellent bactericidal action of the present invention is that corona discharge generated from a pulsed high voltage characterized by a steep rise and a high peak value causes bacteria and mold to adhere to a container inserted in the discharge region. It is obtained on the basis of applying a strong electric field to the spores and generating an active atmosphere of ozone and active ions inside or near the surface of the container. A strong bactericidal action occurs due to the synergistic action of these electric fields and the active atmosphere.

【0009】図3に示す独自の波形をもったパルス高電
圧の印加により、放電極と対向電極間に安定なコロナ放
電を持続する。本放電は、極めて短い立ち上がり時間を
もったパルス状に高電圧が印加されるため、殺菌対象の
容器中に分子運動を誘発せず、電子のみを加速して活性
雰囲気を生成するため、分子運動に起因する熱の発生が
少なく、したがって殺菌対象の容器の温度はほとんど上
がらない。また本放電に用いるパルス電圧は最大で20
0kV以上に達するため、活性雰囲気の生じる空間(電
極間距離)を通常のコロナ放電よりも大きくすることが
できる。なお、図3は時間軸を変えてパルス高電圧の波
形の一例を示したものであり、図の左側の波形は右側の
パルス波形に含まれる一つのパルスを拡大して示した波
形に相当する。
By applying a pulsed high voltage having a unique waveform shown in FIG. 3, a stable corona discharge is maintained between the discharge electrode and the counter electrode. In this discharge, since a high voltage is applied in a pulse shape with an extremely short rise time, molecular motion is not induced in the container to be sterilized and only electrons are accelerated to create an active atmosphere. The amount of heat generated due to the heat generation is small, so that the temperature of the container to be sterilized hardly rises. The maximum pulse voltage used for main discharge is 20
Since the voltage reaches 0 kV or more, the space (distance between electrodes) in which the active atmosphere is generated can be made larger than that in a normal corona discharge. Note that FIG. 3 shows an example of a pulse high voltage waveform by changing the time axis, and the waveform on the left side of the figure corresponds to an enlarged waveform of one pulse included in the pulse waveform on the right side. .

【0010】本発明の殺菌方法においては、対向電極の
内側に配置された誘電体にて容器を囲んだ状態でコロナ
放電を発生させてもよい。この場合には、放電極と対向
電極との間のスパークの発生を防止してコロナ放電を安
定的に継続させることができる。さらに、本発明の殺菌
方法においては、酸素、窒素、水素、二酸化炭素、空
気、アルゴン、及びヘリウムからなる群から選ばれる少
なくとも一種の気体をコロナ放電中に導入してもよい。
これらの気体を導入しつつ放電を継続させることによ
り、活性雰囲気を継続させて殺菌効果をさらに高めるこ
とができる。
In the sterilization method of the present invention, corona discharge may be generated in a state where the container is surrounded by a dielectric material arranged inside the counter electrode. In this case, it is possible to prevent the occurrence of sparks between the discharge electrode and the counter electrode and to continue the corona discharge stably. Further, in the sterilization method of the present invention, at least one gas selected from the group consisting of oxygen, nitrogen, hydrogen, carbon dioxide, air, argon and helium may be introduced into the corona discharge.
By continuing the discharge while introducing these gases, it is possible to continue the active atmosphere and further enhance the sterilization effect.

【0011】本発明の殺菌装置は、常温常圧の空間に配
置され、殺菌対象の容器内に挿入可能な形状を有する放
電極と、前記空間に前記放電極を囲むようにして配置さ
れた対向電極と、パルス幅10nsec以上、電界強度
4〜100kV/cm、パルス頻度10pps以上のパ
ルス高電圧を前記放電極と前記対向電極との間に印加可
能な高電圧電源とを備えたものである。
The sterilizing apparatus of the present invention comprises a discharge electrode arranged in a space at normal temperature and pressure and having a shape capable of being inserted into a container to be sterilized, and a counter electrode arranged so as to surround the discharge electrode in the space. A pulsed voltage of 10 nsec or more, an electric field strength of 4 to 100 kV / cm, and a pulse high voltage of 10 pps or more of pulse frequency is provided between the discharge electrode and the counter electrode.

【0012】この殺菌装置によれば、上述した本発明の
殺菌方法を実現することができる。本発明の殺菌方法に
おいて、前記対向電極の内側に前記放電極を囲むように
誘電体が配置されてもよい。前記容器内に挿入可能な形
状を有する気体導入管を備えてもよい。この場合には、
上述した各種の気体を気体導入管を介して容器内に導入
することができる。前記誘電体の外周に前記対向電極が
密着してもよい。この場合には対向電極と誘電体との隙
間がなくなるので、放電極と対向電極との距離が無駄に
増加しない。
According to this sterilizing apparatus, the above-described sterilizing method of the present invention can be realized. In the sterilization method of the present invention, a dielectric may be arranged inside the counter electrode so as to surround the discharge electrode. A gas introduction tube having a shape that can be inserted into the container may be provided. In this case,
The various gases described above can be introduced into the container via the gas introduction pipe. The counter electrode may be adhered to the outer periphery of the dielectric. In this case, since the gap between the counter electrode and the dielectric is eliminated, the distance between the discharge electrode and the counter electrode is not unnecessarily increased.

【0013】本発明において、対向電極や誘電体は必ず
しも容器の全周を完全に囲む必要はなく、対向電極や誘
電体に覆われていない領域が容器の一部に残ってもよ
い。一方、誘電体を設ける場合、対向電極の内周が誘電
体に完全に覆われていることが望ましい。つまり、放電
極からみて対向電極がその全面に亘って誘電体の背後に
隠れていることが望ましい。
In the present invention, the counter electrode or the dielectric does not necessarily have to completely surround the entire circumference of the container, and a region not covered with the counter electrode or the dielectric may remain in a part of the container. On the other hand, when the dielectric is provided, it is desirable that the inner circumference of the counter electrode is completely covered with the dielectric. That is, it is desirable that the counter electrode be hidden behind the dielectric over the entire surface thereof as viewed from the discharge electrode.

【0014】[0014]

【発明の実施の形態】図1は本発明の殺菌装置の一実施
形態を示している。この殺菌装置1は、殺菌対象の容器
2内に挿入可能な放電極3と、その放電極3に並べて配
置されて容器2内に挿入可能な気体導入管4と、放電極
3周囲に配置された誘電体5と、その誘電体5の外側に
配置された対向電極6とを有している。放電極3はプラ
ズマ発生用のパルス高電圧を発生する高圧電源7と接続
され、対向電極6はアースされている。気体導入管4は
気体供給源としてのガスボンベ8と接続されている。ガ
スボンベ8からの気体流量を監視するためガスボンベ8
と気体導入管4との間には流量計9が設けられる。流量
調整弁がさらに設けられてもよい。殺菌対象の容器2は
誘電体(例えばアクリル樹脂)製のステージ10のほぼ
中央に載置され、誘電体5及び対向電極6もそのステー
ジ10の上に配置される。上述した容器2、放電極3、
気体導入管4、誘電体5、対向電極6及びステージ10
はいずれも常温常圧の空間に置かれており、それらを真
空容器に収容する必要はない。
FIG. 1 shows an embodiment of the sterilizing apparatus of the present invention. This sterilizer 1 is arranged around the discharge electrode 3, a discharge electrode 3 that can be inserted into the container 2 to be sterilized, a gas introduction pipe 4 that is arranged side by side with the discharge electrode 3 and that can be inserted into the container 2. The dielectric 5 and the counter electrode 6 arranged outside the dielectric 5. The discharge electrode 3 is connected to a high voltage power source 7 that generates a pulsed high voltage for plasma generation, and the counter electrode 6 is grounded. The gas introduction pipe 4 is connected to a gas cylinder 8 as a gas supply source. Gas cylinder 8 for monitoring the gas flow rate from gas cylinder 8
A flowmeter 9 is provided between the gas introduction pipe 4 and the gas introduction pipe 4. A flow rate adjusting valve may be further provided. The container 2 to be sterilized is placed on the substantially center of a stage 10 made of a dielectric (for example, acrylic resin), and the dielectric 5 and the counter electrode 6 are also arranged on the stage 10. The above-mentioned container 2, discharge electrode 3,
Gas introduction tube 4, dielectric 5, counter electrode 6, and stage 10
All of them are placed in a space at normal temperature and pressure, and it is not necessary to store them in a vacuum container.

【0015】図1において、容器2としては、例えば絞
られた口部2aと、胴部2bと、それらの間に配置され
た直径が漸次変化するショルダー部2cとを有するボト
ル状容器が例示されている。但し、本発明はボトル状容
器に限らず、各種の容器を殺菌対象としてよい。
In FIG. 1, the container 2 is, for example, a bottle-shaped container having a narrowed mouth portion 2a, a body portion 2b, and a shoulder portion 2c arranged between them, the diameter of which gradually changes. ing. However, the present invention is not limited to the bottle-shaped container, and various containers may be sterilized.

【0016】放電極3は容器2の内部に挿入可能な形状
であればよく、図1に示した棒状の他に、球状、樹形状
等に形成してもよい。棒状の放電極3とする場合、その
直径は例えば1mm程度で十分である。放電極3の材質
には例えば銅を用いることができる。容器2に対する放
電極3の挿入量は容器2の形状や殺菌効果の程度に応じ
て変更してよいが、なるべくは、容器2への放電極3の
挿入長さを容器2の全高の50%以上に設定することが
望ましい。
The discharge electrode 3 may have any shape as long as it can be inserted into the container 2, and may have a spherical shape, a tree shape or the like in addition to the rod shape shown in FIG. When the rod-shaped discharge electrode 3 is used, a diameter of about 1 mm is sufficient. The material of the discharge electrode 3 may be copper, for example. The insertion amount of the discharge electrode 3 into the container 2 may be changed according to the shape of the container 2 and the degree of sterilization effect, but it is preferable that the insertion length of the discharge electrode 3 into the container 2 is 50% of the total height of the container 2. It is desirable to set the above.

【0017】誘電体5は、放電極3と対向電極6との間
に発生するコロナ放電を安定させるために設けられる。
誘電体5の材質には、例えばアクリル樹脂、ガラス又は
セラミックス、その他の絶縁材料(誘電材料)として知
られている種々の材料を使用することができる。誘電体
5の形状は例えば筒型であり、その断面形状は円形又は
多角形とすることができる。誘電体5の厚さは0.1〜
10mmの範囲に設定することが望ましい。
The dielectric 5 is provided to stabilize the corona discharge generated between the discharge electrode 3 and the counter electrode 6.
As the material of the dielectric 5, for example, acrylic resin, glass or ceramics, and various other materials known as insulating materials (dielectric materials) can be used. The dielectric 5 has a tubular shape, for example, and its cross-sectional shape can be circular or polygonal. The thickness of the dielectric 5 is 0.1
It is desirable to set in the range of 10 mm.

【0018】誘電体5の内面形状は容器2の外形と相似
形としてもよいし、非相似形としてもよい。相似形とし
た場合(例えば断面円形の容器2に対して誘電体5を円
筒形に形成した場合)には、誘電体5と容器2との隙間
を均一に設定することができる。誘電体5の高さは容器
2よりも高く設定されている。但し、放電極3からみて
対向電極6の全体が誘電体5の背後に隠れていればよ
く、容器2が誘電体5の内部に完全に隠れることまでは
要しない。つまり、放電極3と対向電極6とがそれらの
間に誘電体5を挟むことなく直接的に対峙している部分
がなく、両電極3,6の間に必ず誘電体5が存在してい
る状態が維持できればよい。なお、本発明において誘電
体5は必須ではなく、殺菌に十分なコロナ放電が生成で
きる限りは誘電体5を省略してもよい。
The inner surface shape of the dielectric 5 may be similar to the outer shape of the container 2 or may be non-similar. In the case of a similar shape (for example, when the dielectric 5 is formed in a cylindrical shape with respect to the container 2 having a circular cross section), the gap between the dielectric 5 and the container 2 can be set uniformly. The height of the dielectric 5 is set higher than that of the container 2. However, it suffices that the entire counter electrode 6 is hidden behind the dielectric 5 when viewed from the discharge electrode 3, and it is not necessary that the container 2 is completely hidden inside the dielectric 5. That is, there is no portion where the discharge electrode 3 and the counter electrode 6 directly face each other without sandwiching the dielectric 5 between them, and the dielectric 5 always exists between the electrodes 3 and 6. It is enough if the condition can be maintained. The dielectric 5 is not essential in the present invention, and the dielectric 5 may be omitted as long as corona discharge sufficient for sterilization can be generated.

【0019】対向電極6には例えばステンレス等の金網
が使用される。対向電極6は誘電体5の外周に巻き付け
ることができ、それにより誘電体5と対向電極6とを互
いに密着させることができる。誘電体5と対向電極6と
の間には隙間があってもよいが、放電極3と対向電極6
との距離を減らして殺菌に要するエネルギーを節減する
ためにも誘電体5と対向電極6との間の隙間は小さいほ
ど好ましい。対向電極6の材質は金網に限らず、金属板
等を使用してもよい。但し、金網を使用した場合には、
対向電極6の内部の放電状態を対向電極6を介して外部
から観察できる利点がある。誘電体5を使用する場合に
は、その少なくとも一部を透明な材料で構成すれば放電
状態の観察にさらに都合がよい。
The counter electrode 6 is made of, for example, stainless steel wire mesh. The counter electrode 6 can be wrapped around the outer periphery of the dielectric 5, so that the dielectric 5 and the counter electrode 6 can be brought into close contact with each other. Although there may be a gap between the dielectric 5 and the counter electrode 6, the discharge electrode 3 and the counter electrode 6
It is preferable that the gap between the dielectric 5 and the counter electrode 6 is as small as possible in order to reduce the distance required for sterilization and save energy required for sterilization. The material of the counter electrode 6 is not limited to the metal mesh, and a metal plate or the like may be used. However, if you use wire mesh,
There is an advantage that the discharge state inside the counter electrode 6 can be observed from the outside through the counter electrode 6. When the dielectric 5 is used, it is more convenient to observe the discharge state if at least a part of the dielectric 5 is made of a transparent material.

【0020】対向電極6は例えば容器2の底部からショ
ルダー部2cまで又はそれ以上の高さ位置まで設けるこ
とが望ましい。容器2と対向電極6とを高さの比率で示
せば、対向電極6の高さは容器2の全高の70%以上が
望ましい。対向電極6は例えば容器2の全周を完全に取
り囲む筒状に構成してもよいし、図2に示すように半円
状又はそれよりも周方向の長さが短い円弧状に湾曲した
電極板6a,6aを2枚又はそれ以上使用して、容器2
を囲むように対向電極6を形成してもよい。誘電体5の
外周に金属膜を形成する等の手段により対向電極6を形
成してもよい。あるいは、金属板にて対向電極6を形成
し、その内周に溶射等の固着手段を利用して誘電体の膜
を形成してもよい。
The counter electrode 6 is preferably provided, for example, from the bottom of the container 2 to the shoulder 2c or a height higher than that. If the container 2 and the counter electrode 6 are represented by the height ratio, the height of the counter electrode 6 is preferably 70% or more of the total height of the container 2. The counter electrode 6 may be configured, for example, in a cylindrical shape that completely surrounds the entire circumference of the container 2, or as shown in FIG. 2, an electrode curved in a semicircular shape or an arc shape having a shorter circumferential length. Using two or more plates 6a, 6a, the container 2
The counter electrode 6 may be formed so as to surround the. The counter electrode 6 may be formed by means such as forming a metal film on the outer periphery of the dielectric 5. Alternatively, the counter electrode 6 may be formed of a metal plate, and a dielectric film may be formed on the inner circumference of the counter electrode 6 by using a fixing means such as thermal spraying.

【0021】殺菌装置1を用いた容器2の殺菌は次のよ
うに行われる。まず、殺菌の準備として、ステージ10
上に容器2が配置され、その周囲に誘電体5及び対向電
極6が配置されるとともに、容器2の内部に放電極3及
び気体導入管4が挿入される。準備完了後、ガスボンベ
8から気体導入管4に所定の気体を供給して気体導入管
4の下端から容器2の内部に所定の気体が導入され、そ
の状態で高圧電源7から放電極3に対して所定のパルス
高電圧が所定時間継続して印加されることにより、放電
極3と対向電極6との間にコロナ放電が生成される。気
体導入管4からの気体の導入は、パルス高電圧が印加さ
れている間、所定の流量で継続的に行われる。つまり、
放電の継続中、容器2内の気体は気体導入管4から導入
される気体によって絶えず置換される。ここで使用する
気体は、酸素、窒素、水素、二酸化炭素、空気、アルゴ
ン、及びヘリウムからなる群から選ばれる少なくとも一
種類である。二種類以上の気体を混合して供給してもよ
い。
Sterilization of the container 2 using the sterilizer 1 is performed as follows. First, as a preparation for sterilization, stage 10
The container 2 is arranged on the upper side, the dielectric 5 and the counter electrode 6 are arranged around the container 2, and the discharge electrode 3 and the gas introduction pipe 4 are inserted into the inside of the container 2. After the preparation is completed, a predetermined gas is supplied from the gas cylinder 8 to the gas introduction pipe 4 so that the predetermined gas is introduced into the container 2 from the lower end of the gas introduction pipe 4, and in that state, the high voltage power supply 7 directs the discharge electrode 3 to the discharge electrode 3. By continuously applying a predetermined pulse high voltage for a predetermined time, corona discharge is generated between the discharge electrode 3 and the counter electrode 6. The introduction of the gas from the gas introduction pipe 4 is continuously performed at a predetermined flow rate while the pulse high voltage is applied. That is,
During the discharge, the gas in the container 2 is constantly replaced by the gas introduced from the gas introduction pipe 4. The gas used here is at least one selected from the group consisting of oxygen, nitrogen, hydrogen, carbon dioxide, air, argon, and helium. Two or more kinds of gases may be mixed and supplied.

【0022】高圧電源7によって印加されるパルス高電
圧のパルス幅は10nsec(ナノ秒)以上、好ましく
は50nsec以上である。10nsec以下では良好
なコロナ放電が発生しにくく、十分な殺菌効果が得られ
ない。一方、パルス幅が広くなるほど、有効な放電エネ
ルギーが増えて殺菌作用は強くなる。これにより処理能
率が向上し、短い時間で目的とする殺菌効果が達成でき
る。また、パルス幅が大きい場合には、放電極3と対向
電極6との距離を広げても、十分な強さのコロナ放電を
発生させることができ、良好な殺菌効果が達成される。
しかしながらパルス幅が長くなりすぎると有害なスパー
クを発生しやすく電源容量も増すため、パルス幅は20
μsec以下にするのが好ましい。
The pulse width of the pulse high voltage applied by the high-voltage power supply 7 is 10 nsec (nanosecond) or more, preferably 50 nsec or more. If it is 10 nsec or less, good corona discharge is unlikely to occur, and a sufficient bactericidal effect cannot be obtained. On the other hand, as the pulse width becomes wider, the effective discharge energy increases and the bactericidal action becomes stronger. As a result, the processing efficiency is improved, and the desired bactericidal effect can be achieved in a short time. Further, when the pulse width is large, even if the distance between the discharge electrode 3 and the counter electrode 6 is widened, corona discharge with sufficient strength can be generated, and a good sterilization effect is achieved.
However, if the pulse width becomes too long, harmful sparks are likely to occur and the power supply capacity also increases.
It is preferably set to μsec or less.

【0023】パルス高電圧の電圧は、平均電界強度(印
加電圧(波高値))/極間距離)で表して4〜100k
V/cmの範囲とする。平均電界強度が4kV/cmよ
り低い場合は良好なコロナ放電が発生しにくい。望まし
くは、平均電界強度は15kV/cm以上、より好適に
は30kV/cm以上に設定するとよい。一方、平均電
界強度が100kV/cmよりも高い場合は火花放電に
移行しやすく、効果の割りには絶縁手段が繁雑で高価に
なる。また、容器2が熱可塑性樹脂からなる場合、放電
の継続時間にもよるが、平均電界強度が100kV/c
mを越えると熱変形等の熱的影響が容器2に生じるおそ
れがある。
The voltage of the pulse high voltage is 4 to 100 k expressed by the average electric field strength (applied voltage (peak value)) / distance between poles.
The range is V / cm. When the average electric field strength is lower than 4 kV / cm, good corona discharge is unlikely to occur. Desirably, the average electric field strength is set to 15 kV / cm or more, and more preferably 30 kV / cm or more. On the other hand, when the average electric field strength is higher than 100 kV / cm, it is easy to shift to the spark discharge, and the insulating means is complicated and expensive for the effect. When the container 2 is made of a thermoplastic resin, the average electric field strength is 100 kV / c depending on the duration of discharge.
If it exceeds m, thermal influence such as thermal deformation may occur in the container 2.

【0024】パルス高電圧のパルス頻度は10pps以
上、好ましくは50pps以上、さらに好ましくは10
0pps以上に設定する。10pps未満では良好なコ
ロナ放電が発生しにくく、また有効な処理エネルギーが
不十分で、殺菌処理に時間がかかる。一方、パルス頻度
があまり大きくなると容器2に熱的影響が及ぶおそれが
あるので、パルス頻度は2000pps以下に設定する
ことが望ましい。また、2000ppsを越えるパルス
頻度の高電圧パルスを前記のパルス幅と平均電界強度で
発生させるのは技術的に困難である。2000pps以
上のパルス頻度を得ようとすると、高電圧発生装置が非
常に大掛かりになり、設備コストが過大になり、工業的
に採算が採れなくなるので好ましくない。
The pulse frequency of the pulsed high voltage is 10 pps or higher, preferably 50 pps or higher, more preferably 10 pps or higher.
Set to 0 pps or higher. If it is less than 10 pps, good corona discharge is unlikely to occur, effective treatment energy is insufficient, and sterilization treatment takes time. On the other hand, if the pulse frequency is too high, the container 2 may be thermally affected. Therefore, it is desirable to set the pulse frequency to 2000 pps or less. Further, it is technically difficult to generate a high voltage pulse having a pulse frequency exceeding 2000 pps with the above pulse width and average electric field strength. Attempting to obtain a pulse frequency of 2000 pps or higher is not preferable, because the high voltage generator becomes very large, the equipment cost becomes excessive, and the profit becomes industrially unprofitable.

【0025】本発明において、放電中における気体の導
入は必須ではない。気体導入管4を挿入せず、容器2内
に滞留している空気中で所定時間に亘って放電を継続さ
せてもよい。放電の開始に先立って、上述した気体、つ
まり酸素、窒素、水素、二酸化炭素、空気、アルゴン、
及びヘリウムからなる群から選ばれる少なくとも一種類
の気体を容器2内に導入して容器2内の空気をそれらの
気体に置換し、その後、気体の導入を停止して放電を開
始させてもよい。但し、容器2内に気体を常に導入しな
がら放電を継続させた方が殺菌効果は高まる。なお、気
体導入管4は複数本設けてもよい。
In the present invention, introduction of gas during discharge is not essential. Instead of inserting the gas introduction pipe 4, the discharge may be continued in the air staying in the container 2 for a predetermined time. Prior to the start of the discharge, the gases mentioned above: oxygen, nitrogen, hydrogen, carbon dioxide, air, argon,
And at least one kind of gas selected from the group consisting of helium may be introduced into the container 2 to replace the air in the container 2 with these gases, and then the introduction of the gas may be stopped to start the discharge. . However, the sterilization effect is enhanced by continuing the discharge while constantly introducing the gas into the container 2. A plurality of gas introduction pipes 4 may be provided.

【0026】[0026]

【実施例】図1に示す殺菌装置1を使用して本発明の殺
菌方法を実施した。
EXAMPLE The sterilizing method of the present invention was carried out using the sterilizing apparatus 1 shown in FIG.

【0027】殺菌対象の容器としては、500mL用の
PETボトルを使用した。PETボトルの内面には、バ
チルスズブチリシス(Bacillus subtilis)、アスペル
ギルスニガー(Aspergilus niger)、あるいはケトミウ
ムグロポッサム(chaetomiumglobosum)の胞子を均一に
付着させた。菌数はボトル1本につき10個となるよ
うに調整した。
As the container to be sterilized, a PET bottle for 500 mL was used. Spores of Bacillus subtilis, Aspergilus niger, or chaetomium globosum were evenly attached to the inner surface of the PET bottle. The number of bacteria was adjusted to 10 5 per bottle.

【0028】殺菌方法としては、菌付けしたPETボト
ル内に放電極及び気体導入管を挿入するとともに、ボル
トの外周に誘電体及び対向電極を設置した。気体導入管
からは所定の気体を所定流量で継続的に供給しながら所
定時間に亘ってパルス高電圧を電極間に印加してコロナ
放電を継続させた。放電終了後、オゾンガス等の不純ガ
スを除去するため、無菌エアーをボトル内に毎分9Lの
流量で30秒間供給した。
As a sterilization method, the discharge electrode and the gas introduction tube were inserted into a PET bottle which had been sterilized, and the dielectric and the counter electrode were installed on the outer circumference of the bolt. While continuously supplying a predetermined gas at a predetermined flow rate from the gas introduction tube, a pulse high voltage was applied between the electrodes for a predetermined time to continue the corona discharge. After the discharge was completed, sterile air was supplied into the bottle at a flow rate of 9 L / min for 30 seconds in order to remove impurities such as ozone gas.

【0029】殺菌効果の評価方法としては、上記の無菌
エアーの供給終了後、PETボトル内に寒天培地を注入
し、各ボトルの口部を無菌キャップで密封して次の条件
で菌を培養した。培養後、ボトル内の生残菌数をカウン
トした。 条件1:バチルスズブチリシスを付着させたボトルにつ
いては、標準寒天培地、36°Cの環境下で6日間菌を
培養した。 条件2:アスペルギルスニガー、又はケトミウムグロポ
ッサムを付着させたボトルについては、ポテトデキスト
ロース寒天培地、25°Cの環境下で6日間菌を培養し
た。 (実施例1)電界強度を変化させて殺菌を行ったときの
放電後の生残菌数、放電後のPETボトルの熱変形の有
無を表1に示す。なお、供試菌株はアスペルギルスニガ
ー、初発菌数は2.0×10、パルス幅は80nse
c、パルス頻度は400pps、放電時間は30sec
とし、ボトル内の空気中で放電を行った。
As a method for evaluating the bactericidal effect, after the above-mentioned aseptic air supply is completed, an agar medium is injected into a PET bottle, the mouth of each bottle is sealed with a sterile cap, and the bacteria are cultured under the following conditions. . After culturing, the number of surviving bacteria in the bottle was counted. Condition 1: For the bottle to which Bacillus subtilis was attached, the bacteria were cultured for 6 days in an environment of standard agar medium and 36 ° C. Condition 2: For a bottle to which Aspergillus niger or ketodium glopossum was attached, the bacteria were cultured for 6 days in an environment of potato dextrose agar and 25 ° C. (Example 1) Table 1 shows the number of surviving bacteria after discharge and the presence or absence of thermal deformation of the PET bottle after discharge when sterilization was performed by changing the electric field strength. The test strain was Aspergillus niger, the initial number of bacteria was 2.0 × 10 5 , and the pulse width was 80 nse.
c, pulse frequency is 400 pps, discharge time is 30 sec
Then, discharge was performed in the air in the bottle.

【0030】[0030]

【表1】 [Table 1]

【0031】(実施例2)パルス幅を変化させて殺菌を
行ったときの放電後の生残菌数、放電後のPETボトル
の熱変形の有無を表2に示す。なお、供試菌株はアスペ
ルギルスニガー、初発菌数は2.0×10、電界強度
は60kV/cm、パルス頻度は400pps、放電時
間は30secとし、ボトル内の空気中で放電を行っ
た。
Example 2 Table 2 shows the number of surviving bacteria after discharge and the presence or absence of thermal deformation of the PET bottle after discharge when sterilization was performed by changing the pulse width. The test strain was Aspergillus niger, the initial number of bacteria was 2.0 × 10 5 , the electric field strength was 60 kV / cm, the pulse frequency was 400 pps, the discharge time was 30 sec, and the discharge was performed in the air in the bottle.

【0032】[0032]

【表2】 [Table 2]

【0033】(実施例3)パルス頻度を変化させて殺菌
を行ったときの放電後の生残菌数、放電後のPETボト
ルの熱変形の有無を表3に示す。なお、供試菌株はアス
ペルギルスニガー、初発菌数は2.0×10、電界強
度は60kV/cm、パルス幅は80nsec、放電時
間は30secとし、ボトル内の空気中で放電を行っ
た。
Example 3 Table 3 shows the number of surviving bacteria after discharge and the presence or absence of thermal deformation of the PET bottle after discharge when sterilization was performed by changing the pulse frequency. The test strain was Aspergillus niger, the initial number of bacteria was 2.0 × 10 5 , the electric field intensity was 60 kV / cm, the pulse width was 80 nsec, and the discharge time was 30 sec, and discharging was performed in the air in the bottle.

【0034】[0034]

【表3】 [Table 3]

【0035】(実施例4)ボトル内に各種の気体を導入
して殺菌を行ったときの放電後の生残菌数、放電後のP
ETボトルの熱変形の有無を表4に示す。なお、供試菌
株はアスペルギルスニガー、初発菌数は2.0×1
、電界強度は60kV/cm、パルス幅は80ns
ec、パルス頻度は400pps、放電時間は30se
cとした。放電を発生させる前に各種の気体を9L/m
inの流量で30秒間ボトル内に導入してボトル内の空
気を目的とする気体にて置換した。その後、気体の導入
を停止して直ちに放電を行った。
(Embodiment 4) The number of surviving bacteria after discharge and P after discharge when various gases were introduced into the bottle for sterilization
Table 4 shows whether or not the ET bottle was thermally deformed. The test strain was Aspergillus niger, and the initial number was 2.0 × 1.
0 5 , electric field strength 60 kV / cm, pulse width 80 ns
ec, pulse frequency 400 pps, discharge time 30 sec
c. 9L / m of various gases before generating discharge
It was introduced into the bottle at a flow rate of in for 30 seconds to replace the air in the bottle with the target gas. Then, the introduction of the gas was stopped and the discharge was immediately performed.

【0036】[0036]

【表4】 [Table 4]

【0037】(実施例5)導入する気体の流量を変化さ
せて殺菌を行ったときの、放電後の生残菌数、放電後の
PETボトルの熱変形の有無を表5に示す。なお、供試
菌株はアスペルギルスニガー、初発菌数は2.0×10
、電界強度は60kV/cm、パルス幅は80nse
c、パルス頻度は400pps、放電時間は10sec
とした。放電を発生させる前にアルゴンガスを9L/m
inの流量で30秒間ボトル内に導入してボトル内の空
気をアルゴンガスにて置換した。その後、アルゴンガス
の流量を所定値に調整してその導入を続けながら放電を
行った。
Example 5 Table 5 shows the number of surviving bacteria after discharge and the presence or absence of thermal deformation of the PET bottle after discharge when sterilization was performed by changing the flow rate of gas to be introduced. The test strain was Aspergillus niger, and the initial number of bacteria was 2.0 × 10.
5 , electric field strength is 60 kV / cm, pulse width is 80 nse
c, pulse frequency is 400 pps, discharge time is 10 sec
And Argon gas 9L / m before generating discharge
It was introduced into the bottle at a flow rate of in for 30 seconds to replace the air in the bottle with argon gas. After that, the flow rate of the argon gas was adjusted to a predetermined value, and the discharge was performed while continuing the introduction.

【0038】[0038]

【表5】 [Table 5]

【0039】(実施例6)二種類の気体を混合して殺菌
を行ったときの、放電後の生残菌数、放電後のPETボ
トルの熱変形の有無を表6に示す。なお、供試菌株はア
スペルギルスニガー、初発菌数は2.0×10、電界
強度は60kV/cm、パルス幅は80nsec、パル
ス頻度は400pps、放電時間は10secとした。
放電を発生させる前にアルゴンガスと空気との混合ガス
(混合比は0.5:0.5)を9L/minの流量で3
0秒間ボトル内に導入してボトル内の空気をその混合ガ
スにて置換した。その後、混合ガス(混合比は前記の通
り)を1L/minの流量でボトル内に供給しながら放
電を行った。
(Example 6) Table 6 shows the number of surviving bacteria after discharge and the presence or absence of thermal deformation of the PET bottle after discharge when two kinds of gases were mixed and sterilized. The test strain was Aspergillus niger, the initial number of bacteria was 2.0 × 10 5 , the electric field strength was 60 kV / cm, the pulse width was 80 nsec, the pulse frequency was 400 pps, and the discharge time was 10 sec.
Before generating a discharge, a mixed gas of argon gas and air (mixing ratio: 0.5: 0.5) was used at a flow rate of 9 L / min for 3 times.
The mixture was introduced into the bottle for 0 seconds to replace the air in the bottle with the mixed gas. Then, discharging was performed while supplying the mixed gas (mixing ratio was as described above) into the bottle at a flow rate of 1 L / min.

【0040】[0040]

【表6】 [Table 6]

【0041】(実施例7)菌種を変化させて殺菌を行っ
たときの、放電後の生残菌数、放電後のPETボトルの
熱変形の有無を表7に示す。なお、電界強度は60kV
/cm、パルス幅は80nsec、パルス頻度は400
pps、放電時間は10secとした。放電を発生させ
る前にアルゴンガスを9L/minの流量で30秒間ボ
トル内に導入してボトル内の空気をアルゴンガスにて置
換した。その後、アルゴンガスを2L/minの流量で
ボトル内に供給しながら放電を行った。
(Example 7) Table 7 shows the number of surviving bacteria after discharge and the presence or absence of thermal deformation of the PET bottle after discharge when sterilization was performed by changing the bacterial species. The electric field strength is 60 kV.
/ Cm, pulse width 80 nsec, pulse frequency 400
The pps and discharge time were 10 sec. Before generating a discharge, argon gas was introduced into the bottle at a flow rate of 9 L / min for 30 seconds to replace the air in the bottle with the argon gas. Then, discharge was performed while supplying argon gas into the bottle at a flow rate of 2 L / min.

【0042】[0042]

【表7】 [Table 7]

【0043】以上の結果から明らかなように、本発明の
殺菌方法によれば常温常圧下でも容器を短時間で確実に
殺菌することができる。
As is clear from the above results, according to the sterilization method of the present invention, the container can be surely sterilized in a short time even at room temperature and normal pressure.

【0044】[0044]

【発明の効果】以上に説明したように、本発明の殺菌方
法及び装置によれば、容器の内外に配置された放電極と
対向電極との間にパルス高電圧に基づくコロナ放電を発
生させることにより、常温常圧下で容器を確実に殺菌す
ることができる。特に誘電体を対向電極の内側に配置し
た場合にはコロナ放電を安定的に継続させて高い殺菌効
果を得ることができる。また、特定の気体をコロナ放電
中に導入することにより、活性化雰囲気を維持して殺菌
効果を確実に発揮させることができる。
As described above, according to the sterilization method and device of the present invention, corona discharge based on pulse high voltage is generated between the discharge electrode and the counter electrode arranged inside and outside the container. Thus, the container can be surely sterilized under normal temperature and normal pressure. In particular, when the dielectric is arranged inside the counter electrode, corona discharge can be stably continued and a high sterilization effect can be obtained. Moreover, by introducing a specific gas into the corona discharge, the sterilizing effect can be surely exhibited by maintaining the activated atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る殺菌装置の概要を示
す図。
FIG. 1 is a diagram showing an outline of a sterilizing apparatus according to an embodiment of the present invention.

【図2】図1の殺菌装置の対向電極を変更した斜視図。FIG. 2 is a perspective view in which a counter electrode of the sterilizer of FIG. 1 is changed.

【図3】本発明で使用する高電圧パルスの波形の一例を
示す図。
FIG. 3 is a diagram showing an example of a waveform of a high voltage pulse used in the present invention.

【符号の説明】[Explanation of symbols]

1 殺菌装置 2 容器 3 放電極 4 気体導入管 5 誘電体 6 対向電極 7 高圧電源 8 ガスボンベ 9 流量計 10 ステージ 1 sterilizer 2 containers 3 discharge electrodes 4 Gas introduction pipe 5 Dielectric 6 Counter electrode 7 High voltage power supply 8 gas cylinders 9 Flowmeter 10 stages

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 亮 東京都新宿区市谷加賀町一丁目1番1号 大日本印刷株式会社内 (72)発明者 阿久津 顕右 大阪府寝屋川市池田中町19番17号 日本ペ イント株式会社内 (72)発明者 岩田 顕範 大阪府寝屋川市池田中町19番17号 日本ペ イント株式会社内 Fターム(参考) 4C058 AA16 AA25 BB06 KK06 KK22   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ryo Hayashi             1-1-1, Ichigaya-Kagacho, Shinjuku-ku, Tokyo             Dai Nippon Printing Co., Ltd. (72) Inventor Akutsu Akiko             19-17 Ikedanaka-cho, Neyagawa-shi, Osaka Japan             Into Inc. (72) Inventor Akinori Iwata             19-17 Ikedanaka-cho, Neyagawa-shi, Osaka Japan             Into Inc. F-term (reference) 4C058 AA16 AA25 BB06 KK06 KK22

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 常温常圧下に置かれた殺菌対象の容器内
に放電極を挿入するとともに、その容器を囲むようにし
て対向電極を配置し、パルス幅10nsec以上、電界
強度4〜100kV/cm、パルス頻度10pps以上
のパルス高電圧を前記放電極と前記対向電極との間に印
加して両電極間にコロナ放電を発生させることを特徴と
する容器の殺菌方法。
1. A discharge electrode is inserted into a container to be sterilized, which is placed under normal temperature and normal pressure, and a counter electrode is arranged so as to surround the container, a pulse width of 10 nsec or more, an electric field intensity of 4 to 100 kV / cm, and a pulse. A method for sterilizing a container, characterized in that a high pulse voltage having a frequency of 10 pps or more is applied between the discharge electrode and the counter electrode to generate corona discharge between both electrodes.
【請求項2】 前記対向電極の内側に配置された誘電体
により前記容器を囲んだ状態で前記コロナ放電を発生さ
せることを特徴とする請求項1に記載の殺菌方法。
2. The sterilization method according to claim 1, wherein the corona discharge is generated in a state where the container is surrounded by a dielectric material arranged inside the counter electrode.
【請求項3】 酸素、窒素、水素、二酸化炭素、空気、
アルゴン、及びヘリウムからなる群から選ばれる少なく
とも一種の気体を前記コロナ放電中に導入することを特
徴とする請求項1又は2に記載の殺菌方法。
3. Oxygen, nitrogen, hydrogen, carbon dioxide, air,
The sterilization method according to claim 1 or 2, wherein at least one gas selected from the group consisting of argon and helium is introduced into the corona discharge.
【請求項4】 常温常圧の空間に配置され、殺菌対象の
容器内に挿入可能な形状を有する放電極と、 前記空間に前記放電極を囲むようにして配置された対向
電極と、 パルス幅10nsec以上、電界強度4〜100kV/
cm、パルス頻度10pps以上のパルス高電圧を前記
放電極と前記対向電極との間に印加可能な高電圧電源
と、を備えたことを特徴とする容器の殺菌装置。
4. A discharge electrode arranged in a space at normal temperature and pressure and having a shape capable of being inserted into a container to be sterilized, a counter electrode arranged so as to surround the discharge electrode in the space, and a pulse width of 10 nsec or more. , Electric field strength 4 to 100 kV /
cm, a high voltage power source capable of applying a pulsed high voltage having a pulse frequency of 10 pps or more between the discharge electrode and the counter electrode.
【請求項5】 前記対向電極の内側に前記放電極を囲む
ように誘電体が配置されていることを特徴とする請求項
4に記載の殺菌装置。
5. The sterilizer according to claim 4, wherein a dielectric is arranged inside the counter electrode so as to surround the discharge electrode.
【請求項6】 前記容器内に挿入可能な形状を有する気
体導入管を備えたことを特徴とする請求項4又は5に記
載の殺菌装置。
6. The sterilizer according to claim 4, further comprising a gas introduction pipe having a shape that can be inserted into the container.
【請求項7】 前記誘電体の外周に前記対向電極が密着
していることを特徴とする請求項4〜6のいずれかに記
載の殺菌装置。
7. The sterilizer according to claim 4, wherein the counter electrode is in close contact with the outer periphery of the dielectric.
JP2001251172A 2001-08-22 2001-08-22 Method and apparatus for sanitazing container Pending JP2003062047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251172A JP2003062047A (en) 2001-08-22 2001-08-22 Method and apparatus for sanitazing container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251172A JP2003062047A (en) 2001-08-22 2001-08-22 Method and apparatus for sanitazing container

Publications (1)

Publication Number Publication Date
JP2003062047A true JP2003062047A (en) 2003-03-04

Family

ID=19079858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251172A Pending JP2003062047A (en) 2001-08-22 2001-08-22 Method and apparatus for sanitazing container

Country Status (1)

Country Link
JP (1) JP2003062047A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049595A1 (en) * 2005-10-25 2007-05-03 Ngk Insulators, Ltd. Sterilizing device
JP2009022391A (en) * 2007-07-17 2009-02-05 Hirayama Seisakusho:Kk Plasma sterilizer and plasma sterilization method
US8241580B2 (en) 2006-12-27 2012-08-14 Ngk Insulators, Ltd. Plasma processing methods for inactivating toxins

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049595A1 (en) * 2005-10-25 2007-05-03 Ngk Insulators, Ltd. Sterilizing device
JPWO2007049595A1 (en) * 2005-10-25 2009-04-30 日本碍子株式会社 Sterilization sterilizer
US8241580B2 (en) 2006-12-27 2012-08-14 Ngk Insulators, Ltd. Plasma processing methods for inactivating toxins
JP2009022391A (en) * 2007-07-17 2009-02-05 Hirayama Seisakusho:Kk Plasma sterilizer and plasma sterilization method

Similar Documents

Publication Publication Date Title
US8871146B2 (en) Sterilization method and apparatus
Ehlbeck et al. Low temperature atmospheric pressure plasma sources for microbial decontamination
US5115166A (en) Plasma sterilizer and method
US5084239A (en) Plasma sterilizing process with pulsed antimicrobial agent treatment
CA2050368C (en) Plasma sterilizing process with pulsed antimicrobial agent treatment
US5413760A (en) Plasma sterilizer and method
US5413759A (en) Plasma sterilizer and method
US5645796A (en) Process for plasma sterilizing with pulsed antimicrobial agent treatment
US6342187B1 (en) Process and apparatus for dry sterilization of medical devices and materials
US5186893A (en) Plasma cycling sterilizing process
EP1375357B1 (en) Method and device for sterilizing packaging materials by using high voltage pulses
WO2011027542A1 (en) Method and device for supplying ions to liquid, and method and device for sterilizing
US5178829A (en) Flash sterilization with plasma
US8696983B2 (en) Plasma sterilizing device and method
Morent et al. Inactivation of bacteria by non-thermal plasmas
KR102006304B1 (en) Spraying Apparatus Using Plasma
JP2001054556A (en) Atmospheric pressure low-temperature plasma sterilization method
JP2003062047A (en) Method and apparatus for sanitazing container
JPH1099415A (en) Sterilizing device
KR20030060644A (en) Sterilizatoin method using atmospheric plasma
CN115428882B (en) Liquid bottled food sterilization device and method based on pulse discharge plasma
JP2004209188A (en) Method for sterilizing object packaged in sealed container
JPH09285528A (en) Device for sterilizing inner surface of pressure hypersensitive vessel
EP0837700A1 (en) Process and apparatus for dry sterilization of medical devices and materials
JPH08168516A (en) Sterilization method