JP2013094468A - Device and method of killing microorganisms by atmospheric pressure plasma - Google Patents

Device and method of killing microorganisms by atmospheric pressure plasma Download PDF

Info

Publication number
JP2013094468A
JP2013094468A JP2011240781A JP2011240781A JP2013094468A JP 2013094468 A JP2013094468 A JP 2013094468A JP 2011240781 A JP2011240781 A JP 2011240781A JP 2011240781 A JP2011240781 A JP 2011240781A JP 2013094468 A JP2013094468 A JP 2013094468A
Authority
JP
Japan
Prior art keywords
plasma
gas
atmospheric pressure
killing
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011240781A
Other languages
Japanese (ja)
Inventor
Akitoshi Okino
晃俊 沖野
Shuichi Miyahara
秀一 宮原
Ryota Sasaki
良太 佐々木
Toshihiro Takamatsu
利寛 高松
Hideyuki Hirai
英之 平位
Shinobu Kinoshita
忍 木下
Tatsuyuki Iwasaki
達行 岩崎
Kiyoshi Yoshino
潔 吉野
Hiroyuki Matsumoto
裕之 松本
Sayo Hoshino
紗代 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Tokyo Institute of Technology NUC
Original Assignee
Iwasaki Denki KK
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK, Tokyo Institute of Technology NUC filed Critical Iwasaki Denki KK
Priority to JP2011240781A priority Critical patent/JP2013094468A/en
Publication of JP2013094468A publication Critical patent/JP2013094468A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device and a method of killing microorganisms at a high killing speed and inexpensively.SOLUTION: A microorganism killing device including an atmospheric pressure plasma generation means for introducing plasma into a container is provided, wherein the atmospheric pressure plasma generation means generates the plasma using a gas whose COcontent is 5% or higher as a process gas.

Description

本発明は大気圧プラズマによる殺滅装置及び方法に関する。   The present invention relates to an apparatus and method for killing by atmospheric pressure plasma.

従来より、医療の安全性確保や食品の腐敗防止から、薬品、医療器具及び食品製造工程に、包装材や成形品表面などに存在する微生物(菌、真菌、ウイルスなど)を殺菌又は滅菌する処理が行われている。   Conventionally, treatment to sterilize or sterilize microorganisms (fungi, fungi, viruses, etc.) present on the surface of packaging materials and molded products in medicine, medical equipment and food manufacturing processes, from ensuring medical safety and preventing food corruption. Has been done.

微生物を殺菌又は滅菌する公知の技術としては、高圧蒸気滅菌法(オートクレーブ)、エチレンオキサイドガス(EOG)滅菌法、電子線滅菌法及びガンマ線滅菌法などが知られている。   Known techniques for sterilizing or sterilizing microorganisms include high-pressure steam sterilization (autoclave), ethylene oxide gas (EOG) sterilization, electron beam sterilization, and gamma ray sterilization.

しかし、高圧蒸気滅菌法は、121℃以上の高温処理を要するので熱に弱いプラスチック製品の処理は困難である。また、エチレンオキサイドガス(EOG)滅菌法は、人体への有毒性、発癌性が指摘されており、使用者の安全性への問題に課題がある。そして、電子線滅菌法及びガンマ線滅菌法は、使用する装置が非常に大型で高コストという課題を抱えている。   However, the high-pressure steam sterilization method requires high-temperature treatment at 121 ° C. or higher, so that it is difficult to treat plastic products that are vulnerable to heat. Further, the ethylene oxide gas (EOG) sterilization method has been pointed out to be toxic and carcinogenic to the human body, and there is a problem in the safety problem for the user. And the electron beam sterilization method and the gamma ray sterilization method have the subject that the apparatus to be used is very large and expensive.

近年、このような課題を解決する手段として、低圧力放電などのプラズマによる滅菌法(非特許文献1)が提案されている。プラズマによる滅菌法は、有害な物質を用いずに低温下において滅菌処理が可能であるため、新しい滅菌法として注目されている。   In recent years, as a means for solving such a problem, a sterilization method using plasma such as low-pressure discharge (Non-Patent Document 1) has been proposed. The plasma sterilization method is attracting attention as a new sterilization method because it can be sterilized at low temperatures without using harmful substances.

なお、「殺菌」という用語は、ある特定の微生物の初発菌数を減少させる行為そのものを、「滅菌」という用語は、無菌性を達成する、すなわちすべての微生物を除去する行為を意味するが、本明細書においては、菌数を減少させる行為そのものを「殺滅」と記載する。   The term “sterilization” refers to the act of reducing the initial number of bacteria of a specific microorganism, and the term “sterilization” refers to the act of achieving sterility, that is, removing all microorganisms. In the present specification, the act itself of reducing the number of bacteria is referred to as “killing”.

永津雅章:「3.プラズマ滅菌」、J.Plasma Fusion Res.Vol.83、No.7、pp.601−606(2007)Masaaki Nagatsu: “3. Plasma Sterilization”, J. Am. Plasma Fusion Res. Vol. 83, no. 7, pp. 601-606 (2007)

しかし、従来のプラズマを利用した微生物殺滅法は、プラズマ中の活性酸素種の密度が低いため微生物の殺滅速度が遅いという欠点がある。また、低気圧放電プラズマを用いた微生物殺滅法では、減圧処理をするために真空容器及び減圧排気ポンプ類などの設備を必要とし、装置コストが増加するという欠点もある。よって、殺滅速度が速くてコストの低い微生物の殺滅装置及び方法が求められている。   However, the conventional method of killing microorganisms using plasma has a drawback that the killing rate of microorganisms is slow because the density of active oxygen species in the plasma is low. In addition, the microorganism killing method using low-pressure discharge plasma has a drawback in that equipment such as a vacuum vessel and a vacuum exhaust pump is required to perform a decompression process, resulting in an increase in apparatus cost. Therefore, there is a need for a microorganism killing apparatus and method that has a high killing speed and low cost.

そこで、本発明では、減圧処理をするための設備を必要としない大気圧プラズマを用いた微生物の殺滅方法及び装置において、プラズマ生成手段に供給されるプロセスガスとして炭酸(CO)ガスを用いることで、殺滅速度が速くてコストの低い微生物の殺滅装置及び方法を提供することを目的とする。 Therefore, in the present invention, carbonic acid (CO 2 ) gas is used as the process gas supplied to the plasma generating means in the microorganism killing method and apparatus using atmospheric pressure plasma that does not require equipment for pressure reduction treatment. Accordingly, it is an object of the present invention to provide a microorganism killing apparatus and method having a high killing speed and low cost.

本発明の第1の側面は、容器内にプラズマを導入する大気圧プラズマ生成手段を備えた微生物殺滅装置であって、前記大気圧プラズマ生成手段が、COの含有率が5%以上のガスをプロセスガスとしてプラズマを生成するように構成された微生物殺滅装置である。 A first aspect of the present invention is a microorganism killing device provided with an atmospheric pressure plasma generating means for introducing plasma into a container, wherein the atmospheric pressure plasma generating means has a CO 2 content of 5% or more. A microorganism killing device configured to generate plasma using a gas as a process gas.

本発明の第2の側面は、第1の側面において、前記容器内の雰囲気を、COを含むプロセスガスで置換するガス置換手段を備えるよう構成した。 According to a second aspect of the present invention, in the first aspect, gas replacement means for replacing the atmosphere in the container with a process gas containing CO 2 is provided.

本発明の第3の側面は、容器内にプラズマを導入する大気圧プラズマ生成手段による微生物殺滅方法であって、前記大気圧プラズマ生成手段が、COの含有率が5%以上のガスをプロセスガスとしてプラズマを生成するステップを備える微生物殺滅方法である。 According to a third aspect of the present invention, there is provided a method for killing microorganisms by atmospheric pressure plasma generation means for introducing plasma into a container, wherein the atmospheric pressure plasma generation means contains a gas having a CO 2 content of 5% or more. A method for killing microorganisms comprising the step of generating plasma as a process gas.

本発明の第4の側面は、第3の側面において、前記容器内の雰囲気を、COを含むプロセスガスで置換するステップをさらに備えるよう構成した。 According to a fourth aspect of the present invention, in the third aspect, the atmosphere in the container is further replaced with a process gas containing CO 2 .

実施例1のプラズマ照射処理の概略図である。1 is a schematic diagram of plasma irradiation processing in Example 1. FIG. 実施例3のプラズマ照射処理の概略図である。6 is a schematic diagram of plasma irradiation processing of Example 3. FIG. 実施例1の殺菌特性の結果を示す図である。It is a figure which shows the result of the bactericidal characteristic of Example 1. FIG. 実施例2の殺菌特性の結果を示す図である。It is a figure which shows the result of the bactericidal characteristic of Example 2. 比較例1の殺菌特性の結果を示す図である。It is a figure which shows the result of the bactericidal characteristic of the comparative example 1. 実施例3の殺菌特性の結果を示す図である。It is a figure which shows the result of the bactericidal characteristic of Example 3. 比較例2の殺菌特性の結果を示す図である。It is a figure which shows the result of the bactericidal characteristic of the comparative example 2. 実施例4の殺菌特性の結果を示す図である。It is a figure which shows the result of the bactericidal characteristic of Example 4. 実施例5の濃度測定の結果を示す図である。It is a figure which shows the result of the density | concentration measurement of Example 5. FIG. 実施例6の殺菌特性の結果を示す図である。It is a figure which shows the result of the bactericidal characteristic of Example 6.

本発明では、大気圧プラズマ生成手段としてノズルタイプのプラズマ生成装置を用いてプラズマジェットを生成した。この生成装置は、円筒状の金属管の封じ端面に直径1mm程度の噴出孔を有しており、金属管の内部にプロセスガスを供給して、内部電極間に給電ラインから所定の電圧、電力を給電することでプラズマ生成し、噴出孔からプラズマジェットを噴出させるものである。なお、本発明では公知の株式会社プラズマコンセプト東京製ダメージフリーマルチガスプラズマジェット(登録商標)を用いてプラズマジェットを生成した。   In the present invention, a plasma jet is generated by using a nozzle type plasma generation device as an atmospheric pressure plasma generation means. This generating apparatus has an ejection hole having a diameter of about 1 mm on the sealed end surface of a cylindrical metal tube, supplies a process gas into the metal tube, and supplies a predetermined voltage and power from the power supply line between the internal electrodes. Is generated to generate plasma, and a plasma jet is ejected from the ejection hole. In addition, in this invention, the plasma jet was produced | generated using the well-known plasma concept Tokyo make damage free multi-gas plasma jet (trademark).

プロセスガスとしては炭酸(CO)ガスを含有率100%で供給しても良いし、アルゴン(Ar)や窒素(N)などのキャリアガスに添加する方式でも良く、目的とする殺滅処理の効果を見ながら、プロセスガス中に含まれる炭酸(CO)ガス含有率を選択することができる。炭酸(CO)ガスとして、工業用グレード(純度99.9%)のボンベガスを用いることもできる。 As the process gas, carbon dioxide (CO 2 ) gas may be supplied at a content rate of 100%, or it may be added to a carrier gas such as argon (Ar) or nitrogen (N 2 ). The carbonic acid (CO 2 ) gas content contained in the process gas can be selected while observing the effect of the above. As the carbon dioxide (CO 2 ) gas, an industrial grade (purity 99.9%) cylinder gas can also be used.

上記のような条件で生成したプラズマには、COから解離した原子状酸素(O・)や反応生成物である励起一重項酸素分子()、オゾン(O)などの活性酸素や一酸化炭素(CO)などの反応性の高いガスを多量に含んでいる。ここで、活性酸素とは文字通り活性化された酸素種の総称で非常に高い酸化力を有しており、既知の文献等に記載の気相中の原子・分子ならびに電子衝突の反応素過程を考慮すると、大気圧プラズマジェット中には、これらに加えて、大気中の水分(HO)から生成するヒドロキシラジカル(OH・)、スーパーオキシドアニオンラジカル(O ・)などが含まれ、被処理対象に作用していると考えられる。 The plasma generated under the above conditions includes active oxygen such as atomic oxygen (O.) dissociated from CO 2 , excited singlet oxygen molecules ( 1 O 2 ) and ozone (O 3 ) as reaction products. And a large amount of highly reactive gas such as carbon monoxide (CO). Here, active oxygen is literally a general term for activated oxygen species and has a very high oxidizing power, and it is a reaction process of atoms / molecules and electron collisions in the gas phase described in known literatures. considering, the atmospheric pressure plasma jet, in addition to these, hydroxy radical (OH ·) generated from atmospheric moisture (H 2 O), superoxide anion radicals (O 2 - ·) contains etc. It is thought that it is acting on the object to be processed.

本発明のプラズマジェットで処理した微生物の電子顕微鏡写真から、活性酸素種が微生物表面を化学的に酸化、エッチングすることで、殺滅(不活化)が行われるものと推察される。特に、微生物が存在する容器内のプラズマ中の活性酸素種は非常に高い密度で生成されていることが予想され、発光分光分析法による実測から、これら活性種の存在を示唆するデータが得られており、支配的な殺滅因子となっていることが考えられる。   From the electron micrograph of the microorganism treated with the plasma jet of the present invention, it is presumed that the active oxygen species are chemically oxidized and etched on the surface of the microorganism to kill (inactivate) the microorganism. In particular, it is expected that active oxygen species in plasma in a vessel in which microorganisms are present is generated at a very high density, and data suggesting the presence of these active species is obtained from measurements by emission spectroscopy. And is considered to be the dominant killing factor.

また、本発明では、事前に処理空間の雰囲気を大気(空気)からプロセスガス雰囲気に置換しておくことで、さらに殺滅の効果を高めることができる。
例えばインラインの殺滅工程において、プラスチックボトルの内壁表面を処理する場合、予めボトル内部にプロセスガス充填を行うステップを設けておき、その後、大気圧プラズマジェットで処理を行うことで、効果的なボトル内部の微生物殺滅処理を実現することができる。この際、ボトル内部には直接プラズマジェットが接触しなくても良い。例えば、5mm程度距離をおいた場所でプラズマジェットを生成させておいても、殺滅処理は可能である。
In the present invention, the effect of killing can be further enhanced by replacing the atmosphere of the processing space with the process gas atmosphere from the atmosphere (air) in advance.
For example, when processing the inner wall surface of a plastic bottle in an in-line killing process, an effective bottle is prepared by providing a process gas filling step inside the bottle in advance, and then processing with an atmospheric pressure plasma jet. Internal microbe killing process can be realized. At this time, the plasma jet may not directly contact the inside of the bottle. For example, even if a plasma jet is generated in a place with a distance of about 5 mm, the killing process is possible.

処理空間の雰囲気を炭酸(CO)ガスを用いたプロセスガスで置換すると処理効率が向上する理由としては、通常の大気中での処理の場合、空気中に含まれる酸素(O)や水分(HO)とプラズマジェットから放出される活性酸素種、特に原子状酸素(O・)とが気相中で反応する。一方で、プラズマ中で生成した原子状酸素(O・)はプロセスガスのCOと反応しても4原子分子(CO)は形成しにくいため、他のプロセスガスを使用した場合と比較して、原子状酸素(O・)の気相中での寿命が長くなり、被処理物へ到達しやすくなっているものと推察される。 The reason why the processing efficiency is improved when the atmosphere of the processing space is replaced with a process gas using carbon dioxide (CO 2 ) gas is that oxygen (O 2 ) and moisture contained in the air in the case of processing in normal air (H 2 O) reacts with active oxygen species released from the plasma jet, particularly atomic oxygen (O.), in the gas phase. On the other hand, since atomic oxygen (O.) generated in plasma hardly reacts with the process gas CO 2 to form tetraatomic molecules (CO 3 ), compared with the case where other process gases are used. Thus, it is presumed that the lifetime of atomic oxygen (O.) in the gas phase is prolonged and it is easy to reach the workpiece.

本発明における微生物が表面に存在する被処理体としては、例えば、ガラス、セラミックスなどの無機材料、ポリエチレン、ポリエチレンテレフタレート、ポリカーボネート、ポリプロピレン、ポリイミド、ポリテトラフルオロエチレン、ポリアセタールなどのプラスチックスの成形品が挙げられるが、これら材質の固体表面に限定されるものではなく、例えば、液体又は液体表面に存在する微生物の殺滅処理にも応用が可能である。
液体表面に存在する微生物を殺滅処理する場合、液体表面に予めプロセスガスを吹きつけておくことで、ガス成分が液体中に浸潤し、殺滅の効果をより高めることができる。さらに液体を対流する機構を設けておくことで、底部に存在する微生物を表面近傍に送って処理を行うことができる。
Examples of the object to be treated on the surface of which microorganisms are present include, for example, inorganic materials such as glass and ceramics, and molded articles of plastics such as polyethylene, polyethylene terephthalate, polycarbonate, polypropylene, polyimide, polytetrafluoroethylene, and polyacetal. Although it is mentioned, it is not limited to the solid surface of these materials, For example, it is applicable also to the killing process of the microorganisms which exist in a liquid or a liquid surface.
When killing the microorganisms present on the liquid surface, the gas component is infiltrated into the liquid by blowing the process gas on the liquid surface in advance, so that the killing effect can be further enhanced. Furthermore, by providing a mechanism for convection of the liquid, it is possible to carry out the treatment by sending microorganisms present at the bottom to the vicinity of the surface.

以下、本発明の実施例及び比較例を図面に基づいて説明する。なお、以下に説明する実施例及び比較例は本発明の最も好適な例であり、本発明の趣旨の範囲内で種々に改変することが可能である。   Hereinafter, examples and comparative examples of the present invention will be described with reference to the drawings. The examples and comparative examples described below are the most preferred examples of the present invention, and various modifications can be made within the scope of the gist of the present invention.

実施例1.
実施例1では、大気圧プラズマ生成手段として、図1に示すようなノズルタイプのプラズマ生成装置1を用いた。なお、株式会社プラズマコンセプト東京製ダメージフリーマルチガスプラズマジェット(登録商標)を用いてプラズマジェットを生成した。大気圧プラズマを生成するために、プラズマ生成装置1の円筒状金属管の内部の電極間に、プロセスガスとして炭酸(CO)ガスを流量5リットル/分(以下、LMと表記)で供給した。また、大気圧プラズマが生成される周囲には、プロセスガス置換用のカバー4を設けてプラズマ生成装置の噴出孔からプロセスガスを流通した状態を30秒間保持し、処理雰囲気をプロセスガス(CO)で置換した。
Example 1.
In Example 1, a nozzle type plasma generation apparatus 1 as shown in FIG. 1 was used as the atmospheric pressure plasma generation means. In addition, the plasma jet was produced | generated using the plasma concept Tokyo make damage free multi-gas plasma jet (trademark). In order to generate atmospheric pressure plasma, carbon dioxide (CO 2 ) gas was supplied as a process gas between the electrodes inside the cylindrical metal tube of the plasma generation apparatus 1 at a flow rate of 5 liters / minute (hereinafter referred to as LM). . Further, a cover 4 for replacing the process gas is provided around the area where the atmospheric pressure plasma is generated, and the state in which the process gas is circulated from the ejection hole of the plasma generating apparatus is maintained for 30 seconds, and the processing atmosphere is changed to the process gas (CO 2 ).

図1に示すように、プラズマの噴出孔2から10mm下部の位置に、枯草菌(Bacillus subtilis)芽胞を10個程度、直径5mm程度のエリアにスポットしたメンブレンフィルタ3を噴出孔2の中心軸上に配置し、所定時間プラズマジェットを照射した。 As shown in FIG. 1, a membrane filter 3 spotted in an area of about 105 Bacillus subtilis spores and a diameter of about 5 mm is located at a position 10 mm below the plasma ejection hole 2, and the central axis of the ejection hole 2. It was placed above and irradiated with a plasma jet for a predetermined time.

プラズマジェットの照射処理後、菌スポットされたメンブレンフィルタ3を滅菌水中に投入、十分に菌を溶出させた後に滅菌水で段階希釈し、寒天培地に塗沫後、36℃、24時間インキュベータ内で培養し、寒天培地上に形成されたコロニー数を計数、殺菌特性を評価した。   After the plasma jet irradiation treatment, the membrane filter 3 on which the bacteria are spotted is put into sterilized water, the bacteria are sufficiently eluted, serially diluted with sterilized water, smeared on an agar medium, and then in an incubator at 36 ° C. for 24 hours. After culturing, the number of colonies formed on the agar medium was counted, and the bactericidal properties were evaluated.

実施例2.
実施例2では、プラズマ生成装置1の円筒状金属管の内部の電極間に、プロセスガスとしてアルゴン(Ar)ガスと炭酸(CO)ガスを総流量5LM、流量比9:1で混合させて供給すること以外は、実施例1と同様な構成及び条件で処理をして殺菌特性を評価した。
Example 2
In Example 2, argon (Ar) gas and carbonic acid (CO 2 ) gas as a process gas are mixed at a total flow rate of 5 LM and a flow rate ratio of 9: 1 between the electrodes inside the cylindrical metal tube of the plasma generator 1. Except supplying, it processed by the structure and conditions similar to Example 1, and evaluated bactericidal characteristics.

比較例1.
比較例1では、プラズマ生成装置1の円筒状金属管の内部の電極間に、プロセスガスとして空気(AIR)ガスを流量5LMで供給する以外は、実施例1と同様な構成及び条件で処理をして殺菌特性を評価した。
Comparative Example 1
In Comparative Example 1, treatment is performed under the same configuration and conditions as in Example 1 except that air (AIR) gas is supplied as a process gas at a flow rate of 5 LM between the electrodes inside the cylindrical metal tube of the plasma generation apparatus 1. The bactericidal properties were evaluated.

実施例3.
実施例3では、実施例1と同様のプラズマ生成装置11を用い、大気圧プラズマが生成される周囲には、プロセスガス置換用のカバー14を設けてガス流通した状態を30秒間保持し、予め処理雰囲気をプロセスガスで置換した。
図2に示すように、芽胞形成菌(Geobacillus stearothermophilius)芽胞及び枯草菌(Bacillus subtilis)芽胞をそれぞれ事前に寒天培地13上に所定濃度で塗沫した試験サンプルを用意し、大気圧プラズマを生成するために、プラズマ生成装置11の円筒状金属管の内部に、プロセスガスとしてアルゴン(Ar)ガスと炭酸(CO)ガスを総流量5LM、流量比9:1で混合させて供給して、所定時間プラズマジェットを照射した。
Example 3
In the third embodiment, the same plasma generation apparatus 11 as in the first embodiment is used, and a process gas replacement cover 14 is provided around the atmosphere where atmospheric pressure plasma is generated, and the gas flow state is maintained for 30 seconds. The treatment atmosphere was replaced with process gas.
As shown in FIG. 2, a test sample is prepared in which spore-forming bacteria (Geobacillus stearothermophilus) spores and Bacillus subtilis spores are smeared on the agar medium 13 at a predetermined concentration in advance to generate atmospheric pressure plasma. Therefore, argon (Ar) gas and carbonic acid (CO 2 ) gas are mixed and supplied as a process gas at a total flow rate of 5 LM and a flow rate ratio of 9: 1 into the cylindrical metal tube of the plasma generation device 11. Time plasma jet was irradiated.

プラズマジェットの照射処理後の寒天培地をそのまま所定温度のインキュベータで培養、培地上に発生したコロニーを目視で観察、写真撮影し、殺菌特性を評価した。   The agar medium after the plasma jet irradiation treatment was cultured as it was in an incubator at a predetermined temperature, and colonies generated on the medium were visually observed and photographed to evaluate the bactericidal properties.

比較例2.
比較例2では、プラズマ生成装置11の円筒状金属管の内部に、プロセスガスとしてアルゴン(Ar)ガスと酸素(O)ガスを総流量5LM、流量比9:1で混合させて供給すること以外は、実施例3と同様な構成及び条件で処理をして殺菌特性を評価した。
Comparative Example 2
In Comparative Example 2, argon (Ar) gas and oxygen (O 2 ) gas are mixed and supplied as a process gas at a total flow rate of 5 LM and a flow rate ratio of 9: 1 into the cylindrical metal tube of the plasma generator 11. Except for the above, the treatment and conditions were the same as in Example 3, and the bactericidal properties were evaluated.

実施例4.
実施例4では、実施例3と同様な構成及び条件でプラズマジェットの照射処理をした。プラズマジェットの照射時間は5分間として、プラズマジェットの照射処理前後の枯草菌(B.subtilis)芽胞及び芽胞形成菌(G.stearo.)芽胞をそれぞれ走査型電子顕微鏡(JSM−6510、日本電子)で観察した。
Example 4
In Example 4, plasma jet irradiation treatment was performed under the same configuration and conditions as in Example 3. The irradiation time of the plasma jet is 5 minutes, and B. subtilis spores and spore-forming bacteria (G. stearo.) Spores before and after the plasma jet irradiation treatment are respectively scanned by an electron microscope (JSM-6510, JEOL). Observed at.

実施例5.
実施例5では、大気圧プラズマが生成される周囲をプロセスガス置換用のカバーで囲み、事前に処理空間の雰囲気を大気(空気)からプロセスガス雰囲気に置換する場合と、カバーで囲まずにプロセスガス雰囲気に置換しない場合とで、プラズマジェットの照射処理の空間中のオゾン(O)及び一酸化炭素(CO)の生成濃度を北川式ガス検知管で測定した。
Example 5 FIG.
In the fifth embodiment, the atmosphere in which atmospheric pressure plasma is generated is surrounded by a process gas replacement cover, and the atmosphere of the processing space is replaced in advance from the atmosphere (air) to the process gas atmosphere, and the process is not surrounded by the cover. In the case where the gas atmosphere was not replaced, the production concentrations of ozone (O 3 ) and carbon monoxide (CO) in the space of the plasma jet irradiation treatment were measured with a Kitagawa gas detector tube.

実施例6.
実施例6では、プロセスガスをアルゴン(Ar)ガスと炭酸(CO)ガス、総流量5LMで、アルゴン(Ar)ガスに対する炭酸(CO)ガスの添加流量比を0−50%に変化させ、照射時間3分間一定とした以外は実施例2と同様な処理、評価を行った。
Example 6
In Example 6, the process gas argon (Ar) gas and carbon dioxide (CO 2) gas, a total flow rate 5 lm, carbonate to the argon (Ar) gas (CO 2) by changing the addition flow rate ratio of the gas to 0-50% The same treatment and evaluation as in Example 2 were performed except that the irradiation time was fixed for 3 minutes.

実施例1における、大気圧プラズマ(COガス)による枯草菌(B.subtilis)芽胞の処理結果を図3に示す。図3の縦軸及び横軸は、枯草菌(B.subtilis)芽胞が残存する割合及びプラズマジェットの照射時間をそれぞれ表す。 FIG. 3 shows the results of treatment of B. subtilis spores with atmospheric pressure plasma (CO 2 gas) in Example 1. The vertical and horizontal axes in FIG. 3 represent the ratio of B. subtilis spores remaining and the plasma jet irradiation time, respectively.

実施例2における、大気圧プラズマ(Ar+COガス)による枯草菌(B.subtilis)芽胞の処理結果を図4に示す。図4の縦軸及び横軸は、枯草菌(B.subtilis)芽胞が残存する割合及びプラズマジェットの照射時間をそれぞれ表す。 FIG. 4 shows the results of treatment of B. subtilis spores with atmospheric pressure plasma (Ar + CO 2 gas) in Example 2. The vertical axis and the horizontal axis in FIG. 4 represent the ratio of remaining B. subtilis spores and the plasma jet irradiation time, respectively.

比較例1における、大気圧プラズマ(AIRガス)による枯草菌(B.subtilis)芽胞の処理結果を図5に示す。図5の縦軸及び横軸は、枯草菌(B.subtilis)芽胞が残存する割合及びプラズマジェットの照射時間をそれぞれ表す。   FIG. 5 shows the results of treatment of B. subtilis spores with atmospheric pressure plasma (AIR gas) in Comparative Example 1. The vertical axis and the horizontal axis in FIG. 5 represent the ratio of remaining B. subtilis spores and the plasma jet irradiation time, respectively.

図3から図5に示される結果から、炭酸(CO)ガスを添加した大気圧プラズマによる処理ではリニアに菌桁数が減少し、菌の殺滅効果が認められた。一方、空気(AIR)ガスでは、菌桁数にほとんど減少がなく、殺滅効果は認められなかった。 From the results shown in FIG. 3 to FIG. 5, the treatment with atmospheric pressure plasma to which carbon dioxide (CO 2 ) gas was added linearly decreased the number of fungi, and a fungicidal effect was recognized. On the other hand, with air (AIR) gas, there was almost no decrease in the number of germs, and no killing effect was observed.

実施例3における、大気圧プラズマ(Ar+COガス)の照射処理後の寒天培地写真を図6に示す。また、比較例2における、大気圧プラズマ(Ar+Oガス)の照射処理後の寒天培地写真を図7に示す。図6及び図7において、左からプラズマジェットの照射時間が10秒間、1分間、5分間をそれぞれ表す。 FIG. 6 shows a photograph of an agar medium after irradiation treatment with atmospheric pressure plasma (Ar + CO 2 gas) in Example 3. Also, it is shown in Comparative Example 2, the agar photograph after irradiation of atmospheric pressure plasma (Ar + O 2 gas) in FIG. 6 and 7, the plasma jet irradiation time from the left represents 10 seconds, 1 minute, and 5 minutes, respectively.

図6に示される結果から、何れの指標菌においても、COガスを添加した大気圧プラズマでは寒天培地中心から放射状にコロニー形成の抑制が認められた。一方、図7に示される結果から、Oを添加した大気圧プラズマでは、プラズマジェットの照射処理後の顕著な変化は認められなかった。 From the results shown in FIG. 6, in any of the indicator bacteria, suppression of colony formation was observed in a radial manner from the center of the agar medium in the atmospheric pressure plasma to which CO 2 gas was added. On the other hand, from the results shown in FIG. 7, in the atmospheric pressure plasma to which O 2 was added, no significant change was observed after the plasma jet irradiation treatment.

実施例4の電子顕微鏡観察像を図8に示す。図8に示される結果から、何れの指標菌でも、プラズマジェットの照射後、芽胞体(spore)が収縮又は互いに癒着したような物理形態の変化が認められた。   An electron microscope observation image of Example 4 is shown in FIG. From the results shown in FIG. 8, in any of the indicator bacteria, a change in physical form was observed such that the spores contracted or adhered to each other after the plasma jet irradiation.

実施例5における、プラズマジェットの照射処理の空間中のオゾン(O)及び一酸化炭素(CO)の生成濃度の測定結果を図9に示す。大気圧プラズマが生成される周囲をプロセスガス置換用のカバーで囲み、事前に処理空間の雰囲気を大気(空気)からプロセスガス雰囲気に置換する場合、オゾン(O)35ppm、一酸化炭素(CO)50ppm超であった。一方、大気圧プラズマが生成される周囲をプロセスガス置換用のカバーで囲まずに、事前に処理空間の雰囲気を大気(空気)からプロセスガス雰囲気に置換しない場合、オゾン(O)生成濃度は2.5ppm、一酸化炭素(CO)生成濃度は3ppmであった。 FIG. 9 shows measurement results of ozone (O 3 ) and carbon monoxide (CO) production concentrations in the plasma jet irradiation space in Example 5. When the atmosphere where atmospheric pressure plasma is generated is surrounded by a process gas replacement cover and the atmosphere of the processing space is replaced from the atmosphere (air) to the process gas atmosphere in advance, ozone (O 3 ) 35 ppm, carbon monoxide (CO ) More than 50 ppm. On the other hand, if the atmosphere in the processing space is not previously replaced with the process gas atmosphere from the atmosphere (air) without surrounding the atmosphere where the atmospheric pressure plasma is generated with the process gas replacement cover, the ozone (O 3 ) generation concentration is The production concentration of 2.5 ppm and carbon monoxide (CO) was 3 ppm.

実施例6における、処理の結果を図10に示す。炭酸(CO)ガス含有率が5%以上であればプラズマジェットを生成でき、殺滅効果は十分発揮できていることを確認した。
なお、ここでは炭酸(CO)ガス含有率が50%までの実施例を例示したが、50−100%の範囲でも同様な殺滅効果が得られており、本発明の有効範囲として作用することを確認している。
The result of the processing in Example 6 is shown in FIG. It was confirmed that if the carbon dioxide (CO 2 ) gas content was 5% or more, a plasma jet could be generated and the killing effect could be sufficiently exhibited.
Here, although carbonate (CO 2) gas content exemplified embodiments up to 50% is obtained similar killing effect in the range of 50-100%, acts as a scope of the present invention I have confirmed that.

ここでは実施例を示していないが、大気圧プラズマが生成される周囲をプロセスガス置換用のカバーで囲み、事前に処理空間の雰囲気を大気(空気)からプロセスガス雰囲気に置換する場合に、顕著に殺滅効果の増加が認められた。大気圧プラズマが生成される周囲をプロセスガス置換用のカバーで囲まずに、事前に処理空間の雰囲気を大気(空気)からプロセスガス雰囲気に置換しない場合、周囲の大気に含まれる酸素(O)や水分(HO)によって原子状酸素(O・)がクエンチング(減衰)されていることが考えられる。 Although an example is not shown here, it is remarkable when the atmosphere in which atmospheric pressure plasma is generated is surrounded by a process gas replacement cover and the atmosphere of the processing space is replaced in advance from the atmosphere (air) to the process gas atmosphere. Increased the killing effect. When the atmosphere in which the atmospheric pressure plasma is generated is not surrounded by the process gas replacement cover and the atmosphere in the processing space is not previously replaced with the process gas atmosphere from the atmosphere (air), oxygen (O 2) contained in the surrounding atmosphere ) And moisture (H 2 O), atomic oxygen (O.) is considered to be quenched (decayed).

図3から図10に示される結果から、プラズマ中の電界で加速された電子がCOガスに衝突してガス分子を解離し、多量の原子状酸素(O・)などの活性酸素種がクエンチング(減衰)されることなく生成され、これらがプラズマ源外部へ放出、支配的因子となって微生物表面の細胞壁をエッチングすることによって、微生物が殺滅(不活化)に至っていると考えられる。 From the results shown in FIGS. 3 to 10, electrons accelerated by the electric field in the plasma collide with the CO 2 gas to dissociate the gas molecules, and a large amount of active oxygen species such as atomic oxygen (O.) It is considered that microorganisms have been killed (inactivated) by being generated without being chilled (attenuated), released to the outside of the plasma source, and etching the cell wall on the surface of the microorganism as a dominant factor.

これらの検証結果から、本発明の大気圧プラズマによる微生物の殺滅装置及び方法によって、微生物が効果的に殺滅できることが明らかとなった。なお、本発明では、プラズマジェット径が数mm程度と直接的な処理の面積が狭いプラズマ生成源による処理の実施例を示したが、プラズマ噴出孔の径を拡大、ガス流量及び投入電力などの増加により、この処理面積を容易に拡大することができる。また、処理時間の短縮を図ることも可能である。   From these verification results, it has become clear that microorganisms can be effectively killed by the microorganism killing apparatus and method using atmospheric pressure plasma of the present invention. In the present invention, an example of processing using a plasma generation source having a plasma processing diameter of a few millimeters and a small direct processing area has been shown. However, the diameter of the plasma injection hole is enlarged, the gas flow rate, input power, etc. This increase makes it possible to easily expand this processing area. It is also possible to reduce the processing time.

また、本発明の実施例には、プラズマを生成せずに、まずプラズマノズルから吹き出すプロセスガスを使って、処理雰囲気を置換してからその後プラズマを生成し、処理を行う方法を例示したが、この限りではなく、例えばガス置換手段(ガス供給手段)は、ガス置換用のカバー部などに設けておき、ガス置換後に殺滅処理を実施してもよい。このような構成とすることで、例えばインラインで搬送されてくるプラスチックなどの容器内面に付着した微生物の殺滅を確実に実施することができる。
なお、本発明のプラズマ殺滅装置は、容器内にプラズマを導入する大気圧プラズマ生成手段を備えていれば、第1実施形態〜第6実施形態に限定されるものではなく、本発明の特徴を逸脱しない範囲において種々の変更が可能であり、例えば、プラズマ源は炭酸ガスの含有率が5%以上のガスでプラズマ化できるものであれば何れの構成でもよい。
Further, in the embodiment of the present invention, a method of generating a plasma by using a process gas blown from a plasma nozzle without first generating a plasma, replacing a processing atmosphere, and then performing a process is illustrated. For example, the gas replacement means (gas supply means) may be provided in a gas replacement cover portion or the like, and the killing process may be performed after the gas replacement. By adopting such a configuration, for example, microorganisms attached to the inner surface of a container such as plastic conveyed in-line can be surely killed.
Note that the plasma killing apparatus of the present invention is not limited to the first to sixth embodiments as long as it includes an atmospheric pressure plasma generating means for introducing plasma into the container. Various modifications are possible without departing from the scope of the invention. For example, the plasma source may have any configuration as long as it can be converted to plasma with a gas having a carbon dioxide content of 5% or more.

1、11.プラズマ生成装置
2、12.噴出孔
3.メンブレンフィルタ
13.寒天培地
4、14.カバー
1,11. Plasma generator 2, 12. 2. Ejection hole Membrane filter 13. Agar medium 4,14. cover

Claims (4)

容器内にプラズマを導入する大気圧プラズマ生成手段を備えた微生物殺滅装置であって、
前記大気圧プラズマ生成手段が、COの含有率が5%以上のガスをプロセスガスとしてプラズマを生成するように構成された微生物殺滅装置。
A microbe killing device provided with an atmospheric pressure plasma generating means for introducing plasma into a container,
The microorganism killing apparatus, wherein the atmospheric pressure plasma generation means is configured to generate plasma using a gas having a CO 2 content of 5% or more as a process gas.
請求項1に記載の微生物殺滅装置であって、さらに、前記容器内の雰囲気を、COを含むプロセスガスで置換するガス置換手段を備えた微生物殺滅装置。 A microorganism killing apparatus according to claim 1, further the atmosphere of the container, microbial killing device having a gas replacement means for replacing a process gas comprising CO 2. 容器内にプラズマを導入する大気圧プラズマ生成手段による微生物殺滅方法であって、
前記大気圧プラズマ生成手段が、COの含有率が5%以上のガスをプロセスガスとしてプラズマを生成するステップを備える微生物殺滅方法。
A method for killing microorganisms by means of atmospheric pressure plasma generation means for introducing plasma into a container,
A method for killing microorganisms, wherein the atmospheric pressure plasma generation means includes a step of generating plasma using a gas having a CO 2 content of 5% or more as a process gas.
請求項3に記載の微生物殺滅方法であって、前記容器内の雰囲気を、COを含むプロセスガスで置換するステップをさらに備える微生物殺滅方法。 A microorganism killing method of claim 3, the atmosphere in the container, further comprising a microorganism killing method the step of replacing a process gas comprising CO 2.
JP2011240781A 2011-11-02 2011-11-02 Device and method of killing microorganisms by atmospheric pressure plasma Pending JP2013094468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011240781A JP2013094468A (en) 2011-11-02 2011-11-02 Device and method of killing microorganisms by atmospheric pressure plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011240781A JP2013094468A (en) 2011-11-02 2011-11-02 Device and method of killing microorganisms by atmospheric pressure plasma

Publications (1)

Publication Number Publication Date
JP2013094468A true JP2013094468A (en) 2013-05-20

Family

ID=48617053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011240781A Pending JP2013094468A (en) 2011-11-02 2011-11-02 Device and method of killing microorganisms by atmospheric pressure plasma

Country Status (1)

Country Link
JP (1) JP2013094468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095802A1 (en) 2019-11-14 2021-05-20 国立研究開発法人農業・食品産業技術総合研究機構 Method for introducing genome editing enzyme into plant cell using plasma
CN113365405A (en) * 2021-06-02 2021-09-07 西南大学 Atmospheric pressure plasma jet sterilization and disinfection device and method
EP3363471B1 (en) * 2015-10-13 2022-11-23 Suntory Holdings Limited Sterilization device and method with the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507990A (en) * 1995-06-02 1999-07-13 ザ・ユニヴァーシティ・オヴ・テネシー・リサーチ・コーポレイション Surface cleaning apparatus and cleaning method using glow discharge plasma at atmospheric pressure
WO2002078749A2 (en) * 2001-03-28 2002-10-10 The Regents Of The University Of California Atmospheric pressure rf plasma source using ambient air and complex molecular gases
JP2005278809A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Sterilizer utilizing high voltage
JP2006176211A (en) * 2004-11-26 2006-07-06 Dainippon Printing Co Ltd Sterilizing method and sterilizing apparatus
WO2011055113A1 (en) * 2009-11-03 2011-05-12 The University Court Of The University Of Glasgow Plasma generation and use of plasma generation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507990A (en) * 1995-06-02 1999-07-13 ザ・ユニヴァーシティ・オヴ・テネシー・リサーチ・コーポレイション Surface cleaning apparatus and cleaning method using glow discharge plasma at atmospheric pressure
WO2002078749A2 (en) * 2001-03-28 2002-10-10 The Regents Of The University Of California Atmospheric pressure rf plasma source using ambient air and complex molecular gases
JP2005278809A (en) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd Sterilizer utilizing high voltage
JP2006176211A (en) * 2004-11-26 2006-07-06 Dainippon Printing Co Ltd Sterilizing method and sterilizing apparatus
WO2011055113A1 (en) * 2009-11-03 2011-05-12 The University Court Of The University Of Glasgow Plasma generation and use of plasma generation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3363471B1 (en) * 2015-10-13 2022-11-23 Suntory Holdings Limited Sterilization device and method with the same
WO2021095802A1 (en) 2019-11-14 2021-05-20 国立研究開発法人農業・食品産業技術総合研究機構 Method for introducing genome editing enzyme into plant cell using plasma
EP4059341A1 (en) 2019-11-14 2022-09-21 National Agriculture And Food Research Organization Method for introducing genome editing enzyme into plant cell using plasma
CN113365405A (en) * 2021-06-02 2021-09-07 西南大学 Atmospheric pressure plasma jet sterilization and disinfection device and method

Similar Documents

Publication Publication Date Title
US8871146B2 (en) Sterilization method and apparatus
Shintani et al. Gas plasma sterilization of microorganisms and mechanisms of action
Ehlbeck et al. Low temperature atmospheric pressure plasma sources for microbial decontamination
Kwang-Hyun et al. Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen
Moreau et al. Non-thermal plasma technologies: new tools for bio-decontamination
JP2780228B2 (en) Plasma sterilization method and apparatus by pulsed sterilizing agent treatment
Ito et al. Plasma agriculture
Muranyi et al. Influence of relative gas humidity on the inactivation efficiency of a low temperature gas plasma
JP2013537433A (en) Plasma generated gas sterilization method
JP6704448B2 (en) Sterilizer
Abuzairi et al. Investigation on physicochemical properties of plasma-activated water for the application of medical device sterilization
Patil et al. Principles of nonthermal plasma decontamination
JP2013094468A (en) Device and method of killing microorganisms by atmospheric pressure plasma
US20160228592A1 (en) Plasma vapor chamber and antimicrobial applications thereof
Kordová et al. Inactivation of microbial food contamination of plastic cups using nonthermal plasma and hydrogen peroxide
Uhm et al. Influence of reactive oxygen species on the sterilization of microbes
Takemura et al. Inactivation treatment of bacterial spores contaminated spices by atmospheric plasma jet
US20210290803A1 (en) Use of gas mixtures comprising oxygen for the production of ozone
Hauser et al. Sterilization of heat-sensitive silicone implant material by low-pressure gas plasma
Kawakami et al. Bactericidal effects of low-temperature atmospheric-pressure air plasma jets with no damage to plant nutrient solutions
EP2637937A1 (en) Methods for plasma sterilization using packaging material
JP6843578B2 (en) Chamber sterilizer
JP6820714B2 (en) Sterilizer
JP6820713B2 (en) Sterilizer
CN110251703A (en) The sterilizing methods of hydrogen peroxide low-temperature plasma sterilizer and application

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105