JP2004356507A - Light emitting diode with photocatalyst and its manufacturing method - Google Patents

Light emitting diode with photocatalyst and its manufacturing method Download PDF

Info

Publication number
JP2004356507A
JP2004356507A JP2003154414A JP2003154414A JP2004356507A JP 2004356507 A JP2004356507 A JP 2004356507A JP 2003154414 A JP2003154414 A JP 2003154414A JP 2003154414 A JP2003154414 A JP 2003154414A JP 2004356507 A JP2004356507 A JP 2004356507A
Authority
JP
Japan
Prior art keywords
photocatalyst
fiber
envelope
light
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003154414A
Other languages
Japanese (ja)
Inventor
Akihiro Kato
陽弘 加藤
Akio Mukai
昭雄 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP2003154414A priority Critical patent/JP2004356507A/en
Publication of JP2004356507A publication Critical patent/JP2004356507A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Led Device Packages (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode with a photocatalyst having a large surface area of the photocatalyst arranged on an external surface of an envelope with its handling and manufacturing easy. <P>SOLUTION: The method for manufacturing the light emitting diode 10 with the photocatalyst comprises the steps of providing an approximately funnelformed recess with its hole size graually enlarged in a direction from its bottom to an upper part to a first lead frame 12 on which an LED chip is mounted, forming a reflector 14 with the inner surface of the recess part as a reflecting surface, connecting and fixing the LED chip 16 for emitting a light of a wavelength having a photocatalyst activating function by die bonding on the bottom of the reflector 14, and covering and sealing the chip 16 by a translucent envelope 24. Further, on the outside surface of the envelope 24, and on the surface of fibers 28 forming a nonwoven fabric 26, a photocatalyst 30 comprising an titanium oxide (TiO<SB>2</SB>) is adhered to plate a carrying photocatalytic sheet 32. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、発光ダイオード(LED)を構成する外囲器の外表面に光触媒を配置して成る光触媒付発光ダイオードに係り、特に、外囲器の外表面に配置する光触媒の表面積が大きいと共にその取扱いが容易であり、尚且つ製造容易な光触媒付発光ダイオード及びその製造方法に関する。
【0002】
【従来の技術】
酸化チタン(TiO)等の光触媒は、紫外線等の光の照射を受けると活性化して強力な酸化還元作用を生じ、窒素酸化物(NO)、硫黄酸化物(SO)等の有害化合物や汚濁物等を効果的に分解する作用を発揮するものであることから、この光触媒を外囲器の外表面に配置して成る光触媒付発光ダイオードが従来から用いられている。
ところで、上記光触媒による有害化合物や汚濁物等の分解は、これら有害化合物や汚濁物等が光触媒に接触することによって生じる作用である。従って、光触媒による空気や水の浄化能力を向上させるためには、光触媒の表面積をできるだけ拡大することが望ましい。
【0003】
そこで、本出願人は、先に、外囲器の外表面に、表面を光触媒で被覆された多数の繊維状体を立設状態で配置して成る光触媒付発光ダイオードを提案した(特願2003−82795号)。
図10及び図11に示すように、この光触媒付発光ダイオード70は、発光ダイオードチップ搭載用の第1のリードフレーム71の先端部71aに、その底面から上方に向かって孔径が徐々に拡大する略漏斗形状の凹部を設けると共に該凹部内面を反射面と成してリフレクタ72を形成し、該リフレクタ72の底面にLEDチップ73をAgペースト等を介してダイボンドすることにより、上記第1のリードフレーム71と、LEDチップ73底面の一方の電極(図示せず)とを電気的に接続している。また、第2のリードフレーム74の先端部74aと、上記LEDチップ73上面の他方の電極(図示せず)とをボンディングワイヤ75を介して電気的に接続して成る。
上記LEDチップ73、第1のリードフレーム71の先端部71a及び端子部71bの上端、第2のリードフレーム74の先端部74a及び端子部74bの上端は、先端に凸レンズ部76を有する透光性の外囲器77によって被覆・封止されている。
【0004】
また、上記外囲器77の外表面には、酸化チタン(TiO)等より成る光触媒78で被覆された多数の細長い繊維状体79が、接着剤80を介して、上記外囲器77の外表面に対して略垂直に立設状態で被着されている(図11)。この繊維状体79は、ガラス繊維や樹脂繊維等の繊維81の表面に光触媒78をコーティングして構成されているものである(図12及び図13)。
【0005】
上記光触媒付発光ダイオード70にあっては、第1のリードフレーム71及び第2のリードフレーム74を介してLEDチップ73に電圧が印加されると、LEDチップ73が発光して光触媒活性化作用を有する波長の光(紫外線や可視光)が放射され、この光が外囲器77外表面の光触媒78を活性化することにより、空気や水の浄化を行うことができるのである。
【0006】
而して、上記光触媒付発光ダイオード70にあっては、外囲器77の外表面に、光触媒78で被覆された多数の繊維状体79を、外囲器77外表面に対して略垂直に立設状態で被着したことから、光触媒78が配置される外囲器77の外表面の表面積が、被着された多数の繊維状体79の表面積分増大することとなり、この結果、外囲器77の外表面に配置される光触媒78の表面積を飛躍的に拡大することができる。
【0007】
上記光触媒付発光ダイオード70において、外囲器77外表面への繊維状体79の被着は、静電植毛法を用いて行うことができる。これは、繊維状体79を、静電気を利用して立毛させた状態で、接着剤80の塗布された外囲器77の外表面に植毛するものである。
【0008】
【発明が解決しようとする課題】
上記光触媒付発光ダイオード70は、外囲器77の外表面に、光触媒78で被覆された多数の細長い繊維状体79を、外囲器77外表面に対して略垂直に立設状態で被着していたが、外囲器77外表面の繊維状体79に触れる等して外力が加えられると、繊維状体79が比較的簡単に剥離してしまうため、その取扱いが不便であった。
また、上記光触媒付発光ダイオード70は、静電植毛法を用いて、外囲器77外表面への繊維状体79の被着を行っていたことから、繊維状体79や外囲器77外表面を帯電させるための設備や工程が必要であり、その製造が煩雑であった。
【0009】
本発明は、上記従来の問題点に鑑みてなされたものであり、その目的とするところは、外囲器の外表面に配置する光触媒の表面積が大きいと共にその取扱いが容易であり、尚且つ製造容易な光触媒付発光ダイオード及びその製造方法の実現にある。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る光触媒付発光ダイオードは、光触媒活性化作用を有する波長の光を放射するLEDチップと、該LEDチップを封止する透光性の外囲器とを備え、上記外囲器の外表面に、不織布を構成する繊維に光触媒を担持させた光触媒シートを被覆したことを特徴とする。
【0011】
本発明の光触媒付発光ダイオードにあっては、外囲器の外表面に、単位体積当たりの繊維の表面積が極めて大きい不織布を構成する繊維に光触媒を担持せしめて成る光触媒シートを被覆したことから、外囲器の外表面に配置する光触媒の表面積を大きく確保することができる。
また、本発明の光触媒付発光ダイオードにあっては、不織布を構成する繊維に光触媒を担持せしめて成る光触媒シートを用い、該光触媒シートを外囲器の外表面に被覆したことから、外囲器77の外表面に、剥離し易い光触媒78で被覆された繊維状体79を被着した従来の光触媒付発光ダイオード70に比べて、その取扱いが容易である。
【0012】
多数の繊維の集合体より成る紐を略格子状に織り込むと共に、上記紐の表面に光触媒を担持させて形成した織布を、上記光触媒シートの外面に接合しても良い。この場合、不織布を構成する繊維に光触媒を担持せしめて成る光触媒シートの強度を向上させることができる。
【0013】
また、本発明に係る光触媒付発光ダイオードの製造方法は、光触媒活性化作用を有する波長の光を放射するLEDチップと、該LEDチップを封止する透光性の外囲器とを備え、上記外囲器の外表面に、不織布を構成する繊維に光触媒を担持させた光触媒シートを被覆して成る光触媒付発光ダイオードの製造方法であって、高融点材料より成る繊維を低融点材料より成る繊維で被覆して形成した複合繊維より成るシート状の集積体を形成する工程と、上記複合繊維より成るシート状の集積体を、外囲器の外表面に被覆する工程と、上記複合繊維を構成する低融点材料より成る繊維の融点より高く、且つ、高融点材料より成る繊維の融点より低い温度で、上記複合繊維の集積体を加熱して低融点材料より成る繊維のみを溶融させ、高融点材料より成る繊維の交差部分を、溶融した低融点材料より成る繊維を介して接着することにより、上記不織布を形成すると共に、粒子状の光触媒を、溶融した低融点材料より成る繊維を介して、不織布を構成する繊維の表面に接着して上記光触媒シートを形成し、更に、光触媒シートを、溶融した低融点材料より成る繊維を介して、外囲器の外表面に接着する工程と、を備えたことを特徴とする。
本発明の光触媒付発光ダイオードの製造方法にあっては、高融点材料より成る繊維を低融点材料より成る繊維で被覆した複合繊維を用い、低融点材料より成る繊維のみを溶融させて接着剤として機能させることにより、不織布の形成、不織布を構成する繊維に光触媒を担持させた光触媒シートの形成、光触媒シートと外囲器の外表面との接着を略同時に行うことができるので、極めて製造容易である。
【0014】
【発明の実施の形態】
以下、図面に基づき、本発明に係る光触媒付発光ダイオードの実施形態を説明する。
図1は、本発明に係る第1の光触媒付発光ダイオード10を示すものであり、該光触媒付発光ダイオード10は、発光ダイオードチップ搭載用の第1のリードフレーム12の先端部12aに、その底面から上方に向かって孔径が徐々に拡大する略漏斗形状の凹部を設けると共に該凹部内面を反射面と成してリフレクタ14を形成し、該リフレクタ14の底面にLEDチップ16をAgペースト等を介してダイボンドすることにより、上記第1のリードフレーム12と、LEDチップ16底面の一方の電極(図示せず)とを電気的に接続している。また、第2のリードフレーム18の先端部18aと、上記LEDチップ16上面の他方の電極(図示せず)とをボンディングワイヤ20を介して電気的に接続して成る。
上記LEDチップ16は、窒化ガリウム系半導体結晶等で構成されており、光触媒活性化作用を有する波長の紫外線や可視光等の光を放射するものである。
尚、上記第1のリードフレーム12、第2のリードフレーム18は、銅、銅亜鉛合金、鉄ニッケル合金等により構成される。
【0015】
また、上記LEDチップ16、第1のリードフレーム12の先端部12a及び端子部12bの上端、第2のリードフレーム18の先端部18a及び端子部18bの上端は、エポキシ樹脂、シリコン樹脂、アクリル樹脂等より成り、先端に凸レンズ部22を有すると共に光触媒活性化作用を有する波長の紫外線や可視光等の光を透過させる透光性の外囲器24によって被覆・封止されている。
さらに、第1のリードフレーム12の端子部12b及び第2のリードフレーム18の端子部18bの下端は、上記外囲器24の下端部を貫通して外囲器24外部へと導出されている。
【0016】
また、上記外囲器24の外表面には、図2乃至図5に示すように、不織布26を構成する繊維28の表面に、酸化チタン(TiO)より成る光触媒30を被着・担持させた光触媒シート32が被覆されている。
尚、光触媒30は、図5に示したように、繊維28の表面に緻密な膜状態で被着・担持される場合の他、繊維28表面の光触媒30の粒子間に微小な隙間が存在する状態で粗く被着・担持される場合もある。
上記光触媒30は、TiO、ZnO、SrTiO、BaTiO、Fe等、光触媒作用を有する金属酸化物で構成されるが、アナターゼ型の酸化チタンが、光触媒活性に優れており最も好適に使用できる。
また、上記光触媒30は、紫外線の照射を受けて活性化する光触媒だけでなく、可視光の照射を受けて活性化する可視光型光触媒を用いることもできる。
【0017】
不織布26は、多数の繊維28が立体的に絡み合って形成されるものであり、繊維28間に多数の空隙34(図4参照)が形成されるため通気性、通水性に優れており、また、多数の繊維28が立体的に絡み合っているため、単位体積当たりの繊維28の表面積が極めて大きいものである。
尚、不織布26を構成する繊維28の繊維密度や、不織布の厚さ、目付等を適宜調整することにより、不織布26を構成する繊維28の総表面積を任意に増減可能である。
【0018】
上記繊維28は、ナイロン、ポリエステル、アクリル、ポリプロピレン等の樹脂繊維、ガラス繊維、金属繊維等の短繊維から成り、その直径は5〜20μm、長さは0.5〜20mm程度である。
尚、長さが50〜100mm程度の長繊維から成る繊維28を用いることも勿論可能である。
【0019】
以下において、外囲器24の外表面に上記光触媒シート32を被覆して、上記第1の光触媒付発光ダイオード10を製造する方法について説明する。
先ず、ポリプロピレン等の高融点材料より成る繊維28を、ポリエチレン等の低融点材料より成る繊維36で被覆した所定長さの複合繊維38(図6参照)を多数準備し、カード法やエアレイ法等を用いて、これら多数の複合繊維38より成るシート状の集積体(ウェブ)を形成する。
【0020】
次に、上記シート状の集積体を、外囲器24の外表面に被覆し、この状態で、上記複合繊維38を構成する低融点材料より成る繊維36の融点より高く、且つ、高融点材料より成る繊維28の融点より低い温度で、複合繊維38より成る上記シート状の集積体を加熱して低融点材料より成る繊維36のみを溶融させると共に、粒子状の光触媒30を上記集積体に吹き付ける。
【0021】
この結果、高融点材料より成る繊維28の交差部分が、溶融した低融点材料より成る繊維36を介して接着することにより、不織布26が形成されると共に、粒子状の光触媒30が、溶融した低融点材料より成る繊維36を介して、不織布26を構成する繊維28の表面に接着・担持されて上記光触媒シート32が形成され、更に、光触媒シート32が、溶融した低融点材料より成る繊維36を介して、外囲器24の外表面に接着して上記第1の光触媒付発光ダイオード10が完成する。
【0022】
上記製造方法にあっては、高融点材料より成る繊維28を低融点材料より成る繊維36で被覆した複合繊維38を用い、低融点材料より成る繊維36のみを溶融させて接着剤として機能させることにより、不織布26の形成、不織布26を構成する繊維28の表面へ光触媒30を担持させた光触媒シート32の形成、光触媒シート32と外囲器24の外表面との接着を略同時に行うことができるので、極めて製造容易である。
【0023】
尚、上記製造方法以外にも、例えば、光触媒の分散液中に不織布26を浸漬した後乾燥、焼成させることにより、不織布26を構成する繊維28の表面に光触媒30を被着・担持させて光触媒シート32を形成した後、該光触媒シート32を、接着剤を介して、外囲器24の外表面に被覆しても良い。
【0024】
上記第1の光触媒付発光ダイオード10にあっては、第1のリードフレーム12及び第2のリードフレーム18を介してLEDチップ16に電圧が印加されると、LEDチップ16が発光して光触媒活性化作用を有する波長の光(紫外線や可視光)が放射され、この光が外囲器24外表面に配置された光触媒30を活性化することにより、空気や水の浄化を行うことができる。
【0025】
而して、上記第1の光触媒付発光ダイオード10にあっては、外囲器24の外表面に、単位体積当たりの繊維28の表面積が極めて大きい不織布26を構成する繊維28の表面に光触媒30を担持せしめて成る光触媒シート32を被覆したことから、外囲器24の外表面に配置する光触媒30の表面積を大きく確保することができる。しかも、不織布26は通気性、通水性に優れていることから、光触媒30と、空気や水との接触効率が良好である。
さらに、上記第1の光触媒付発光ダイオード10にあっては、不織布26を構成する繊維28の表面に光触媒30を担持せしめて成る光触媒シート32を用い、該光触媒シート32を外囲器24の外表面に被覆したことから、外囲器77の外表面に、剥離し易い光触媒78で被覆された繊維状体79を被着した従来の光触媒付発光ダイオード70に比べて、その取扱いが容易である。
【0026】
尚、不織布26を構成する繊維28の表面に光触媒30を担持せしめて成る上記光触媒シート32の強度を向上させるため、図7に示すように、表面に光触媒30を担持させたシート状の織布40を光触媒シート32の外面に接合した上で、斯かる織布40の接合された光触媒シート32を、外囲器24の外表面に被覆するようにしても良い。
この織布40は、樹脂繊維、ガラス繊維、金属繊維等の多数の繊維(図示せず)を縒る等して形成した繊維の集合体より成る紐42を、略格子状に織り込むと共に、該織布40を構成する紐42の表面に光触媒30を担持させることにより形成されている(図8)。この織布40は、紐42間に多数の空隙44が形成されるように粗織りされているため、通気性に優れている。
図7においては、光触媒シート32の底面に上記織布40を接合した場合が示されているが、光触媒シート32の上面に上記織布40を接合したり、或いは、光触媒シート32の外面を上記織布40で被覆した状態で接合しても良い。
【0027】
上記織布40と光触媒シート32の外面との接合は、例えば、接着剤(図示せず)を介して行うことができる。
また、上記した複合繊維38を用いて第1の光触媒付発光ダイオード10を製造する場合においては、溶融した低融点材料より成る繊維36を介して、高融点材料より成る繊維28の交差部分を接着することにより不織布26を形成すると共に、粒子状の光触媒30を溶融した低融点材料より成る繊維36を介して、不織布26を構成する繊維28の表面に接着・担持させ、更に、光触媒シート32の底面を、溶融した低融点材料より成る繊維36を介して、外囲器24の外表面に接着すると共に、上記織布40を、溶融した低融点材料より成る繊維36を介して、光触媒シート32の上面に接合すれば良い。
【0028】
図9は、本発明に係る第2の光触媒付発光ダイオード50を示すものであり、該第2の光触媒付発光ダイオード50は、樹脂やセラミック等の絶縁材料より成る基板52上に、複数のLEDチップ54を接続・固定して成る。また、上記基板52の底面には、一対の外部電極56a,56bが接続されており、これら外部電極56a,56bの一端は、上記基板52を貫通して基板52表面に露出している。
各LEDチップ22上面の一方の電極(図示せず)は、ボンディングワイヤ58及び基板52表面に形成された配線パターン(図示せず)を介して、一方の外部電極56aに接続されると共に、各LEDチップ22上面の他方の電極(図示せず)は、ボンディングワイヤ58及び基板52表面に形成された配線パターン(図示せず)を介して、他方の外部電極56bに接続されている。
また、LEDチップ54の配置された基板52表面は、エポキシ樹脂、シリコン樹脂、アクリル樹脂等より成り、光触媒活性化作用を有する波長の紫外線や可視光等の光を透過させる略直方体形状の透光性の外囲器60によって被覆・封止されている。
さらに、上記外囲器60の外表面には、不織布26を構成する繊維28の表面に、酸化チタン(TiO)より成る光触媒30を被着・担持させた上記光触媒シート32が被覆されている。
【0029】
上記第2の光触媒付発光ダイオード50にあっては、一対の外部電極56a,56bを介してLEDチップ54に電圧が印加されると、LEDチップ54が発光して光触媒活性化作用を有する波長の光(紫外線や可視光)が放射され、この光が外囲器60外表面に配置された光触媒30を活性化することにより、空気や水の浄化を行うことができる。
【0030】
この第2の光触媒付発光ダイオード50も、外囲器60の外表面に、単位体積当たりの繊維28の表面積が極めて大きい不織布26を構成する繊維28の表面に光触媒30を担持せしめて成る光触媒シート32を被覆したことから、外囲器60の外表面に配置する光触媒30の表面積を大きく確保することができる。しかも、不織布26は通気性、通水性に優れていることから、光触媒30と、空気や水との接触効率が良好である。
さらに、第2の光触媒付発光ダイオード50は、不織布26を構成する繊維28の表面に光触媒30を担持せしめて成る光触媒シート32を用い、該光触媒シート32を外囲器60の外表面に被覆したことから、外囲器77の外表面に、剥離し易い光触媒78で被覆された繊維状体79を被着した従来の光触媒付発光ダイオード70に比べて、その取扱いが容易である。
【0031】
上記においては、不織布26を構成する繊維28の「表面」に光触媒30を担持せしめた場合を例に挙げて説明したが、本発明はこれに限定されるものではなく、例えば、セルロース系の化学繊維であり、多数の孔を備えた多孔質構造を有するレーヨン繊維に粒子状の光触媒30を練り混むことにより、繊維28に光触媒30を担持させても良い。この場合、光触媒30は、レーヨン繊維で構成された繊維28の表面のみならず、レーヨン繊維中にも担持されることとなるが、上記の通り、レーヨン繊維は多孔質構造であるため、孔を介して、繊維28中に練り混まれた光触媒30にも光触媒活性化作用を有する波長の光を照射して活性化できると共に、空気や水と接触させて浄化を行うことができる。
【0032】
【発明の効果】
本発明の光触媒付発光ダイオードにあっては、外囲器の外表面に、単位体積当たりの繊維の表面積が極めて大きい不織布を構成する繊維に光触媒を担持せしめて成る光触媒シートを被覆したことから、外囲器の外表面に配置する光触媒の表面積を大きく確保することができる。
また、本発明の光触媒付発光ダイオードにあっては、不織布を構成する繊維に光触媒を担持せしめて成る光触媒シートを用い、該光触媒シートを外囲器の外表面に被覆したことから、外囲器77の外表面に、剥離し易い光触媒78で被覆された繊維状体79を被着した従来の光触媒付発光ダイオード70に比べて、その取扱いが容易である。
【図面の簡単な説明】
【図1】本発明に係る第1の光触媒付発光ダイオードを模式的に示す概略断面図である。
【図2】光触媒シートを模式的に示すに斜視図である。
【図3】光触媒シートを模式的に示す部分拡大図である。
【図4】光触媒シートを構成する繊維を模式的に示す拡大図である。
【図5】光触媒シートを構成する繊維を模式的に示す断面図である。
【図6】複合繊維を示す概略断面図である。
【図7】表面に光触媒を担持させた織布を、光触媒シートの外面に接合した状態を模式的に示す正面図である。
【図8】表面に光触媒を担持させた織布を模式的に示す平面図である。
【図9】本発明に係る第2の光触媒付発光ダイオードを模式的に示す概略断面図である。
【図10】従来の光触媒付発光ダイオードを示す概略断面図である。
【図11】従来の光触媒付発光ダイオードの要部を拡大して示す概略断面図である。
【図12】従来の光触媒付発光ダイオードにおける繊維状体の拡大縦断面図である。
【図13】従来の光触媒付発光ダイオードにおける繊維状体の拡大横断面図である。
【符号の説明】
10 第1の光触媒付発光ダイオード
16 LEDチップ
24 外囲器
26 不織布
28 繊維
30 光触媒
32 光触媒シート
38 複合繊維
40 織布
50 第2の光触媒付発光ダイオード
54 LEDチップ
60 外囲器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light-emitting diode with a photocatalyst in which a photocatalyst is arranged on an outer surface of an envelope constituting a light-emitting diode (LED). In particular, the surface area of the photocatalyst arranged on the outer surface of the envelope is large, and the surface area of the photocatalyst is large. The present invention relates to a light-emitting diode with a photocatalyst that is easy to handle and easy to manufacture, and a method for manufacturing the same.
[0002]
[Prior art]
Photocatalysts such as titanium oxide (TiO 2 ) are activated when irradiated with light such as ultraviolet rays to produce a strong oxidation-reduction action, and are harmful compounds such as nitrogen oxides (NO X ) and sulfur oxides (SO X ). A light-emitting diode with a photocatalyst, in which this photocatalyst is disposed on the outer surface of an envelope, has conventionally been used because it exhibits an action of effectively decomposing water and pollutants.
Incidentally, the decomposition of harmful compounds, pollutants, and the like by the photocatalyst is an action caused by the contact of these harmful compounds, pollutants, and the like with the photocatalyst. Therefore, in order to improve the ability of the photocatalyst to purify air and water, it is desirable to increase the surface area of the photocatalyst as much as possible.
[0003]
Therefore, the present applicant has previously proposed a light-emitting diode with a photocatalyst in which a large number of fibrous bodies whose surfaces are covered with a photocatalyst are arranged in an upright state on the outer surface of the envelope (Japanese Patent Application No. 2003-2003). -82795).
As shown in FIGS. 10 and 11, the light emitting diode 70 with a photocatalyst has a hole diameter gradually increasing upward from the bottom surface of the first lead frame 71 for mounting the light emitting diode chip. The first lead frame is provided by providing a funnel-shaped recess and forming the reflector 72 by using the inner surface of the recess as a reflection surface, and die-bonding the LED chip 73 to the bottom surface of the reflector 72 via an Ag paste or the like. The LED 71 is electrically connected to one electrode (not shown) on the bottom surface of the LED chip 73. Further, a tip end portion 74 a of the second lead frame 74 is electrically connected to the other electrode (not shown) on the upper surface of the LED chip 73 via a bonding wire 75.
The LED chip 73, the upper ends of the distal end portions 71 a and the terminal portions 71 b of the first lead frame 71, and the upper ends of the distal end portions 74 a and the terminal portions 74 b of the second lead frame 74 have a convex lens portion 76 at the distal end. Is covered and sealed by an envelope 77.
[0004]
On the outer surface of the envelope 77, a number of elongated fibrous bodies 79 coated with a photocatalyst 78 made of titanium oxide (TiO 2 ) or the like are provided with an adhesive 80. It is attached in an upright state substantially perpendicular to the outer surface (FIG. 11). The fibrous body 79 is formed by coating a surface of a fiber 81 such as a glass fiber or a resin fiber with a photocatalyst 78 (FIGS. 12 and 13).
[0005]
In the light emitting diode with photocatalyst 70, when a voltage is applied to the LED chip 73 via the first lead frame 71 and the second lead frame 74, the LED chip 73 emits light to activate the photocatalyst. Light (ultraviolet light or visible light) having the wavelength is emitted, and this light activates the photocatalyst 78 on the outer surface of the envelope 77, thereby purifying air and water.
[0006]
Thus, in the light-emitting diode 70 with a photocatalyst, a large number of fibrous bodies 79 coated with the photocatalyst 78 are formed on the outer surface of the envelope 77 substantially perpendicularly to the outer surface of the envelope 77. Since the photocatalyst 78 is attached in an upright state, the surface area of the outer surface of the envelope 77 in which the photocatalyst 78 is disposed increases, and the surface integral of the numerous attached fibrous bodies 79 increases. The surface area of the photocatalyst 78 disposed on the outer surface of the vessel 77 can be dramatically increased.
[0007]
In the light-emitting diode 70 with a photocatalyst, the attachment of the fibrous body 79 to the outer surface of the envelope 77 can be performed using an electrostatic flocking method. In this method, the fibrous body 79 is planted on the outer surface of the envelope 77 to which the adhesive 80 is applied in a state where the fibrous body 79 is raised using static electricity.
[0008]
[Problems to be solved by the invention]
The light-emitting diode with a photocatalyst 70 has a large number of elongated fibrous bodies 79 covered with a photocatalyst 78 attached to the outer surface of an envelope 77 in an upright state substantially perpendicular to the outer surface of the envelope 77. However, when an external force is applied by touching the fibrous body 79 on the outer surface of the envelope 77 or the like, the fibrous body 79 is relatively easily peeled off, which is inconvenient to handle.
In addition, the light emitting diode 70 with the photocatalyst performs the attachment of the fibrous body 79 to the outer surface of the envelope 77 by using the electrostatic flocking method. Equipment and steps for charging the surface are required, and the production is complicated.
[0009]
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a photocatalyst disposed on the outer surface of an envelope with a large surface area, easy handling, and production. It is an easy light emitting diode with a photocatalyst and a method of manufacturing the same.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a light-emitting diode with a photocatalyst according to the present invention includes an LED chip that emits light having a wavelength having a photocatalytic activation action, and a light-transmitting envelope that seals the LED chip. Wherein the outer surface of the envelope is coated with a photocatalyst sheet in which fibers constituting a nonwoven fabric carry a photocatalyst.
[0011]
In the light-emitting diode with a photocatalyst of the present invention, since the outer surface of the envelope is coated with a photocatalyst sheet formed by supporting a photocatalyst on fibers constituting a nonwoven fabric having an extremely large surface area of fibers per unit volume, A large surface area of the photocatalyst disposed on the outer surface of the envelope can be secured.
Further, in the light-emitting diode with a photocatalyst of the present invention, a photocatalyst sheet formed by supporting a photocatalyst on fibers constituting a nonwoven fabric is used, and the photocatalyst sheet is coated on the outer surface of the envelope. The handling is easier than the conventional light emitting diode with photocatalyst 70 in which the fibrous body 79 coated with the photocatalyst 78 which is easily peeled is applied to the outer surface of 77.
[0012]
A string composed of an aggregate of a large number of fibers may be woven in a substantially lattice shape, and a woven fabric formed by carrying a photocatalyst on the surface of the string may be joined to the outer surface of the photocatalyst sheet. In this case, the strength of the photocatalyst sheet formed by supporting the photocatalyst on the fibers constituting the nonwoven fabric can be improved.
[0013]
The method for manufacturing a light-emitting diode with a photocatalyst according to the present invention includes an LED chip that emits light having a wavelength having a photocatalytic activation action, and a light-transmitting envelope that seals the LED chip. A method for producing a light-emitting diode with a photocatalyst comprising, on an outer surface of an envelope, a photocatalyst sheet in which a fiber constituting a nonwoven fabric carries a photocatalyst, wherein a fiber made of a high melting point material is replaced with a fiber made of a low melting point material Forming a sheet-like aggregate made of the conjugate fiber formed by coating with the above, a step of coating the sheet-like aggregate made of the conjugate fiber on the outer surface of the envelope, and forming the conjugate fiber At a temperature higher than the melting point of the fiber made of the low-melting-point material and lower than the melting point of the fiber made of the high-melting-point material, the composite of the composite fibers is heated to melt only the fiber made of the low-melting-point material. Material The intersecting portions of the fibers formed are bonded to each other via a fiber made of a molten low-melting material to form the nonwoven fabric, and the particulate photocatalyst is formed into a nonwoven fabric through a fiber made of the molten low-melting material. Bonding the photocatalyst sheet to the surface of the constituent fibers to form the photocatalyst sheet, and further bonding the photocatalyst sheet to the outer surface of the envelope via a fiber made of a molten low-melting point material. It is characterized by.
In the method for producing a light-emitting diode with a photocatalyst of the present invention, a composite fiber obtained by coating a fiber made of a high-melting material with a fiber made of a low-melting material is used, and only the fiber made of the low-melting material is melted to form an adhesive. By functioning, the formation of the nonwoven fabric, the formation of the photocatalyst sheet in which the photocatalyst is supported on the fibers constituting the nonwoven fabric, and the adhesion between the photocatalyst sheet and the outer surface of the envelope can be performed substantially at the same time. is there.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a light emitting diode with a photocatalyst according to the present invention will be described with reference to the drawings.
FIG. 1 shows a first light-emitting diode 10 with a photocatalyst according to the present invention. The light-emitting diode 10 with a photocatalyst is provided on a front end portion 12a of a first lead frame 12 for mounting a light-emitting diode chip, and a bottom surface thereof. A concave portion having a substantially funnel shape whose hole diameter gradually increases upward from above is provided, and a reflector 14 is formed by forming an inner surface of the concave portion as a reflection surface, and the LED chip 16 is formed on the bottom surface of the reflector 14 with an Ag paste or the like. The first lead frame 12 is electrically connected to one electrode (not shown) on the bottom surface of the LED chip 16 by die bonding. In addition, the distal end portion 18 a of the second lead frame 18 is electrically connected to the other electrode (not shown) on the upper surface of the LED chip 16 via a bonding wire 20.
The LED chip 16 is made of a gallium nitride-based semiconductor crystal or the like, and emits light such as ultraviolet light or visible light having a wavelength having a photocatalytic activation action.
Note that the first lead frame 12 and the second lead frame 18 are made of copper, a copper-zinc alloy, an iron-nickel alloy, or the like.
[0015]
In addition, the LED chip 16, the upper ends of the tip 12a and the terminal 12b of the first lead frame 12, and the upper ends of the tip 18a and the terminal 18b of the second lead frame 18 are made of epoxy resin, silicone resin, acrylic resin. It has a convex lens portion 22 at the tip and is covered and sealed by a light-transmitting envelope 24 that transmits light such as ultraviolet light or visible light having a wavelength that has a photocatalytic activation action.
Further, the lower ends of the terminal portion 12b of the first lead frame 12 and the terminal portion 18b of the second lead frame 18 pass through the lower end of the envelope 24 and are led out of the envelope 24. .
[0016]
As shown in FIGS. 2 to 5, on the outer surface of the envelope 24, a photocatalyst 30 made of titanium oxide (TiO 2 ) is adhered and carried on the surface of the fiber 28 constituting the nonwoven fabric 26. The photocatalyst sheet 32 is covered.
In addition, as shown in FIG. 5, the photocatalyst 30 is attached and supported on the surface of the fiber 28 in a dense film state, and there is a minute gap between the particles of the photocatalyst 30 on the surface of the fiber 28. In some cases, it may be roughly applied and carried in a state.
The photocatalyst 30 is made of a metal oxide having a photocatalytic action, such as TiO 2 , ZnO, SrTiO 3 , BaTiO 3 , and Fe 2 O 3. Anatase-type titanium oxide is most preferable because of its excellent photocatalytic activity. Can be used for
As the photocatalyst 30, not only a photocatalyst activated upon irradiation with ultraviolet light but also a visible light type photocatalyst activated upon irradiation with visible light can be used.
[0017]
The nonwoven fabric 26 is formed by a large number of fibers 28 intertwined in a three-dimensional manner, and is formed with a large number of voids 34 (see FIG. 4) between the fibers 28, so that the nonwoven fabric 26 is excellent in air permeability and water permeability. Since many fibers 28 are three-dimensionally entangled, the surface area of the fibers 28 per unit volume is extremely large.
The total surface area of the fibers 28 constituting the nonwoven fabric 26 can be arbitrarily increased or decreased by appropriately adjusting the fiber density of the fibers 28 constituting the nonwoven fabric 26, the thickness of the nonwoven fabric, the basis weight, and the like.
[0018]
The fibers 28 are made of resin fibers such as nylon, polyester, acrylic and polypropylene, and short fibers such as glass fibers and metal fibers, and have a diameter of about 5 to 20 μm and a length of about 0.5 to 20 mm.
Of course, it is also possible to use the fiber 28 made of long fiber having a length of about 50 to 100 mm.
[0019]
Hereinafter, a method of manufacturing the first light-emitting diode 10 with a photocatalyst by covering the outer surface of the envelope 24 with the photocatalyst sheet 32 will be described.
First, a large number of composite fibers 38 (see FIG. 6) having a predetermined length in which fibers 28 made of a high melting point material such as polypropylene are coated with fibers 36 made of a low melting point material such as polyethylene are prepared. Is used to form a sheet-like aggregate (web) composed of these multiple composite fibers 38.
[0020]
Next, the sheet-shaped aggregate is coated on the outer surface of the envelope 24, and in this state, the melting point of the high melting point material is higher than the melting point of the fiber 36 made of the low melting point material constituting the composite fiber 38. At a temperature lower than the melting point of the fiber 28 composed of the fibers 28, the sheet-like aggregate composed of the composite fibers 38 is heated to melt only the fiber 36 composed of the low-melting-point material, and the particulate photocatalyst 30 is sprayed on the aggregate. .
[0021]
As a result, the intersecting portions of the fibers 28 made of the high melting point material are bonded via the fibers 36 made of the molten low melting point material, so that the nonwoven fabric 26 is formed, and the particulate photocatalyst 30 is The photocatalyst sheet 32 is formed by being adhered and carried on the surface of the fiber 28 constituting the nonwoven fabric 26 via the fiber 36 made of the melting point material, and the photocatalyst sheet 32 is further formed by the fiber 36 made of the molten low melting point material. Then, the first light-emitting diode with photocatalyst 10 is completed by being adhered to the outer surface of the envelope 24.
[0022]
In the above manufacturing method, a composite fiber 38 obtained by coating a fiber 28 made of a high-melting material with a fiber 36 made of a low-melting material is used, and only the fiber 36 made of the low-melting material is melted to function as an adhesive. Thereby, the formation of the nonwoven fabric 26, the formation of the photocatalyst sheet 32 in which the photocatalyst 30 is carried on the surface of the fibers 28 constituting the nonwoven fabric 26, and the adhesion between the photocatalyst sheet 32 and the outer surface of the envelope 24 can be performed substantially simultaneously. Therefore, it is extremely easy to manufacture.
[0023]
In addition to the above-mentioned manufacturing method, for example, the photocatalyst 30 is adhered and supported on the surface of the fiber 28 constituting the nonwoven fabric 26 by immersing the nonwoven fabric 26 in a dispersion of the photocatalyst, followed by drying and firing. After forming the sheet 32, the photocatalyst sheet 32 may be coated on the outer surface of the envelope 24 via an adhesive.
[0024]
In the first light-emitting diode 10 with a photocatalyst, when a voltage is applied to the LED chip 16 via the first lead frame 12 and the second lead frame 18, the LED chip 16 emits light to activate the photocatalyst. Light (ultraviolet light or visible light) having a activating effect is emitted, and this light activates the photocatalyst 30 disposed on the outer surface of the envelope 24, thereby purifying air and water.
[0025]
Thus, in the first light-emitting diode 10 with a photocatalyst, the photocatalyst 30 is provided on the outer surface of the envelope 24 on the surface of the fiber 28 constituting the nonwoven fabric 26 in which the surface area of the fiber 28 per unit volume is extremely large. Is covered with the photocatalyst sheet 32 carrying thereon, a large surface area of the photocatalyst 30 disposed on the outer surface of the envelope 24 can be ensured. Moreover, since the nonwoven fabric 26 is excellent in air permeability and water permeability, the contact efficiency between the photocatalyst 30 and air or water is good.
Further, in the first light-emitting diode 10 with a photocatalyst, a photocatalyst sheet 32 formed by supporting a photocatalyst 30 on the surface of a fiber 28 constituting the nonwoven fabric 26 is used. Since it is coated on the surface, it is easier to handle than the conventional light-emitting diode 70 with a photocatalyst, in which the fibrous body 79 coated with the photocatalyst 78, which is easily peeled off, is adhered to the outer surface of the envelope 77. .
[0026]
In order to improve the strength of the photocatalyst sheet 32 in which the photocatalyst 30 is carried on the surface of the fibers 28 constituting the nonwoven fabric 26, as shown in FIG. After bonding the photocatalyst sheet 32 to the outer surface of the photocatalyst sheet 32, the outer surface of the envelope 24 may be covered with the photocatalyst sheet 32 to which the woven fabric 40 is bonded.
The woven fabric 40 is formed by weaving a string 42 made of an aggregate of fibers formed by twisting a large number of fibers (not shown) such as resin fibers, glass fibers, and metal fibers into a substantially lattice shape. It is formed by supporting the photocatalyst 30 on the surface of the string 42 constituting the woven fabric 40 (FIG. 8). Since the woven fabric 40 is coarsely woven so that a large number of voids 44 are formed between the strings 42, the woven fabric 40 is excellent in air permeability.
FIG. 7 shows a case where the woven fabric 40 is bonded to the bottom surface of the photocatalyst sheet 32. However, the woven fabric 40 is bonded to the upper surface of the photocatalyst sheet 32, or the outer surface of the photocatalyst sheet 32 is You may join in the state covered with the woven fabric 40.
[0027]
The bonding between the woven fabric 40 and the outer surface of the photocatalyst sheet 32 can be performed, for example, via an adhesive (not shown).
In the case where the first light emitting diode 10 with a photocatalyst is manufactured using the above-described composite fiber 38, the intersection of the fiber 28 made of the high melting point material is bonded via the fiber 36 made of the molten low melting point material. In addition to forming the non-woven fabric 26, the particulate photocatalyst 30 is adhered to and supported on the surface of the fiber 28 constituting the non-woven fabric 26 via the fiber 36 made of the molten low-melting material. The bottom surface is adhered to the outer surface of the envelope 24 via a fiber 36 made of a molten low-melting material, and the woven fabric 40 is bonded to the photocatalyst sheet 32 via the fiber 36 made of a molten low-melting material. May be bonded to the upper surface of the substrate.
[0028]
FIG. 9 shows a second light-emitting diode with photocatalyst 50 according to the present invention. The second light-emitting diode with photocatalyst 50 has a plurality of LEDs on a substrate 52 made of an insulating material such as resin or ceramic. A chip 54 is connected and fixed. Further, a pair of external electrodes 56a and 56b are connected to the bottom surface of the substrate 52, and one ends of the external electrodes 56a and 56b penetrate the substrate 52 and are exposed on the surface of the substrate 52.
One electrode (not shown) on the upper surface of each LED chip 22 is connected to one external electrode 56a via a bonding wire 58 and a wiring pattern (not shown) formed on the surface of the substrate 52, and The other electrode (not shown) on the upper surface of the LED chip 22 is connected to the other external electrode 56b via a bonding wire 58 and a wiring pattern (not shown) formed on the surface of the substrate 52.
The surface of the substrate 52 on which the LED chips 54 are arranged is made of an epoxy resin, a silicon resin, an acrylic resin, or the like, and has a substantially rectangular parallelepiped shape that transmits light having a photocatalytic activation action, such as ultraviolet light or visible light. It is covered and sealed by a surrounding envelope 60.
Further, the outer surface of the envelope 60 is covered with the photocatalyst sheet 32 in which the photocatalyst 30 made of titanium oxide (TiO 2 ) is adhered and supported on the surface of the fiber 28 constituting the nonwoven fabric 26. .
[0029]
In the second light-emitting diode 50 with a photocatalyst, when a voltage is applied to the LED chip 54 through the pair of external electrodes 56a and 56b, the LED chip 54 emits light and has a wavelength having a photocatalytic activation action. Light (ultraviolet light or visible light) is emitted, and this light activates the photocatalyst 30 disposed on the outer surface of the envelope 60, whereby air and water can be purified.
[0030]
The second light emitting diode with photocatalyst 50 also has a photocatalyst sheet in which the photocatalyst 30 is carried on the surface of the fiber 28 constituting the nonwoven fabric 26 having an extremely large surface area of the fiber 28 per unit volume on the outer surface of the envelope 60. Since the photocatalyst 32 is covered, a large surface area of the photocatalyst 30 disposed on the outer surface of the envelope 60 can be secured. Moreover, since the nonwoven fabric 26 is excellent in air permeability and water permeability, the contact efficiency between the photocatalyst 30 and air or water is good.
Further, the second light emitting diode 50 with a photocatalyst uses a photocatalyst sheet 32 in which a photocatalyst 30 is carried on the surface of a fiber 28 constituting the nonwoven fabric 26, and the photocatalyst sheet 32 is coated on the outer surface of an envelope 60. Therefore, the handling is easier as compared with the conventional light-emitting diode with photocatalyst 70 in which the fibrous body 79 covered with the photocatalyst 78 which is easily peeled is adhered to the outer surface of the envelope 77.
[0031]
In the above description, the case where the photocatalyst 30 is carried on the “surface” of the fiber 28 constituting the nonwoven fabric 26 has been described as an example. However, the present invention is not limited to this. The photocatalyst 30 may be supported on the fiber 28 by kneading the particulate photocatalyst 30 with a rayon fiber which is a fiber and has a porous structure having a large number of holes. In this case, the photocatalyst 30 is supported not only on the surface of the fiber 28 made of rayon fiber but also in the rayon fiber. As described above, since the rayon fiber has a porous structure, pores are formed. In addition, the photocatalyst 30 kneaded in the fiber 28 can be activated by irradiating light having a wavelength having a photocatalytic activating action to the photocatalyst 30, and can be purified by contact with air or water.
[0032]
【The invention's effect】
In the light-emitting diode with a photocatalyst of the present invention, since the outer surface of the envelope is coated with a photocatalyst sheet formed by supporting a photocatalyst on fibers constituting a nonwoven fabric having an extremely large surface area of fibers per unit volume, A large surface area of the photocatalyst disposed on the outer surface of the envelope can be secured.
Further, in the light-emitting diode with a photocatalyst of the present invention, a photocatalyst sheet formed by supporting a photocatalyst on fibers constituting a nonwoven fabric is used, and the photocatalyst sheet is coated on the outer surface of the envelope. The handling is easier than the conventional light emitting diode with photocatalyst 70 in which the fibrous body 79 coated with the photocatalyst 78 which is easily peeled is applied to the outer surface of 77.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view schematically showing a first light-emitting diode with a photocatalyst according to the present invention.
FIG. 2 is a perspective view schematically showing a photocatalyst sheet.
FIG. 3 is a partially enlarged view schematically showing a photocatalyst sheet.
FIG. 4 is an enlarged view schematically showing fibers constituting a photocatalyst sheet.
FIG. 5 is a cross-sectional view schematically showing fibers constituting a photocatalyst sheet.
FIG. 6 is a schematic sectional view showing a conjugate fiber.
FIG. 7 is a front view schematically showing a state in which a woven fabric having a photocatalyst carried on the surface is joined to the outer surface of the photocatalyst sheet.
FIG. 8 is a plan view schematically showing a woven fabric having a photocatalyst carried on the surface.
FIG. 9 is a schematic sectional view schematically showing a second light-emitting diode with a photocatalyst according to the present invention.
FIG. 10 is a schematic sectional view showing a conventional light emitting diode with a photocatalyst.
FIG. 11 is an enlarged schematic cross-sectional view showing a main part of a conventional light-emitting diode with a photocatalyst.
FIG. 12 is an enlarged vertical sectional view of a fibrous body in a conventional light-emitting diode with a photocatalyst.
FIG. 13 is an enlarged cross-sectional view of a fibrous body in a conventional light-emitting diode with a photocatalyst.
[Explanation of symbols]
Reference Signs List 10 first light-emitting diode with photocatalyst 16 LED chip 24 envelope 26 non-woven fabric 28 fiber 30 photocatalyst 32 photocatalyst sheet 38 composite fiber 40 woven fabric 50 second light-emitting diode with photocatalyst 54 LED chip 60 envelope

Claims (3)

光触媒活性化作用を有する波長の光を放射するLEDチップと、該LEDチップを封止する透光性の外囲器とを備え、上記外囲器の外表面に、不織布を構成する繊維に光触媒を担持させた光触媒シートを被覆したことを特徴とする光触媒付発光ダイオード。An LED chip that emits light having a wavelength having a photocatalytic activation action, and a light-transmitting envelope that seals the LED chip, wherein the outer surface of the envelope has a photocatalyst formed on a fiber constituting a nonwoven fabric. A light-emitting diode with a photocatalyst, which is covered with a photocatalyst sheet carrying the compound. 多数の繊維の集合体より成る紐を略格子状に織り込むと共に、上記紐の表面に光触媒を担持させて形成した織布を、上記光触媒シートの外面に接合したことを特徴とする請求項1に記載の浄化装置。The woven fabric formed by weaving a string made of an aggregate of a large number of fibers in a substantially lattice shape and carrying a photocatalyst on the surface of the string is joined to the outer surface of the photocatalyst sheet. Purification device according to the above. 光触媒活性化作用を有する波長の光を放射するLEDチップと、該LEDチップを封止する透光性の外囲器とを備え、上記外囲器の外表面に、不織布を構成する繊維に光触媒を担持させた光触媒シートを被覆して成る光触媒付発光ダイオードの製造方法であって、
高融点材料より成る繊維を低融点材料より成る繊維で被覆して形成した複合繊維より成るシート状の集積体を形成する工程と、
上記複合繊維より成るシート状の集積体を、外囲器の外表面に被覆する工程と、
上記複合繊維を構成する低融点材料より成る繊維の融点より高く、且つ、高融点材料より成る繊維の融点より低い温度で、上記複合繊維の集積体を加熱して低融点材料より成る繊維のみを溶融させ、高融点材料より成る繊維の交差部分を、溶融した低融点材料より成る繊維を介して接着することにより、上記不織布を形成すると共に、粒子状の光触媒を、溶融した低融点材料より成る繊維を介して、不織布を構成する繊維の表面に接着して上記光触媒シートを形成し、更に、光触媒シートを、溶融した低融点材料より成る繊維を介して、外囲器の外表面に接着する工程と、
を備えたことを特徴とする光触媒付発光ダイオードの製造方法。
An LED chip that emits light of a wavelength having a photocatalytic activation action, and a light-transmitting envelope that seals the LED chip, wherein the outer surface of the envelope has a photocatalyst formed on a fiber constituting a nonwoven fabric. A method for producing a light-emitting diode with a photocatalyst, which is coated with a photocatalyst sheet carrying
Forming a sheet-like aggregate of composite fibers formed by coating fibers of a high melting material with fibers of a low melting material;
A step of coating the sheet-like aggregate made of the composite fiber on the outer surface of the envelope,
The composite of the composite fibers is heated at a temperature higher than the melting point of the fiber composed of the low melting point material constituting the composite fiber and lower than the melting point of the fiber composed of the high melting point material, and only the fiber composed of the low melting point material is produced. The nonwoven fabric is formed by melting and bonding the intersections of the fibers made of the high-melting-point material via the fibers made of the molten low-melting-point material, and the particulate photocatalyst is formed of the molten low-melting-point material. The photocatalyst sheet is formed by adhering to the surface of the fiber constituting the nonwoven fabric via the fiber, and the photocatalyst sheet is further adhered to the outer surface of the envelope via the fiber made of the molten low melting point material. Process and
A method for manufacturing a light-emitting diode with a photocatalyst, comprising:
JP2003154414A 2003-05-30 2003-05-30 Light emitting diode with photocatalyst and its manufacturing method Pending JP2004356507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154414A JP2004356507A (en) 2003-05-30 2003-05-30 Light emitting diode with photocatalyst and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154414A JP2004356507A (en) 2003-05-30 2003-05-30 Light emitting diode with photocatalyst and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004356507A true JP2004356507A (en) 2004-12-16

Family

ID=34049075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154414A Pending JP2004356507A (en) 2003-05-30 2003-05-30 Light emitting diode with photocatalyst and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004356507A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108922A (en) * 2003-09-29 2005-04-21 Okaya Electric Ind Co Ltd Light emitting diode and manufacturing method thereof
JP2006286998A (en) * 2005-04-01 2006-10-19 Okaya Electric Ind Co Ltd Light emitting diode and its fabrication process
JP2006286672A (en) * 2005-03-31 2006-10-19 Okaya Electric Ind Co Ltd Light emitting diode and its fabrication process
JP2006286999A (en) * 2005-04-01 2006-10-19 Okaya Electric Ind Co Ltd Light emitting diode and its fabrication process
JP2006286997A (en) * 2005-04-01 2006-10-19 Okaya Electric Ind Co Ltd Light emitting diode and its fabrication process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108922A (en) * 2003-09-29 2005-04-21 Okaya Electric Ind Co Ltd Light emitting diode and manufacturing method thereof
JP4491213B2 (en) * 2003-09-29 2010-06-30 岡谷電機産業株式会社 Light emitting diode and manufacturing method thereof
JP2006286672A (en) * 2005-03-31 2006-10-19 Okaya Electric Ind Co Ltd Light emitting diode and its fabrication process
JP2006286998A (en) * 2005-04-01 2006-10-19 Okaya Electric Ind Co Ltd Light emitting diode and its fabrication process
JP2006286999A (en) * 2005-04-01 2006-10-19 Okaya Electric Ind Co Ltd Light emitting diode and its fabrication process
JP2006286997A (en) * 2005-04-01 2006-10-19 Okaya Electric Ind Co Ltd Light emitting diode and its fabrication process
JP4744913B2 (en) * 2005-04-01 2011-08-10 岡谷電機産業株式会社 Light emitting diode

Similar Documents

Publication Publication Date Title
KR100633519B1 (en) Light receiving or emitting semiconductor apparatus
WO2006022873A3 (en) Light emitting devices having a reflective bond pad and methods of fabricating light emitting devices having reflective bond pads
CN112864296B (en) LED packaging device
JP2004356507A (en) Light emitting diode with photocatalyst and its manufacturing method
JP2006286999A (en) Light emitting diode and its fabrication process
TW200932035A (en) Light-emitting element
JP4491213B2 (en) Light emitting diode and manufacturing method thereof
JP2012099815A5 (en)
JP4744913B2 (en) Light emitting diode
JP6164215B2 (en) Optical semiconductor device
CN106410003B (en) Light emitting element and light emitting device using the same
JP4698986B2 (en) Light emitting diode and manufacturing method thereof
JP2006286672A (en) Light emitting diode and its fabrication process
JP2000025135A (en) Functionally flocked fabric article and its manufacture
JP5351669B2 (en) Wavelength converting member and light emitting device using the same
JP2004296478A (en) Light emitting diode with photocatalyst
JP2004351370A (en) Cleaning apparatus and its manufacturing method
JP2004135851A (en) Photocatalyst apparatus
JP2004356006A (en) Electric discharge panel with photocatalyst, and its manufacturing method
JP2005262032A (en) Air cleaner
JP2004351367A (en) Photocatalyst carrier and production method therefor
JP2004356002A (en) Discharge tube with photocatalyst, and its manufacturing method
US20090035513A1 (en) Tethered nanorods
JP2014013855A (en) Method of manufacturing semiconductor light-emitting device and semiconductor light-emitting device
WO2022186193A1 (en) Photocatalyst member and photocatalyst device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309